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Abstract
In many practical machine learning applications, there are two objectives: one is to maximize predictive accuracy and the 
other is to minimize costs of the resulting model. These costs of individual features may be financial costs, but can also refer 
to other aspects, for example, evaluation time. Feature selection addresses both objectives, as it reduces the number of fea-
tures and can improve the generalization ability of the model. If costs differ between features, the feature selection needs to 
trade-off the individual benefit and cost of each feature. A popular trade-off choice is the ratio of both, the benefit–cost ratio 
(BCR). In this paper, we analyze implications of using this measure with special focus to the ability to distinguish relevant 
features from noise. We perform simulation studies for different cost and data settings and obtain detection rates of relevant 
features and empirical distributions of the trade-off ratio. Our simulation studies exposed a clear impact of the cost setting 
on the detection rate. In situations with large cost differences and small effect sizes, the BCR missed relevant features and 
preferred cheap noise features. We conclude that a trade-off between predictive performance and costs without a controlling 
hyperparameter can easily overemphasize very cheap noise features. While the simple benefit–cost ratio offers an easy solu-
tion to incorporate costs, it is important to be aware of its risks. Avoiding costs close to 0, rescaling large cost differences, 
or using a hyperparameter trade-off are ways to counteract the adverse effects exposed in this paper.
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Background

Feature selection is a common preprocessing step in many 
learning tasks, which aims to remove noise features and to 
identify a suitable subset of relevant information from an 
often high-dimensional data set. This way it can improve the 
generalization ability and reduces computational complex-
ity of subsequent learning algorithms. The field of feature 
selection is widely studied. A thorough introduction of the 
main concepts can be found, e.g., in Guyon and Elisseeff [6]. 
A recent benchmark study comparing different filter algo-
rithms was presented by Bommert et al. [2]. Cost-sensitive 
learning describes an extension of the general feature selec-
tion problem by introducing acquisition costs for selected 
features. Depending on the application field, these costs may 
not only refer to financial aspects, but could also represent 

a time span to raise a feature or a patient harm during the 
sample taking process.

The general strategy to incorporate feature costs into a 
feature selection framework depends on the problem at hand. 
If a fixed total feature cost limit can be defined, the prob-
lem reduces to an additional optimization constraint for the 
feature selection problem. Many example applications of 
fixed budget costs can be found. Min et al. [13, 14] presents 
cost-sensitive feature selection heuristics and also provide 
a thorough problem definition in the context of rough sets. 
Jagdhuber et al. [7] and Liu et al. [11] further extend this 
idea and propose genetic algorithms with fixed feature cost 
budgets. For situations without a fixed cost limit, the goal 
may be to harmonize costs of features and costs of predic-
tion errors by identifying an optimal trade-off. Research on 
these flexible solutions can be found, e.g., in Liu et al. [20], 
who incorporate individual feature costs in the generation 
of the base trees from random forests to produce lower cost 
solutions on average, or in Zhou et al. [1], who develop 
a framework to include individual costs in standard filter 
methods. A third situation is given when feature acquisition 
is undertaken sequentially. In such situations, tests can take 
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advantage of intermediate results and reduce total costs by 
only requesting further features if the benefit justifies the 
additional cost, see, e.g., the work of Kusner et al. [9] and 
Xu et al. [18, 19], who developed a method named “tree of 
classifiers”. In this method, test inputs traverse along indi-
vidual paths of the tree, which include different features and 
thus allow to reduce the average prediction costs of the total 
population.

A common factor for all mentioned tasks is the need to 
somehow trade-off the benefit of a feature with its cost. As 
these measures are on different scales, very popular options 
to combine them are either to optimize the ratio of both [5, 
10, 12–15], or to trade-off a weighted sum [1, 8, 9, 17–19].

