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Abstract
The World Health Organization estimates that approximately 10 million people are newly diagnosed with dementia each 
year and a global prevalence of nearly 50 million persons with dementia (PwD). The vast majority of PwD living at home 
receive the majority of their care from informal familial caregivers. The quality of life (QOL) of familial caregivers may be 
significantly impacted by their caregiving responsibilities and resultant caregiver burden. A major contributor to caregiver 
burden is the random occurrence of agitation in PwD and familial caregivers’ lack of preparedness to manage these episodes. 
Caregiver burden may be reduced if it is possible to forecast impending agitation episodes. In this study, we leverage data-
driven deep learning models to predict agitation episodes in PwD. We used Long Short-Term Memory (LSTM), a deep 
learning class of algorithms, to forecast agitations up to 30 min before actual agitation events. In particular, we managed 
the missing data by estimating the missing values and compensated for the class imbalance challenge by down-sampling the 
majority class. The simulations were based on real-world data from Alzheimer’s disease (AD) caregivers and PwD dyads 
home environments, including ambient noise level, illumination, room temperature, atmospheric pressure (Pa), and relative 
humidity. Our results show the efficacy of data-driven deep learning models in predicting agitation episodes in community-
dwelling AD dyads with accuracy of 98.6% and recall (sensitivity) of 84.8%.

Keywords  Persons with dementia (PwD) · Agitation · Caregiver burden · Deep learning models · Long Short-Term 
Memory (LSTM) · Data-driven forecasting

Introduction

As the population ages, more individuals will be diagnosed 
with dementia. The World Health Organization (WHO) esti-
mates that currently nearly 50 million people have dementia 
worldwide with approximately 10 million new cases being 
diagnosed annually [1]. With the progression of the disease, 

at some point persons with dementia (PwD) are unable to 
live alone and, thus, the PwD would require assistance in 
taking care of their affairs. At this stage of dementia, a car-
egiver is necessary. This care can be provided by an insti-
tution which caters to the elderly, or by a family member 
or a close friend. Informal caregiving is defined as unpaid, 
ongoing assistance with activities of daily living to a person 
with a chronic illness or disability, such as dementia [2–4]. 
For African Americans, the inclination is to provide care to 
their own loved ones in lieu of placing their family member 
into structured institutions [5].

PwD agitation has been confirmed as a major concern 
affirmed by caregivers. With agitation being the foremost 
issue caregivers of PwD face, it is important to explore a 
technological solution which can be used to distinguish 
between episodes of agitation and non-agitation as well as 
forecast agitation events using data captured prior to, during, 
and after an agitation event. Due to the sporadic nature of 
PwD agitation, it has been difficult for researchers to pin-
point when an episode may occur. However, our hypothesis 
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is that a link may exist between agitation and the ambient 
environment. In a nursing home setting which caters to 
dementia patients, a study by Van Hoof determined one of 
the causes for both restlessness and increased frequency of 
agitation as bright lights [6]. Furthermore, Joosse suggests 
that the heightened sound levels has a significant correlation 
to PwD agitation in a nursing home environment [7].

This research further extends the proposal by Goins 
et al. [8], which recommended a data-driven model based 
on deep learning algorithms and a combination of ambient 
environment data, behavioral data from both members of the 
dyad, and physiological data from the PwD to determine the 
occurrence of agitation. The research presented in this paper 
strives to achieve accurate results in forecasting upcoming 
agitation. As is often the case with health-related studies, the 
class imbalance issue of the dataset (e.g., significantly more 
instances of one class than of another) presents a challenge 
when applying data-driven methods. For instance, one would 
assume that more non-cancer screenings would result when 
checking for breast cancer in mammograms, fewer patients 
with poor arteries when assessing the risk of heart attack, 
or the less positive cases of COVID-19 when swabbing 
the general public. In this study, this problem is addressed 
through down-sampling the data of the majority class (i.e., 
non-agitation), while retaining all of the data associated with 
agitation events.

