
Vol.:(0123456789)

SN Computer Science (2021) 2:207 
https://doi.org/10.1007/s42979-021-00612-w

SN Computer Science

ORIGINAL RESEARCH

Interpretation of Swedish Sign Language Using Convolutional Neural 
Networks and Transfer Learning

Gustaf Halvardsson1   · Johanna Peterson1 · César Soto‑Valero1   · Benoit Baudry1 

Received: 21 October 2020 / Accepted: 22 March 2021 / Published online: 11 April 2021 
© The Author(s) 2021

Abstract
The automatic interpretation of sign languages is a challenging task, as it requires the usage of high-level vision and high-level 
motion processing systems for providing accurate image perception. In this paper, we use Convolutional Neural Networks 
(CNNs) and transfer learning to make computers able to interpret signs of the Swedish Sign Language (SSL) hand alphabet. 
Our model consists of the implementation of a pre-trained InceptionV3 network, and the usage of the mini-batch gradient 
descent optimization algorithm. We rely on transfer learning during the pre-training of the model and its data. The final 
accuracy of the model, based on 8 study subjects and 9400 images, is 85%. Our results indicate that the usage of CNNs is a 
promising approach to interpret sign languages, and transfer learning can be used to achieve high testing accuracy despite 
using a small training dataset. Furthermore, we describe the implementation details of our model to interpret signs as a 
user-friendly web application.

Keywords  Sign language interpretation · Machine learning · Convolutional neural networks · Transfer learning

Introduction

In 2018, it was estimated that 466 million people worldwide 
had a disabling hearing loss [1]. When a person in a family 
turns deaf or is born with impaired hearing, several problems 
might emerge [2]. In particular, deaf people who often use 
sign language to communicate are in many cases dependent 
on interpreters when, for example, seeking care. People who 
need to use sign language are often unable to communicate 
effectively with people who are not familiar with sign lan-
guage [3]. In this context, an application that automatically 
translates sign language is beneficial since it can improve 
deaf people’s quality of life, especially in terms of increased 
social inclusion and individual freedom.

The problem is that, just as with spoken languages, all 
sign languages differ. There is no global sign language 

shared over the world [3]. Therefore, a generic translating 
solution is not enough to address this problem for all deaf 
people in the world. To the best of our knowledge, there is 
today no application to help them interpret generic sign lan-
guage to text. If there would be only one, for example, a tool 
interpreting only American Sign Language (ASL) would not 
work on Swedish Sign Language (SSL). Therefore, a generic 
software application based on a solution that can easily be 
adjusted for interpreting many different sign languages 
would be a preferable solution. This solution should work 
automatically, translating sign language to text independent 
of the physical characteristics of the user.

An application to interpret sign language could benefit 
from novel Artificial Intelligence (AI) techniques. AI is the 
science and engineering of building intelligent machines that 
can be fed raw data to learn on. The machines can make 
decisions in situations that they have not encountered before. 
Machine Learning (ML) is a large sub-area of AI that spe-
cializes in recognizing patterns in data to continuously learn 
from feedback [4]. One commonly used ML architecture is 
neural networks. A neural network is built up of several lay-
ers of artificial neurons [5] that try to mimic the function and 
behavior of biological neurons [6]. Each layer of neurons 
specializes in detecting different features. One layer could, 
for example, learn to detect edges when analyzing images. 

“This article is part of the topical collection “Recent Trends 
in Computer Vision” guest edited by P. Nagabhushan, 
Balasubramaniyan Raman, Satish Kumar Singh and 
Subrahmanyam Murala”

 *	 César Soto‑Valero 
	 cesarsv@kth.se

1	 KTH Royal Institute of Technology, Stockholm, Sweden

http://orcid.org/0000-0002-6559-1521
http://orcid.org/0000-0003-0541-6411
http://orcid.org/0000-0002-4015-4640
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00612-w&domain=pdf


	 SN Computer Science (2021) 2:207207  Page 2 of 15

SN Computer Science

Since the differences between signs in sign languages largely 
consist of different patterns like hand movements and shift-
ings, using artificial neural networks that learn from datasets 
of sign images is useful to develop a model able to detect 
and interpret signs [7].