In this paper, we take a close look at the first of these 
two mentioned alternatives. We specifically analyze the 
consequences of using a simple benefit–cost ratio (BCR) 
with respect to the discrimination between relevant features 
and features with no information. Especially for small effect 
sizes, penalizing an information criterion can obfuscate 
performance measures below noise level. We aim to assess 
important factors that influence this effect and raise aware-
ness for the consequences for the feature detection rate when 
using this popular measure. To clearly illustrate the influence 
of the BCR we restrict the analysis to the basic scenario of 
a single feature selection step. We do not consider general 
feature selection strategies and do not assess the relevance 
of whole feature sets.

We start by defining the general cost-sensitive feature 
selection problem and discussing the theoretical implica-
tions of using the BCR. In the following section we perform 
simulation studies to analyze the influence of multiple data 
parameters and feature cost settings on the feature detection 
rate. Finally, we present the obtained results, discuss the 
general applicability of the basic BCR and provide recom-
mendations for alternative trade-off measures.

Problem Definition

Given is a data set with n observations Di, i = 1,… , n and p 
features xij, j = 1,… , p for observation i, and continuous 
response yi for observation i. Assume that the true relation 
is given by yi = �0 +

∑prel
j=1

xij�j + �i , with �i ∼ N(0, �2) . In 
this data prel features are assumed to have an influence on 
the response, while all other pnoise features are independent 
of y. Then the goal of feature selection is to identify the 
subset of relevant features.

One obvious approach to ensure finding this optimal 
subset is an exhaustive search, i.e. to consider all possible 
subsets. However, this approach is usually not feasible for 
high-dimensional feature spaces. Thus, heuristic selection 
algorithms like greedy sequential forward selection (SFS) 

are used. SFS iteratively adds the single most promising 
feature to the current result set. A typical way to estimate 
the importance of a feature xj when added to a given set s 
is to calculate the performance gain of a statistical model 
including the feature M(s ∪ {xj}|D) compared to a baseline 
model without it M(s|D). The feature with the highest gain in 
performance is then selected. Assuming a performance crite-
rion Q, for which the optimal value is the minimal value, we 
can formulate one feature selection step of SFS by

In many real-world scenarios, obtaining a feature xj may 
cause individual feature costs cj . Cost-sensitive feature selec-
tion aims to incorporate these costs into the selection process 
to find cheap and well performing models. A popular method 
is to adapt the problem of Eq. (1) to

This ratio of benefit and cost leads to a simple trade-off 
optimization, which relates the importance of a feature to 
its cost. In the following we describe negative implications 
of this simple and popular method when discriminating 
between relevant and noise features.

The true performance gain of a noise feature is a value 
smaller or equal to zero, as it has no relation to the response 
but may create additional uncertainty. The true performance 
gain of a relevant feature is typically a value greater than 0. 
Nevertheless, the actual performance gain estimated on a 
sample data set does not always result in these true values. 
It can rather be seen as a random variable following a certain 
unknown distribution around the true value:

For a real world data situation, the theoretical distributions 
of ΔQj for different j can be assumed to overlap to some 
extent. That means, for one given sample data set, the actual 
estimated performance gain of a noise feature may be higher 
than the one of the relevant feature and thus an irrelevant 
feature may be selected.

When incorporating cost according to Eq. (2), the perfor-
mance gain distribution of feature xj is scaled by a positive 
factor cj , which increases and broadens Vj , if cj < 1 , and 
decreases and narrows it, if cj > 1 . Increasing and broaden-
ing the distribution of a noise feature, while not altering the 
one of a relevant feature increases the overlap of both dis-
tributions. Therefore, the probability of falsely selecting the 
noise feature increases. In some situations this problem may 
be negligible. In others, the cost-sensitive feature selection 
procedure can completely obfuscate any relevant feature.

(1)

m̂ = argmax
j

{
Q(M(s|D)) − Q(M(s ∪ {xj}|D))

}
=∶ argmax

j

ΔQj.

(2)m̂ = argmax
j

ΔQj

cj
.