In this paper, a data-driven deep learning methodology 
is presented which, utilizing data collected within the home 
of a dementia dyad, distinguishes between agitation and 
non-agitation time segments using data collected from a 
single dyad of the Behavioral and Environmental Sensing 
and Intervention for Caregiver Empowerment (BESI) study 
[9–12]. Here, five environmental factors (i.e., light, audio, 
temperature, humidity, and air pressure) were collected and 
validated against the ground truth record of agitation events 
as reported by the caregivers. The BESI research effort con-
sisted of three phases: (1) designed and tested the use of the 
tablet to collect PwD agitation information from a select 
few caregiver homes and verified a system for collection of 
environmental data from the home and behavioral data from 
the PwD, (2) collected and analyzed data from 12 dementia 
households to ascertain which ambient features were most 
linked to agitation and (3) provided an intervention system 
for which detected PwD agitation and notified the caregiver 
of that agitation along with carefully aligned offers of inter-
ventions to shorten the length of and decrease the severity 
of the detected agitation events.

Here, we implement a data-driven approach to forecast an 
upcoming agitation in PwD based on environmental stimuli. 
To this end, we use data from one of the dyads in the BESI 
project which was collected from 5 active relay stations for 
64 days. Along with caregiver reports of PwD agitation, 
the data include ambient acoustic noise level, illuminance, 

environment temperature, atmospheric pressure, and humid-
ity level. We preprocess the data by estimating the miss-
ing values, followed by standardization and normalization. 
Then, we implement and train two deep learning models 
without reducing dimension in the data. We also apply Prin-
cipal Component Analysis (PCA) to reduce the dimensional-
ity and train and optimize two other models based on PCA’s 
output.

The remainder of this paper is organized as follows. The 
related work section provides an overview on the applica-
tions of data-driven methods in the medical domain. The 
data-driven modeling section discusses data-driven methods 
to assess caregiver burden. Then, we conduct a case study: 
data-driven forecasting of agitation in PwD. We conclude 
with a results and discussion followed by conclusion.

Related Work

Family caregivers of PwD often experience extreme stress 
and depression, issues of declining physical and psychologi-
cal health, financial problems, and limited personal space 
[13–15]. In addition to declines in emotional and physical 
health, the colossal effect of social isolation on informal 
PwD caregivers is a valid concern [16]. One of the most 
persistent difficulties faced by caregivers, though, is the 
angst associated with challenging PwD behaviors [17]. 
Agitation is one of the major encounters that the caregiver 
faces and there is no set pattern that PwD agitation follows. 
As a result, the caregiver must be prepared at all times so 
that these events can be handled properly. Traditionally, 
agitation-related assessment and caregiver interventions are 
discussed with caregivers in medical settings. To the best 
of the authors’ knowledge, there’s no agitation prediction 
model found in the literature.

PwD agitation can be defined by three distinct charac-
teristics: physical, verbal, and psychotic behaviors [18]. 
Aggressive behaviors include activities which could cause 
physical harm such as hitting, kicking, pushing, biting, and 
scratching as well as destruction of property and as well 
as vocal activities such as talking loudly and using inap-
propriate or threatening language [18, 19]. Nonaggressive 
behaviors include pacing, wandering and other general rest-
lessness, as well as hiding items [17]. Physical agitation 
behaviors displayed by the PwD, especially those involving 
aggression, are the most burdensome for familial caregiv-
ers. A study on PwD patients concluded that negative PwD 
behavior, found in over half of the patients, not only inter-
rupts patient care but also frustrates caregivers [20]. The 
literature confirms that angry and aggressive PwD behaviors 
are proven predictors of caregiver depression.

It has been recommended that managing PwD dis-
turbing behaviors should begin with nonpharmacologic 
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interventions to improve behaviors [21]. This includes pro-
viding a safe environment, eliminating conditions in the 
environment that could cause stress (e.g., reduce TV sound, 
increase lighting, etc.) and identifying agitating or frighten-
ing situations. Interventions include redirecting the PwD, 
establishing appropriate sleep schedules, and developing a 
reward system for positive behavior [21]. Increased social 
support has proven to benefit the caregiver by reducing their 
burden [22]. Moreover, social support has been identified 
as a moderator of the connection between negative PwD 
behavior and caregiver’s depressive moods; however, social 
support mechanisms are not consistent across all caregivers 
of PwD [22, 23]. Likewise, a novel method, simulated pres-
ence therapy (SPT), can be used to reduce agitation. Here, 
during an agitation episode, presence of a celebrated family 
member is simulated by playing a recording of the family 
member for the PwD [24].

Data-driven technology has shown promise in many areas 
of medical research and patient care. Moreover, due to the 
abundance of available data emanating from a myriad of 
sources, many health-related research endeavors have bene-
fited from deep learning architectures which make use of this 
plethora of data. Data-driven technology has also been used 
in the medical environment. For instance, using electronic 
health records of patients with major depressive disorder 
(MDD), two collaborating North Carolina universities (Duke 
and UNC-CH) applied a data-driven approach in creating a 
visual representation of data from past and present patients 
with similar diagnosis to successfully assist physicians in 
decision support [25].