Training a neural network to perform this type of image 
recognition adequately requires a large amount of data [8, 
9]. Regarding sign language, the only datasets available are 
based on the Sign Language MNIST image dataset,1 which 
is based on the American Sign Language.2 There are none 
based on the Swedish Sign Language (SSL), and thus, not 
enough SSL data are available to train a model on. While 
a few databases of SSL exist (i.e., the SSL dictionary pro-
vided by Stockholm’s University3), their data only include 
one or two examples per sign. This is not sufficient to train 
an accurate ML model. A solution to the problem of having 
a small amount of data is to use a pre-built and pre-trained 
model and applying transfer learning [10]. Transfer learn-
ing is a technique that uses models trained on one quantita-
tively large dataset, and then the first layers of this model are 
reused to personalize new models based on a set of limited 
and specific data.

Several studies on sign language interpretation are based 
on AI solutions, as well as AI solutions with transfer learn-
ing. One study focuses on gesture recognition using a Cyber-
Glove and has received an accuracy of up to 100% [11]. 
Even though this solution has resulted in high accuracy, 
using a CyberGlove device might not be possible at all 
times, and therefore, a solution based on using only a camera 
can be more adaptable. Another study using AI generated a 
dataset using YouTube videos but did not use transfer learn-
ing [12]. This made their model highly dependent on their 
dataset and might not generalize well to new situations. A 
study focusing on using both AI and transfer learning, how-
ever, did not receive higher accuracy than 66% due to a too 
small dataset (1200 images) [13]. Based on these studies, 
generating a larger dataset to use with transfer learning, as 
well as accurately interpret sings using a single camera, is 
the focus of this paper.

In this paper, we investigate to what extent Convolutional 
Neural Networks (CNNs) and transfer learning are effective 
techniques to interpret the hand alphabet of SSL. To find the 
network architecture with the highest validation accuracy, 
three different pre-trained models, two optimization algo-
rithms, and three values of the number of frozen layers and 
step-size are tested. Our final network structure is based on 
the pre-trained model InceptionV3, the optimization algo-
rithm of mini-batch gradient with a step-size factor of 1.2, 

and with five frozen layers. The final model consists of 25 
488 698 parameters and 316 layers. Based on this model, 
we build an application that translates the signs into their 
corresponding text form. The final network has a testing 
accuracy of 85%.

In summary, this paper makes the following contributions:

–	 A CNN that translates images from the SSL hand alpha-
bet;

–	 An original approach based on transfer learning, which 
adapts the model to perform well using a limited training 
dataset;

–	 An evaluation of the model on 8 study subjects, obtaining 
85% of overall accuracy;

–	 A publicly available implementation of our approach4 
and a web application where a static sign is entered as an 
input image by the user, and its corresponding text form 
is displayed on the screen.5

The rest of this paper is structured as follows. Section 2 pre-
sents a background of CNNs and transfer learning. Section 3 
describes the methodology, the dataset employed, and the 
architecture of our CNN model. Section 4 presents the evalu-
ation procedure and the results obtained when measuring 
the performance of the model. Section 5 discusses the chal-
lenges associated with learning from images when translat-
ing sign language. Section 6 presents the related work, and 
Section 7 concludes the paper.

Background

Image recognition is the technology of analyzing patterns 
in images to classify the image as a particular object [14]. 
An image recognition method generally includes four steps: 
(1) image acquisition: retrieves unprocessed images from 
a source [14] and defines class belonging for each image, 
these images and the corresponding classes will represent 
the dataset for the model; (2) image processing: performs 
processing on the image, for example, reduces the colour of 
the background and finally represents every digital image 
frame as matrices of pixels; (3) feature analysis: is the step 
where the method is chosen comes in at most in analyzing 
the features of the images [15], and finding patterns, and 
(4) image classification: classifies new, unseen, images to a 
class among the predefined classes.

There are several image recognition methods, e.g., 
statistical pattern recognition  [14], fuzzy mathematical 
method [16], syntactic pattern recognition method [14], and 

1  https://​www.​kaggle.​com/​datam​unge/​sign-​langu​age-​mnist.
2  https://​www.​kaggle.​com/​grass​knoted/​asl-​alpha​bet.
3  https://​tecke​nspra​kslex​ikon.​su.​se/​sok/​handa​lfabe​tet.

