
Vol.:(0123456789)

SN Computer Science (2022) 3:110
https://doi.org/10.1007/s42979-021-00989-8

SN Computer Science

ORIGINAL RESEARCH

Generalised Pattern Search with Restarting Fitness Landscape Analysis

Ferrante Neri1 

Received: 24 July 2021 / Accepted: 5 December 2021 / Published online: 23 December 2021
© The Author(s) 2021

Abstract
Fitness landscape analysis for optimisation is a technique that involves analysing black-box optimisation problems to extract
pieces of information about the problem, which can beneficially inform the design of the optimiser. Thus, the design of the
algorithm aims to address the specific features detected during the analysis of the problem. Similarly, the designer aims
to understand the behaviour of the algorithm, even though the problem is unknown and the optimisation is performed via
a metaheuristic method. Thus, the algorithmic design made using fitness landscape analysis can be seen as an example of
explainable AI in the optimisation domain. The present paper proposes a framework that performs fitness landscape analysis
and designs a Pattern Search (PS) algorithm on the basis of the results of the analysis. The algorithm is implemented in a
restarting fashion: at each restart, the fitness landscape analysis refines the analysis of the problem and updates the pattern
matrix used by PS. A computationally efficient implementation is also presented in this study. Numerical results show that
the proposed framework clearly outperforms standard PS and another PS implementation based on fitness landscape analysis.
Furthermore, the two instances of the proposed framework considered in this study are competitive with popular algorithms
present in the literature.

Keywords  Pattern search · Local search · Fitness landscape analysis · Covariance matrix · Numerical optimisation

Introduction

Although findings in the continuous domain are not entirely
conclusive [2], No Free Lunch Theorems [42] suggest that
algorithms are designed to address specific optimisation
problems.

Many real-world problems can be formulated as black-
box optimisation problems [3]. In these cases, information
about the problem is not available a priori; thus, modern
implementations include mechanisms to make the algorithm
suitable to the specific features of the problem. We can
broadly distinguish two approaches to design algorithms.
These two algorithmic philosophies, albeit ideologically dif-
ferent, overlap in their practical implementations.

–	 adaptive algorithms: feedback on the algorithmic
behaviour regarding the specific problem is collected
and used to adjust the algorithm, see [6, 7, 36]

–	 fitness landscape analysis: the optimisation problem is
analysed by a method, e.g., an artificial intelligence tool,
and the results are used to design the algorithm; see [17,
23, 24, 33, 34]

The feedback used by adaptive algorithms can be catego-
rised into the following two groups.

–	 Performance-based feedback: the most successful
parameter setting and/or algorithmic operator(s) are
likely to be selected for the subsequent stages of the
optimisation process. This is the case for many hyper-
heuristic [4, 8] and self-adaptive [19] schemes.

–	 Behaviour-based feedback: some metrics associated
with the functioning of the algorithm are monitored and
fed back to update parameter settings and/or algorithmic
operator(s). Some examples are diversity-based adapta-
tion [26, 32] and super-fit adaptation for swarm intel-
ligence algorithms [5–7, 16].

“This article is part of the topical collection “Applications of
bioinspired computing (to real world problems)” guest edited by
Aniko Ekart, Pedro Castillo, and Juanlu Jiménez-Laredo”

 *	 Ferrante Neri
	 ferrante.neri@nottingham.ac.uk

1	 COL Laboratory, School of Computer Science, University
of Nottingham, Nottingham NG8 1BB, UK

http://orcid.org/0000-0002-6100-6532
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00989-8&domain=pdf

	 SN Computer Science (2022) 3:110110  Page 2 of 20

SN Computer Science

This article focuses on fitness landscape analysis. This study
proposes a novel method for analysing fitness landscapes and
performs the design of the optimiser based on the proposed
analysis’ method. The section “Related Works: Algorithmic
Design based on Fitness Landscape Analysis” provides some
background about algorithmic design informed by fitness
landscape analysis. The section “Proposal of this Article”
briefly outlines the proposed technique, explains its moti-
vation, and describes the content of the remainder of this
article.

Related Works: Algorithmic Design Based on Fitness
Landscape Analysis

A fitness landscape is a tuple composed of a set/domain of
candidate solutions, a notion of neighborhood, and a fitness/
objective function; see [38]. Fitness landscape analysis is a
popular topic that has attracted the attention of researchers in
optimisation over the past 2 decades; see [22, 24]. Although
the majority of studies on fitness landscape analysis focus
on the combinatorial domain [35], recent studies proposed
valuable contributions to the continuous domain [23, 25].
For example, an analysis of separability performed using the
Pearson’s coefficient was proposed in [9]. Using an interac-
tion matrix to identify groups of strongly interacting vari-
ables has been proposed in [39]. The study in [1] proposes
the construction of a graph-based abstraction of the search
space representing the optimisation problem, known as a
local optimisation network. In this graph, each node of the
graph is a local optimum, while the edges between nodes
represent the adjacency of the basins of optima.

A special mention should be given to Covariance Matrix
Adaptive Evolution Strategy (CMAES) [13, 14]. This popu-
lar algorithm progressively adapts a multi-variate Gaussian
distribution from which candidate solutions are sampled.
This adaptation is performed to increase the likelihood of
previously successful candidate solutions. While CMAES
runs, its distribution adapts to the geometry of the problem/
local optimum. Thus, CMAES can be considered an adap-
tive algorithm belonging to the performance-based feedback
group and an algorithm designed on the basis of a fitness
landscape analysis.

Another recent example of an algorithm designed on
the basis of a fitness landscape analysis for the continuous
domain is the Covariance Pattern Search (CPS) [30, 31].
This algorithm characterises the geometry of the problem by
sampling points whose objective function is below a certain
threshold. The covariance matrix associated with the sam-
pled points and its eigenvectors are then calculated. These
eigenvectors are then used as the search directions of the
Generalised Pattern Search (GPS), see [40]. The results in
[30, 31] clearly show that the pattern based on the eigen-
vectors of a well-estimated covariance matrix outperforms

the classical pattern based on the fundamental orthonormal
basis (the directions of the variables). On the other hand, the
application of CPS is impractical, since it requires the setting
of the above-mentioned threshold parameter for each opti-
misation problem. This setting is performed empirically and
thus requires considerable computational effort, especially
in high-dimension cases. This feature makes CPS neither
versatile (over various problems) nor easily scalable.

One paper [28] overcomes this limitation using a restart-
ing scheme that divides the run into local runs. The result-
ing algorithm, Adaptive Covariance Patter Search (ACPS),
uses the best objective function value at each restart as the
threshold for the following local run.

Proposal of this Article

The present article extends the concept of CPS by enhancing
its fitness landscape analysis. Besides determining the search
directions of PS, herein referred to as PS, the present study
also assigns a step size to each search direction. Each step
size is calculated on the basis of an estimation of the direc-
tional derivative along the associated search directions: the
proposed method performs large steps when the directional
derivative is low (the fitness landscape is flat) and small
steps when the directional derivative is high (the fitness
landscape is steep). Furthermore, the present study makes
use of the restarting strategy proposed in [28] to overcome
the CPS limitation of setting a threshold for each problem.
Thus, the present article can be considered a generalisation
of ACPS to an algorithmic framework, which is referred to
as Generalised Pattern Search with Restarting Fitness Land-
scape Analysis (GPSRFLA).

The remainder of this article is organised as follows: The
section “Basic Notation and Generalised Pattern Search”
introduces the notation and describes the basics of PS and
GPS. The section “Proposal of this Article” describes the
proposed framework and provides a pertinent theoretical jus-
tification for the fitness landscape analysis. The section “A
Computationally Efficient Instance of GPSRFLA” describes
ACPS and presents it as a computationally efficient instance
of GPSRFLA. The section “Numerical Results” provides the
numerical results of this work. Finally, the section “Conclu-
sion” ends with the conclusive remarks of the study.

Basic Notation and Generalised Pattern
Search

Before entering the description of the algorithms, let us
introduce the notation used throughout this paper. Let us
indicate with � an n-dimensional vector of real numbers
( � ∈ ℝ

n ). We will refer to a numerical optimisation problem

SN Computer Science (2022) 3:110	 Page 3 of 20  110

SN Computer Science

that is the minimisation of a function f ∶ D → Y where
D ⊆ ℝ

n and Y ⊆ ℝ

In this study, we will focus on the box constrained case
( 
[

a1, b1
]

×
[

a2, b2
]

…×…
[

an, bn
]

 with × indicating the
Cartesian product), which includes the unconstrained case
]−∞,+∞[n = ℝ

n.
We will call the set D “decision space”. Also, we will

refer to the n-dimensional vector � as “vector”, “point”, or
“candidate solution”, while we will refer to its components
as “design variables”.

The PS algorithms are a family of deterministic direct
search methods [40], i.e., deterministic optimisation algo-
rithms that do not require gradient calculations. The algo-
rithms that belong to this family have been conceptualised
by means of a generalised scheme, namely GPS [40]. GPS
is characterised by two elements:

–	 a set of search directions (a basis of vectors) spanning the
decision space D;

–	 a trial step vector endowed with a step variation rule.

