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Abstract
Variational Autoencoders (VAEs) are powerful generative models that merge elements from statistics and information theory 
with the flexibility offered by deep neural networks to efficiently solve the generation problem for high-dimensional data. 
The key insight of VAEs is to learn the latent distribution of data in such a way that new meaningful samples can be gener-
ated from it. This approach led to tremendous research and variations in the architectural design of VAEs, nourishing the 
recent field of research known as unsupervised representation learning. In this article, we provide a comparative evaluation 
of some of the most successful, recent variations of VAEs. We particularly focus the analysis on the energetic efficiency of 
the different models, in the spirit of the so-called Green AI, aiming both to reduce the carbon footprint and the financial cost 
of generative techniques. For each architecture, we provide its mathematical formulation, the ideas underlying its design, a 
detailed model description, a running implementation and quantitative results.

Keywords Generative modeling · Variational Autoencoders · Green AI

Introduction

Data generation, which is the task of generating new realistic 
samples given a set of training data, is a fascinating problem 
of AI, with many relevant applications in different areas, 
spanning from computer vision, to natural language process-
ing and medicine. Due to the curse of dimensionality, the 
problem was practically hopeless to solve, until Deep Neural 
Networks enabled the scalability of the required techniques 
via learned approximators. In recent years, deep generative 
models have gained a lot of attention in the deep learning 
community, not just for their amazing applications, but also 
for the fundamental insight they provide on the encoding 
mechanisms of Neural Networks, the extraction of deep fea-
tures, and the latent representation of data.

In spite of the successful results, deep generative mode-
ling remains one of the most complex and expensive tasks in 
AI. Training a complex generative model typically requires 
a lot of time and computational resources. To make a cou-
ple of examples, the hyper-realistic Generative Adversarial 
Network for face generation in [36] required training on 8 
Tesla V100 GPUs for 4 days; the training of BERT [18], a 
well-known generative model for NLP, takes about 96 h on 
64 TPU2 chips.

As remarked in [51], this computational cost has huge 
implications, both from the ecological point of view, and 
for the increasing difficulties for academics, students, and 
researchers, in particular those from emerging economies, to 
do competitive, state of the art research. As a good practice 
in Deep Learning, one should give detailed reports about 
the financial cost of training and running models, in such 
a way to promote the investigation of increasingly efficient 
methods.

In this article, we offer a comparative evaluation of some 
recent generative models. To make the investigation more 
focused and exhaustive, we restricted the analysis to a single 
class of models: the so called Variational Autoencoders [38, 
48] (VAEs).

Variational Autoencoders are becoming increasingly pop-
ular inside the scientific community [53, 60, 61], both due 
to their strong probabilistic foundation, that will be recalled 
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in “Theoretical Background”, and the precious insight on 
the latent representation of data. However, in spite of the 
remarkable achievements, the behaviour of Variational 
Autoencoders is still far from satisfactory; there is a number 
of well-known theoretical and practical challenges that still 
hinder this generative paradigm (see “The Vanilla VAE and 
Its Problems”), and whose solution drove the recent research 
on this topic. We try to give an exhaustive presentation of 
most of the VAE variants in the literature, relating them to 
the implementation and theoretical issues they were meant 
to address.

Hence, we focus on a restricted subset of recent archi-
tectures that, in our opinion, deserve a deeper investigation, 
for their paradigmatic nature, the elegance of the underly-
ing theory, or some key architectural insight. The three cat-
egories of models that we shall compare are the Two-stage 
model [16], the Regularized Autoencoder1 [39], and some 
versions of Hierarchical Autoencoders. In the latter class, we 
provide a detailed analysis of the recent Nouveau VAE [58]; 
however, its complexity trespasses our computing facilities, 
so we investigate a much simpler model, and an interesting 
variant exploiting Feature-wise Linear Modulation [44] at 
high scales.

One of the metrics used to compare these models is their 
energetic efficiency, in the spirit of the emerging paradigm 
known as Green AI [51], aiming to assess performance/effi-
ciency trade-offs. Specifically, for each architecture, we pro-
vide a precise mathematical formulation, a discussion of the 
main ideas underlying their design, a detailed model descrip-
tion, a running implementation in TensorFlow 2 freely avail-
able on our GitHub repository https:// github. com/ devan gelis 
ta2/ Green VAE, and quantitative results.

Structure of the Article

The article is meant to offer a self-contained introduction 
to the topic of Variational Autoencoders, just assuming a 
basic knowledge of neural networks. In the next section, 
we start with the theoretical background, discussing the 
strong and appealing probabilistic foundation of this class 
of generative models. In the following section, we address 
the way theory is translated into a vanilla neural net imple-
mentation, and introduce the many issues arising from this 
operation: balancing problems in the loss function, posterior 
collapse, aggregate posterior vs. prior mismatch, blurriness 
and disentanglement.

In the next three sections, we give a detailed mathemati-
cal introduction to the three classes of models for which 
we provide a deeper investigation, namely the Two-Stage 

approach, the regularized VAE and hierarchical models. 
After these sections, our experimental setting is described: 
we discuss the metrics used for the comparison, and provide 
a detailed description of the neural network architectures. 
In the penultimate section, we provide the results of our 
experimentation, making a critical discussion. In the con-
clusive section, we summarize the content of the article and 
draw a few considerations on the future of this field, and the 
challenges ahead.

Theoretical Background

In this section, we give a formal, theoretical introduction 
to Variational Autoencoders (VAEs), deriving the so called 
Evidence Lower Bound (ELBO) adopted as a learning objec-
tive for this class of models.

To deal with the problem of generating realistic data 
points x ∈ ℝ

d given a dataset � = {x(1),… , x(N)} , genera-
tive models usually make the assumption that there exists 
a ground-truth distribution �GT supported on a low-dimen-
sional manifold 𝜒 ⊆ ℝ

d with dimension k < d , absolutely 
continuous with respect to the Hausdorff measure on � and 
with density pgt(x) . With this assumption, one can rewrite

where z ∈ ℝ
k is the latent variable associated with x, distrib-

uted with a simple distribution p(z) named prior distribution.
The idea behind generative models is that if we can learn 

a good approximation of pgt(x|z) from the data, then we can 
use that approximation to generate new samples with ances-
tral sampling, that is,

• Sample z ∼ p(z).
• Generate x ∼ pgt(x|z).

For this reason, it is common to define a parametric family 
of probability distributions P� = {p�(x|z)|� ∈ ℝ

s} with a 
neural network, and to find �∗ such that

i.e. the Maximum Likelihood Estimation (MLE).
Unfortunately, (2) is usually computationally infeasible. 

For this reason, VAEs define another probability distribution 
q�(z|x) named encoder distribution which describes the rela-
tionship between a data point x ∈ � and its latent variable 
z ∈ ℝ

k and optimizes � and � such that:

(1)

pgt(x) = ∫
ℝk

pgt(x, z)dz = ∫
ℝk

pgt(x|z)p(z)dz = 𝔼p(z)[pgt(x|z)],

(2)

�∗ = argmax
�

𝔼
𝔻
[log p�(x)] = argmax

�
𝔼
𝔻

[
log∫

ℝk

p�(x|z)p(z)dz
]
,

1 Strictly speaking, this is not a Variational model, but it helps in 
understanding them.

https://github.com/devangelista2/GreenVAE
https://github.com/devangelista2/GreenVAE
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where DKL(q�(z|x)||p�(z|x)) = �q�(z|x)[log q�(z|x) − log p�(z|x)] is the 
Kullback–Leibler divergence between q�(z|x) and p�(z|x).

But

Thus,

since DKL(q�(z|x)||p�(z|x)) ≥ 0 , which implies that the Left 
Hand Side of the equation above is a lower bound for the 
loglikelihood of p�(x) . For this reason, it is usually called 
Evidence Lower BOund (ELBO).

Since ELBO is more tractable than MLE, it is used as the 
cost function for the training of neural network to optimize 
both � and �:

It is worth to remark that ELBO has a form resembling an 
autoencoder, where the term q�(z|x) maps the input x to its 
latent representation z, and p�(x|z) decodes z back to x. Fig-
ure 1 shows a diagram representing the basic VAE structure.

For generative sampling, we forget the encoder and just 
exploit the decoder, sampling the latent variables according 
to the prior distribution p(z) (that must be known).