4  https://​github.​com/​gusta​fvh/​SignI​nterp​reter​SSL.
5  https://​sign-​inter​preter-​ssl.​herok​uapp.​com.

https://www.kaggle.com/datamunge/sign-language-mnist
https://www.kaggle.com/grassknoted/asl-alphabet
https://teckensprakslexikon.su.se/sok/handalfabetet
https://github.com/gustafvh/SignInterpreterSSL
https://sign-interpreter-ssl.herokuapp.com


SN Computer Science (2021) 2:207	 Page 3 of 15  207

SN Computer Science

CNNs [14]. These three methods have been widely used for 
image recognition. However, a promising line of methods 
used today are those that use Deep Learning (DL) and are 
based on CNNs [15]. The use of CNNs is particularly suit-
able for image recognition since they automate the process 
of feature extraction from the images efficiently.

On the other hand, conventional Machine Learning Mod-
els for computer vision rely on feature extraction techniques, 
which are often done using hand-crafted features based on 
color, edges, and corners. These features may be difficult to 
define, which often result in poor generalization and per-
formance [17]. In CNNs, the feature extraction and data 
engineering are done automatically by the network itself, 
usually resulting in better performance for most computer 
vision tasks [18].

Another advantage of using CNNs, as opposed to the rest 
of methods mentioned, is the fact that the other methods 
include feature vectors extracted using algorithms made 
by researchers. The patterns are thus determined by the 
researchers and might not actually represent the real nature 
of the image. CNNs, on the other hand, does this extraction 
independent of the researcher, and can, therefore, decrease 
bias introduced by the researchers by deriving meaning from 
patterns too complex to be noticed by humans or traditional 
algorithms [19]. CNNs also outperform other image recogni-
tion methods available today [15].

Convolutional Neural Networks (CNNs)

CNNs are a class of neural networks that are particularly 
accurate when applied to image recognition tasks. The 
training of a CNN is performed using the backpropagation 
method [20]. The general structure of a CNNs is described 
in Fig. 1. The figure was made with the help of the tool 

NN-SVG6. As seen in the figure, CNNs perform feature 
extraction and classification. First, the input images are split 
into small matrices of pixels. The feature extraction consists 
of the two processes of convoluting (and ReLu) and pooling 
that is applied repeatedly several times [15]. This enables 
the possibility to recognize specific geometrical patterns, 
with little data to train on [20]. Further on, the classification 
is performed through the three-layer of flattening, full con-
nection, and output. All of these steps are further described 
below.

Convolutional Layer. The convolutional layer consists 
of a layer of neurons, each connected to a filter, allowing 
different neurons to activate on different patterns in the 
images [20]. The filters perform dot multiplication with its 
assigned section of the input matrix, and then perform ReLu 
to increase non-linearity and reduce unwanted pixels. These 
values are put in a new matrix which is the new feature map 
that is transferred to the next layer [15].

Pooling Layer. The pooling layer takes a specific value 
from every small patch of the input image and places it in 
a new matrix. This layer downsizes the matrices and thus 
works as a regularizer for the network. This new matrix is 
the new pooled feature map that is transferred to the next 
layer [15].

Flattening, Fully Connected Layer, and Output Layer. 
When all the steps of feature learning have taken place, the 
final pooled feature map needs to be flattened by transform-
ing the feature map matrix into a one-column matrix [21]. 
The penultimate layer of the network is the fully connected 
layer, which performs a calculation to classify the images 
into the predefined classes [20]. The final output layer con-
sists of the probability of class-belonging to each class [15].

Transfer Learning

One problem with CNNs is that big networks need high 
GPU performance, which is often difficult to achieve on 
personal computers [22]. Without this, the learning will be 
slow. Another problem is the need for data. A possible solu-
tion for this is using a pre-trained model with the technique 
of transfer learning [23]. Transfer learning leverages knowl-
edge from one source to improve learning on another [23]. 
In the following, we describe the general method and the 
concept of a pre-trained model, together with several models 
considered for this paper.