(3)ΔQj ∼ Vj(⋅).
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The actual magnitude of the cost influence depends on 
many factors including the sample size n, the true effect 
size of relevant features � , the residual variance �2 , the sta-
tistical model, and the performance measure Q. The goal of 
this paper is to analyze this problem and describe multiple 
parameter settings and their influence on the feature detec-
tion rate. We focus on linear regression models and use the 
root mean squared error (RMSE) on independent data to 
assess the quality of models. The RMSE is defined as

with 𝛽0 and 𝛽j estimated on training data and xij and yi denot-
ing observations of an independent test data set. By using 
such an independent test data set, the RMSE also allows a 
result of no improvement after adding a feature.

In the following, for ease of presentation, we describe 
a single feature selection step of SFS from a pool of prel 
relevant and pnoise noise features. We also define this single 
step to be the first selection step, i.e. we define our baseline 
model to be the intercept model and compare the quality of 
all one-feature models. The final selection result of this one 
step can either be ‘noise selected’, ‘relevant feature selected’, 
or ‘no feature selected’. Similarly to Definition (1), in the 
following we denote the gain in RMSE for feature j by 
ΔRMSEj . The corresponding distribution Vj(⋅) has no ana-
lytical form. In the artificial simulation study, we overcome 
this problem by numerically approximating this distribu-
tion and computing selection probabilities on the empirical 
distribution.

Simulation Studies

Two simulation studies are performed. The first uses arti-
ficially generated data and evaluates a broad spectrum of 
simulation parameters, while the second is based on a real 
data set to also analyze a setup observed in the real world. 
In the following subsections, both studies are introduced in 
detail.

Artificial Data Simulation

The main goal of both simulation studies is to assess the detec-
tion rate of a cost-sensitive feature selection step in multiple 
parameter settings. Additionally for our artificial setup we aim 
to analyze the empirical distribution of our performance meas-
ure to further illustrate effects of cost scaling. We consider a 
linear regression scenario. Our response variable, as well as all 
p features are assumed to be normally distributed. We define 
prel features to be relevant and the remaining pnoise = p − prel 

(4)RMSE =

√√√√√
n∑

i=1

(
yi − 𝛽0 −

∑

j∈s

xij𝛽j

)2

,

features to be noise. The individual costs of features can be 
seen as a relative scaling between the respective ΔRMSEj 
values of the features. To simplify our analyses, we do not 
consider individual costs for all features, but define only one 
single scaling factor � for the relevant features. Hence, we 
implicitly define equal costs for the group of noise features 
and equal costs for the group of relevant features. We only dif-
ferentiate between costs for information and costs for noise. To 
thoroughly assess the influence on the detection rate, we vary 
the feature cost scaling factor � between 1, 10, 100 and 1000, 
the number of relevant features prel between 1, 2, 5 and 10, the 
number of noise features pnoise between 1, 10 and 50, and the 
effect size of the relevant feature � between 0, 0.01,… , 0.5 . 
For multiple relevant features, we do not vary the effect size 
and define �j ∶= �.

For each parameter combination, B = 1000 training 
( ntrain = 100 ) and test data sets ( ntest = 1000 ) are generated 
as follows. In a first step, features are drawn from a p-dimen-
sional normal distribution

where �p is the p-dimensional identity matrix. Next, the 
response is drawn from the normal distribution

We set the intercept to �0 = 1 and the residual variance to 
�2 = 1 for all settings.

For every data set obtained in this way, we fit the baseline 
intercept model and all one-feature models separately and 
obtain

We then compute the increase in RMSE for all features by

As we are only interested in the question if a noise feature 
or a relevant feature is selected, we define the RMSE gain of 
noise and relevant features as our target variables. The best 
ΔRMSE value indicates the candidate that is selected from 
the noise and the relevant features, respectively.

As described earlier, we define our cost setting by a single 
factor � , which scales relevant features. Hence, the assessed 
measure of RMSE gain for relevant features actually results 
in ΔRMSErel

�
.

(5)x1,… , xp ∼ Np(�, �p),

(6)yi ∼ N

(
�0 +

prel∑

j=1

xij� , �
2

)
.

(7)
M0 ∶ y = 𝛽0 + 𝜖,

Mj ∶ y = 𝛽0 + xj𝛽 + 𝜖, j = 1,… , p.