(3)�∗,�∗ = argmin
�,�

�
�
[DKL(q�(z|x)||p�(z|x))],

(4)

DKL(q�(z|x)||p�(z|x))
= �q�(z|x)[log q�(z|x) − log p�(z|x)]

= �q�(z|x)[log q�(z|x) − log p�(x|z) − log p�(z) + log p�(x)]

= DKL(q�(z|x)||p(z)) − �q�(z|x)[log p�(x|z)] + log p�(x).

(5)

�q�(z|x)[log p�(x|z)] − DKL(q�(z|x)||p(z))

= log p�(x) − DKL(q�(z|x)||p�(z|x))
≤ log p�(x),

(6)L�,�(x) ∶= �q�(z|x)[log p�(x|z)] − DKL(q�(z|x)||p(z))

(7)L�,� ∶= �
�
[L�,�(x)].

The Vanilla VAE and Its Problems

In this section, we explain how the theoretical form of the 
ELBO (Eq. 6) can be translated into a numerical loss func-
tion exploitable for training of neural networks. This will 
allow us to point out some of the typical problems that affect 
this architecture and whose solution drove the design of the 
variants discussed in the sequel.

In the vanilla VAE, we assume q�(z|x) to be a Gaussian 
(spherical) distribution G(��(x), �

2
�
(x)) , so that learning 

q�(z|x) amounts to learning its two first moments.
Similarly, we assume p�(x|z) has a Gaussian distribution 

around a decoder function ��(z) . The functions ��(x) , �2
�
(x) 

and ��(z) are modelled by deep neural networks. We remark 
that knowing the variance of latent variables allows sam-
pling during training.

If the model approximating the decoder function ��(z) is 
sufficiently expressive (that is case, for deep neural net-
works), the shape of the prior distribution p(z) does not 
really matter, and for simplicity it is assumed to be a normal 
distribution p(z) = G(0, I) . The term DKL(q�(z|x)||p(z)) is 
hence the KL-divergence between two Gaussian distribu-
tions G(��(x), �

2
�
(x)) and G(0, I) and it can be computed in 

closed form as

where k is the dimension of the latent space. The previous 
equation has an intuitive explanation, as a cost function. By 
minimizing ��(x) , when x is varying on the whole dataset, 
we are centering the latent space around the origin (i.e. the 
mean of the prior). The other component is preventing the 
variance �2

�
(x) to drop to zero, implicitly forcing a better 

coverage of the latent space.
Coming to the reconstruction loss � q�(z|x)[log p�(x|z)] , 

under the Gaussian assumption, the logarithm of p�(x|z) is 
the quadratic distance between x and its reconstruction ��(z) ; 
the variance of this Gaussian distribution can be understood 
as a parameter balancing the relative importance between 
reconstruction error and KL-divergence [20].

The problem of integrating sampling with backpropa-
gation during training is solved by the well-known repara-
metrization trick proposed in [38, 48], where the sample 
is performed using a standard distribution (outside of the 
backpropagation flow) and this value is rescaled with ��(x) 
and ��(x).

The basic model of the Vanilla VAE that we just outlined 
is unfortunately hindered by several known theoretical and 
practical challenges. In the next Sections, we give a short 
list of important topics which have been investigated in the 

(8)
DKL(G(��(x), ��(x)),G(0, I)) =

1

2

∑k

i=1
��(x)

2
i
+ �2

�
(x)i − log(�2

�
(x)i) − 1,

Fig. 1  A diagram representing the VAE architecture. The stochastic 
component � in the gray diamond is sampled from G(0,I)
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literature, along with a short discussion of the main works 
addressing them.

The Balancing Issue

The VAE loss function is the sum of two distinct compo-
nents, with somehow contrasting effects

The log-likelihood loss is just meant to improve the quality 
of reconstruction, while the Kullback–Leibler component is 
acting as a regularizer, pushing the aggregate inference dis-
tribution q�(z) = �

�
[q�(z|x)] towards the desired prior p(z).

Log-likelihood and KL-divergence are frequently bal-
anced by a suitable parameter, allowing to tune their mutual 
relevance. The parameter is called � , in this context, and it 
is considered as a normalizing factor for the reconstruction 
loss.

Privileging log-likelihood will improve the quality of 
reconstruction, neglecting the shape of the latent space (with 
ominous effects on generation). Privileging KL-divergence 
typically results in a smoother and normalized latent space, 
and more disentangled features [11, 29]; this usually comes 
at the cost of a more noisy encoding, finally resulting in 
more blurriness in generated images. [1].

Discovering a good balance between these components is 
a crucial aspect for an effective training of VAEs.

Several techniques for the calibration of � have been 
investigated in the literature, comprising an annealed opti-
mization schedule [8] or a policy enforcing minimum KL 
contribution from subsets of latent units [37]. These schemes 
typically require hand-tuning and, as observed in [63], they 
easily risk to interfere with the principled regularization 
scheme that is at the core of VAEs.

An alternative possibility, investigated in [16], consists in 
learning the correct value for the balancing parameter dur-
ing training, that also allows its automatic calibration along 
the training process.

In [2] it is observed that considering the objective func-
tion used in [16] to learn � , the optimal � parameter is in fact 
proportional to the current reconstruction error; so learning 
can be replaced by a mere computation, using, e.g. a run-
ning average. This has a simple and intuitive explanation: 
what matters is to try to maintain a fixed balance between 
the two components during training: if the reconstruction 
error decreases, we must proportionally decrease the KL 
component that could otherwise prevail, preventing further 
improvements. The technique in [2] is simple and effective: 
we shall implicitly adopt it in all our VAE models, unless 
explicitly stated differently.

(9)
L�,�(x) ∶= �q�(z|x)[log p�(x|z)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
log-likelihood

−� DKL(q�(z|x)||p(z))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

KL-divergence

.

A similar technique has been recently investigated in 
[52], where the KL-divergence is used as a feedback during 
model training for dynamically tuning the balance of the 
two components.

Variable Collapse Phenomenon

The KL-divergence component of the VAE loss function 
typically induces a parsimonious use of latent variables, 
some of which may be altogether neglected by the decoder, 
possibly resulting in an under-exploitation of the network 
capacity; if this is a beneficial side effect or regularization 
[5, 16] or an issue to be solved ([10, 46, 57, 63]), it is still 
debated.

The variable collapse phenomenon has a quite intuitive 
explanation. If, during training, a latent variable gives a 
modest contribution for the reconstruction of the input (in 
comparison with other variables), then the Kullback–Leibler 
divergence may prevail, pushing the mean towards 0 and the 
standard deviation towards 1. This will make the latent vari-
able even more noisy, in a vicious cycle that will eventually 
induce the network to completely ignore the latent variable 
(see Fig. 2, Left).

As described in [3], one can easily get an empirical evi-
dence of the phenomenon by adding some artificial noise 
to a variable and monitoring its evolution during training 
(Fig. 2, Right). The contribution of a latent variable to 
reconstruction is computed as the difference between the 
reconstruction loss when the variable is masked with respect 
to the case when it is normally taken into account; we call 
this information reconstruction gain.

When the reconstruction gain of the variable is becom-
ing less than the KL-divergence, the variable gets ignored 
by the network: its correspondent mean value will collapse 
to 0 (independently from x) and its sampling variance is 
pushed to 1. Sampling has no impact on the network, pre-
cisely because the variable is ignored by the decoder.

The variable collapse phenomenon is, at some extent, 
reversible. However, reactivating a collapsed variable is not 
a completely trivial operation for a network, probably due 
to saturation effects and vanishing gradients.

Aggregate Posterior vs. Expected Prior Mismatch

The crucial point of VAEs is to learn an encoder producing 
an aggregate posterior distribution q�(z) = �

�
[q�(z|x)] close 

to the prior p(z). If this objective is not achieved, generation 
is doomed to fail.

Before investigating ways to check the intended behavior, 
let us discuss how the Kullback–Leibler divergence term in 
(9) acts on the distance q�(z) and p(z). So, let us average over 
all x (we omit the � subscript):
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By minimizing the cross-entropy between q(z) and p(z) we 
are pushing one towards the other. Jointly, we try to aug-
ment the entropy of q(z|x); under the assumption that q(z|x) 
is Gaussian, its entropy is 1

2
log(e��2) : we are thus enlarging 

the (mean) variance, further improving the coverage of the 
latent space, essential for generative sampling.