General Method. Transfer learning firstly uses a pre-
trained DL model on a problem [10]. It does not have to be 
based on the same type of input data as the new source [23]. 
However, the performance of the new network will vary 
depending on which pre-trained model is used. The first layers 

Fig. 1   General architecture of a Convolutional Neural Network. Start-
ing from the left in the figure, the input image is split into several 
smaller matrices that are used as input to the first convolutional layer. 
This layer performs convolving and the method of Rectified Linear 
Unit. The next layer performs pooling on matrices. These two steps 
are repeated several times and comprise the feature learning in the 
network. The final part, classification, consists of the methods of flat-
tening, fully connected, and finally, providing the output

6  http://​alexl​enail.​me/​NN-​SVG

http://alexlenail.me/NN-SVG


	 SN Computer Science (2021) 2:207207  Page 4 of 15

SN Computer Science

from this network are then frozen and put in front of new 
layers that have not been trained on any data. The learned 
parameters from the pre-trained source are saved as a vec-
tor � =

{

�1, �2, ..., �n

}

 which is transferred to the new model 
together with new, specific data, for the model to train on. 
Transfer learning eliminates the need to train the entire net-
work by transferring the knowledge of the pre-trained model 
and, thus, reducing the need for large quantities of data.

Pre-Trained Models. The pre-trained models considered 
for this paper are all available for use with Keras7, which 
is the DL API that is used for this paper. All models are 
specialized in image classification, trained on the dataset 
ImageNet8.

Table 1 presents the models considered in this paper. 
The first column shows the name of the model. The second 
column presents the models’ accuracies on the ImageNet 
dataset. The accuracy is an important indicator to take into 
consideration when choosing the model since the better the 
model performs on the ImageNet dataset, the better starting 
conditions for the new model [24]. The third column in the 
table presents the number of parameters representing the 
model. The higher this number is, the more time and space 
it will take to train the network. Too many parameters can 
lead to a slow and memory-expensive process on modern 
computers. However, too few parameters will likely make 
the pre-trained model less fit for use on new data.

Evaluation Criteria for CNNs

Evaluating an ML model is about finding the difference 
between the predicted output by the model and the actual 

output [25]. This defines the model’s accuracy. Two metrics 
are tested in the paper to evaluate which one of them per-
forms best on the data. The metric of misclassification error 
is used to maximize accuracy. The metric of using a loss 
function is used to minimize the loss on the data. These two 
metrics are chosen since they are commonly used by other 
researchers [20, 21, 23, 26].

The metric of misclassification error is calculated as the 
average number of correct classifications [27]:

where lnd(f (�) = 1) if x is true, otherwise lnd(f (�) = 0) . The 
metric of using a loss function is commonly used on image 
recognition problems based on a DL network [15]. A dis-
tance is here the distance between the feature vectors of the 
current pattern and the input image. The distance between 
two images of the same object is considered small, whilst 
the distance between two images of different objects is con-
sidered large.

The two metrics are evaluated at the beginning of the test-
ing process before the more specific details of the network 
is tuned, and the metric producing the highest accuracy on 
the data is the one used for the rest of the paper.

Materials and Methods

The modeling, as presented in Figure 2, consists of several 
activities, all of which include quality assurance. The first 
activity, highlighted in blue, is to handle the pre-trained 
model. The model is imported and the last classification layer 
is detached from it. The first layers of the pre-trained model 
are frozen to keep its knowledge. Three convolutional layers 
are then added at the end of the network. At the same time 
as this, the SSL dataset is generated, highlighted in red in the 
figure. This includes steps of image acquisition and image 
processing. Further on, the model is retrained, yellow color 
in the figure, on the pre-trained model and the new training 
dataset. This model is then tested and its accuracy is improved 
in several cycles, as presented in green in the figure. The focus 
of the tuning of the network is to find the combination of pre-
trained model, optimization algorithm, and tuning of hyper-
parameters, with the highest resulting validation accuracy. 
Finally, the final network is evaluated using the testing dataset, 
highlighted in orange in the figure. The rest of this section is 
dedicated to these five phases of the methodology.