From an initial point � , the PS algorithms perturb the solu-
tion along the search directions in an iterative manner. Let
us indicate with k the iteration index. Formally, the search
directions are determined by two matrices. The first is a
non-singular matrix, namely the basis matrix, and it is indi-
cated by � ∈ ℝ

n×n where ℝn×n is the set of square matri-
ces of real numbers of order n. The second is a rectangular
matrix, namely the generating matrix, and it is indicated

min
�∈D

f (�).

with �k ∈ ℤ
n×p where ℤn×p is the set of matrices of relative

numbers of size n by p with p > 2n and rank n.
The search directions are given by the columns of the

matrix

that is referred to as the pattern (and has size n × p ). Thus,
a pattern can be seen as a repository of search directions,
with n of them being in the direction of a basis of ℝn and n of
them being in the same directions but with opposite orienta-
tion. There may potentially be some additional directions.

The GPS kth trial step along the ith direction is the vector
�k , defined as

where �k is a positive real number and �i
k
 is the ith column

of the matrix �k . The parameter �k determines the step size,
while ��i

k
 is the direction of the trial step.

If �k is the current best solution at the iteration k, the trial
point generated by means of the trial step would be

The set of operations that yields a current best point is
called the exploratory move. The exploratory move succeeds
when a solution with better performance is detected, and
fails when no update of the current best is found. Within the
GPS family, various PS implementations employ different
strategies, e.g., attempting only one trial vector per step or
exploring all the columns of �k�k.

The pseudocode of GPS is given in Algorithm 1.

(1)�k = ��k

(2)�k = �k��
i
k
,

(3)��k = �k + �k.

	 SN Computer Science (2022) 3:110110  Page 4 of 20

SN Computer Science

An Implementation of Pattern Search

Although GPS in [40] refers to a generic basis matrix � , most
PS implementations use the identity matrix � as the matrix,
that moves along the directions of the problem. Furthermore,
in the absence of specific information, the elements of the gen-
erating matrix �k are selected to explore each direction in the
same way.

One example is the greedy implementation proposed in
[41], which states that each design variable samples a trial
solution—if the first move fails, it attempts to explore the
opposite direction. This greedy approach appears to be espe-
cially effective for multi-variate problems as it allows a quick
enhancement of the initial solution; see [41]. Let us indicate
with �1 , �2,… �n the orthonormal basis of ℝn

�1 = (1, 0,… 0)�

�2 = (0, 1,… 0)�

…

�n = (0, 0,… 1)�,

where the apex � indicates the transpose and � is a scalar
( � = �1 ). This greedy PS first samples (minus move)

and if this trial point is worse than the current best �k , it
attempts to sample (plus move)

before moving to the following design variable. We will say
that a move succeeded if the objective function f of the trial
point �� is better than that of �k . The number of successful
and failed moves determines the cost of a full scan alongside
all directions. Each scan requires between n and 2n objective
function calls.

It can be remarked that an asymmetric exploration is
carried out to avoid revisiting the same solution multiple
times, see [31]. If moves in all directions fail, then radius � is
halved. The algorithm is stopped either when the radius � is
smaller than the tolerance value or when the computational
budget is exceeded. The pseudocode of PS is reported in
Algorithm 2.

(4)�� = �k − � ⋅ �i,

(5)�� = �k +
�

2
⋅ �i

SN Computer Science (2022) 3:110	 Page 5 of 20  110

SN Computer Science

In terms of GPS notation, this PS implementations in two
dimensions ( n = 2 ) are characterised by the basis matrix

while the generating matrix �k is

and �k = � . Each row of the matrix �k represents a variable
in the system of coordinates identified by the basis � . Each
column contains the information of a possible outcome of
the for loop in Algorithm 2. For example, the first column
represents a scenario in which, along the first variable, the
minus move failed and the plus move succeeded and, along
the second variable, both the moves failed. In a similar way,
the sixth column indicates that, along the first variable, the
minus move failed and the plus move succeeded, while along
the second variable, the minus move succeeded. In other
words, each column of �k is a possible linear combination
of plus and minus moves that can be potentially performed
within the for loop in Algorithm 2.

� =

(

1 0

0 1

)

,

�k =

(

1

2
0 − 1 0

1

2

1

2
− 1 − 1 0

0
1

2
0 − 1

1

2
− 1 − 1

1

2
0

)

,

landscape uses progressively more updated data to make
progressively more accurate decisions about the pattern that
enhances the performance of the algorithm. Thus, the pro-
posed framework is designed to progressively learn the opti-
misation problem and train Patter Search accordingly.

At the beginning of the optimisation, one point � is sampled
within the decision space D. A total budget tb is allocated to
the entire optimisation process, including the fitness landscape
analysis. Then, a maximum local budget lb is allocated to the
fitness landscape analysis and PS between two consecutive
restarts, which is referred to as local run. The inputs of the fit-
ness landscape analysis are the domain D, the objective func-
tion f, and the current best point � . The outputs of the fitness
landscape analysis are the basis matrix � and the generating
matrix �k . The latter two matrices, which compose the pattern
matrix, are then used as inputs with the current best solution
� for the Pattern Search local run. The output of the Pattern
Search local run is the current best solution � , which is then
inputted into the fitness landscape analysis component again.
At each restart, the radius �k is reinitialised to search for the
optimum with the new pattern matrix �k in the following local
run. Algorithm 3 describes the external framework of the pro-
posed GPSRFLA.

Generalised Pattern Search with Restarting
Fitness Landscape Analysis

The proposed GPSRFLA framework is composed of two algo-
rithmic components

–	 Fitness Landscape Analysis
–	 (Generalised) Pattern Search,

which are periodically restarted. At each restart, the fitness
landscape is analysed and the analysis informs the setting of
the pattern of PS. It is then ran. At each restart, the fitness

The following two subsections describe in detail the func-
tioning of the fitness landscape analysis and PS, respectively.

Fitness Landscape Analysis

The fitness landscape analysis component makes use of
a data structure � , which can contain up to nv candidate
solutions. At the first local run, ns points (with ns > nv ) are
sampled within the decision space D. The objective func-
tion value of these ns points is calculated and the nv with the
best objective function values are saved in the data structure

	 SN Computer Science (2022) 3:110110  Page 6 of 20

SN Computer Science

� . In the following local runs, ns points (with ns > nv ) are
sampled in the neighborhood of the best current solution � .
If the candidate solution � is

the neighborhood is determined by the hyper-cube, where
each side is the interval

[

xi − �, xi + �
]

 where � = kv ⋅ � with
kv parameter to set and � is the radius of PS; see section 2.1.

The data structure � can be represented as

Using the points (vectors) in � , the mean vector and covari-
ance matrix � are calculated. The mean vector � is calcu-
lated as

and the generic element cj,l of the covariance matrix � is:

Then, the eigenvectors

of � are calculated via Cholesky factorisation. Since � is
symmetric, it is diagonalizable, and an orthogonal basis of
its eigenvectors can be found; see [27]. These eigenvectors
are used as the basis to explore the space in the PS logic. In
other words, the matrix � , whose columns are the eigenvec-
tors of � , is used as the basis matrix � of GPS; see [29].

The eigenvalues

associated with the eigenvectors �1, �2,… , �n , respectively,
are used to update the generating matrix �k of GPS. More
specifically, the matrix �k can be represented as a vector of
row vectors; each of them associated with a design variable
of the optimisation problem

� =
(

x1, x2,… , xn
)

,

� =

⎛

⎜

⎜

⎜

⎝

x1,1 x1,2 … x1,n
x2,1 x2,2 … x2,n
… … … …

xm,1 xm,2 … xm,n

⎞

⎟

⎟

⎟

⎠

.

� =
(

�1,�2,… ,�n

)

=
1

m

(

m
∑

i=1

xi,1,

m
∑

i=1

xi,2,… ,

m
∑

i=1

xi,n

)�

cj,l =
1

m

m
∑

i=1

((

xi,j − �j

)(

xi,l − �l

))

.

� =
(

�1, �2,… , �n
)

�1, �2,… �n

The generating matrix �k is then updated by multiplying
each row by the square root of the corresponding eigenvalue

The PS is then run on current best solution � , with the pat-
tern �k calculated as

Algorithm 4 displays the pseudocode of the Fitness Land-
scape Analysis.

�k =

⎛

⎜

⎜

⎜

⎝

�k1
�k2
…

�kn

⎞

⎟

⎟

⎟

⎠

.

(6)�k =

⎛

⎜

⎜

⎜

⎜

⎝

√

�1 ⋅ �k1
√

�2 ⋅ �k2
…

√

�n ⋅ �kn

⎞

⎟

⎟

⎟

⎟

⎠

.

(7)�k = ��k.