As a simple sanity check, one should always monitor the 
moments of the aggregate posterior distribution q(z) during 
training: the mean should be 0, and the variance 1. Since 
collapsed variables could invalidate this computation (both 
mean and variance are close to 0), it is better to use an alter-
native rule [4] : if we look at q(z) = � pgt(x)

[q(z|x)] as a 
Gaussian Mixture Model (GMM), its variance �2

GMM
 is given 

by the sum of the variances of the means � pgt(x)
[��(x)

2] and 
the mean of the variances � pgt(x)

[�2
�
(x)] of the components 

(supposing that � pgt(x)
[��(x)]=0):

where in this case ��(x) and �2
�
(x) are the values computed 

by the encoder.

(10)

� pgt(x)
[DKL(q(z|x)|p(z))]

= −� pgt(x)
[H(q(z|x))] + � pgt(x)

[H(q(z|x), p(z))] by def. of KL

= −� pgt(x)
[H(q(z|x))] + � pgt(x)

[� q(z|x)[log p(z)]] by def. of entropy

= −� pgt(x)
[H(q(z|x))] + � q(z)[log p(z)] by marginalization

= − � pgt(x)
[H(q(z|x))]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Avg. Entropy

of q(z|x)

+ H(q(z), p(z))
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Cross-entropy of

q(x) vs p(z)

by def. of entropy
.

(11)�2
GMM

= � pgt(x)
[��(x)

2] + � pgt(x)
[�2

�
(x)] = 1,

This is called variance law in [4], and can be used to 
verify that the regularization effect of the KL-divergence is 
properly working.

The big problem is that, even if the two first moments 
of q(z) are 0 and 1, this does not imply that it should look 
like a Normal (meaning that the KL-divergence got lost in 
some local minimum, contenting itself with adjusting the 
first moments of the distributions).

The potential mismatch between q(z) and the expected 
prior p(z) is a problematic aspect of VAEs that, as observed 
by many authors [4, 30, 49], could seriously compromise the 
whole generative framework. Attempts to solve this issue 
have been made both by acting on the loss function [55] or 
by exploiting more complex priors [7, 37, 56].

An interesting possibility, that has been recently deployed 
in the Hyperspherical VAE [17], consists in replacing the 
Gaussian Distribution with the von Mises-Fisher (vMF) 
distribution [24], that is a continuous distribution on the 
N-dimensional sphere in use in directional statistics.

An orthogonal, drastic alternative consists in renouncing 
to work in the comfortable setting of continuous latent vari-
ables, passing instead in the discrete domain. This approach 
is at the core of the Vector Quantized VAE [59] (VQ-VAE): 

Fig. 2  (Left) The vicious cycle leading to the variable collapse. 
(Right) An empirical demonstration of the phenomenon: we apply 
a progressive noise to a latent variable, reducing its contribution to 
reconstruction; at some point, KL-divergence prevails, enlarging the 

sampling variance of the variable and making it even more noisy; the 
phenomenon has catastrophic nature, leading to a complete collapse 
of the variable. If we remove the artificial noise, the variable gets 
reactivated. Pictures borrowed from [3]
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each latent variable is forced to occupy a position in a 
finitely sampled space, so that we can treat each latent vari-
able as a k-dimensional vector in a space of dimension d. 
This discrete encoding is exploited during sampling, where 
the prior is learnt via a suitable autoregressive technique.

Clustering, GMM and Two‑Stage

In case input data are divided into subcategories (as in the 
case of MNIST and Cifar10), or have macroscopic attributes 
like, say, a different color for hairs in the case of CelebA, 
we could naturally expect to observe this information in the 
latent encoding of data [62]. In other words, we could imag-
ine the latent space to be organized in clusters, (possibly) 
reflecting macroscopic features of data.

To make an example, in Fig. 3 it is described the latent 
encoding of MNIST digits, with a different color for each 
class in the range 0–9.

We can clearly observe that different digits naturally 
organize themselves in separate clusters. While the overall 
distribution still has a Gaussian-like shape, the presence of 
clusters may obviously contrast with the required smooth-
ness of the internal encoding, introducing regions with 
higher/lower probability densities. Observe, e.g. the gaps 
between some of the clusters: sampling in such a region will 
eventually result in a poor generative output. In other words, 

clustering could be one of the main source for the mismatch 
between the prior and the aggregate posterior.

While the phenomenon is evident in a low-dimensional 
setting, it is more difficult to observe and testify it in higher 
dimensions. Remember that one of the VAE assumptions is 
that, as far as you have a sufficiently expressive decoder, the 
prior does not really matter since the decoder will be able to 
turn each distribution into the desired one [20].

Still, it makes sense to try to exploit clustering, and a 
natural approach consists in using a GMM model. Sev-
eral works have been done in this direction. The simplest 
approach, followed in [39], is to superimpose a GMM of 
fixed dimension on the latent space via ex-post estimation 
using standard machine learning techniques (this is also the 
approach we shall follow in some of our tests). Alternatively, 
the GMM model can be learned. In the Variational Deep 
Embedding approach [62] (VaDE), that essentially provides 
an unsupervised clustering model, the relevant statistics of 
the GMM are estimated via Maximum Likelihood Estima-
tion, in a way similar to the Vanilla case (see also [19] for a 
similar, slightly more sophisticated approach).

In the so-called Two-Stage model [16] a second VAE is 
trained to learn an accurate approximation of q(z); samples 
from a Normal distribution are first used to generate sam-
ples of q(z), passed to the actual generator of data points. 

Fig. 3  Latent encoding of 
MNIST digits in a latent space 
of dimension 2. Digits in dif-
ferent categories are repre-
sented with a different color. 
Observe (1) the overall (rough) 
Gaussian-like disposition of all 
digits and (2) the typical organi-
zation in clusters, in contrast 
with the uni-modal objective of 
KL-regularization



SN Computer Science (2021) 2:301 Page 7 of 23 301

SN Computer Science

We shall give an extensive discussion of to the Two-Stage 
approach in “Two-Stage VAE”.

In [26], it is proposed to give an ex-post estimation of 
q(z), e.g. imposing a distribution with a sufficient complex-
ity (they consider a combination of 10 Gaussians, reflecting 
the ten categories of MNIST and Cifar10). A suitable regu-
larization technique alternative to KL is used to induce the 
desirable smoothness of the latent space. A deeper analysis 
of this approach is done in “Regularized VAE (RAE)”.

An additional and interesting issue of the Two-Stage 
model concerns the similarity measure to use as a loss func-
tion in the second stage. In [16], the traditional mean squared 
error and categorical cross entropy are considered. However, 
we discovered that cosine distance works amazingly better. 
We did not get to cosine distance by trial and error, but by a 
long and deep investigation on latent representations. These 
results will be the object of a forthcoming article.

Blurriness

Variational Autoencoders (VAEs), in comparison with alter-
native generative techniques, usually produce images with a 
characteristic and annoying blurriness. The phenomenon can 
also be observed in terms of the mean variance of pixels in 
generated images, which is significantly lower than that for 
data in the training set [6].

The source of the problem is not easy to identify, but it 
is likely due to averaging, implicitly underlying the VAE 
frameworks (and, more generally, the whole autoencoder 
approach). In presence of multimodal output, a loglikelihood 
objective typically results in averaging and hence blurriness 
[27].

Variational Autoencoders are intrinsically multimodal, 
both due to dimensionality reduction, and to the sampling 
process during training.

Several attempts to solve the issue acting on the recon-
struction metrics have been made. Structural similarity (fre-
quently used for deblurring purposes) does not seem to be 
effective [21]. Better results can be obtained by considering 
deep hidden features extracted from a pretrained image clas-
sification model, like e.g. VGG19 [31]. In models of the 
VAE-GAN family [41, 50, 64], the reconstruction loss is 
altogether replaced by a discriminator trying to distinguish 
real images from generated ones. The use of a discrimina-
tor, assessing the quality of generated data and acting on the 
density of the prior, is also a basic component of the recent 
VAEPP model (VAEs with a pullback prior) [14].

The most promising approaches are however based on 
iterative/hierarchical approaches [22, 28, 58]. In these archi-
tectures, following the idea of latent Gaussian models [35], 
the vector of latent variables z is split into L groups of latent 

variables zl, l = 1, ..., L and the density over the variable of 
interest is constructed sequentially, in terms of latent vari-
ables of lower indices. For instance, the prior p(z) would be 
written as an autoregressive density of the following kind:

Similarly, the inference probability would be decomposed as

where q(l)
𝜙
(zl|x, z<l) is the encoder density of the lth group. 