(8)ΔRMSEj = RMSE(M0) − RMSE(Mj), j = 1,… , p.

(9)

ΔRMSErel = max
(
{ΔRMSEj ∶ j = 1,… , prel}

)

ΔRMSEnoise = max
(
{ΔRMSEk ∶ k = prel + 1,… , p}

)
.
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The final feature selection on a single data set can lead to 
three different outcomes m̂ . We only consider increases in 
ΔRMSE . Therefore, if neither relevant, nor noise features 
result in a positive RMSE gain, then no feature is selected.

As every setting is repeated 1000 times with newly simulated 
data sets, we can estimate the probability for each selection 
result m by looking at the relative frequency among those 
1000 runs. We can further obtain empirical distributions of 
ΔRMSE for relevant and for noise features in different set-
tings. The results for both of these analyses are presented in 
the following section.

Plasmode Simulation on Real‑World Data

To assess the detection rate of a feature selection algorithm, 
it is essential to know, which of the available features are 
actually relevant and which are noise. For a real-world 
data set, this information is typically unknown. To solve 
this problem we perform a so-called plasmode simulation 
study [16]. A plasmode study uses a data set generated from 
natural processes but adds a simulated aspect to the data [4]. 
For this paper, we use the well-known Spambase dataset 
from the UCI machine learning repository [3] as basis of 
our plasmode simulation. It contains data of 4601 E-mails 
with 57 numeric features including word and character fre-
quencies as well as further general numeric measures on 
the text composition. To create a controlled scenario, which 
allows an objective assessment of the detection rate, the real 
relationship between features and response variable needs to 
be known. Hence, the response variable is generated from a 
fixed set of six features, corresponding to approximately 10% 
of all features, that are defined to be relevant. All features are 
standardized, and the response y1, i = 1,… , 4601 , is drawn 
from the distribution

which introduces a linear relation with similar intercept and 
residual variance as in the artificial simulation. We define 
�j = 0.25 and analyze cost scalings between 1 and 5 to create 
a challenging setup.

One thousand simulation runs are performed as follows. 
The data are split randomly into approximately 2

3
 of all obser-

vations (3067) used for training and approximately 1
3
 of all 

observations (1534) used for testing. For every training data 
set, we fit the baseline intercept model and all one-feature 
models separately and obtain the resulting ΔRMSE on test 
data analogously to the artificial simulation. The maximum 

(10)m̂ = argmax

(
ΔRMSErel

𝜃
,ΔRMSEnoise, 0

)
.

(11)yi ∼ N

(
1 +

6∑

j=1

xij�j;1

)
,

value of this difference reveals if a relevant feature, a noise 
feature, or no feature at all is detected. We analyze the detec-
tion rates of relevant features for different cost-scaling values 
and perform a one-sided two-proportions z-test, which tests 
the null hypothesis that the detection rate at a given value of 
� is not smaller than the detection rate at � = 1 (correspond-
ing to no cost-scaling).

Results

Artificial Data Simulation

This section comprises the analysis of the selection prob-
abilities with main results presented in Figs. 1 and 2, and 
the analysis of the empirical distribution of the selection 
criterion presented in Fig. 3. To provide comprehensive 
illustrations, both analyses focus mainly on the setting with 
one relevant feature, and only a small analysis to describe 
the effects of different numbers of relevant features is added. 
Corresponding illustrations of all settings can be found in 
the Supplementary material.

The individual plots of Fig. 1 illustrate the estimated 
probabilities for the three selection outcomes ‘relevant 
feature selected’, ‘noise feature selected’ and ‘no feature 
selected’ along multiple effect sizes of the true effect � . 
Rows of the main plot matrix relate to different numbers of 
noise features, while columns represent the extent of cost-
scaling applied to the relevant feature.