Fig. 1   Sampling of points (blue dots) within [−100, 100]2 for shifted
and rotated sphere, ellipsoid, bent cigar, and Rosenbrock functions
below the threshold values 103 , 3 × 104 , 106 and 5 × 103 , respectively.
Each sub-figure shows the contour of the function under considera-
tion. The pairs of dashed lines in each sub-figure indicate the direc-
tions of the eigenvectors of the Covariance matrix associated with the
sampled points

SN Computer Science (2022) 3:110	 Page 7 of 20  110

SN Computer Science

Rationale of Fitness Landscape Analysis

This section explains the rationale behind the choices made
above, i.e., what the fitness landscape analysis measures and
how it informs the algorithmic design of PS. First, it is impor-
tant to visualise the information contained in the data structure
� . Let us consider the following four shifted and rotated objec-
tive functions in two dimensions within [−100, 100]2 ; see [20]:

where � = �(� − �) . The shift vector is

Sphere f (�) = z2
1
+ z2

2

Ellipsoid f (�) = 50z2
1
+ 200z2

2

Bent Cigar f (�) = z2
1
+ 106z2

2

Rosenbrock f (�) = 100
(

z2
1
− z2

)2
+
(

z1 − 1
)2
,

Fig. 2   Plot of the directional
derivatives from the optimum
of the bent cigar in two vari-
ables along the directions of the
variables �i (red dashed line)
and along the directions of the
eigenvectors �i (blue solid line)

and � is a random rotation matrix. Figure 1 displays the plot
of the bi-dimensional vectors contained in the data structure
� and the directions of the eigenvectors of the covariance
matrix associated with the sampled points.

Figure 1 shows that the data structure � contain pieces of
information about the geometry of the problem and that the
eigenvectors of the covariance matrix identify important direc-
tions for such problem. For example, for the bent cigar prob-
lem, the eigenvectors identify the longitudinal and transverse
axes of the line detected by the points.

As reported in [31], the rationale behind the choice to use
the eigenvectors �i is due to the fact that the matrix � , whose

� =

(

−21.98

11.55

)

	 SN Computer Science (2022) 3:110110  Page 8 of 20

SN Computer Science

columns are the eigenvectors �i , is the transformation matrix
that diagonalises the matrix � that is

where � is a diagonal matrix whose diagonal elements are
the eigenvalues of � and �−� = �� as � is an orthogonal
matrix ( �� is the transpose of the matrix � ). The directions
of the eigenvectors can be interpreted as a new reference
system characterised by a lack of correlation between pairs
of variables. Thus, the new reference system exploits the
available information about the geometry of the problem.
This concept is broadly used in other contexts, especially in
data science, and is closely related to principal component
analysis [18].

Furthermore, as reported in [31], the directions of the
eigenvectors of the covariance matrix identify the maximum
and minimum directional derivatives. Thus, these eigenvec-
tors are an efficient basis for Patter Search. For example,
let us consider the shifted and rotated bent cigar function
in two variables f (�) = z2

1
+ 106z2

2
 with � = �(� − �) . The

shift vector is

and � is the rotation matrix

Figure 2 shows the estimated directional derivative along the
directions of the variables, as in the case of PS (see Algo-
rithm 2), and along the directions of the eigenvectors �i of
the covariance matrix.

Figure 2 implicitly provides an interpretation of the
search along the directions of the eigenvectors �i : the
directions of these eigenvectors identify the steepest and
flattest directions of the fitness landscape.

To enhance the performance of PS, it is here proposed
to use large step sizes along those directions correspond-
ing to a flat fitness landscape and small step sizes along
those directions corresponding to a steep fitness landscape.
Although we cannot know in advance the values of the
directional derivatives, we have their estimated values by
means of the eigenvalues of the covariance matrix. This is
the main motivation of the proposed update of the generat-
ing matrix �k.

Let us consider again the covariance matrix � calculated
as shown above. Let � =

(

��, ��,… , ��
)

 be a matrix whose
columns are the eigenvectors of � and let us indicate with

the corresponding eigenvalues.

(8)� = �−��� = ����,

� =

(

−21.98

11.55

)

� =

(

−0.45408 − 0.89096

−0.89096 0.45408

)

.

diag(�) =
(

�1, �2,… , �n
)

It must be observed that, since � is symmetric, the eigen-
values are all real numbers; see [27]. Furthermore, the eigen-
vectors can be chosen as an orthonormal basis (every pair of
vectors is orthogonal and each vector has modulus equal to
1) of a vector space, which we refer to as eigenspace. These
eigenvectors span the domain D.

Thus, if we consider a vector � ∈ D expressed in the
basis B� = {�1, �2,… , �n} , we may express it through the
corresponding vector � in the reference system/basis of the
eigenvectors

Since the mean vector � calculated from the vectors in �
is also an element of D, we can express it via eigenvectors

Let us now introduce the covariance matrix �� of the data
in � in the reference system identified by the eigenvectors.
This is expressed by

where

From Eqs. (8) and (9), it follows that:

Thus, the diagonal elements of �� are the eigenvalues of � ,
while the extradiagonal elements are zero. Since the diago-
nal elements of a covariance matrix are the variances �2

i
 of

the data along the direction �� , it follows that:

� = ���.

�� = ���.

(9)�� = (����)(�
���)

� = �����
�
�
� = ����,

�� = (�� − �, �� − �, ..., �� − �).

(10)�� = �.

�2
i
= �i.

Fig. 3   Distribution of points in � , directions of the eigenvectors and
meaning of eigenvalues ( �1 = 1.5221 and �2 = 4324.1 ) in the domain
for the rotated and shifted ellipsoid in two dimensions

SN Computer Science (2022) 3:110	 Page 9 of 20  110

SN Computer Science

The selection of the best nv points out of the ns available sam-
ples can be conceptually considered the selection of points
whose objective function value is below a certain threshold
thre, where thre is the objective function value of the point
in the data structure � with the worst (highest) objective
function value. Thus, we may say that the fitness landscape
analysis selects those points, such that f (�) ≤ thre . In a basin
of attraction, these samples would be distributed around a
local optimum. Let us suppose, for simplicity, the notation
that the optimum is in the null vector � (i.e., let us apply an
operation of translation). The directional derivative along
some direction �� is

Let us observe that f (�) is a constant, �� = l ⋅ �� with l
modulus of �� and |��| = 1 , since it is a versor (i.e., a vector
with modulus 1). When we pose f (�) = thre , we find that
f (��) − f (�) = thre∗ is also a constant. Thus

that is the directional derivative along the eigenvector �� is
inversely related to the modulus l.

Along the direction of �i , there exists a correlation
between the modulus l and the corresponding eigenvalue
�i . Let us consider the two points �� and −�� belonging to
the direction of �� . Let us assume that the objective func-
tion values of these points are thre. Thus, the distance
between �� and −�� estimates the width of the distribution
along the direction of �i and the standard deviation esti-
mates the average modulus of the points in � . Considering
that the standard deviation calculated along the direction
of �i is the square root of �i , it follows that:

By combining Eq. (11) and (12), we may conclude that
the directional derivative in the direction of an eigenvec-
tor �i of the covariance matrix � , as calculated above, is
inversely proportional to the square root of the correspond-
ing eigenvalue

Figure 3 reports an example that is useful in visualising the
meaning of Eq. (12). The points belonging to the data struc-
ture � associated with the samples for the shifted and rotated
ellipsoid in two dimensions are reported as blue dots. The
dashed lines indicate the directions of the eigenvectors of
the covariance matrix. The two associated eigenvalues are

�f (�)

���
≈

f (��) − f (�)

|�� − �|
=

f (�� − f (�))

|��|
.

(11)
�f (�)

���
≈

thre∗

|l|

(12)
√

�i = �i =

�

1

2
((�� − �)2 + (−�� − �)2) = l.

(13)
�f (�)

���
≈

thre∗
√

�i

.

�1 = 1.5221 and �2 = 4324.1 , respectively. These numbers
reflect the distribution of the points that appear as a thin
and long line. We may observe that 𝜆2 ≫ 𝜆1 and the points
in � span a much wider range along the direction of �2 (in
black) than along the direction of �1 (in red). Therefore, we
can see that the eigenvalues estimate the extent of the distri-
bution of points along the directions of the corresponding
eigenvectors.

Furthermore, as shown by the contour, along the direc-
tion of the first eigenvector, the fitness landscape is very
steep. However, along the direction of the second eigen-
vector, the landscape is nearly flat. This statement intui-
tively explains the meaning of Eq. (13).

Since the square roots of the eigenvalues are inversely
proportional to the directional derivative, it is proposed to
use them as direct multipliers to set the step sizes along each
search direction of the basis of eigenvectors. With reference
to Fig. 3, along the direction of �1 , the landscape is steep and
the corresponding eigenvalue �1 is small. Therefore, we use
�1 as a multiplier to ensure that small steps are performed.
Conversely, along the direction of �2 , the landscape is flat
and the corresponding eigenvalue �2 is large. Thus, we use �2
as a multiplier to enable large steps along that direction. This
logic explains the proposed way of modifying �k in Eq. (6).