Suitable (iterative) neural networks modules are used to 
sequentially compute the relevant statistics of these distribu-
tions, in terms of previous outputs.

As an example of these architectures, the structure of 
NVAE will be detailed in “NVAE”.

The advantage of this approach is that it usually allows to 
work with a larger number of latent variables, responsible 
for small and progressive adjustments of generated samples.

Disentanglement

Besides the task of generating new images, [11, 29] noticed 
that VAEs can also be used to learn an efficient way to repre-
sent the data, with important applications in transfer learning 
and classification.

To understand this phenomenon, suppose that there exists 
a set of true generative factors v = (v1,… , vS) ∈ ℝ

S such that 
pgt(v�x) =

∏S

i=1
pgt(vi�x) (i.e. v are conditionally independ-

ent given x) and that each vi encodes a meaningful feature 
of the data point x generated by it. Under the assumption 
that k ≥ S , the latent variables z = (z1,… , zk) learnt during 
the training are a redundant representation of v in a basis 
where the features are not disentangled. To learn an optimal 
latent representation of the input image x, it is necessary to 
train the network in such a way that S coordinates of z are 
related to v, while the other k − S coordinates can be used 
to improve the reconstruction of x, recovering the high fre-
quency components that are missing in v.

In �-VAE [11, 29], this constraint is imposed by not-
ing that in the ELBO function the prior distribution 
p(z) = G(0, I) forces the decoder q�(z|x) to learn a vec-
tor z where each variable is independent of each other. To 
improve disentanglement, we should hence induce the DKL 
term to be as small as possible, that can be achieved by aug-
menting the decoder variance � to be greater than 1. Unfor-
tunately, since

(12)p(z) =

L∏

l=1

pl(zl|z<l).

(13)q𝜙(z|x) =
L∏

l=1

q
(l)

𝜙
(zl|x, z<l),

�pgt(x)
[DKL(q�(z|x)||p(z))] = DKL(q�(z)||p(z)) + Iq�(X;Z),



 SN Computer Science (2021) 2:301301 Page 8 of 23

SN Computer Science

where Iq�(X;Z) is the mutual information between X and Z 
with respect to the joint distribution q�(x, z) = q�(z|x)pgt(x) , 
by pushing DKL(q�(z|x)||p(z)) to zero, the mutual informa-
tion between X and Z is also minimized, reducing the recon-
struction efficiency of the network. This problem is 
addressed in [23, 43] where the ELBO is modified by adding 
more parameters with the intent to improve disentanglement 
without losing too much the performance.

Two‑Stage VAE

To address the mismatch of aggregate posterior versus the 
expected prior, Bin Dai and David Wipf in [16] introduced 
the Two-Stage VAEs.

The idea behind this model is to train two different VAEs 
sequentially. The first VAE is used to learn a good represen-
tation q�(z|x) of the data in the latent space without guaran-
teeing exactly q(z) = p(z) , whereas the second VAE should 
learn to sample from the true q(z) without using the prior 
distribution p(z). A scheme of the implementation follows 
(a detailed architectural description is given in “Architecture 
Overview”):

– Given a data set � = {x(1),… , x(N)} , train a VAE with a 
fixed latent dimension k, possibly small.

– Generate latent samples Z = {z(1),… , z(N)} via 
z(i) ∼ q�(z|x(i)), i = 1,…N . By design, these samples are 
distributed as q�(z) = �pgt(x)

[q�(z|x)] , but likely not as 
p(z) = G(0, I).

– Train a second VAE with parameters (��,��) and latent 
variable u ∼ p(u) = G(0, I) of dimension k to learn the 
distribution q�(z) with Z as the dataset.

– Sample new images by ancestral sampling, i.e. by first 
sampling u ∼ p(u) , then generate a z value by p�� (z|u) 
and finally x ∼ p�(x|z).

The theoretical foundation of the Two-Stage VAE algorithm 
is well presented in [16]. We summarize here the main 
results. The two VAEs aim at separating the components of 
the ELBO loss function (9), by suitably using the decoder 
variance � . Remarking that pgt(x) is the unknown data dis-
tr ibution which we desire to learn and that 
p�(x) = �q�(z)

[p�(x|z)] is the learnt distribution, we hope that 
p�(x) ≈ pgt(x) ∀x.

Unfortunately, this is not always possible. In fact, there is 
a critical distinction between the cases where the dimension 
of the data d and the latent space dimension k are equal, and 
the case where d > k.

As a matter of facts, in the first case, it is possible to prove 
that, under suitable assumptions, for the optimal choice of 

the parameters (�∗,�∗) it holds that p�∗ (x) = pgt(x) almost 
everywhere (i.e. VAEs strongly converges to the true distri-
bution pgt(x) ). In the second case, only weak convergence, 
in the sense that ∫

A
p�∗ (x)dx = ∫

A
pgt(x)dx where A is an open 

subset of ℝd , can be proved (see Theorems 1 and 2 in [16]).
In the first stage, since the ambient dimension is obvi-

ously greater than the latent space dimension (i.e. d > k ), 
for the previous results only a weak convergence is guar-
anteed; the parameter � is chosen in this case to get a good 
reconstruction (Theorem 4 in [16]). In the second stage by 
construction the data variable z and its correspondent latent 
variable u have the same dimension, hence the unknown 
distribution q�(z) is exactly identified by the VAE. As a con-
sequence it is possible to sample directly from q�(z) , without 
using the prior p(z), thus bypassing the problem of mismatch 
between the aggregate posterior and the prior distributions.

Regularized VAE (RAE)

One of the most interesting variations of vanilla VAE is 
the work of Partha Ghosh and Mehdi S. M. Sajjadi [26], 
where the authors tried to solve all the problems related to 
the classical VAE by completely changing the the way of 
approaching the problem. They pointed out that, in their 
typical implementation, VAEs can be seen as a regularized 
Autoencoder with Additive Gaussian Noise on the decoder 
input.

In their work, the authors argued that noise injection 
in decoders input can be seen as a form of regularization, 
since it implicitly helps to smooth the function learnt by the 
network.

To get a new insight into this problem, they took in con-
sideration the distinct components of ELBO already intro-
duced in (9):

where LREC is a term that measures the distance between the 
input and the reconstruction, whereas LKL is a regularization 
term that enforces the aggregate posterior to follow the prior 
distribution.

To show how LKL(�) regularizes the loss, in [26] the 
Constant-Variance VAEs (CV-VAEs) [26] have been inves-
tigated, where the encoder variance �2

�
(x) is fixed for every 

x ∈ � and thus treated as an hyperparameter �2 . In this 
situation,

(14)
L�,�(x) ∶= �q�(z|x)[log p�(x|z)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=LREC(�,�)

−� DKL(q�(z|x)||p(z))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=LKL(�)

,

(15)LREC(�,�) = −�q�(z|x)

[
1

2
||x − ��(z)||22

]
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We observe that the expression in (17) is a Mean Squared 
Error (MSE) with L2 regularization on ��(x).

The authors proposed to substitute noise injection in the 
decoder input with an explicit regularization scheme in a 
classical CV-VAE. This is done by modifying the cost func-
tion L�,� = �pgt(x)

[LREC(�,�) − �LKL(�) − �LREG(�)] , where 
LREG(�) is a regularizer for the decoder weights, while 
� , � ≥ 0 are regularization parameters.

Whereas LREC(�,�) = −�q�(z|x)[
1

2
||x − ��(z)||22] and 

LKL(�) =
1

2
||z||2

2
 are fixed a priori by the CV-VAE architec-

ture, LREG(�) needs to be defined. The choice for LREG(�) 
identifies the specific kind of network. Ghosh and Sajjadi 
proposed three possible choices for LREG(�):

– L2-Regularization, where LREG(�) = ||�||2
2
 is simply the 

weight decay on the decoder parameters.
– Gradient penalty, where LREG(�) = ||∇��(��(x))||22 

bounds the gradient norm of the decoder with respect to 
its input, enforcing smoothness.

– Spectral normalization, where each weight matrix �l in 
the decoder is normalized by an estimate of its largest 
singular value: �SN

l
=

�l

s(�l)
 (the estimate s(�l) can be easily 

obtained with one iteration of the power method).