The top-left plot describes a setting with one relevant and 
one noise feature. No cost scaling is applied, which could 
refer to a setting without or with equal costs, respectively. At 
an effect size of � = 0 , where both features can be consid-
ered noise, their selection probability is approximately equal. 
In almost 70% of the cases, neither of them is selected. 
When increasing the effect size � , the selection probability 
for the relevant feature rises, while the probabilities for both 
other outcomes decrease. From around � = 0.3 onward, the 
relevant feature is identified approximately 100% of times.

Increasing the number of noise features (rows 2 and 3) 
changes this result in multiple ways. The main difference can 
be seen in the number of times that no feature is selected. 
This value is reduced greatly for ten noise features and dis-
appears completely for 50 noise features. The other differ-
ence is that the selection curve of the relevant feature starts 
at a lower value and reaches 100% selection slightly later. 
These differences are however more subtle.

The main focus of our paper lies on the effect of incor-
porating costs and thus scaling the performance distribu-
tion of the relevant features. This scaling factor corre-
sponds to the columns of the plot matrix. When increasing 
the factor, the decrease in selection probability of noise for 
higher effect sizes becomes smaller, eventually resulting 
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Fig. 1   Selection probabilities of relevant, noise, or no feature, along 
multiple values of the cost-scaling factor � (columns), the number 
of noise features p

noise
 (rows) and the effect size of relevant features 

� (x-axis per plot). The main 3 × 4 plot matrix analyzes the setting 

of p
rel

= 1 . An additional bottom row illustrates corresponding plots 
for different numbers of relevant features p

rel
 at a fixed scaling level 

� = 10 . The plots annotated with a star are identical
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in an approximately constant noise selection probability 
at � = 1000 . As the initial selection probability for noise 
increases with a larger number of noise features, the com-
bined effect results in always selecting noise at the bottom-
right plot.

The effects of increasing the number of relevant features 
is illustrated for a fixed scaling factor � = 10 and an equal 
number of noise and relevant features in the additional 
bottom row of Fig. 1. The main observation is that the 
extent of selecting no feature reduces with increasing prel 
and instead a noise feature is selected. The probability of 
selecting a relevant feature does not seem to be strongly 
influenced, it is only slightly pushed back by noise and 
reaches the area of 100% selection for slightly larger effect 
sizes. Full illustrations including multiple values of � and 
non-identical prel and pnoise are given in Additional file 1.

To test the significance of the observed effects, Fig. 2 
illustrates negative base-10 logarithms of p values from 
a one-sided two-proportions z test, which tests the null 
hypothesis that the detection rate of a cost-scaled rele-
vant feature is not smaller than the detection rate without 
cost-scaling.

For one noise feature and one relevant feature with very 
small effect size ( 𝛽 < 0.075 ), the left plot indicates no 
significant ( � = 0.001 ) differences for any analyzed cost-
scaling. Apart from that region, scalings of � = 100 and 
� = 1000 always significantly lower the detection rate of 
relevant features. For � = 10 , the number of noise features 
is an important factor for the resulting p values. With only 
one noise feature (left plot in Fig. 2), almost no significant 
decreases in the detection rate can be observed. With 10 
and 50 noise features, however, significant differences can 
be observed for all medium-sized values of � and the dif-
ferences only disappear for large � values, when the detec-
tion rate approaches 1. Altogether the notable decrease in 
the detection rate observed in Fig. 1 can also be considered 

statistically significant for most non-extreme cases accord-
ing to Fig. 2.

The second aspect analyzed in the artificial simulation 
is the empirical distribution of RMSE gain for the relevant 
features. This distribution depends on the true effect � , the 
cost scaling parameter � , and the number of relevant features 
in the model. For noise, it only depends on the numbers of 
noise and relevant features, as the true effect is 0 and no scal-
ing of noise is performed. A comprehensive illustration of 
all analyzed distributions for prel = 1 is given in the top plot 
of Fig. 3. A heatmap describes the distributions of RMSE 
gain for relevant features along different effect sizes. Lighter 
colors correspond to higher densities. RMSE gains for noise 
features are depicted by three density curves for settings with 
1, 10 and 50 noise features, respectively. A gray area high-
lights the decision boundary for not selecting any feature.