Pattern Search Designed on the Basis of Fitness
Landscape Analysis

This article proposes a restarting algorithm based on PS
logic presented in Algorithm 2. At each local run, the fitness
landscape analysis returns the pattern �k = ��k . This means
that the minus move along the ith direction is

and the plus move is

We may express the same concept in terms of GPS notation
using the example in two dimensions of Section 2.1. The
proposed PS in two dimensions ( n = 2 ) is characterised by
the basis matrix

and the generating matrix �k

and �k = � . The trial step would be

(14)�� = �k − � ⋅
√

�i ⋅ �
i

(15)�� = �k +
�

2
⋅

√

�i ⋅ �
i.

� =
(

�1 �2
)

�k =

⎛

⎜

⎜

⎝

√

�1

2
0 −

√

�1 0

√

�1

2

√

�1

2
−
√

�1 −
√

�1 0

0

√

�2

2
0 −

√

�2

√

�2

2
−
√

�2 −
√

�2

√

�2

2
0

⎞

⎟

⎟

⎠

	 SN Computer Science (2022) 3:110110  Page 10 of 20

SN Computer Science

where �k = � and �i
k
 is the ith column of the matrix �k . We

may easily verify that, by combining the moves in Eqs. (14)
and (15), all the potential �k��

i
k
 can be generated.

The main parameters of GPSRFLA are reported in the
following.

f objective function

� candidate solution
�� trial solution
ns number of samples for the analysis

(16)�k = �k��
i
k
, f objective function

kv since of the space where points
are sampled

� data set for the analysis ( nv its
number of rows)

� covariance of the points in �
� eigenvector (basis) matrix of �
�i eigenvalue of �
�k generating matrix
�k pattern matrix
� radius

Algorithm 5 shows the pseudocode of the proposed GPS
designed on the basis of the fitness landscape analysis.

SN Computer Science (2022) 3:110	 Page 11 of 20  110

SN Computer Science

A Computationally Efficient Instance
of GPSRFLA

A characterising feature of algorithms based on fitness land-
scape analysis is the requirement of objective function calls,
which impacts the budget of the optimiser. This section pre-
sents a PS implementation that, although fits within the GPSR-
FLA framework in Algorithm 3, fills the data structure � with
the points visited during the search.

More specifically, the data structure � is an output of the
GPS and an input for the fitness landscape analysis. In the first
local run, the basis matrix � is initialised to the identity matrix
� . GPS moves along the directions of the variables as shown
in Algorithm 2. During each local run, GPS saves all the suc-
cessful trial points in the data structure � , i.e., all the points
that have been current best points during the local run. The
filled data structure � is then passed to the fitness landscape
analysis component, which calculates the covariance matrix �
and its eigenvector matrix � =

(

�1, �2,… , �n
)

 . The matrix �
is then used as the basis matrix � for the following local run.
It must be observed that, at each restart, the data structure �
contains the points below a threshold identified by f

(

�k
)

 with
�k starting point of that local run.

Algorithm 6 illustrates the resulting algorithm, ACPS,
which was presented for the first time in [28].

Fig. 4   Trajectory of ACPS in
four consecutive local runs on
the rotated and shifted ellipsoid.
The red dots are current best
solutions and the trajectory
of the ACPS is shown as a
blue solid line. The black and
red dashed lines indicate the
eigenvectors. The best objective
function values are at the top of
each figure

(a) First local run (b) Second local run

(c) Third local run (d) Fourth local run

Table 1   Objective functions used in this study

Domain

[−100, 100]n

Objective function values for the minima of all the functions: 0

Shift and Rotation

INPUT �

� ← �(� − �)

Function name Function calculation

Sphere f1 ←
∑n

i=1
z2
i

Ellipsoid 1 f2 ←
∑n

i=1
50
�

i2zi
�2

Ellipsoid 2
f3 ←

∑n

i=1

�

106
�

i−1

n−1 z2
i

Bent cigar f4 ← z2
1
+ 106

∑n

i=2
z2
i

Modified bent cigar f5 ← z2
1
+ 106

�
∑n

i=2
zi
�2

Discus f6 ← 106z2
1
+
∑n

i=2
z2
i

Modified discus f7 ← 106z2
1
+
�
∑n

i=2
zi
�2

Sum of powers
f8 ←

�

∑n

i=1
�

�

zi
�

�

�

2+4
i−1

n−1

�

Schwefel 2.21 f9 ← maxi=1,…,n |zi|

Rosenbrock f10 ←
∑n−1

i=1

�

100
�

z2
i
− zi+1

�2
+
�

zi − 1
�2
�

Rastrigin f11 ← 10n +
∑n

i=1

�

z2
i
− 10 cos

�

2�zi
��

	 SN Computer Science (2022) 3:110110  Page 12 of 20

SN Computer Science

The main advantage of the ACPS implementation in Algo-
rithm 6 is that no extra objective function calls are required
to perform the fitness landscape analysis. As shown above,
ACPS uses the points visited during the search to perform the
fitness landscape analysis. This means that, unlike the general
GPSRFLA framework, ACPS may use the entire computa-
tional budget to optimise the objective function. ACPS uses
some of these objective function calls to progressively analyse
and learn the fitness landscape, while it refines the adaptation
of the pattern matrix �k to the optimisation problem.

To illustrate the functioning of the proposed ACPS, Fig. 4
shows the trajectory of the algorithm in four consecutive local
runs. With the term trajectory, we mean the current best solu-
tions visited by ACPS. Figure 4 refers to the shifted and rotated
ellipsoid in two dimensions

where the shift vector is

and the rotation matrix is

������

� ← �(� − �)

f ←

2
∑

i=1

(

106
)

i−1

1 z2
i
,

� =

(

−21.98

11.55

)

� =

(

−0.6358 − 0.7718

−0.7718 0.6358

)

.

SN Computer Science (2022) 3:110	 Page 13 of 20  110

SN Computer Science

Table 2   Thresholds thre
for CPS in 10, 30, and 50
dimensions as reported in [31]

n f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11

10 104 109 5 ⋅ 108 2 ⋅ 1010 109 2 ⋅ 106 106 104 102 5 ⋅ 109 3 ⋅ 104

30 8 ⋅ 104 1012 2 ⋅ 109 1011 109 106 106 5 ⋅ 105 1.5 ⋅ 102 5 ⋅ 1010 105

50 105 5 ⋅ 1013 5 ⋅ 109 2 ⋅ 1011 1010 2 ⋅ 107 107 106 1.5 ⋅ 102 1011 2 ⋅ 105

Table 3   Average error avg ± standard deviation � over 51 runs for
the problems listed in Table 1: PS according to the implementation
in [41], CPS proposed in [31], and the implementation of GPSRFLA,
as shown in Algorithms 3, 4, and 5, ACPS, as shown in Algorithm 6.

GPSRFLA and ACPS, respectively, are taken as references for Wil-
coxon for the comparison against PS and CPS. ACPS is taken as ref-
erence for Wilcoxon for comparison against GPSRFLA