In Japan, where the elderly population is the highest in 
the world, past check-up data (waist circumference, body 
mass index, systolic and diastolic blood pressure, etc.), his-
tory of medications for hypertension, diabetes, and dyslipi-
demia were collected from pre-elderly patients (younger 
than 60  years old). This abundance of data along with 
information on previous recommendation for candidacy 
for a health-guidance was used to identify regular health 
guidance candidates. Using ensemble learning (in particu-
lar, Gradient-Boosting Decision Tree or GBDT), the results 
outperformed the baseline approach in the AUC by over 
40%, resulting in an accuracy of 99.3% with a confidence 
interval of 0.993 [26].

In another study for screening and prediction of men-
tal health, data from ubiquitous sensors, social media, and 
healthcare systems were fused for digital phenotyping appli-
cations. Four challenges from this data-driven approach were 
noted heterogeneity, volume, noise, and sparse data [27]. 
Depression has been studied using a data-driven approach, 
determining trajectory groups based on more closely spaced 
(i.e., weekly) severity ratings [28]. A sleep study found that 
the effects of insomnia may not be limited to sleep com-
plaints, suggesting that a data-driven approach including a 

list of other complaints such as quality of life, demographics, 
dysfunctional beliefs, childhood trauma should be consid-
ered [29]. Lastly, data-driven methodology was used as a 
complementary method in determining food intake of ado-
lescents with data-driven methods showing some character-
istics that were not present in the hypothesis-driven method 
[30]. In treatment of acute inflammation, for instance, the 
medicine dosage designed by data-driven methods increased 
survival rates from 73% to 88%. This outcome proves that 
data-driven models contribute to personalized treatment 
[31]. In another study, deep learning class of machine learn-
ing models was utilized in risk assessment and detection of 
diabetic foot ulcers [32].

Finally, machine learning and deep learning models have 
been applied successfully to medical diagnostics and screen-
ing procedures. In a lung cancer study, a convolutional neu-
ral network was trained to predict carcinoma in whole slide 
images. The results of the network trained on four separate 
datasets were within the range of 97% for the area under the 
curve [33]. In a similar lung cancer study, lung nodules were 
classified using deep learning algorithms whereas convolu-
tional neural network yielded an accuracy of almost 90% 
compared to 85% for the traditional computer aided diag-
nostics (CADx), the deep belief network slightly exceeded 
CADx and the stacked denoising autoencoder only slightly 
trailed CADx in accuracy [34]. A similar study using com-
puted tomography (CT) and positron emission tomography 
(PET) scans of 14 patients with varying stages of esophageal 
cancer was conducted to determine the need for surgery. 
Results of manually extracting the features in the traditional 
machine learning method and convolutional deep learning 
methods, which extract their own features, were compared. 
When traditional and deep learning techniques were used in 
unison 100% accuracy was achieved; whereas, an accuracy 
slightly less than 93% was obtained using only traditional 
machine learning methods [35].

Data‑Driven Modeling

Environmental data provide insights for assessment of car-
egiver’s burden. For example, some environmental events 
such as dimming light or increased noise levels might cor-
respond to triggering the agitation in the PwD. Finding these 
events which are correlated with agitation and their impact 
on caregiver burden is of interest.

Monitoring the dyad’s environment has been made 
achievable and affordable with the latest advances in digi-
tal technology. With the popularity of Internet of Things 
technology, a PwD is already living in a smart home or the 
home can feasibly be converted into a smart home. There are 
plenty of sensors within a smart home which actively meas-
ure different types of variables including climate (humidity 
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level, atmospheric pressure, temperature), illuminance, and 
sound levels. Alternatively, personal devices such as smart 
phones and tablets can be utilized. Miniaturized devices 
such as smart phones and wearable devices in close prox-
imity to the dyad can be utilized for capturing biomarkers.

Assessment of Caregiver Burden

While the caregiver is first person who notices the caregiver 
burden, other means such as surveys, talking with family 
members and friends, a caregiver support group, and the 
medical team assigned to the PwD can be employed to 
ascertain the caregiver burden. However, the description 
of feelings that an individual provides is highly qualitative 
and subjective. Hence, it is difficult to develop a compre-
hensive framework to adequately measure caregiver burden. 
Data-driven methodologies can be employed to address this 
challenge.