Moreover, they argued that removing noise injection from 
the decoder input prevents from knowing the distribution 
of latent variables, thus losing the generative ability of the 
network. They solved this problem by proposing an ex-post 
density estimation, where the distribution of the latent varia-
bles is learned a posteriori, by fitting Z = {z(i);z(i) = ��(x

(i))} 
with a GMM model q�(z) with a fixed number of components 

(16)LKL(�) = DKL(q�(z|x)||p(z)) = ||��(x)||22 + C

(17)
L�,�(x) = −�pgt

[
�q�(z|x)

[
1

2
||x − ��(z)||22

]
− �||��(x)||22

]
.

and then sampling z from q�(z) to generate new samples from 
p�(x|z) . The generative model defined in this way is called 
Regularized Autoencoder (RAE).

Hierarchical Variational Autoencoder

To improve the quality of the generation in Variational 
Autoencoders, Kingma et al. [37] strengthened the infer-
ence network q�(z|x) with the powerful Normalizing Flows 
introduced by Rezende and Mohamed [47]. The idea of 
Normalizing Flows is to begin with a latent variable z0 
sampled by a simple distribution q�(z0|x) , and to iteratively 
construct more complex variables by applying transforma-
tions zt = ft(zt−1) for t = 1,… , T  . By observing that the DKL 
expression is

its implementation requires the computation of the loga-
rithm of q𝜙(zT |, z<T , x) . If the functions ft(⋅) are simple 
enough, it is possible to efficiently use them to compute 
log q𝜙(zT |z<T , x) as:

where �ft

�zt−1
 is the Jacobian matrix of ft(zt−1) computed by 

repeatedly applying the well-known change of variable theo-
rem to the multi-variate random variable zT defined as

An interesting aspect concerning Normalizing Flows is that, 
under suitable assumptions, they are provably universal, in 
the sense defined in [32]. As already mentioned, the first 
successfully integration of Normalizing Flows in VAEs was 

(18)
DKL(q𝜙(zT |z<T , x)||p(zT )) = �q𝜙(zT |z<T ,x)

[
log q𝜙(zT |z<T , x) − log p(zT )

]
,

(19)log q𝜙(zT |z<T , x) = log q𝜙(z0|x) −
T∑

t=1

log det
|||
𝜕ft

𝜕zt−1

|||,

(20)zT = fT (fT−1(… (f1(z0))… )).

Fig. 4  A scheme of Inverse 
Autoregressive Flow. Each 
white box represents one itera-
tion of Eq. (21), where �t, �

2

t
 

are generated by the encoder 
q�(zt|x)
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by Kingma et al. [37], where they introduced Inverse Autore-
gressive Flows (IAF). The idea was to define ft(zt−1) as a 
simple affine function of the form:

where z0 ∼ q�(z0|x) = G(��(x), �
2
�
(x)).

Figure 4 schematically represents the unrolling of Eq. 
(21).

We highlight that the IAF introduces a natural order in the 
latent variables. For this reason, we will refer to this kind of 
models as Hierarchical Variational Autoencoder (HVAE). 
In this paradigm, we will refer to each zt as a group of latent 
variables, and we will collect the set of all groups in a vector 
z = (z0,… , zT ) where the variables are written in the order 
defined above.

If we distinguish between the encoder (inference) network 
q�(z|x) and the decoder (generative) network, we need to 
choose if the ordering of latent variables is the same in the 
two parts of the network (bottom-up inference), or if it is 
reversed (bidirectional inference) as shown in Fig. 5.

As it is clear from Fig. 5, in bottom-up inference the 
image x ∈ ℝ

d is encoded to z = (z1,… , zT ) independently 
from the prior p(z) =

∏T

t=1
p(zt�z<t) ; in the generative phase 

the image is reconstructed by taking zT as the final output 
of the encoder, and then sampling each zt , t = T − 1,… , 0 
from the prior distribution independently from q�(zt|x) (i.e. 
the encoder and decoder are independent from each other). 
We underline that this fact makes the bottom-up inference 
training unstable.

Conversely, in bidirectional inference, the process of gen-
erating latent variables is shared between the two parts of 

(21)zt = ft(zt−1) = 𝜇t + 𝜎t ⊙ zt−1 ∀t = 1,… , T ,

the network, which makes the training easier, although the 
design of the network is a bit more difficult.

Since the results of vanilla IAF are not competitive with 
the state of the art, we will not use them in our future analy-
sis (see the original paper for more information), whereas we 
will focus our experimental results on two powerful variants 
of IAF, making use of bidirectional inference and residual 
blocks to generate high-quality images.

Experimental Setting

For each variant of Variational Autoencoder discussed in the 
previous sections, we provide an original implementation 
in TensorFlow 2, and a set of detailed benchmarks on tradi-
tional datasets, such as MNIST, Cifar10 and CelebA. The 
specific architectures which have been tested are described 
in the following. All models have been compared using 
standard metrics, assessing both their energy consumption 
through the number of floating point operations (see “Green 
AI and FLOPS”), and their performance via the so-called 
Frechèt Inception Distance [42], briefly discussed in “Fre-
chèt Inception Distance”. Numerical results are given in 
“Numerical Results”, along with examples of reconstructed 
and generated images.

Green AI and FLOPS

The paradigm of Green AI [51] is meant to raise the attention 
on the computational efficiency of neural models, encourag-
ing a reduction in the amount of resources required for their 

Fig. 5  Diagrams that schematically represents Hierarchical VAE in two different configurations: bottom-up inference (a) and bidirectional infer-
ence (b)
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training and deployment. This concept is not so trivial as it 
seems; in fact, most of traditional AI research (referred to as 
Red AI, in this con) targets accuracy rather than efficiency, 
exploiting massive computational power, and resulting in 
rapidly escalating costs; this trend is not sustainable for vari-
ous reasons, it is environmentally unfriendly [40], socially 
not inclusive and inefficient.

The computation of floating point operations (FLOPS) 
was advocated in [51] as a measure of the efficiency of 
models; the main advantages of this measure are that it is 
hardware independent and has a direct (even if not precise) 
correlation with the running time of the model [13]. There 
are also known problems related to FLOPs, mostly related 
to the fact that memory access time can be a more dominant 
factor in real implementations (see the “Trap of FLOPs” 
discussion in [33]).

So, while we shall adopt FLOPS for our comparison, we 
shall also investigate performance through more traditional 
tools, like Tensorboard, also to gain confidence on the reli-
ability of FLOPs-based assessments.

Frechèt Inception Distance

To test the quality of the generator, we should compare the 
probability distribution of generated vs. real images. Unfor-
tunately, the dimension of the feature space is typically too 
large to allow a direct, significant comparison; moreover, 
in the case of images, adjacent pixels are highly correlated, 
reducing their statistical relevance. The main idea behind 
the so-called Frechèt Inception Distance (FID) [42] is to use, 
instead of raw data, their internal representations generated 
by some third party, agnostic network. In the case of FID, 
the Inception v3 network [54] trained on Imagenet is used to 
this purpose; Inception is usually preferred over other mod-
els due to the limited amount of preprocessing performed 
on input images (images are rescaled in the interval [– 1,1], 
sample wise). The activations that are traditionally used are 
those relative to the last pooling layer, with a dimension of 
2048 features.

Given the activations a1 and a2 , relative to real and gen-
erated images, and called �i, i = 1, 2 and Ci, i = 1, 2 their 
empirical mean and covariance matrix, respectively, the 
Frèchet Distance between a1 and a2 is defined as

where we indicate with Tr the trace of a matrix.
A problem of FID is that it is extremely sensible to a 

number of different factors listed below. 

(22)
FID(a1, a2) = ||�1 − �2||2 + Tr(C1 + C2 − 2(C1 ∗ C2)

1

2 ),

1. the weights of the Inception network. The check-
point that is traditionally used is the inception_
v3_2016_08_28/inception_v3.ckpt 
downloaded from TF-Slim’s pre-trained models, also 
available through Tensorflow-HUB. These weights 
were originally obtained by training on the ILSVRC-
2012-CLS dataset for image classification (“Imagenet”).

2. The dimension of the datasets of real/generated images 
to be compared. Traditionally, sets of 10 K images are 
compared; typically, the FID score is inversely propor-
tional to this dimension.

3. The dimension of input images fed to Inception. Incep-
tion may work with images of arbitrary size (larger than 
75 × 75 ); however, the “canonical” input dimension is 
299 × 299 . Again, varying the dimension may result in 
very different scores.