Best results are presented in bold

PS CPS GPSRFLA ACPS

avg � W avg � W avg � W avg �

10 dimensions
f1 0.0000e+00 0.0000e+00 − = 7.2365e-29 9.6235e-29 = + 4.0871e-29 1.0783e-28 + 0.0000e+00 0.0000e+00
f2 5.2230e+02 7.8797e+02 ++ 1.5810e-01 5.5370e-01 ++ 2.3275e-10 8.0699e-10 + 4.4034e-23 6.9361e-23
f3 1.9218e+04 1.2130e+04 ++ 1.0352e+04 2.4610e+04 ++ 2.2942e+02 3.1479e+02 + 7.1972e-16 1.7443e-15
f4 9.5270e+03 4.8450e+03 = + 2.0252e+04 1.3731e+04 ++ 7.8838e+03 5.4318e+03 + 2.5260e-14 1.1648e-13
f5 1.7278e+04 1.3397e+04 ++ 3.4509e-06 5.9736e-06 ++ 2.1344e-20 3.5889e-20 + 3.3716e-23 1.2212e-22
f6 5.5245e+04 1.2603e+04 ++ 1.9279e-12 2.4744e-12 +− 1.3991e-23 2.5838e-23 − 8.8372e-11 4.7050e-10
f7 1.3171e+04 9.5882e+03 ++ 5.2635e-19 1.1885e-18 ++ 1.3327e-25 2.5916e-25 + 3.0987e-27 1.1885e-18
f8 7.1750e-05 1.1167e-05 ++ 1.7431e-05 5.0694e-06 ++ 1.9394e-07 7.7596e-08 + 4.1666e-08 6.3467e-08
f9 7.8371e+00 9.3846e+00 = + 5.7996e+00 8.9728e+00 = + 4.3593e+00 5.3730e+00 + 1.4098e-06 7.6446e-06
f10 2.2174e+03 3.9690e+03 ++ 1.1752e+02 2.8670e+02 ++ 2.8872e+01 7.2745e+01 + 5.3985e-27 2.5363e-27
f11 6.8320e+01 3.7388e+01 = + 6.4207e+01 3.0468e+01 == 7.0120e+01 3.6781e+01 + 5.7508e+01 2.5321e+01
30 dimensions
f1 5.0200e-31 3.9800e-31 +− 5.5283e-28 1.3526e-28 = + 5.7515e-28 3.5842e-28 + 0.0000e+00 0.0000e+00
f2 2.9323e+06 1.9394e+06 ++ 7.1932e+05 9.4686e+05 ++ 3.4641e+05 1.9043e+05 + 5.7209e-05 1.7248e-04
f3 7.2190e+04 3.0511e+04 ++ 1.0276e+05 7.1458e+04 = + 8.0714e+03 4.4338e+03 + 8.8106e-07 2.7855e-06
f4 4.7509e+03 3.4985e+02 ++ 3.7216e+03 4.2577e+03 = + 3.3240e+03 1.8638e+03 + 9.4800e-02 2.8220e-01
f5 1.6458e+04 2.4452e+04 ++ 1.8790e-09 5.9420e-09 −+ 8.5268e-21 2.0312e-20 + 6.2125e-24 1.9636e-23
f6 1.0889e+05 3.2826e+04 ++ 1.2576e+02 1.4733e+02 + = 8.4566e-24 7.5654e-24 − 1.6064e+02 3.4634e+02
f7 8.3226e-06 1.5585e-05 ++ 9.7797e-27 1.1411e-26 == 2.2606e-26 4.3771e-26 + 5.3015e-27 5.8250e-27
f8 7.6628e-05 9.0514e-06 ++ 9.2850e-05 1.8269e-05 ++ 1.4546e-06 3.2435e-07 + 9.2440e-07 5.7487e-07
f9 5.6482e+01 9.7784e+00 = + 4.2458e+01 1.1286e+01 = + 4.1489e+01 8.6932e+00 + 2.2920e+00 2.0570e+00
f10 8.1998e+01 1.4070e+02 ++ 3.7031e+00 2.0897e+00 −+ 1.8508e+02 3.7295e+02 + 3.9870e-01 1.2607e+00
f11 3.8423e+02 9.7231e+01 = + 3.9956e+02 1.2392e+02 ++ 3.4507e+02 1.1963e+02 + 2.7569e+02 8.9984e+01
50 dimensions
f1 6.5738e-31 7.1289e-31 −+ 1.2148e-27 6.1144e-28 = + 1.5846e-27 5.7601e-28 + 0.0000e+00 0.0000e+00
f2 1.9664e+07 5.0980e+06 = + 3.5727e+07 1.9921e+07 ++ 1.8067e+07 9.5292e+06 + 3.9667e+05 3.6613e+05
f3 1.9085e+05 4.0141e+04 ++ 1.9244e+05 6.5138e+04 ++ 4.9504e+04 2.1671e+04 + 1.3150e+02 3.5391e+02
f4 1.1906e+04 2.1764e+04 = + 4.6930e+03 5.8099e+03 −+ 2.9854e+04 1.9311e+04 + 1.6111e+01 3.273e+01
f5 1.1034e+05 6.9674e+04 ++ 4.700e-03 1.4700e-02 ++ 8.6384e-22 1.7318e-21 + 1.6298e-31 4.3564e-31
f6 1.6360e+05 4.9495e+04 ++ 1.2573e+02 1.2764e+02 + = 7.2388e-24 1.8602e-24 − 1.0434e+02 1.3584e+02
f7 2.6739e-11 3.3330e-11 ++ 1.3449e-26 2.7367e-26 == 6.2186e-27 9.6092e-27 = 1.3501e-27 1.8298e-27
f8 9.4485e-05 1.2829e-05 ++ 1.3238e-04 1.4419e-05 ++ 3.2769e-06 5.0659e-07 + 2.3891e-06 1.2608e-06
f9 8.1844e+01 7.1066e+00 = + 6.3083e+01 1.2169e+01 = + 6.7138e+01 1.3981e+01 + 1.8681e+01 9.8691e+00
f10 3.0848e+02 4.7580e+02 = + 1.0012e+02 2.3364e+02 ++ 3.8797e+01 9.3072e+01 + 7.9730e-01 1.6809e+00
f11 7.4604e+02 1.7833e+02 = + 8.2749e+02 2.0231e+02 = + 8.6012e+02 3.5563e+02 + 6.2442e+01 1.9581e+01

	 SN Computer Science (2022) 3:110110  Page 14 of 20

SN Computer Science

A random point � has been sampled within the domain.
The objective function value of this starting point is
7.4385e + 09.

Figure 4 shows that, in the first local run of the algo-
rithm, while moving along the directions of the variables
(black and red dashed lines), it approaches the optimum
but still remains far from it. After the restart, ACPS uses
the new search directions, i.e., the eigenvectors of the
covariance matrix of the distribution of samples collected
during the first local run. This system of reference appears
to be ineffective. We may observe that, during the sec-
ond local run only, a marginal improvement is achieved.
However, the budget spent in the second local run is not
wasted; the points sampled during the second local run
enable the detection of an effective reference system
(eigenvectors in the third local run). During the third local
run, ACPS exploits the benefits of the fitness landscape
analysis and quickly detects a solution close to the opti-
mum. The results are then refined in the fourth local run
where the eigenvectors are slightly corrected.

It must be observed that the proposed ACPS resem-
bles the Rosenbrock method [37] as both use a basis of
vector that is progressively adapted during the run (the
Rosenbrock Method belongs to the GPS family). However,
the two algorithms are radically different in terms of the
way the basis is selected and updated. More specifically,
while ACPS makes use of the eigenvectors of the covari-
ance matrix of a set of samples, the Rosenbrock Algorithm
stores the successful moves and determines a new ortho-
normal basis guided by previous successful moves.

It must be remarked that, although ACPS can be con-
sidered an instance of the GPSRFLA framework, it does
not make use of the eigenvalues to update the generating
matrix �k . This decision has been made considering the
preliminary results that we obtained. The data structure �
is likely to obtain a small number of points. On one hand,
these points are enough to correctly estimate, through the

eigenvectors of the covariance matrix associated with
them, the directions with maximum and minimum direc-
tional derivatives (multiple steps as illustrated in Fig. 4).
On the other hand, these points are usually not enough to
correctly estimate the values of the directional derivatives
through the calculation of the eigenvalues. Since these
wrong estimations tend to jeopardise the performance of
the algorithm, it was decided not to exclude the update of
the generating matrix �k from ACPS.

Numerical Results

To test and compare the performance of the GPSRFLA
framework and ACPS, a set of functions from the IEEE
CEC2013 benchmark [20] was selected and adapted. Since
PS is a local search, we selected all the unimodal problems,
hence reproducing the testbed of CPS used in [30]. We also
reproduced both the versions of ellipsoid presented in [30]
( f2 and f3 ). The condition number of these two ellipsoids

Fig. 5   Performance trend (logarithmic scale) of the PS variants in
this study for the ellipsoid f3 in 10 dimensions

Fig. 6   Performance trend (logarithmic scale) of the PS variants in
this study for the discus f6 in 30 dimensions

Fig. 7   Performance trend (logarithmic scale) of the PS variants in
this study for Rosenbrock f10 in 50 dimensions

SN Computer Science (2022) 3:110	 Page 15 of 20  110

SN Computer Science

worsens with dimensionality at different speeds. In this
paper, alongside bent cigar and discus, we included their
modified versions.

Finally, to show that GPSRFLA is capable, to some
extent, at handling multimodal fitness landscapes, we

included two simple multimodal functions from [20]. The
list of the functions used in this study is displayed in Table 1.
As shown in Table 1, each problem has been shifted and
rotated; the vector � is transformed into � . The shift vector
� of [20] has been used. The rotation matrices � have been

Table 4   Average error avg ± standard deviation � over 51 runs for the
problems listed in Table 1: BFGS algorithm [11], CMAES [14], the
implementation of GPSRFLA as shown in Algorithms 3, 4, and 5,
ACPS, as shown in Algorithm 6. GPSRFLA and ACPS, respectively,

are taken as references for Wilcoxon for the comparison against PS
and CPS. ACPS is taken as reference for Wilcoxon for the compari-
son against GPSRFLA