The given plots provide deeper insight into the selec-
tion decisions illustrated previously in Fig. 1. Analyzing 
the noise features, the distribution of RMSE gains of one 
single noise feature has the great majority of its probabil-
ity mass within the gray area and would not be selected, 
regardless of the RMSE gain of the relevant feature. 
However, when increasing the number of noise features 
pnoise , the noise distribution steadily moves out of this 
area. For the relevant parameter, the unscaled distribution 
(top-left plot) increases superlinearly along � and com-
pletely passes any noise distribution at around � = 0.4 . 
A cost-scaling however lowers the slope of this increase 
and decreases the variance of the relevant feature distri-
bution. As a consequence of both, surpassing the noise 
distributions happens notably slower. For � = 100 , the 
size of the relevant feature distribution compared to noise 
is shrunken down to a level making it almost invisible in 
the plot. The largest noise distribution is not surpassed 
at all in our range of � values. However, an important 
observation is that the total density of ΔRMSErel below 
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Fig. 2   Three plots with different setups of relevant and noise features 
corresponding to the three rows of Fig.  1. Each y-axis shows nega-
tive base-10 logarithms of p values from a one-sided two-proportions 
z-test, which tests the null hypothesis that the detection rate at a given 

value of � and � is not smaller than the detection rate at the same � 
with � = 1 (no cost-scaling). On the x-axis different values of � are 
indicated. The line color corresponds to different values of � . A hori-
zontal dashed red line indicates the significance level � = 0.001



SN Computer Science (2021) 2:316	 Page 7 of 10  316

SN Computer Science

or equal to zero is constant for any scaling. We omitted 
an illustration for � = 1000 as it is invisible on this scale. 
Rescaled versions for all distributions can be found in 
Additional file 2.

The bottom part of Fig. 3 depicts the effects of increas-
ing the number of relevant features in the true model, 
for � = 10 . Mainly, the general density mass below zero 
decreases when the number of relevant features increases. 
However, the maximum ΔRMSE value for � = 0.5 also 
decreases. The RMSE gain of noise features, on the other 
hand, results in almost identical density curves.

Plasmode Simulation

The plasmode simulation study analyzes a specific setup, 
where 6 out of 57 features from a real-world data set are 
defined to be relevant ( � = 0.25 ) for the prediction of a 
simulated response variable. Our goal is to analyze the 
decrease in the detection rate of relevant features for dif-
ferent cost-scalings. Furthermore, we assess the signifi-
cance of this decrease with a one-sided two-proportions 
z-test. The results of these analyses are illustrated in Fig. 4.
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Fig. 3   Empirical distributions of ΔRMSE for noise features (red) and 
relevant features (blue). The latter are illustrated as heatmap along 
different values of the true effect size � . Lighter colors indicate higher 
densities. The first row describes a setting with p

rel
= 1 . Three plots 

of relevant features for different values of the cost-scaling � and three 
plots of noise features for different values of p

noise
 are given. The bot-

tom row shows corresponding plots for different values of p
rel

 at a 
fixed cost-scaling of � = 10
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Without cost-scaling, the relevant features are detected 
in all 1000 simulation runs. However, at higher values of � , 
this rate decreases to ≈ 50% at � = 2.16 and 0.6% at � = 5 . 
This means that even small cost-scalings can already highly 
impair the detection rates on an absolute level. The right plot 
of Fig. 4 puts these results into a statistical testing context. 
Assuming a significance level of � = 0.001 , the observed 
decrease can be considered significant for � = 1.1 and all 
larger values.