Pre‑trained Models

The first step of modeling is to choose and integrate a pre-
trained model. A pre-trained model is used as the basis of 

err(f ,D) =
1

N

N
∑

i=1

lnd(f (�
�
≠ yi),

Table 1   The eleven pre-trained models available from Keras consid-
ered in this paper for transfer learning. All models are trained on the 
ImageNet dataset. Each model is presented with its accuracy on the 
ImageNet dataset, and the number of parameters in the pre-trained 
model. The table is sorted on the highest accuracy

Model Accuracy [%] Parameters

InceptionResNetV2 80.3 55,873,736
Xception 79.0 23,910,480
InceptionV3 77.9 23,851,784
ResNet50V2 76.0 25,613,800
DenseNet121 75.0 8,062,504
ResNet50 74.9 25,636,712
NASNetMobile 74.4 5,326,716
MobileNetV2 71.3 3,538,984
VGG16 71.3 138,357,544
VGG19 71.3 143,667,240
MobileNet 70.4 4,253,864

7  https://​keras.​io/​appli​catio​ns
8  http://​www.​image-​net.​org

https://keras.io/applications
http://www.image-net.org


SN Computer Science (2021) 2:207	 Page 5 of 15  207

SN Computer Science

the program to make better predictions on a small dataset. 
Another alternative of using the architecture of pre-trained 
models as the base, is to utilize few or one-shot learning 
techniques [28], such as Siamese Neural Networks, which 
are best suited when samples per class are extremely low 
(fewer than 10). Thanks to the multiple volunteers combined 
with the video tool for training data capture, the number 
of samples per class was high enough to consider using a 
conventional CNN structure with transfer learning that gen-
erally achieves better performance if the data requirement 
is met [29].

The data for the pre-trained model are already collected, 
processed, and the model is trained on it. There are, thus, 
several variables, such as the type and characteristics of 
images sued for training the model, that cannot be con-
trolled. This is the part of the data collection that is based 
on experiments since the pre-trained models considered all 
are based on a large dataset. The pre-trained models used in 
this research are the ones presented in Section 2.2. They are 
trained on the ImageNet dataset.

Since training the models is a very time-consuming 
task: approximately three hours per training session on 
Colabs GPUs, three out of all of the pre-trained models 
presented in Table 1 are tested. Table 1 presents eleven 
pre-trained models that are available via Keras and ordered 
by their accuracy on the ImageNet Dataset. The three 
pre-trained models used are decided upon based on the 
highest accuracy received on the ImageNet dataset. All 
three included the Inception-module in the network, which 
suited this studied problem type. This was due to the vari-
able filter size of the Inception module, which allows the 
model to identify signs despite large differences in its 
spatial size in the input, something very common for this 
study’s application [30, 31]. Thus, InceptionResNetV2, 
Xception, and InceptionV3 are tested. The process of 

deciding which one of these three models to use in the 
final network is presented in Section 3.5.

The pre-trained models are imported as a pre-existing 
module through Keras and are then possible to use in the 
code when testing the model on data. The last classifica-
tion layer is detached from the model, and the 20 first 
layers are frozen to keep that knowledge. Finally, three 
convolutional layers are added to specialize in the new 
data. The process of choosing and using pre-trained mod-
els is further described in Section 3.5.

Swedish Sign Language Dataset

The next step is to collect and process the data of SSL 
with a focus on the generation of a generic dataset. Image 
acquisition and image processing are conducted in this 
step of the process. Feature analysis and image classifica-
tion are performed in a subsequent step when the model is 
retrained and tested on the new dataset.

Fig. 2   General overview of our approach, including building the net-
work and generating the dataset. The first activities include changing 
the imported pre-trained model. Simultaneously the dataset is gener-
ated. Following this, the new model based on the pre-trained model 

is trained using the training dataset. The model is then retrained, and 
the accuracy is improved in several cycles focusing on choosing the 
combination with the highest validation accuracy. Lastly, the final 
network is evaluated using the testing dataset

Fig. 3   Illustration representing how the signing videos are staged 
regarding the position of the person’s body and hand



	 SN Computer Science (2021) 2:207207  Page 6 of 15

SN Computer Science

Image Acquisition

The first step, image acquisition, is performed by film-
ing all the letters in the hand alphabet for 20 seconds, for 
a total of eight times by five subjects. All 26 letters are 
recorded eight times, and every recording is performed 
signing with the person’s right hand. The recordings are 
performed as presented in Figure 3. The figure is created 
using assets from Flat Icon9. Only a part of the body and 
face are included, the person is centered, and their hand 
is centered in front of the chest. The webcam used is the 
built-in FaceTime HD camera from Apple Macbooks, 
which is rated at 1.2 megapixels and records 720p video 
in 30 or 24 frames per second.