Best results are presented in bold

BFGS CMAES GPSRFLA ACPS

avg � W avg � W avg � W avg �

10 dimensions
f1 1.8757e-20 2.4576e-21 ++ 1.6841e-15 1.2496e-15 ++ 4.0871e-29 1.0783e-28 + 0.0000e+00 0.0000e+00
f2 1.8956e-13 4.1016e-14 ++ 1.5739e-15 1.1095e-15 ++ 2.3275e-10 8.0699e-10 + 4.4034e-23 6.9361e-23
f3 6.6365e-11 2.6183e-12 −+ 1.7152e-15 1.0734e-15 −+ 2.2942e+02 3.1479e+02 + 7.1972e-16 1.7443e-15
f4 4.8479e-01 1.6494e+00 −+ 1.4131e-15 1.1850e-15 −− 7.8838e+03 5.4318e+03 + 2.5260e-14 1.1648e-13
f5 1.2818e-09 2.0603e-09 ++ 8.8699e-15 1.0347e-14 ++ 2.1344e-20 3.5889e-20 + 3.3716e-23 1.2212e-22
f6 3.2306e-10 5.0825e-11 ++ 1.3737e-15 1.3659e-15 + = 1.3991e-23 2.5838e-23 − 8.8372e-11 4.7050e-10
f7 3.9439e-12 7.2576e-12 ++ 6.6387e-15 1.0289e-14 ++ 1.3327e-25 2.5916e-25 + 3.0987e-27 1.1885e-18
f8 1.1967e-07 4.3589e-07 = + 9.8002e-13 8.9374e-13 −− 1.9394e-07 7.7596e-08 + 4.1666e-08 6.3467e-08
f9 7.1074e+01 2.9732e+01 ++ 7.7677e-10 2.1798e-10 −− 4.3593e+00 5.3730e+00 + 1.4098e-06 7.6446e-06
f10 1.1960e+00 1.8581e+00 −+ 7.973e-01 1.62193+00 −+ 2.8872e+01 7.2745e+01 + 5.3985e-27 2.5363e-27
f11 8.7917e+02 4.2825e+02 ++ 1.6069e+01 1.6267e+01 −− 7.0120e+01 3.6781e+01 + 5.7508e+01 2.5321e+01
30 dimensions
f1 4.3857e-20 1.6043e-20 ++ 1.4429e-15 1.0251e-15 ++ 5.7515e-28 3.5842e-28 + 0.0000e+00 0.0000e+00
f2 1.3352e-09 3.3772e-10 −− 2.9032e-15 5.7236e-16 −− 3.4641e+05 1.9043e+05 + 5.7209e-05 1.7248e-04
f3 3.2738e-11 1.5479e-12 −− 2.0379e-15 2.0379e-15 −− 8.0714e+03 4.4338e+03 + 8.8106e-07 2.7855e-06
f4 4.5544e+00 2.4117e+01 −+ 1.3962e-15 4.6239e-16 −− 3.3240e+03 1.8638e+03 + 9.4800e-02 2.8220e-01
f5 1.8926e-08 2.5487e-08 ++ 5.9103e+03 1.5913e+04 ++ 8.5268e-21 2.0312e-20 + 6.2125e-24 1.9636e-23
f6 1.5200e-10 1.9637e-11 +− 4.1546e-15 2.3165e-15 +− 8.4566e-24 7.5654e-24 − 1.6064e+02 3.4634e+02
f7 5.9737e-13 1.2614e-12 ++ 1.0770e-14 1.2033e-14 ++ 2.2606e-26 4.3771e-26 = 5.3015e-27 5.8250e-27
f8 1.2390e-05 2.84323e-06 ++ 1.5671e-11 2.0251e-11 −− 1.4546e-06 3.2435e-07 + 9.2440e-07 5.7487e-07
f9 1.1706e+02 3.2399e+01 ++ 1.3042e+00 2.8263e+00 − = 4.1489e+01 8.6932e+00 + 2.2920e+00 2.0570e+00
f10 1.7275e+00 2.0093e+00 −+ 7.9730e-01 1.6809e+00 −+ 1.8508e+02 3.7295e+02 + 3.9870e-01 1.2607e+00
f11 2.0621e+03 6.1136e+02 ++ 5.0942e+01 1.0997e+01 −− 3.4507e+02 1.1963e+02 + 2.7569e+02 8.9984e+01
50 dimensions
f1 8.5482e-20 1.9014e-20 ++ 1.1890e-15 3.3954e-16 ++ 1.5846e-27 5.7601e-28 + 0.0000e+00 0.0000e+00
f2 1.5972e-07 3.7724e-08 −− 2.1614e-14 4.5515e-15 −− 1.8067e+07 9.5292e+06 + 3.9667e+05 3.6613e+05
f3 9.2288e-011 4.6933e-12 −− 1.3092e-15 5.9487e-16 −− 4.9504e+04 2.1671e+04 + 1.3150e+02 3.5391e+02
f4 9.8654e-01 3.4845e+e00 −− 1.2358e-15 5.8376e-16 −− 2.9854e+04 1.9311e+04 + 1.6111e+01 3.273e+01
f5 1.9741e-08 2.8660e-08 ++ 5.2536e+04 1.5800e+05 ++ 8.6384e-22 1.7318e-21 + 1.6298e-31 4.3564e-31
f6 1.1937e-10 7.3146e-12 +− 3.0884e+04 9.7663e+04 ++ 7.2388e-24 1.8602e-24 − 1.0434e+02 1.3584e+02
f7 1.5341e-13 3.2062e-13 ++ 1.8735e+00 4.4116e+00 ++ 6.2186e-27 9.6092e-27 = 1.3501e-27 1.8298e-27
f8 1.1253e-05 1.8968e-06 ++ 6.5703e-11 3.2925e-11 −− 3.2769e-06 5.0659e-07 + 2.3891e-06 1.2608e-06
f9 1.2855e+02 2.7862e+01 ++ 9.6761e-06 2.8014e-05 −− 6.7138e+01 1.3981e+01 + 1.8681e+01 9.8691e+00
f10 1.9933e+00 2.0274e+00 −+ 1.1960e+00 1.9257e+00 −+ 3.8797e+01 9.3072e+01 + 7.9730e-01 1.6809e+00
f11 3.3820e+03 1.0348e+03 ++ 1.1004e+02 1.3796e+01 −+ 8.6012e+02 3.5563e+02 + 6.2442e+01 1.9581e+01

	 SN Computer Science (2022) 3:110110  Page 16 of 20

SN Computer Science

randomly generated. One matrix � has been generated for
each problem and dimensionality value.

The results are divided into the following categories:

–	 Comparison among PS algorithms.
–	 Comparison against other algorithms.

The problems in Table 1 have been considered in 10, 30, and
50 dimensions. For each problem in Table 1, each dimen-
sionality level, and each algorithm in this study, 51 inde-
pendent runs were performed. For each run, the algorithms
under consideration, if single solution, have been run with
the same initial solution. All the algorithms in this paper
have been executed with a budget of 10000 ⋅ n function calls,
where n is the problem dimensionality. The results for each
algorithm and problem are expressed in terms of mean value
and ± standard deviation over the 51 independent runs per-
formed. Furthermore, to statistically investigate whether the
application of the proposed method results in performance
gain, the Wilcoxon rank-sum test was applied; see [12]. In
the tables in this section, a “+” indicates that the proposed
algorithm (GPSRFLA/ACPS) significantly outperformed its
competitor, a “−” indicates that the competitor significantly
outperformed the proposed algorithm, and a “=” indicates
that there is no significant difference in performance.

Comparison among Pattern Search Algorithms

This section highlights the benefits of fitness landscape
analysis on PS algorithms. To achieve this aim, the follow-
ing algorithms have been tested on the problems in Table 1:

–	 the original PS according to the implementation in [41]
and the implementation Algorithm 2

–	 CPS presented in [30, 31]
–	 GPSRFLA according to the framework in Algorithm 3,

the analysis component in Algorithm 4 and the GPS
implementation in Algorithm 5

–	 ACPS [28] as reported in Algorithm 6

Fig. 8   Performance trends (logarithmic scale) of BFGS, CMAES,
GPSRFLA, and ACPS for the modified bent cigar f5 in 10 dimensions

Fig. 9   Performance trends (logarithmic scale) of BFGS, CMAES,
GPSRFLA, and ACPS for the modified discus f7 in 30 dimensions

Fig. 10   Performance trends (logarithmic scale) of BFGS, CMAES,
GPSRFLA, and ACPS for ellipsoid f2 in 50 dimensions

Fig. 11   Performance trends (logarithmic scale) of BFGS, CMAES,
GPSRFLA, and ACPS for modified bent cigar f5 in 50 dimensions

SN Computer Science (2022) 3:110	 Page 17 of 20  110

SN Computer Science

All PS variants in this article have been run with the ini-
tial radius � = 0.1⋅ domain width = 20 . This parameter has
been set using the indication in [41] and then tuning for our
testbed.

As reported in [30], the budget of CPS has been split in
two parts: 5000 ⋅ n function calls have been used to build
the covariance matrix � , while 5000 ⋅ n function calls have
been spent to execute the algorithm along the directions of
its eigenvectors.

The threshold thre for the problems in Table 1 are
reported in Table 2. The threshold values were set empiri-
cally by testing values of the codomain that allowed for some
points to be stored in the data structure � , while some others
were discarded; see [31].

GPSRFLA uses a local budget of lb = 1000 ⋅ n objective
function calls, ns = 200 ⋅ n slots (and thus GPS is run with
a budget of 800 ⋅ n objective function calls), nv = 5 ⋅ n slots,
and kv = 100 . GPS is also stopped if � ≤ 10−15.