Discussion and Conclusion

The simulation studies revealed multiple consequences of 
cost-sensitive feature selection when using the popular ben-
efit–cost ratio without a hyperparameter. In Fig. 1, we see 
that cost-scaling ΔAIC makes the selection probability of 
noise features more robust, especially for large true effects. 
With � → ∞ , this probability becomes independent of � . 
However, the frequency of selecting noise does not necessar-
ily approach 1, but converges to a certain limit. For � → ∞ , 
this limit is given by P(ΔRMSEnoise > 0) . Values with nega-
tive RMSE difference will never be selected, regardless of 
the scaling. With an increasing number of noise features, the 
probability that all estimated performance gains are nega-
tive decreases. Hence, the described limit for selecting noise 
rises. The third row of Fig. 1 illustrates the consequences 
of both effects, which eventually results in a noise selec-
tion probability of approximately 1 for all � values. Statis-
tical test results given in Fig. 2 showed that this observed 
decrease of the detection of relevant features can be consid-
ered significant for almost all analyzed cost-scaling setups. 
The empirical distributions shown in Fig. 3 further describe 
this relation. With higher cost penalization, the slope and 

variance of the RMSE gain distribution along � decreases. 
The probability regions favoring noise over the relevant fea-
tures constantly become larger as � increases, yet the prob-
ability masses above and below 0 stay constant, further illus-
trating the probability limit of noise selection. The effects of 
increasing the number of relevant features in the true model 
are more subtle. The selection probability plots mainly show 
the effects already observed when increasing the number 
of noise features. The differences in the empirical densi-
ties of RMSE gains of relevant features in Fig. 3 are the 
result of two effects. On the one hand, the maximum RMSE 
results in a higher value for a higher number of features. On 
the other hand, the relative share on the total information 
of a single feature decreases with higher prel . For small � , 
the distribution of ΔRMSErel is very skewed and the first 
effect dominates. For larger � , the distribution becomes less 
skewed and the latter effect has a higher impact. In total, this 
results in the observed trends with increasing prel . Extending 
the simulation setup to a real-world data set further high-
lighted the effects observed in the artificial setups. The study 
showed that even minor cost-scalings in the range of 10% 
can already significantly impair the ability to distinguish 
relevant information from noise.

Altogether, our paper addressed implications of using 
the benefit–cost ratio without an additional hyperparam-
eter for cost-sensitive feature selection. As using this ratio 
is a typical approach to incorporate feature costs, it is 
important to understand possible problems resulting from 
it. We provided a thorough problem description, analyzed 
multiple parameter settings in an artificial simulation study 
and also evaluated detection rates on a real-world data set. 
Results from these studies illustrated that a strong cost-
scaling, which may result from high relative cost differ-
ences between features, can notably influence the detection 
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Fig. 4   Results of the plasmode simulation study. Left: detection rates 
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limit of relevant features. This effect interacts with the 
number of noise features in the data.

To avoid this problem, we recommend using an adapted 
benefit–cost ratio, such as the ones proposed in Jagdhuber 
et al. [7] or Min et al. [13]. The main alternative solu-
tion to incorporate costs is a weighted linear combina-
tion as mentioned in the introduction of this paper. All 
these approaches share the idea of introducing a hyperpa-
rameter to control the trade-off between benefit and cost. 
This can reduce the problem, but it comes at the price of 
an additional estimation step. If the analysis requires the 
benefit–cost ratio without hyperparameter, we strongly 
recommend to thoroughly analyze the cost distribution of 
the given data set. If relative cost differences are high, 
transforming costs prior to applying the benefit–cost ratio 
may be beneficial. In practice, such extreme ratios may 
likely occur with some costs very close to 0, or from set-
ting cost-free features to a cost of � close to 0, as, e.g. 
recommended in Min et al. [13].

The popularity of the benefit–cost ratio shows the need 
for simple methods to incorporate costs without an addi-
tional parameter tuning step. Beyond the scope of this work, 
solving this problem with a comprehensible way to specify 
the trade-off between costs and performance with expert 
knowledge, instead of tuning a black-box hyperparameter, 
would be of great interest. This would allow the user to spec-
ify the intended relation of costs and performance, which 
may differ greatly between fields of application. Our work 
covers a specific task in predictive modelling and tries to 
raise awareness of the problem. Nevertheless, many other 
modelling approaches or machine learning methods may be 
considered in future work. Further research may also deal 
with classification problems, or with different performance 
measures. Comparisons of the influences or possible biases 
from the choices regarding these aspects may also be rel-
evant extensions of this work.
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