The eight recordings are the basis of the training, valida-
tion, and testing datasets. The signs are based on the SSL 
dictionary provided by Stockholm’s University. The condi-
tions between the recordings are varied by background and 
clothes. When filming, the hands are slightly rotated to allow 
for more variance. Each sign of a letter is then classified as 
belonging to that specific letter.

The datasets are collected by five different subjects. This 
part of the method connects to the consciousness of ethics in 
society and technology. This is one part of the investigation 
where the technology could become an inhibitor and not an 
enabler for sustainable development. By collecting diverse 
data, it could improve the ML models’ ability to generalize 
and different types of signers and hands.

Image Processing

The second step, image processing, is now performed on 
each video. A function is created to read all videos per let-
ter and create one frame per 0.1 seconds, so every recording 
becomes 200 images. These images are then resized to a 
size of 224 × 224 pixels. 100 of these images are placed in 
the training set, 50 in the validation set, and 50 in the testing 
set. All images are put into repositories on GitHub, cloned 
into the code, and then merged once on the Colab Virtual 
Machine to be used as data10. To prevent memory overflow, 
the images in the training dataset are split up into batch sizes 
of 32 that are sent into the model in batches.

The training images are then augmented to allow for more 
noise in the data. The testing images are also augmented to 
create a more realistic real-life testing experience. The steps 
performed for both datasets are rotation, shifting height and 
width, zooming, and tilting, to allow for more variations of 

signing. When shifting and tilting, the points now outside 
of the boundaries of the image are filled with the nearest 
pixel. The testing images are also altered on brightness. No 
image augmentation is performed on the validation dataset. 
The image augmentation is performed with the Keras class 
ImageDataGenerator11.

Model Retraining

When the pre-trained model is imported and the new dataset 
generated, the training of the new model begins. This is done 
by adding extra layers. Three convolutional layers are added. 
The first two consist of 1024 nodes each, the third consists 
of 512 nodes, and they all use ReLu. These values of the 
numbers of nodes are chosen since they are frequently used 
in other studies and yielded satisfying results. The pooling 
layers use global average pooling. Finally, softmax is used 
to ensure that the probabilities end up between zero and 
one. The first 20 layers of the pre-trained model are frozen 
(model weights became immutable) in order to not retrain 
them but keep their knowledge. Then the model is trained 
on the new data with the new layers in order to specialize in 
the new data. This is the step of feature analysis in the image 
recognition framework. The final step of image classifica-
tion then occurs when testing the model and finally towards 
the end of the implementation when using the application.

Model Testing

Before starting to improve the accuracy of the model, the 
evaluation method needs to be decided upon. This focused 
on the research’s approach, deductive, which ends with spe-
cific accuracies of the model’s performance. As the model 
used is a neural network, the outcome is a generalization 
based on the collected data over several runs explaining the 
results as relationships between several variables.

The model is trained on 50% of the data, validated on 
25%, and tested on 25%. This split of the data is done on 
a per person and sign level, meaning the training, valida-
tion and test datasets each consist of an even distribution of 
each sign and person. The testing data, therefore, contains 
samples from every person and sign and consists of 25% of 
the full dataset. The evaluation of accuracy on the validation 
data is performed both through the loss function and the 
total misclassification error on the validation data. The mod-
els are non-deterministic, and thus each run of the model 
generates a slightly different accuracy. Each run is repeated 
three times to get an average accuracy. Several training ses-
sions on ten epochs, with different parameters, are tested, 

10  https://​colab.​resea​rch.​google.​com/​drive/​1oxKU​HDykf​QOsG0​
VpP_​pblMf​9waEy​8pq7?​usp=​shari​ng

11  https://​keras.​io/​api/​prepr​ocess​ing/​image/#​image-​data-​prepr​ocess​
ing

9  Figure 3 uses assets from the icon made by Eucalyp from https://​
www.​flati​con.​com

https://colab.research.google.com/drive/1oxKUHDykfQOsG0VpP_pblMf9waEy8pq7?usp=sharing
https://colab.research.google.com/drive/1oxKUHDykfQOsG0VpP_pblMf9waEy8pq7?usp=sharing
https://keras.io/api/preprocessing/image/#image-data-preprocessing
https://keras.io/api/preprocessing/image/#image-data-preprocessing
https://www.flaticon.com
https://www.flaticon.com


SN Computer Science (2021) 2:207	 Page 7 of 15  207

SN Computer Science

as will be presented in Section 3.5. These executions are 
used when comparing different networks. Therefore, the dif-
ferences between the networks are of importance, not their 
absolute performance. To present the final accuracy of the 
model, the final network architecture is trained during 30 
epochs. This run is then tested on the testing data to present 
the final accuracy.