Data‑Driven Assessment

Different sources of data can be utilized to ascertain car-
egiver burden. For instance, psychometric surveys are 
administered to the caregiver and summarized to create a 
subjective synopsis of the experiences of everyday caregiv-
ing. Similarly, moments of outburst and tranquility can be 
ascertained using movement data which are collected by 
wearable devices that PwD wears. Determining the appro-
priate tools for caregiver burden assessment is of importance 
due to many possible causes of caregiver burden. These tools 
range from subjective caregiver input to sensors and other 
smart home devices.

Case Study: Data‑Driven Forecasting 
of Agitation in PwD

Data Preprocessing

The data utilized in this paper were acquired from the BESI 
project, as explained in the Introduction. Three sets of envi-
ronmental data were collected by each relay station placed 
in the home. Collected environmental data consisted of 
light, audio, and interior weather conditions. For this phase 
of the study, each of the environmental sensors gathered 
data throughout a time period of approximately two months. 
The intensity of light surrounding the sensor was measured 
in units of lux. For audio data, decibel levels were collected 
by the relay stations indicating sound intensity and not the 
actual voices or words from individuals. Lastly, weather data 
such as temperature, humidity, and barometric pressure were 
obtained using the relay stations. A time stamp was taken 
along with each data value.

The dyad chosen for this work had five relay stations 
dispersed throughout the home. Data were collected for a 
span of exactly 64 days. The raw data are provided in dif-
ferent segments, each of which containing a timestamp 
which indicates the start and duration of that segment. Each 
segment contains data in records which have a time offset 
in seconds. The summation of segment’s timestamps and 
records’ time offsets provides the absolute time of record. 
In BESI, the measuring devices, i.e., relay stations, were 
installed in different locations of the dyads house to gather a 
comprehensive environmental reading. The floorplan of the 
house in which these relay stations were installed is avail-
able; however, since the location-specific data of agitation 
incidents are unknown in most cases, we have averaged the 
data from relay stations.

An Exploratory Data Analysis (EDA) showed that (1) the 
sampling rate varied from segment to segment; and (2) there 
are some time windows with no available data. To address 
the inconsistent sampling rate problem, we calculated the 
time difference between two consecutive segments based on 
their timestamps; then, linearly interpolated the content of 
the first segment to match the duration of the time difference 
with the next segment. While it is possible to apply linear 
interpolation to address the missing data problem, the length 
of the missing data period might be long enough to result in 
inconsistency by linear interpolation. Therefore, assuming 
each sensory data follow the same pattern throughout the 
day, sensor readings from days before and after the missing 
value can be leveraged to estimate the missing value. The 
x-axis in Fig. 1 shows the days while the y-axis shows the 
seconds in each day. Therefore, the last record of each day is 
connected to the first record of the next day. Assume at time 
t, the sensor reading of the ith day and jth second is miss-
ing. The last sensor reading before t is a and the first sensor 
reading after t is b which are d1 and d2 seconds before and 
after t, respectively. The sensor readings at jth second of the 
days before and after, if available, are c and d. The value of 
t can be estimated using Eq. 1. The proof of Eq. 1is provided 
in the appendix. Figure 2 shows a snapshot of temperature 
data before and after applying Eq. 1.  

After sequencing the segments and applying the interpo-
lations, the result is a 5 by 5529,600 tensor, in which col-
umns are representing each of five sensor readings while 
rows are representing 1 second timespan. Mean, Standard 
Deviation, Median, and Max of every 60 consecutive sam-
ples (one minute) are calculated and stored for each sensory 

(1)t =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

d1(b+c+d)+d2(a+c+d)

3(d1+d2)
if bothcanddare available

d1(b+c)+d2(a+c)

2(d1+d2)
if onlycis available

d1(b+d)+d2(a+d)

2(d1+d2)
if onlydis avaibale

ad2+bd1

d1+d2
if neithercnordare available

.
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data. Finally, the values are standardized by subtracting the 
mean and dividing by standard deviation. The final dataset 
is a 20 by 88,911 tensor. After some initial models were 
trained, it was discovered that normalizing data, which scale 
the data to be in the range of [0, 1] improves the results; 
therefore, normalization is applied on the standardized data.

