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Abstract
In almost all contemporary power systems, the battery is an elementary component, and it is routinely used in a variety of 
critical applications such as drones, avionics, and cell phones. Due to their superior characteristics compared to the concur-
rent technologies, Li-ion batteries are widely utilized. Since batteries are costly, their usage is closely monitored by battery 
management systems (BMSs). It ensures that batteries survive and serve longer. Modern BMSs’ are complex and sophisti-
cated and can deal with hundreds of cells in a battery pack. It results in an increased processing resources requirement and 
can cause an overhead power consumption. The aim of this work is to improve current BMSs by redesigning their associa-
tive processing chain. It focuses on improving data collection, processing and prediction processes for Li-ion battery cell 
capacities. To prevent the processing of a large amount of unnecessary data, the classical sensing approach that is fix-rate is 
avoided and replaced by event-driven sensing (EDS) mechanism to digitize battery cell parameters such as voltages, currents, 
and temperatures in a way that allows for real-time data compressing. A new approach is proposed for event-driven feature 
extraction. The robust machine-learning algorithms are employed for processing the extracted features and to predict the 
capacity of considered battery cell. Results show a considerable compression gain with a correlation coefficient of 0.999 and 
the relative absolute error (RAE) and root relative squared error (RRSE) of 1.88% and 2.08%, respectively.

Keywords Event-driven processing · Li-ion battery · Remaining useful life · Battery capacity · Features extraction · 
Computational complexity

Introduction

The Paris Agreement, which was signed in September 2015, 
aims to make energy more affordable and sustainable. Its 
goal is to make cities and human settlements safer and long-
lasting [1]. After the percentage of greenhouse gases (GHG) 
emissions in the Earth’s atmosphere rose to new record 

levels in 2019, it became the second warmest year on record 
and the warmest year in the last decade (2010–2019). In the 
first quarter of 2020, demand for carbon fuels had recorded 
its most significant decline, as the climate improved, and 
global  CO2 emissions fell twice as much as the previous 
total declines since the end of World War II in 1945. Despite 
that, it was only a temporary improvement in the climate, 
and once the global economy begins to recover from the 
Covid-19 pandemic, that escalation in GHG levels will 
return to the increase [2, 3]. The planet is making progress 
in achieving the 7th SDG, as energy is more sustainable and 
available, renewable energy efficiency has improved, its use 
expanded, and its economic performance in the electricity 
sector has improved [4]. However, the fact that these renew-
able energy sources, such as wind and solar, are intermittent. 
As a result, they should be combined with energy storage 
modules. That is why the importance of renewable power 
storage has increased, as it provides a practical solution for 
network control and power stability-enhancing [5].
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Most of today’s devices use Li-ion batteries for several 
reasons, including their lighter weights and higher specific 
energy density (23–70 Wh/kg) with very high efficiency 
(close to 90%). This type of battery also has a relatively 
long-life cycle, with an average of 3000 cycles at a discharge 
of 80%; besides, it does not require a lot of maintenance and 
has no memory effect. Due to these enhanced attributes, we 
currently can find the Li-ion batteries within our day-to-
day used electronics [6–10]. Most of all, the high energy 
and power density of this type of batteries make them com-
patible with hybrid and electric vehicles (HEVs and EVs), 
which are the future direction of many companies world-
wide. Moreover, its high efficiency makes it usable in vari-
ous applications, such as improving the quality of renewable 
energies such as wind and solar energies. Thus, the previous 
advantages make the Li-ion batteries active contributors to 
the use of renewable energies on a wide scale [11].

The Li-ion batteries, despite all these advantages, also 
degrade with time like other rechargeable batteries. The 
degradation is a kind of aging in which the battery’s materi-
als deteriorate over its lifetime, so its performance degrades 
through operation over time. Every time the battery goes 
through the charging/discharging cycles, the degradation 
process accelerates, making the battery’s efficiency, power, 
and capacity further affected. This degradation could lead to 
unwanted events that could range from inconvenience, finan-
cial loss, or fatal tragedies, depending on the application. 
Therefore, it is necessary to assess and determine a battery’s 
expected lifetime. To avoid the factors that lead to damage to 
the battery and to extend its life, the BMSs have previously 
been created and are extensively used [8]. There are some 
indicators or estimators that represent the monitoring part of 
the BMS, such as state of charge (SoC); an estimator of the 
remaining charge capacity, state of health (SoH); a predictor 
of the discharge capacity that would provide an estimation 
of the battery age and remaining useful life (RUL); an indi-
cator to the remaining life of a battery until its end of life 
(EoL). This paper works on the RUL prediction for Li-ion 
battery cells.