A dynamic video tool is developed to visualize the mod-
el’s performance on single signs. This is also developed to 
be able to detect several signs in a row and help evaluate the 
different models’ accuracies and behavior in real-life situ-
ations and with fast feedback. It works by making predic-
tions continuously on every frame from the webcam video 
stream and showing the result live. Basic helper functions, 
including backspace, delete, and reset, are also added. The 
tool is only developed to be run locally for testing purposes 
as deploying that functionality on the web is out of scope 
for this investigation.

Accuracy Improvement

One part of the research that focused on the experimental 
aspect of our methodology is the choice of the pre-trained 
model to use, the optimization algorithms, and the tuning 
of hyper-parameters. The methodology for improving the 
model’s accuracy is conducted in two steps. First, the Incep-
tionResNetV2, Xception, and InceptionV3 pre-trained mod-
els are tested with different optimization algorithms. Second, 
two hyper-parameters are tuned based on the combination of 
pre-trained model and optimization algorithm that has the 
highest accuracy from the previous step. In this section, we 
give details regarding those improvements.

Model Pre‑training and Optimization

The three pre-trained models are then tested on two optimi-
zation algorithms. Due to the same reasoning as above, not 
all algorithms are tested. The two methods tested are mini-
batch gradient descent and Adam since they are commonly 
used by other researchers. Thus, all three pre-trained mod-
els are tested on the two optimization algorithms. The tests 
are conducted using a fixed batch size for the optimization 
algorithm of 32, and on ten epochs. Based on these tests, the 
architecture with the highest accuracy is chosen, according 
to the Wilcoxon signed-rank test [32]. This test is appropri-
ate to use since it can determine, with statistical significance, 
if one model combination can be used over another based 
on its overall performance. The combinations of different 
pre-trained models are used in the tests to determine if the 
models perform as an equal distribution or not and, thus, 
which validation accuracies are the most reliant. The final 
combination with the most statistical significance is chosen 

as the final combination. With the final combination deter-
mined, the tuning of the rest of the parameters is performed.

Hyper‑parameters Tuning

The tuning of hyper-parameters begins with one combina-
tion of pre-trained model and optimization algorithm. This 
is done with the help of the tool Weights & Biases [33]. 
It allows sweeping of several parameters to help find the 
parameter values that maximize the performance of the net-
work. The following two parameters are tuned: the number 
of frozen layers of the pre-trained model, and the step size 
factor. The step size factor is a factor that determines the 
relationship between the total number of training data exam-
ples. The number of frozen layers determines the impact the 
pre-trained model should have on the final outcome. The 
step size factor is tested on three values, namely 0.2, 0.7, 
and 1.2. Furthermore, the number of frozen layers is tested 
on three values, namely, 5, 20, and 50.

Experimental Results

The goal of the experiments is tuning a network with the 
highest resulting validation accuracy, which allows the net-
work to interpret as many words as possible correctly. Fig-
ures 4 and 5 show the web application’s architecture and the 
user flow for using it, respectively. The objective of each 
experiment is, thus, to find the combination of parameters 
that provide the highest accuracy.