The selected dyad has recorded a total number of 41 agi-
tations. Each agitation has a timestamp and a level which 
represents the severity of agitation from caregiver’s perspec-
tive. We converted the classification problem to a regression 
problem by considering a time window with the span of one 
hour for each agitation (− 30 min to + 30 min). In this time 
window a gaussian-like function is applied. This function 
starts from 0 at 30 min prior to time stamp, ramps up to a 
peak equivalent to agitation level at the recorded time stamp 
and decreases back to 0 at 30 min after agitation. The com-
bination of these 41 gaussian-like curves is considered as 
the ground truth for the model. The highest value caregivers 
reported for agitation level is 6, therefore, our values range 
from 0 to 6.

Considering the aforementioned one-hour time window 
for each agitation episode leads to 2460 non-zero samples 
versus 86,451 samples with the value of zero. This means 
97.2% of samples belong to one class (i.e., non-agitation) 
while 2.8% of samples belong to other class (i.e., agitation). 
This is naturally a class imbalance problem. Because com-
mon practices to this issue such as collecting more data or 
data augmentation are not feasible here, under-sampling was 
applied. In this approach, each non-agitation sample is kept 
with a ¼ chance. This leads to having 27,965 non-agitation 
samples which gives us a 92% to 8% dataset, which is the 

lowest amount of under-sampling that achieves reasonable 
results.

Learning Algorithm Selection

The aim of this work is to forecast an agitation based on 
changes in the environmental stimuli. To this end, the 
models are developed to receive sensory data in the past 
30 min and predict the possibility of an agitation. Since, as 
described in the previous section, we have 20 features, the 
models need to accept a 20 by 30 tensor as input and gener-
ate a scaler value which is discussed in more details in the 
next section. Since the data are timeseries and have temporal 
dependencies, Long Short-Term Memory (LSTM) is a good 
choice to develop this model. However, it is also possible 
to flatten the 20 by 30 tensor into a 600-vector tensor and 
develop a Multi-Layer Perceptron (MLP) model based on it. 
Moreover, we applied PCA to reduce the number of features 
from 20 to 10. This means that PCA reduced the input tensor 
to the size of 10 by 30.

Training Models

The LSTM model consists 32 LSTM blocks followed by a 
10-neuron fully connected hidden layer which uses Rectified 
Linear Units (ReLU) as the activation function. The MLP 
model connects its 600-neuron input layer to the output via 
a 10-neuron hidden layer. In the MLP model, both input 
and hidden layers use sigmoid as the activation function. 
The numbers of trainable parameters are 7125 and 6131 for 
LSTM and MLP models, respectively. Similarly, the two 
other LSTM and MLP models, which are implemented 

Fig. 1   Reference points for the 
estimation of missing values
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based on PCA, have 5845 and 3131 trainable parameters, 
respectively. Except for the input layers, the topologies of 
models are kept the same before and after applying PCA. 
Table 1 summarizes the trained models.

All models were trained using Adam optimizer and 
Mean-Squared Error (MSE) loss function. The 20 by 30 
samples were generated from the sampled dataset, which 
was described in the previous section, using sliding win-
dow technique, in which, the oldest element of the sample 
is removed, and a new element is added. Therefore, each 
sample shares a subsample of 20 by 29 with the previous 
sample. Then, (after and before applying PCA) the samples 
were shuffled and 2/3 of them were selected for training and 
1/3 for validation. Since nearly ¾ of the dataset was unseen 
by this model, the whole dataset was used as a test dataset. 
Figure 3 illustrates the entire pipeline for training models.

Results and Discussion

The outputs of the models were smoothed using rolling aver-
age. Since the problem was initially converted into regres-
sion, it needs to be converted back to classification. This is 
done by applying a threshold value of 1, i.e., if an output 
is equal to or greater than 1 it is considered as an agitation 
while all values below 1 are no agitation. The results of 
models are shown in the Table 2.

As explained earlier, with having more than 97% of sam-
ples in non-agitation class, the dataset is highly class imbal-
anced. Therefore, a model which assigns non-agitation class 
to all samples achieves more than 97% accuracy. For this 
reason, accuracy is not an informative metric here and other 
metrics such as precision and recall are needed. As shown 
in Table 2, models have achieved a wide range of precision 
and recall, which makes the interpretation of results difficult. 
Therefore, we consider the F1-Score, which is the combi-
nation of precision and recall, as the determinative perfor-
mance metric. Model 4 has achieved the best F1-Score; 
however, we need a baseline to compare against. Assume 
we have four different datasets, all of which containing two 
classes. The first dataset is perfectly balanced; however, in 
the second, third, and fourth datasets, the minority class has 
25%, 10%, and 1% of the population respectively. Assume 
the behavior of a dummy classifier is defined as:

where c is the rate of correct classification, n and p are num-
ber of negative and positive samples respectively, fn, fp, tn, 
and tp denote false negatives, false positives, true negatives 