Many academics and industrial practitioners have stepped 
up their efforts to create new methodologies and techniques 
for accurately estimating capacities of individual cells in a 
battery pack. Onward, it can be translated into the remain-
ing useful life (RUL). The particle filter (PF) method, or else 
known as the sequential Monte Carlo (SMC) method, is a 
method that importance sampling with Bayesian learning 
techniques. Qiang et al. [7] proposed an improved version of 
that method by developing the unscented particle filter (UPF) 
method, which works by obtaining the proposal distribution 

by applying the unscented Kalman filter (UKF) algorithm first, 
then get the final results by applying the PF algorithm. Moreo-
ver, several researchers in the literature have used regression 
models to act as a predictive method for Li-ion batteries. As 
statistical methods [12], Long et al. [9] proposed an improved 
autoregressive (AR) mode by utilizing the root mean squared 
error (RMSE) after stating that a uniform criterion that would 
provide AR order determination does not exist. The enhanced 
particle swarm optimization (PSO) algorithm was also applied 
to determine the best AR model order. Metabolism of the 
information within the data allowed the AR model order to 
change adaptively. This method accurately predicts the RUL 
of Li-ion batteries with a marginal error and it can also be used 
for onboard applications, according to the researchers [12]. In 
Ref. [13], authors have tested the reliabilities of rechargeable 
Li-ion batteries, particularly implanted in medical devices, 
using a non-linear kernel regression model. The k-nearest 
neighbor (kNN) regression was used to develop the model. 
The battery charge voltage and current curves were used in 
the study. The adoption of the kNN regression model allows 
for the incorporation of the user-defined properties of charge 
curves. The application of PSO reduces the cross-validation 
(CV) error in the battery cells capacities estimation. Eventu-
ally, based on the assessment of 10 years of cycling data, it is 
determined that the suggested model properly predicted the 
life of the Li-ion battery cells.

In Ref. [14], the authors have devised another variant of the 
regression model to estimate the real-time RUL of Li-ion bat-
teries. It is based on the data-driven approaches and employs 
the machine-learning algorithms. In this context, a mix of the 
support vector regression (SVR) and support vector machine 
(SVM) is developed. The goal of the model was to develop an 
algorithm that might be used in electric vehicles to anticipate 
when a battery is approaching its end of life (EoL) and alert 
the driver before it completely depletes. The model was fed 
with cycling data of batteries under different circumstances 
extracted from the intended battery dataset. That model has 
been tested using numerous case studies and has been found 
to be an effective tool for the RUL estimation of EVs batteries.

Materials and Methods

The principle of the suggested system is shown in Fig. 1.

Dataset

The suggested method is tested using the Li-ion battery 
dataset, provided publicly by the NASA Ames Prognostics 
Center of Excellence (PCoE) [15]. The considered dataset 

Fig. 1  The system’s block 
diagram
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consists of three operating characteristics of high-power 
Li-ion battery cells: charge, discharge and electrochemical 
impedance spectroscopy as a function of temperature. The 
experimentation is carried out at various load currents. The 
battery cells are drained until the terminal voltage dropped 
to preset thresholds, which the manufacturer specified 
should be below 2.7 V. Respecting this threshold avoids the 
deep discharge aging effects. These batteries were charged 
and discharged often to accelerate the process of aging. The 
tests were only terminated after the targeted cells achieved 
the end of life (EoL) requirement of 30% decline in rated 
capacity.

Reconstruction

To evaluate the event-driven sensing element, the antici-
pated Li-ion battery parameters waveforms are up-sampled 
by a factor of one hundred. Upsampling is achieved using 
an appropriate cascading of the spline interpolators [16]. It 
provides an analog like representation of the waveforms of 
the battery parameters, which are utilized as an input to the 
event-driven sensing stage.

Event‑Driven Acquisition

The sensing and recording of battery cells parameters is an 
elementary part of modern BMSs. It is based on analog-
to-digital converter (ADC). Conventional ADCs take sam-
ples based on Nyquist’s theory and hence does not perform 
well, while dealing with the irregular and sporadic signals, 
such as battery cell’s voltages and currents [16, 17]. In this 
situation, however, Event-Driven ADC (EDADC) is a great 
option since it adjusts the sampling frequency in response 
to changes in the incoming signal.