ACPS is run with a maximum local budget lb = 1000 ⋅ n
and is stopped if � ≤ 10−15.

Table 3 shows the numerical results of the four PS vari-
ants. The best results for each problem are highlighted in
bold.

The results in Table 3 show that both GPSRFLA and
ACPS significantly outperform PS in the vast majority of
cases. Only for the sphere function, f1 PS have an excellent
performance. This is due to the fact that the identity matrix
is already the ideal choice of basis matrix. For all other
problems, PS either performs slightly worse or much worse
than GPSRFLA and ACPS. The comparisons of GPSRFLA
and ACPS against CPS also show that the proposed algo-
rithms outperform their predecessors for almost all problems
considered. This suggests that the restarting fitness land-
scape analysis logic is beneficial to the performance of the
algorithm. Finally, the comparison of ACPS to GPSRFLA
shows that, in most cases, the computational efficient logic
embedded in ACPS yields significantly better results than
GPSRFLA, which uses part of the budget to solely analyse
the problem. However, the exploitation of the information
regarding the directional gradients is potentially very power-
ful, as shown in the case of the rotated discus function f6.

Three examples of performance trends for the variants of
PS included in this study are illustrated in Figs. 5, 6, and 7.

Comparison Against Other Algorithms

We have compared GPSRFLA and ACPS against the fol-
lowing two algorithms:

–	 Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm
[11] with an estimation of the gradient that may make it
applicable to black-box problems;

–	 Covariance Matrix Adaptive Evolution Strategy
(CMAES) [14].

The motivations behind these two competitors are as fol-
lows: (1) BFGS is a Quasi–Newtonian (i.e., based on a solid
theoretical foundation) algorithm that estimates the gradient
and is here used as a benchmark algorithm; and (2) CMAES
is a prevalent algorithm that, like GPSRFLA and ACPS, is
based on theoretical considerations of multi-variate distribu-
tions and the covariance matrix. Table 4 lists the results of
this comparison (the best results are highlighted in bold).

Numerical results in Table 4 show that, on average,
CMAES, GPSRFLA, and ACPS are better suited than BFGS
to address the black-box problems (without information on
the gradient). However, BFGS is an excellent algorithm for
several problems, especially the multi-variate ellipsoid func-
tion. The results show that CMAES and GPSFRLA have
almost comparable performances, with CMAES performing
better that GPSFRLA on average for seven problems and
worse for four problems. ACPS is more competitive with
CMAES as ACPS outperforms CMAES in 16 cases out of
33, while it was outperformed in 15. The algorithms have the
same performance for the remaining two problems. Overall,
we may conclude that ACPS and CMAES have a compara-
ble performance for the problems under investigation.

Some further considerations can be made regarding the
scalability of the algorithms. In the low-dimensional case
( n = 10 ), both the algorithms detect solutions very close to
the optimum for the nine unimodal problems ( f1 − f9 ) and
detect the global optimum in several runs. They also detect a
local minimum for the two multimodal problems ( f10 − f11 ).
In higher dimensions, we observe that the performances of
both CMAES and ACPS deteriorate for some problems and
remain excellent for others. For example, CMAES performs

Table 5   Holm–Bonferroni
Procedure with ACPS as a
reference (Rank 5.1515e+00)

Rj zj pj
�j

j

Test

CMAES 4.6061e+00 −1.1843e+00 2.3629e-01 5.0000e-02 Failed to Reject
GPSRFLA 3.6667e+00 −3.2240e+00 1.2643e-03 2.5000e-02 Rejected
BFGS 3.1818e+00 −4.2767e+00 1.8970e-05 1.6667e-02 Rejected
CPS 2.7273e+00 −5.2636e+00 1.4125e-07 1.2500e-02 Rejected
PS 2.0000e+00 −6.8427e+00 7.7716e-12 1.0000e-02 Rejected

	 SN Computer Science (2022) 3:110110  Page 18 of 20

SN Computer Science

extremely well on f2 − f4 regardless of the number of vari-
ables, while ACPS deteriorates as the number of dimensions
increases. Conversely, ACPS handles the f5 − f7 problems
better than CMAES.

With reference to the results in Table 4, Figs. 8, 9, 10, and
11 show some examples of performance trends of GPSRFLA
and ACPS against BFGS and CMAES. These plots confirm
the reports on Table 4; at higher dimensions, CMAES and
ACPS both appear to be inadequate at solving some prob-
lems but are very well suited for others. Figure 10 shows an
example for which GPSRFLA and ACPS perform poorly
compared to CMAES. Conversely, Fig. 11 shows an example
for which both GPSRFLA and ACPS display an excellent
performance, while CMAES appears to be inadequate.

Statistical Ranking via the Holm–Bonferroni
Procedure

To further strengthen the statistical analysis of the presented
results, we performed the Holm–Bonferroni [15] procedure for
the six algorithms and 33 problems (11 objective functions ×3
levels of dimensionality) under investigation. The results of the
Holm–Bonferroni procedure are presented in Table 5. A score
Rj for j = 1,… ,NA (where NA is the number of algorithms
under analysis, NA = 6 , in this paper) has been assigned. The
score has been assigned in the following way: for each prob-
lem, a score of 6 is assigned to the algorithm displaying the
best performance, 5 is assigned to the second best, 4 to the
third, and so on. For each algorithm, the scores obtained for
each problem are summed up and averaged over the 33 test
problems. With the calculated Rj values, ACPS has been taken
as the reference algorithm. R0 indicates the rank of ACPS and,
with Rj for j = 1,… ,NA − 1 , the rank of the remaining four
algorithms. Let j be the index of the algorithm. The values zj
have been calculated as

where NTP is the number of test problems (33 in this study).
By means of the zj values, the corresponding cumulative
normal distribution values pj have been calculated; see [10]

These pj values have then been compared with the corre-
sponding �∕j , where � is the level of confidence, set to 0.05
in this case. Table 5 displays the ranks, zj values, pj values,
and corresponding �∕j obtained. Moreover, it is indicated
whether the null hypothesis (which states that the two algo-
rithms have indistinguishable performance) is ‘Rejected’,
i.e., the algorithms have statistically different performance,

zj =
Rj − R0

√

NA(NA+1)

6NTP

,

pj =
2

√

� ∫
∞

−zj
√

2

e−t
2

dt.

or ‘Failed to Reject’, meaning that the test failed to assess
that there is different performance (one does not outperform
the other).

The results of the Holm–Bonferroni procedure in Table 5
show that ACPS achieved the highest rank. ACPS and
CMAES have comparable performances, while ACPS has
a better performance than the other four algorithms in this
study.

Conclusion

GPS is a family of single solution deterministic algorithms
that search for the optimum by moving along a set of moves
stored in the pattern matrix. The choice of pattern matrix is
still an open issue. This article proposes a restarting scheme
where, at each restart, the pattern matrix is updated follow-
ing a fitness landscape analysis.

Two algorithmic implementations encompassing the two
novel contributions of this study with respect to the litera-
ture are proposed. The first is the development of a crite-
rion to estimate the directional derivatives (steep and flat
directions) through the eigenvalues of the covariance matrix
associated with a sample of points, as well as a mechanism
to exploit this information within the search. The second is
an algorithmic mechanism that uses the objective function
calls performed during the search for the purpose of the fit-
ness landscape analysis. The latter contribution enhances the
computational efficiency and consequently the performance
of the algorithm.

The two proposed implementations outperform their
predecessors and are competitive with a Quasi-Newtonian
method and a popular high-performing metaheuristic. The
second implementation proved to have remarkably good per-
formance. While the two novel contributions of this paper
appear to be separately effective, more work is required to
effectively combine them with the purpose of superposing
their respective benefits.

Funding  This study was funded by the institutions indicated in the list
of affiliations.

Declarations 

Conflict of Interest  The authors declare that they have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated

SN Computer Science (2022) 3:110	 Page 19 of 20  110

SN Computer Science

otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Adair J, Ochoa G, Malan KM. Local optima networks for continu-
ous fitness landscapes. In: López-Ibáñez et al. [21], pp. 1407–1414.

	 2.	 Auger A, Teytaud O. Continuous lunches are free! In: Proceedings
of the 9th annual conference on Genetic and evolutionary computa-
tion, pp. 916–922. ACM 2007.

	 3.	 Blum C, Chiong R, Clerc M, Jong KAD, Michalewicz Z, Neri
F, Weise T. Evolutionary optimization. In: R. Chiong, T. Weise,
Z. Michalewicz (eds.) Variants of Evolutionary Algorithms for
Real-World Applications, pp. 1–29. Springer 2012.

	 4.	 Burke EK, Hyde M, Kendall G, Ochoa G, Ozcan E, Woodward
J. Classification of hyper-heuristic approaches. In: Handbook of
Meta-Heuristics, pp. 449–468. Springer 2010.

	 5.	 Caponio A, Neri F, Tirronen V. Super-fit control adaptation in
memetic differential evolution frameworks. Soft Comput Fusion
Found Methodol Appl. 2009;13:811–31.