(2)

⎧
⎪
⎨
⎪
⎩
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and true positives respectively. As shown in Fig. 4, which 
depicts the F1-Score of this dummy classifier versus param-
eter c, the more unbalanced a dataset is, the lower F1-Score 
is for the same value of c. The horizontal lines in Fig. 4 show 
the F1-Score of the trained models. The intersections of 
these lines with datasets’ curves implies how good a model 
is, the more right, the better. If our dataset was balanced, 

the performance of model 4 could have been better as the 
intersection of model 4 with the balanced dataset is almost in 
middle range of the graph. However, for our dataset, model 
4 intersects the dataset curve at the far side of the graph 
which means model 4 is close to the best theoretically pos-
sible model and there is little to no room for improvement. 
However, it is possible that the performances of the models 

Table 1   Summary of trained models

No dimension reduction PCA PCA

Model 1 Model 2 Model 3 Model 4

Model topology MLP LSTM MLP LSTM
Inputs 600 20 300—reduced with PCA 10—reduced with PCA
Number of memory blocks N/A 32 N/A 32
Neurons in hidden layers 10 (* 2 layers) 10 10 (* 2 layers) 10
Loss function MSE MSE MSE MSE
Loss value after training 0.07518997 0.11668854 0.06723165 0.06448663
Optimizer Adam Adam Adam Adam
Number of parameters 6131 7125 3131 5845

Fig. 3   The employed pipeline 
for training models

Table 2   Results of trained 
models

No dimension reduction PCA PCA

Model 1—MLP Model 2—LSTM Model 3—MLP Model 4—LSTM

Accuracy 0.984125 0.967552 0.986319 0.98687
Precision 0.375 0.259108 0.536946 0.51581
Recall 0.219334 0.722177 0.088546 0.848091
F1-score 0.276781 0.381381 0.152022 0.641475
False negative 961 342 1122 187
False positive 450 2542 94 980
True negative 87,200 85,108 87,556 86,670
True positive 270 889 109 1044



	 SN Computer Science (2021) 2:326326  Page 8 of 10

SN Computer Science

have reduced due to missing values and estimation used to 
fix it. Although we do not have any control over the missing 
values, a better performance in similar applications can be 
expected for a dataset without missing values.

Conclusion

The work we presented here can significantly reduce car-
egiver’s burden by providing them an insight about the 
immediate future. Caregiver’s can live their lives more 
peacefully knowing that they will be notified if their beloved 
ones are about to experience agitation. Moreover, having a 
model which translates environmental factors into possibil-
ity of agitation, can be used in a simulation engine to better 
understand how PwD react to different stimuli. This in turn 
provides more insight about the environmental events which 
are triggering agitation; thus, helping to arrange the environ-
ment with less potential for agitation and reducing caregiver 
burden further.

We implemented a data-driven approach to forecast an 
upcoming agitation in PwD based on environmental stim-
uli. To this end, we used data from one of the dyads in the 
BESI project which had five active relay stations for 64 days. 
The data include ambient acoustic noise level, illuminance, 

environment temperature, atmospheric pressure, and humid-
ity level. We preprocessed the data by estimating the miss-
ing values, followed by standardization and normalization. 
Then, we implemented and trained two Deep Learning mod-
els without reducing dimension in the data. We also applied 
PCA to reduce the dimensionality and implemented and 
trained two other models based on PCA’s output. Despite 
some challenges such as missing values and imbalanced 
nature of the data, one of the trained models achieves prom-
ising results.

Appendix

In Fig. 1, the distance between t and a is d1 units and the dis-
tance between t and b is d2 units. Assuming the fourth case 
in Eq. 1 is true, where c and d are not available, estimating t 
using linear interpolation between a and b is:

For the third cases in Eq. 1, where only d is available, 
assuming the importance of linear interpolation between a 
and b is the same is d, t can be estimated by averaging:

(3)t =
ad2 + bd1

d1 + d2
.

Fig. 4   Comparison of models’ performances on different datasets
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Similarly, the second case in Eq. 1 is:

For the first case in Eq. 1, where both c and d are avail-
able, the average of three values needs to be calculated:
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