In the case of EDADC, the sampling frequency is 
adjusted according to changes in the analog signals, x̃(t) . 
Samples are acquired as a function of the preset thresholds 
[17, 18]. The approach is given by the following equation:

where t
n
 is the present sampling instant which is dt

n
 instants 

later than the previous one, t
n−1 . Likewise, x

n
 is the present 

sampling amplitude, and x
n−1 is the previous one. The pair (

x
n
, t
n

)
 is presenting the amplitude–time pair of nth sample.

The EDADC only collects the information that is relevant 
to the situation and discards the rest. As a result, as com-
pared to their classical counterparts, the collected samples 
exhibit a significant real-time reduction and compression 
gain. Furthermore, the EDADC lowers pre-processing time 
and increases system processing and power efficiency [16, 
17, 19].

(1)t
n
= t

n−1 + dt
n
,

Feature Extraction

Battery cell charging/discharging curves for voltages and 
currents indicate valuable information about battery life. 
Furthermore, the shape-dependent on the cell’s charging/
discharging voltages and currents may be retrieved by work-
ing separately on the charging and discharging cycles of the 
target cell. The intended Li-ion battery cell’s actual capacity 
may be found by combining these features. It enables the 
RUL to be determined.

Once there is an intersection, an event-driven method 
with several thresholds is used to extract features. These 
features are extracted based on shape context-based. It is 
feasible to derive the shape-dependent content of the cell 
charging and discharging voltages and currents by sepa-
rately examining the desired cell’s charging and discharg-
ing cycles [20]. These mined characteristics may then be 
utilized to determine the present status of the Li-ion cell in 
consideration.

When considering discharging cycles, for example, the 
cell terminal voltage attributes for the kth charging cycle 
may be derived using the following equation:

where tEDk
 is the kth instant when the battery terminal volt-

age reaches the preset threshold, TH
b
 , b is the threshold 

index, IDCk is the kth cell terminal discharging current, and 
M is the total number of discharging cycles that have been 
considered.

The attributes from the voltage and current waveforms of 
each discharging cycle are derived using the same method.

Classification Methods

Artificial neural network (ANN), k-nearest neighbor (kNN), 
and random tree (RT) are three robust machine-learning 
approaches that are used for the prediction of capacity. The 
mentioned predictors have long been considered the most 
commonly used machine-learning paradigms and have 
proven capable of learning and predicting more complex 
data patterns in many application systems.

• Artificial neural network (ANN)
  The ANN is one of the most robust and effective algo-

rithms for predicting complex data, which linear clas-
sification algorithms cannot succeed. The general archi-
tecture of any ANN consists of neurons representing 
processing units on three layers, namely the input layer, 
the hidden layer, and the output layer, where the hidden 
layer is employed to proceed with the non-linear classifi-
cation. Adjusting the harmony between those three layers 

(2)
(
tEDk

, TH
b

)
, where IDCk = TH

b
, and k = 1, 2,… ,M,
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determines overall network performance. The more hid-
den layers are, the lower the error rate [21].

• k-Nearest neighbor (kNN)
  The k-nearest neighbor (kNN) method is a similarity-

based technique that is quick and efficient. It creates a 
non-linear kernel regression model and forecasts the 
regression of a test element’s answer by averaging the 
responses of k’s nearest neighbors to that element [13, 
22].

• Random tree (RT)
  The RT is one of the best ensemble algorithms. Its 

working principle is that a robust learner can be built 
by uniting many weak, randomly formed learners. This 
algorithm creates many decision branches at different 
nodes; each produces a random classification of the data 
sample input; the RT collects these decisions and gives 
the output which had the highest vote decision [23].

Performance Evaluation Metrics

The compression ratio and accuracy of prediction are used 
to assess the suggested model’s performance.

• Compression ratio 
(
RComp

)

  It is given by the following equation:

where N denotes the number of samples acquired in the 
classical counterpart, and NED denotes the number of 
samples acquired in the suggested model.

• Accuracy of prediction
  The correlation coefficient (r), relative absolute error 

(RAE), and root relative squared error (RRSE) are used 
to calculate the accuracy of the Li-ion battery capacity 
perdition.