4. The resizing algorithm. Images must be resized to bring 
them to the expected input dimension of 299 × 299 ; 
as observed in [2], the FID score is quite sensible to 
the algorithm used to this aim, and in particular to the 
employed modality: nearest neighbour, bilinear inter-
polation, cubic interpolation, .... The default, is usu-
ally bilinear interpolation, being a good compromise 
between efficiency and quality.

Unfortunately, articles in the literature are not always fully 
transparent on the previous points, that may explain some 
discrepancies and the difficulty one frequently faces in rep-
licating results.

All our experiments have been conducted with “defaults” 
values: the standard Inception checkpoint inception_
v3_2016_08_28/inception_v3.ckpt, 10000 
images of dimension 299 × 299 , rescaled by means of bilin-
ear interpolation.

Let us finally observe that, in the case of VAE, it is cus-
tomary to measure both the FID score for reconstructed 
images ( FIDrec ) and the FID score for generated images 
( FIDgen ). The former one is usually reputed to be a lower 
bound for the latter, no matter what help we may provide to 
the generator during the sampling phase.

Architecture Overview

In this section, we provide detailed descriptions of the sev-
eral different neural networks architectures we have been 
dealing with, each one inspired by a different article. For 
each of them, different possible configurations have been 
investigated, varying the number and dimension of layers, as 
well as the learning objectives. Moreover, since some of the 
techniques considered are not dependent from the encoder/
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decoder structure, we also tested a mix of different archi-
tectures, hyperparameters configurations, and optimization 
objectives.

Vanilla Convolutional VAE

In our first experiment, we followed the same structure of 
[26], which is a simple CNN architecture where we doubled 
the number of channels for each Convolution, and we down-
sampled the spatial dimension by 2 (see Fig. 6).

The encoder is structured as follows. In the first layer, the 
input image of dimension (d, d, 3) (where d = 32 and d = 64 
in CIFAR10 and CelebA, respectively) was passed through a 
convolutional layer with 128 channels and stride equals 2, to 
obtain 128 images of dimension (d/2, d/2). This operation is 
repeated for 256, 512, 1024 channels. The result is flattened 
and passed through two Dense layers to obtain the mean and 
the variance of the latent variables.

The decoder has the same structure of the encoder, with 
Transposed convolutions and Upsample layers.

Each convolutional filter has kernel size 4 and ReLU 
activation function, except for the last layer of the decoder, 
where we used a sigmoid activation to ensure that the output 
is in the range [0, 1].

Resnet‑Like

The Resnet-like architecture was adopted in [16]. The main 
difference of this network with respect to the Vanilla VAE 
is that, before downsampling, the input is processed by a 
so called Scale Block, that is just a sequence of Residual 
Blocks. In turn, a Residual Block is an alternated sequence 
of BatchNormalization and Convolutional layers (with unit 
stride), intertwined with residual connections. The number 

of Scale Blocks at each scale of the image pyramid, the 
number of Residual Blocks inside each Scale Block, and 
the number of convolutions inside each Residual Block are 
user configurable hyperparameters.

In the encoder, at the end of the last Scale Block, a global 
average level extracts spatial agnostic features. These are 
first passed through a so called Dense Block (similar to a 
Residual Block but with dense layers instead of convolu-
tions), and finally used to synthesize mean and variance for 
latent variables.

The decoder first maps the internal encoding z to a small 
map of dimension 4 × 4 × base_dim via a dense layer suit-
ably reshaped. This is then up-sampled to the final expected 
dimension, inserting Scale Blocks at each scale.

Two‑Stage VAE

To check in what extent the Two-Stage VAE improve the 
generation ability of a Variational Autoencoder, we tried 
to fit a second stage to every model we tested, following 
the architecture described in the following and graphically 
represented in Fig. 7.

The encoder in the second stage model in composed of a 
couple of Dense layers of dimension 1536 and ReLU acti-
vation function, followed by a concatenation with the Input 
of the model and then by another Dense layer to obtain the 
latent representation u with the same dimension of z, follow-
ing what is described in “Two-Stage VAE”. The decoder has 
exactly the same structure of the encoder.

As already described, we used the cosine similarity as the 
reconstruction part of the ELBO objective function.

We observed that, to improve the quality of the genera-
tion, the second stage should be trained for a large number 
of epochs.

Fig. 6  Graphical representation of the Vanilla VAE architecture. The yellow, orange and green boxes represent convolutional, downsampling and 
dense layers, respectively
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Convolutional RAE

In our implementation of RAE, we followed exactly the 
same structure as in Convolutional Vanilla VAE, with the 
sole difference that, in RAEs, the latents space is composed 
of just one fully connected layer representing the variable 
z (see Fig. 8).

In our tests, we only compared L2 and GP regularization, 
with parameter � heuristically computed to achieve the best 
performance.

NVAE

The model is organized in a bottom-up inference network 
and a top-down generative network (see Fig. 9). Each one 
of two networks is composed by a hierarchy of modules 
at different scales. Each scale is composed by groups of 
sequential (residual) blocks.

During generation, each module computes from the cur-
rent input hl a prior p(zl|hl) ( hl depends from z<l ): after sam-
pling from this prior, the result is combined in some way 

Fig. 7  a Scale block. The Scale 
Block is used to process features 
at a given scale; it is a sequence 
of Residual Blocks intertwined 
with residual connections. A 
Residual Block is an alterna-
tion of batchnormalization 
layers, rectified linear units 
and convolutions. b The input 
is progressively downsampled 
via convolutions with stride 2, 
intermixed by Scale Blocks; at 
a given scale, a global average 
pooling layer extract features 
that are further processed via 
dense layers to compute mean 
and variance for latent vari-
ables. The decoder is essentially 
symmetric
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Fig. 8  Graphical representation of the RAE architecture. The yellow, 
orange and green boxes represent convolutional, downsampling and 
dense layers, respectively. The red circle underlines the sole archi-
tectural difference between our implementation of VanillaVAE and 

RAE, i.e. the fact that in the latter, the latent space is composed by a 
single Dense layer that directly encodes to z, while in VanillaVAE the 
encoding is performed by a couple of Dense layers that represents the 
mean and the variance of a Gaussian distribution
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with the current input hl , the two informations are processed 
together and passed to the next module.

During inference, we extract the latent representation at 
stage l by synthesizing a mean and a standard deviation for 
q(zl|x, hl) : since this information depends from hl , we expect 
to provide additional information, not already available by 
previous latent encodings. Moreover, the computation of 

hl , is done by the top-down network, that is hence a sub-
network of the inference network. During training, both net-
works are trained together.

Each network has a hierarchical organization at different 
scales. Each scale is composed by groups of Blocks.

Both Encoder Blocks (EB) and Decoder Blocks (DB) 
have similar architectures, and are essentially composed by 
an alternated sequence of BatchNormalization and Convo-
lutional layers, separated by non linear activation layers, and 
intermixed with residual connections (so, very similar to 
the Scale Block discussed in the previous section). A few 
technical novelties are, however, introduced by the authors:

– the recent Swish activation function f (u) = u

1+e−u
 [45] is 

used instead of Relu, Elu, or other more traditional 
choices;

– a Squeeze-and-Excitation (SE) layer [34] is added at the 
end of each block;

– a moderate use of depthwise separable convolutions [15] 
is deployed to reduce the number of parameters of the 
network.

Table 1 gives a summary of hyperparameters used in train-
ing NVAE on the datasets addressed in this article, borrowed 
from [58]. D2 indicates a latent variable with the spatial 
dimensions of D × D . As an example, the MNIST model 
consists of two scales: in the first one, we have five groups of 
4 × 4 × 20-dimensional latent variables: in the second one, 
we have ten groups of 8 × 8 × 20-dimensional variables.

The figures of merit in Table 1 help to understand the 
key novelty of NVAE, that is in the massive usage of space 
located latent variables. Consider for instance the case of 
Cifar10. The original input of dimension 32 × 32 × 3 is first 
transformed to dimension 16 × 16 × 128 and then, without 
any further downscaling, processed though a long sequence 
of residual cells (30 × 2) . At each iteration, a huge number of 
latent variables (16 × 16 × 20) is extracted and used for the 
internal representation, which hence has a dimension widely 
larger than the input. Due to this fact, as it is also observed 
by the authors in the appendix, it is not surprising that most 
of the variables will collapse during training.