	 6.	 Caraffini F, Iacca G, Neri F, Picinali L, Mininno E. A CMA-ES
super-fit scheme for the re-sampled inheritance search. In: Proceed-
ings of the IEEE Congress on Evolutionary Computation, CEC
2013, Cancun, Mexico, June 20-23, 2013, pp. 1123–1130 2013.

	 7.	 Caraffini F, Neri F, Cheng J, Zhang G, Picinali L, Iacca G, Mininno
E. Super-fit multicriteria adaptive differential evolution. In: Pro-
ceedings of the IEEE Congress on Evolutionary Computation, CEC
2013, Cancun, Mexico, June 20-23, 2013, pp. 1678–1685 2013.

	 8.	 Caraffini F, Neri F, Epitropakis MG. Hyperspam: A study on hyper-
heuristic coordination strategies in the continuous domain. Inf Sci.
2019;477:186–202.

	 9.	 Caraffini F, Neri F, Picinali L. An analysis on separability for
memetic computing automatic design. Inf Sci. 2014;265:1–22.

	10.	 Fisher RA. The Design of Experiments, ninth edn. Macmillan 1971
1935.

	11.	 Fletcher R. Practical Methods of Optimization. 2nd ed. New York:
John Wiley & Sons; 1987.

	12.	 Garcia S, Fernandez A, Luengo J, Herrera F. A study of statis-
tical techniques and performance measures for genetics-based
machine learning: accuracy and interpretability. Soft Comput.
2008;13(10):959–77.

	13.	 Hansen N, Ostermeier A. Adapting arbitrary normal mutation dis-
tributions in evolution strategies: The covariance matrix adaptation.
In: Proceedings of the IEEE International Conference on Evolution-
ary Computation, pp. 312–317 1996.

	14.	 Hansen N, Ostermeier A. Completely derandomized self-adaptation
in evolution strategies. Evol Comput. 2001;9(2):159–95.

	15.	 Holm S. A simple sequentially rejective multiple test procedure.
Scand J Stat. 1979;6(2):65–70.

	16.	 Iacca G, Mallipeddi R, Mininno E, Neri F, Suganthan PN. Super-
fit and Population Size Reduction Mechanisms in Compact Dif-
ferential Evolution. In: Proceedings of IEEE Symposium on
Memetic Computing, pp. 21–28 2011.

	17.	 Jana ND, Sil J, Das S. Continuous fitness landscape analysis
using a chaos-based random walk algorithm. Soft Comput.
2018;22:921–48.

	18.	 Jolliffe IT. Principal Component Analysis, Springer Series in
Statistics. 2nd ed. New York: Springer; 2002.

	19.	 Krasnogor N, Smith J. A tutorial for competent memetic algo-
rithms: model, taxonomy, and design issues. IEEE Trans Evol
Comput. 2005;9(5):474–88.

	20.	 Liang J, Qu B, Suganthan P, Hernández-Díaz A. Problem defini-
tions and evaluation criteria for the cec 2013 special session on
real-parameter optimization 2013.

	21.	 López-Ibáñez M, Auger A, Stützle T. (eds.): Proceedings of the
Genetic and Evolutionary Computation Conference Companion,
GECCO 2019, Prague, Czech Republic, July 13-17, 2019. ACM
2019.

	22.	 Malan KM. A survey of advances in landscape analysis for opti-
misation. Algorithms. 2021;14(2):40.

	23.	 Malan KM, Engelbrecht AP. Quantifying ruggedness of continu-
ous landscapes using entropy. In: 2009 IEEE Congress on Evolu-
tionary Computation, pp. 1440–1447 2009.

	24.	 Malan KM, Engelbrecht AP. A survey of techniques for charac-
terising fitness landscapes and some possible ways forward. Inf
Sci. 2013;241:148–63.

	25.	 Malan KM, Engelbrecht AP. A progressive random walk algo-
rithm for sampling continuous fitness landscapes. In: 2014 IEEE
Congress on Evolutionary Computation (CEC), pp. 2507–2514
2014.

	26.	 McGinley B, Morgan F, O’Riordan C. Maintaining diversity
through adaptive selection, crossover and mutation. In: C. Ryan,
M. Keijzer (eds.) Genetic and Evolutionary Computation Confer-
ence, GECCO 2008, Proceedings, Atlanta, GA, USA, July 12-16,
2008, pp. 1127–1128. ACM 2008.

	27.	 Neri F. Linear Algebra for Computational Sciences and Engineer-
ing. 2nd ed. New York: Springer; 2019.

	28.	 Neri F. Adaptive covariance pattern search. In: P.A. Castillo,
J.L.J. Laredo (eds.) Applications of Evolutionary Computation
- 24th International Conference, EvoApplications 2021, Held
as Part of EvoStar 2021, Virtual Event, April 7-9, 2021, Pro-
ceedings, Lecture Notes in Computer Science, vol. 12694, pp.
178–193. Springer 2021.

	29.	 Neri F. Teaching mathematics to computer scientists: Reflections
and a case study. SN Comput Sci. 2021;2(2):75.

	30.	 Neri F, Rostami S. A local search for numerical optimisation
based on covariance matrix diagonalisation. In: P.A. Castillo,
J.L.J. Laredo, F.F. de Vega (eds.) Applications of Evolutionary
Computation - 23rd European Conference, EvoApplications
2020, Held as Part of EvoStar 2020, Seville, Spain, April 15-17,
2020, Proceedings, Lecture Notes in Computer Science, vol.
12104, pp. 3–19. Springer 2020.

	31.	 Neri F, Rostami S. Generalised pattern search based on covariance
matrix diagonalisation. SN Comput Sci. 2021;2(3):171.

	32.	 Neri F, Tirronen V, Karkkainen T, Rossi T. Fitness diversity based
adaptation in multimeme algorithms:a comparative study. In: 2007
IEEE Congress on Evolutionary Computation, pp. 2374–2381
2007.

	33.	 Ochoa G, Malan K. Recent advances in fitness landscape analysis.
In: López-Ibáñez et al. [21], pp. 1077–1094.

	34.	 Ochoa G, Malan KM, Blum C. Search trajectory networks of pop-
ulation-based algorithms in continuous spaces. In: Applications of
Evolutionary Computation - 23rd European Conference, EvoAp-
plications 2020, Held as Part of EvoStar 2020, Seville, Spain, April
15-17, 2020, Proceedings, pp. 70–85 2020.

	35.	 Ochoa G, Vérel S, Daolio F, Tomassini M. Clustering of local
optima in combinatorial fitness landscapes. In: C.A.C. Coello
(ed.) Learning and Intelligent Optimization - 5th International
Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected
Papers, Lecture Notes in Computer Science, vol. 6683, pp. 454–457.
Springer 2011.

	36.	 Ong YS, Lim MH, Zhu N, Wong KW. Classification of Adaptive
Memetic Algorithms: A Comparative Study. IEEE Trans Syst Man
Cybern Part B. 2006;36(1):141–52.

	37.	 Rosenbrock HH. An automatic Method for finding the greatest or
least Value of a Function. Comput J. 1960;3(3):175–84.

http://creativecommons.org/licenses/by/4.0/

	 SN Computer Science (2022) 3:110110  Page 20 of 20

SN Computer Science

	38.	 Stadler PF. Fitness landscapes. In: Lässig M, Valleriani A, edi-
tors. Biological Evolution and Statistical Physics, vol. 585. Lecture
Notes in Physics. Berlin/Heidelberg, Germany: Springer; 2002. p.
183–204.

	39.	 Sun Y, Kirley M, Halgamuge SK. Quantifying variable interactions
in continuous optimization problems. IEEE Trans Evol Comput.
2017;21(2):249–64.

	40.	 Torczon V. On the convergence of pattern search algorithms. SIAM
J Optim. 1997;7(1):1–25.

	41.	 Tseng LY, Chen C. Multiple trajectory search for Large Scale
Global Optimization. In: Proceedings of the IEEE Congress on
Evolutionary Computation, pp. 3052–3059 2008.

	42.	 Wolpert DH, Macready WG. No free lunch theorems for optimiza-
tion. IEEE Trans Evol Comput. 1997;1(1):67–82.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Generalised Pattern Search with Restarting Fitness Landscape Analysis
	Abstract
	Introduction
	Related Works: Algorithmic Design Based on Fitness Landscape Analysis
	Proposal of this Article

	Basic Notation and Generalised Pattern Search
	An Implementation of Pattern Search

	Generalised Pattern Search with Restarting Fitness Landscape Analysis
	Fitness Landscape Analysis
	Rationale of Fitness Landscape Analysis

	Pattern Search Designed on the Basis of Fitness Landscape Analysis

	A Computationally Efficient Instance of GPSRFLA
	Numerical Results
	Comparison among Pattern Search Algorithms
	Comparison Against Other Algorithms
	Statistical Ranking via the Holm–Bonferroni Procedure

	Conclusion
	References