  The correlation coefficient (r) measures the degree of 
the relationship between two sets of data, such as present 
and projected capacities. It takes values between − 1 and 
1. The uncorrected series is represented by 0. Whereas 
the inverse and direct relations are respectively repre-
sented by − 1 and 1 [24]. The following equation can be 
used to determine the correlation coefficient, r:

where cact
i

 denotes the actual capacity for the ith instant, 
c
pred

i
 denotes the anticipated capacity, cact  and cpred  , 

respectively, denote the mean of the two, and n is the 
total number of instants.

(3)RComp =
N

NED

,

(4)r =

∑n

i=1

�
c
act
i

− cact
��

c
pred

i
− cpred

�

�
∑n

i=1

�
c
act
i

− cact
�2 ∑n

i=1

�
c
pred

i
− cpred

�2

,

  The relative absolute error (RAE) and root relative 
squared error (RRSE) are given by Eqs. (5) and (6), 
respectively.

  Both the RAE and RRSE range from 0 to 1. The bet-
ter the prediction, the closer their values are to 0. Their 
calculation includes division by the cact

i
 variation; thus, 

they are called ‘relative’ errors. Hence, they are useful 
in comparing models in terms of accuracy even if their 
errors are not in similar units, unlike the mean absolute 
error (MAE) and root mean squared error (RMSE) which 
are not applicable if the error units are different [25].

Results and Discussion

Shape context-based characteristics of the cell discharg-
ing voltages, currents, and temperatures are collected dur-
ing several discharging cycles using the dataset of cell-5. 
A total of 168 discharging cycles are taken into account. 
Each cycle is treated as an instance, with discharge volt-
age, current, and temperature curves corresponding to it. A 
MATLAB-based event-driven model is used to extract fea-
tures. Figure 2 demonstrates the idea. It displays a zoom 
of the discharging current curves of the considered cell for 
the discharging cycles 31, 71, 101, and 152.

As previously stated, conventional sensing generates 
a large amount of useless data, preventing real-time data 
reduction. Each instance in the case study is made up of 
three 3500 s waveforms. As a result, each instance is made 
up of 10,500 samples collected at a constant rate of 10 Hz 
[15]. The recommended method, on the other hand, only 
obtains 96 characteristics each instance. The compression 
ratio is computed, and it shows that the proposed approach 
has a 109.4-fold average compression increase. This will 
very certainly result in a considerable reduction in com-
puting complexity and energy usage [26–28].

To test the correctness of the recommended solution, 
the pre-mentioned performance assessment metrics are 
computed for each predictor. A ratio of 70:30% is applied 
to split the data for training and testing purposes, respec-
tively. Table 1 presents the results summary.

(5)RAE =

∑n

i=1

���
c
act
i

− c
pred

i

���
∑n

i=1

�
�
�
c
act
i

− cact
�
�
�

,

(6)RRSE =

������
�

∑n
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�
c
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i

− c
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i

�2

∑n

i=1

�
c
act
i

− cact
�2

.
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Table 1 indicates that the ANN achieves superior perfor-
mance with the maximum correlation coefficient and mini-
mum RAE and RRSE of 0.98, 1.9%, and 2.2%, respectively. 
Among the machine-learning algorithms studied, the kNN 
has the second-best performance, while the RT has the last-
best performance. It demonstrates that, in the scenario under 
consideration, the RT can be easily biased and it can result 
in its diminished performance as compared to the kNN and 
ANN algorithms.

Conclusion

Due to the high cost of Li-ion batteries, their use is closely 
monitored by BMSs to optimize their performance and 
extend their life. Having a Li-ion battery pack monitoring 
system in the smart grid will help to ensure that the batteries 
are in a proper state and fit for the various applications. That 
will contribute to decreasing the risk of failure of Li-ion bat-
teries that leads to vast blackouts.

For determining the capacity cells in a Li-ion battery pack 
via event-driven features extraction. As a result, it implic-
itly determines the Li-ion battery’s remaining useful life 
(RUL) to perform real-time data compression. To forecast 

the capacity of a given cell, robust machine-learning tech-
niques are used.

The results show superior performance for artificial neu-
ral network among its studied counterparts. It produces a 
significant compression gain of 109.4 times on average, with 
a minimum relative absolute error of 1.8819% and a root 
relative squared error of 2.0849%, respectively. Future study 
will include expanding the work by including the ensemble 
and deep-learning-based predictors. Another possibility is 
a real-time embedded realization of the suggested approach.
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