Working with such a huge number of latent variables 
introduces a lot of issues; in particular, it becomes crucial 
to balance the KL-component of variables belonging to dif-
ferent groups. To this aim, the authors introduce additional 
balancing coefficients �l to ensure that a similar amount of 
information is encoded in each group (see [58], Appendix 
A):

DKL(q(z|x)||p(z)) =
L∑

l=1

𝛾l � q(z<l|x)[DKL(q(zl|x, z<l)||p(zl|z<l))].

Fig. 9  The whole NVAE architecture (a) and a focus on its decoder 
(b)

Table 1  Summary of the hyperparameters used in the training of 
NVAE on the datasets used in this paper

Hyperparameter MNIST Cifar10 CelebA

Input size 28 × 28 32 × 32 64 × 64

Epochs 400 400 90
Batch size 200 32 16
Normalizing flows 0 2 2
Scales 2 1 3
Groups per scale 5,10 30 5,10,20
Spatial dims of z per scale 42, 82 162 82, 162, 322

Channel dims of z 20 20 20
Initial channels in Enc. 32 128 64
Residual cells per group 1 2 2
GPUs 2 8 8
Total train time (h) 21 55 92
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The balancing coefficient �l is kept proportional to the KL 
term for that group, in such a way to encourage the model 
to revive the latent variables in that group when KL is low, 
and to clip them if KL is too high. Additionally, �l is also 
proportional to the size of each group, to encourage the use 
of variables at lower scales.

NVAE architectures have a relatively small number of 
parameters, due to the extensive use of convolutions and 
depthwise separable convolutions; however, they require 
a massive amount of memory, and huge computational 
power: for the configuration used for Cifar10, composed by 
30 groups at scale 16 , we estimated a number of flops for the 
inference phase larger then 100 G.

Due to this reasons, we experimented a sensibly lighter 
architecture, just composed of five groups, with a few addi-
tional convolutions to augment the receptive fields of the 
spatially located latent variables. The good news is that the 
network, even in this severely crippled form, still seems 
to learn; however, results are really modest and below 
the performances of different networks with comparable 
complexity.

HFVAE

As we already remarked, the main novelty of NVAE is in the 
massive exploitation of a huge number of spatially located 
latent variables. To test the relevance of this architectural 
decision, we also tested a different variant of the hereditary 
architecture of Fig. 9, where we drop the spatial dimension 
for latent variables, using instead a Featurewise Linear Mod-
ulation Layer [44] to modulate channels according to the 
internal representation. In addition, the first approximation 
h1 is directly produced from the latent variable set z0 through 
a dense transformation. The general idea is that at lower 
scales we decide the content of the resulting image, while 
stylistic details at different resolutions (usually captured in 
channels correlations [25]) are added at higher scales. We 
call this variant HFVAE (Hereditary Film VAE); a similar 
architecture has been investigated in [9].

Numerical Results

In this section, we provide quantitative evaluations for some 
configurations of the models previously discussed. The pre-
cise configurations (layers, channels, blocks, etc.) are dis-
cussed below.

The datasets used for the comparison are CIFAR10 
and CelebA: in a GreenAI perspective, we are reluctant to 
address more complex datasets, at higher resolutions, that 
would require additional computational resources and addi-
tional costs. On CelebA, we just evaluated a subset of par-
ticularly interesting models.

For each model, we provide the following figures:

• Params: the number of parameters;
• FLOPs: an estimation of number of FLOPS (see “Green 

AI and FLOPS” for more details);
• MSE: the mean reconstruction error ×103;
• REC: the FID value computed over reconstructed 

images;
• GEN1: the FID value computed over images generated 

by a first VAE;
• GEN2: the FID value computed taking advantage of a 

second VAE;
• GMM: the FID value computed by superimposing a 

GMM of ten Gaussians2 on the latent space. In the case 
of hierarchical models, the GMM is computed on the 
innermost set of latent variables.

The following list provides a legends for the names of mod-
els used in the following tables:

• CNN-by-lz: Vanilla VAE with CNN architecture, base-
dim of y channels and latent space of dimension z.

• L2-RAE-by-lz: L2-RAE with CNN architecture, basedim 
of y channels and latent space of dimension z.

Table 2  Summary of the results 
obtained with the networks in 
the first column on Cifar10

Model Params FLOPs (M) MSE REC GEN1 GEN2 GMM

CNN-b128-l128 31,034,755 2397 2.8 27.6 96.2 96.8 89.0
L2-RAE-b128-l128 30,510,339 2395 1.2 9.9 108.1 88.4 78.2
GP-RAE-b128-l128 30,510,339 2395 1.2 10.6 118.0 97.6 76.4
Resnet-s4-b48-l128 16,179,363 1431 1.5 37.2 110.0 93.9 96.3
Resnet-s4-b48-l100 16,064,619 1430 1.6 37.5 102.9 88.4 91.4
Resnet-s4-b64-l64 27,766,275 2539 1.7 36.5 94.2 78.8 85.1
HFVAE-s4-z4-l48 27,139,755 1163 1.8 45.9 93.3 90.8 90.0
HFVAE-s4-z12-l64 48,113,051 2085 1.3 33.3 89.0 85.7 86.4
NVAE-z10-b100-l4 8,305,521 4478 3.2 62.6 96.1 87.4 91.4

2 Augmenting the number of Gaussians does not sensibly improve 
generation.
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• GP-RAE-by-lz: GP-RAE with CNN architecture, base-
dim of y channels and latent space of dimension z.

• Resnet-sx-by-lz: Resnet-like model, with x ScaleBlocks, 
a basedim of y channels, and a latent space of dimension 
z.

• HFVAE-sx-by-lz: HFVAE with x scales, ScaleBlocks, 
a basedim of y channels, and a latent space of dimension 
z at hereditary scales; the base latent dimension z0 is 64.

• NVAE-zx-by-lz: NVAE with x latent variables channels, 
a basedim of y and z latent groups of the same scale.

Quality Evaluation

Here we draw a few conclusions about the design of Vari-
ational Autoencoders deriving from the previous investiga-
tion (Tables 2 and 3) and our past experience with VAEs.

• The decoder is more important than the encoder. For 
instance, in the ResNet architecture latent features are 
extracted via a GlobalAverage layer, obtaining robust 
features, less prone to overfitting.

• Working with a larger number of latent variables 
improves reconstruction, but this does not eventually 
implies better generation. This is, e.g. evident compar-
ing the two Resnet-like architectures with latent spaces 
of dimension 128 and 100.

• Fitting a GMM over the latent space [26] is a cheap 
technique (it just takes a few minutes) that invariably 
improves generation, both in terms of perceptual qual-
ity and FID score. This fact also confirms the mismatch 
between the prior and the aggregated posterior discussed 
in “Aggregate Posterior vs. Expected Prior Mismatch”.

• The second stage technique [16] typically requires some 
tuning to properly works, but when it does it usually out-
performs the GMM approach. Tuning may involve the 
loss function (we used cosine similarity in this work), 
the architecture of the second VAE, and the learning rate 
(more generally, the optimizer’s parameters).

• Hierarchical architectures are complex systems, difficult 
to understand and to work with (monitoring/calibrating 
training is a really complex task). We cannot express an 

opinion about NVAE, since its complexity trespasses our 
modest computational facilities, but simpler architectures 
like those described in [28] or [22], in our experience, do 
not sensibly improve generation over a well-constructed 
traditional VAE.

• The loss of variance for generated images [6] (see “Blur-
riness”) is confirmed in all models, and it almost coin-
cides with the mean squared error for reconstruction.

A qualitative comparison between the different models in 
generating images can also be done by looking at the images 
in the Appendix.

Energetic Evaluation

Before comparing the energetic footprint of the differ-
ent models, let us briefly discuss the notion of FLOPs as 
a measure of computational efficiency. FLOPs have been 
computed by a library for Tensorflow Keras under develop-
ment at the University of Bologna, and inspired by similar 
works for PyTorch (see, e.g. https:// github. com/ sovra sov/ 
flops- count er. pytor ch). FLOPs only provide an abstract, 
machine-independent notion of complexity; typically, only 
the most expensive layers are taken into account (those with 
superlinear complexity with respect to the size of inputs). 
The way this quantity will result in an actual execution time 
and energetic consumption does, however, largely depend 

Table 3  Summary of the results 
obtained with the networks in 
the first column on CelebA

Model Params FLOPs (M) MSE REC GEN1 GEN2 GMM

CNN-b128-l64 40,668,419 4104 3.2 48.4 66.9 56.2 55.2
L2-RAE-b128-l64 27,359,043 4102 3.3 39.8 230.2 61.7 45.1
GP-RAE-b128-l64 27,359,043 4102 3.2 41.2 230.6 65.3 47.0
Resnet-s4-b32-l64 19,330,627 2924 2.8 51.4 66.0 54.9 57.4
Resnet-s4-b48-l64 38,996,003 6452 2.5 46.8 61.7 50.8 54.5
Resnet-s3-b64-l64 21,370,179 5949 2.6 39.2 59.3 44.9 45.8

Table 4  Average forward time (in seconds) over the Cifar10 Test Set 
(10  k images) for different networks, hardware and batchsize (bs). 
The two times entries in each cell refer to different machines: the first 
is a Laptop with an NVIDIA Quadro T2000 graphics card and a Core 
i7-9850H CPU; the second is a workstation with an Asus GeForce 
DUAL-GTX1060-O6G graphic card and a intel Core i7-7700K CPU

Network bs100 bs10 bs1

Resnet-s4-b48-l128 3.0 ± 0.2 6.0 ± 0.2 33.3 ± 0.4

4.9 ± 0.2 8.8 ± 0.2 49.5 ± 0.5

Resnet-s4-b48-l100 2.86 ± 0.1 5.9 ± 0.2 32.9 ± 0.4

4.8 ± 0.2 8.7 ± 0.2 49.1 ± 0.5

Resnet-s3-b64-l64 4.4 ± 0.2 9. ± 0.3 47.8 ± 0.4

7.2 ± 0.2 13.5 ± 0.2 78.6 ± 0.5

https://github.com/sovrasov/flops-counter.pytorch
https://github.com/sovrasov/flops-counter.pytorch
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from the underlying hardware, and the available parallel-
ism. As an example, in Table 4 we compare the execution 
time for a forward step over the test set of Cifar10 (10 K) 
for a couple of hardware configurations. The first one is a 
Laptop with an NVIDIA Quadro T2000 graphics card and a 
CPU Core i7-9850H; the second one is a workstation with 
an Asus GeForce DUAL-GTX1060-O6G graphic card and 
a CPU intel Core i7-7700K. Observe the strong dependency 
from the batch size that is not surprising but worth to be 
recalled (see [12] for a critical analysis of the performance 
of Neural Networks architectures). Of course, as soon as 
we move the computation on a cloud, execution times are 
practically unpredictable.

Unfortunately, as we shall see, even for a given compu-
tational device, the relation between FLOPs and execution 
time is quite aleatory.

Following the traditional paradigm, we compare perfor-
mances on the forward pass. This is already a questionable 
point; on one side, it is true that this reflects the final usage 
of the network when it is deployed in practical applications; 
on the other side, it is plausible to believe that training still 
takes a prevalent part of the lifetime of any neural network. 
Restricting the investigation to forward time means not tak-
ing into account some expensive techniques of the training 
of modern systems, such as regularization components. For 
example, it is possible to notice that in Table 5, L2-RAE and 
GP-RAE have exactly the same number of FLOPs, since 
in terms of forward execution they are equal. However, we 
highlight that the training of GP-RAE is almost ten times 
slower than the training of L2-RAE. This is a consequence 
of the fact that the regularization term of GP-RAE involves 
the computation of the decoder gradient with respect to the 
latent variables, which is an expensive operation not required 
in L2-RAE. Consequently, even if the two models have more 
or less the same performance in terms of generation quality, 
L2-RAE should be preferred, since its training is cheaper. 
Moreover, taking into account only the FLOPs of the model, 
the actual convergence speed of systems is neglected.

The results of the energetic evaluation on the for-
ward pass are given in Table  5; inference times have 
been computed over a workstation with an Asus 

GeForceDUAL-GTX1060-O6G graphic card and a intel 
Core i7-7700K CPU. The same results have also been 
expressed in graphical form in Fig. 10, relatively to a batch 
size of dimension 1. In the plot, we omit L2-RAE and GP-
RAE, since their architectures and figures are essentially 
analogous to the basic CNN; similarly for some Resnet 
architectures.

As it is clear from these results, there is no precise cor-
relation between FLOPS and execution time.

As an example, from Table  5, we see that HFVAE 
requires a computation time 4–6 times higher than the 
others in the face of the lowest number of FLOPS. One 
of the possible reasons for this behaviour is, in our opin-
ion, the fact that the total computation time also includes 
memory access time in addition to FLOPS. As observed 
by several authors (see, e.g. [33]), memory access time 
is a crucial factor in real implementations, as densely 
packed data might be read faster than a few numbers of 
scattered values. For instance, while depthwise convolu-
tions greatly reduce the number of parameters and FLOPS, 
they require a more fragmented memory access, harder to 

Table 5  Average Forward 
Time (in seconds) over the 
Cifar10 Test Set (10 k images) 
for different architectures and 
different batchsize (bs); times 
refer to a workstation equipped 
with an Asus GeForceDUAL-
GTX1060-O6G GPU and a 
Intel Core i7-7700K CPU

Model Params FLOPS (M) bs100 bs10 bs1

CNN-b128-l128 31,034,755 2397 5.8 ± 0.1 9.0 ± 0.1 54.1 ± 0.4
L2-RAE-b128-l128 30,510,339 2395 11.6 ± 0.2 13.9 ± 0.2 57.3 ± 0.5
GP-RAE-b128-l128 30,510,339 2395 12.5 ± 0.2 14.1 ± 0.2 56.3 ± 0.5
Resnet-s4-b48-l128 16,179,363 1431 4.9 ± 0.2 8.8 ± 0.2 49.5 ± 0.4

Resnet-s4-b48-l100 16,064,619 1430 4.8 ± 0.2 8.7 ± 0.2 49.1 ± 0.4

Resnet-s4-b64-l64 27,766,275 2539 7.2 ± 0.2 13.5 ± 0.2 78.6 ± 0.5

HFVAE-s4-z4-l48 27,139,755 1163 13.1 ± 0.2 29.2 ± 0.3 207.0 ± 1.1

HFVAE-s4-z12-l64 48,113,051 2085 21.3 ± 0.3 48.7 ± 0.4 325.2 ± 1.6

Fig. 10  FLOPs versus execution time. From the plot, we can evince 
the little relation between the two figures but, possibly, at a magni-
tude level
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be implemented efficiently. In future works, we intend to 
deeper investigate other causes for the absence of correla-
tion between FLOPS and time.

Conclusions

In this article, we presented a critical survey of recent 
variants of Variational Autoencoders, referring them to the 
several problems that still hinder this generative paradigm. 
In view of the emerging Green AI paradigm [51], we also 
focused the attention on the computational cost of the dif-
ferent architectures. The main conclusions of our investi-
gation are given in “Quality Evaluation”, and we shall not 
try to summarize them here; we just observe that, while we 
strongly support the Green AI vision, we must eventually 
find better metrics than FLOPs to compare the energetic 
performance of neural networks, or more realistic way to 
compute them.

The constant improvement in generative sampling dur-
ing the last few years is very promising for the future of 
this field, suggesting that state-of-the-art generative perfor-
mance can be achieved or possibly even improved by care-
fully designed VAE architectures.

At the same time, the quest for scaling models to higher 
resolution and larger images, and the introduction of addi-
tional, and usually computationally expensive, regularization 
techniques, is a scaring and dangerous perspective from the 
point of view of Green AI.

From this point of view, our experience with NVAE is 
explicative and quite frustrating. The architecture is interest-
ing, and it should eventually deserve a deeper investigation; 
unfortunately, it seems to require computational facilities far 
beyond those at our disposal.

A Examples of Generated Images

A.1 Cifar10

See Figs. 11, 12, 13, 14, 15 and 16.

Fig. 11  Examples of Cifar-like images generated by Vanilla VAE

Fig. 12  Examples of Cifar-like images generated by Resnet
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Fig. 13  Examples of Cifar-like images generated by L2-RAE

Fig. 14  Examples of Cifar-like images generated by GP-RAE

Fig. 15  Examples of Cifar-like images generated by HFVAE

Fig. 16  Examples of Cifar-like images generated by (a severely sim-
plified version of) NVAE
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A.2 CelebA

See Figs. 17, 18, 19 and 20.
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Fig. 17  Examples of CelebA faces generated by Vanilla VAE

Fig. 18  Examples of CelebA faces generated by Resnet-s3-b64-l64

Fig. 19  Examples of CelebA faces generated by L2-RAE

Fig. 20  Examples of CelebA faces generated by GP-RAE
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