All code and data for this investigation are stored in three 
different GitHub repositories, where each repository con-
tains a README file with more information on its content. 
The code for the model, data generator, and front end for 
the application can be found in one GitHub repository.12 
The code for the back end API for the application is stored 
separately and can be found in another GitHub repository.13

Our dataset is collected using five different subjects, in 
a total of eight recordings. Figure 6 presents one repre-
sentative image per person, or recording, that is included 
in the dataset. More information about each recording 
is shown in Table 2. Two factors that might change how 
an image of a signer looks visually are age and gender 
which is why it is important to have a varied selection of 
this in the dataset. Signers included people with different 
ethnicity, different ages (between 22 and 53 years old), 

12  The following link contains the GitHub repository for the model, 
data generator, and front end for the application: https://​github.​com/​
gusta​fvh/​SignI​nterp​reter​SSL.
13  The following link contains the GitHub repository for the back end 
API code: https://​github.​com/​gusta​fvh/​SignI​nterp​reter​SSL_​API.

https://github.com/gustafvh/SignInterpreterSSL
https://github.com/gustafvh/SignInterpreterSSL
https://github.com/gustafvh/SignInterpreterSSL_API


	 SN Computer Science (2021) 2:207207  Page 8 of 15

SN Computer Science

different genders (Male and Female), and different visual 
background conditions during recording This is to ensure 
the model becomes better at generalizing and as signer 
independent as possible which could result in an improved 
performance. As previously mentioned, the exact number 
of images each person contributes with depends on how 
long each recording of each sign is and, therefore, varies 
slightly.

The testing data are generated from the recordings of 
these persons (but never overlaps the training or validation 
data) and are later further augmented to make them even 
more significantly different to the training and validation-
data. These image augmentations include rotations, width 
and height shifts, shearing, zoom and brightness alterations 
to ensure the model is fairly evaluated using new and previ-
ously unseen data.

Accuracy Testing

This section focuses on the tests conducted to find the tuning 
of the network with the highest resulting accuracy. This is 

performed in two steps, first with three different pre-trained 
models and two different optimization algorithms, presented 
in Section 4.1.1, and then by tuning the hyper parameters, 
presented in Section 4.2.

Optimization Algorithm and Pre‑Trained Model

These first tests are conducted using two different metrics 
as stated in Subsection 2.3. First, the parameter for using a 
loss function is activated, aiming to minimize the validation 
loss. Second, the metric of misclassification error is used, 
aiming to maximize the validation accuracy. Minimizing the 
validation loss results on average in 20% lower accuracy on 
the data. Therefore, maximizing the validation accuracy is 
used for the rest of the investigation.

The results of the tests of the pre-trained models and 
optimization algorithms are presented in Table 3. The table 
shows that the differences in accuracy between the different 
combinations are small. Thus, the Wilcoxon signed-rank test 
is used to validate which combination proves to perform best 
on the data.

Fig. 4   Cloud architecture of the 
web application. The arrows 
represent the flow of data for 
an API request when a user 
wants to analyze a sign. Starting 
at the top left corner, the user 
enters the URL in a browser to 
the Heroku-hosted application, 
which pulls its source code 
from GitHub. The front end 
(client) makes a POST request 
with the sign image now binary 
encoded, to the sign-interpreter.
com domain, which points to 
the cloud services. That entry 
point is an ingress that validates 
the identity with a certificate to 
be able to handle the HTTPS 
protocol. The request is then 
forwarded to the load-balancer, 
which sends it to one of three 
Flask Python back ends that 
return a prediction to be 
returned to the client and dis-
played in the application. The 
Python back ends are based on 
Docker images living on Docker 
Hub and GitHub



SN Computer Science (2021) 2:207	 Page 9 of 15  207

SN Computer Science

Statistical Validation

Since the runs with InceptionResNetV2 produce signifi-
cantly lower accuracies than the other pre-trained models, 
they are excluded from the Wilcoxon test. However, Xcep-
tion and InceptionV3 produce similar results, and thus, the 

test is used to see if there are any statistical significance in 
the data that could be used to determine which combination 
performs better.

The first test keeps Xception static while altering the two 
optimization algorithms. The second test keeps InceptionV3 
static while altering the two optimization algorithms. The 
data used for the tests are the validation accuracies received 
per epoch of training for the different combinations. The null 
hypotheses for both tests are that the combinations are of the 
same distribution.

The p-value of the test with InceptionV3 is approxi-
mately 0.0069, and thus, the null hypothesis can be 
rejected at a confidence level of over 99%. This meant 
that with InceptionV3, the optimization algorithms are 
not of the same distribution with a certainty of over 99%. 
This means that the combination that provides the highest 
accuracy can be used. Since mini-batch gradient descent 
produces higher accuracy than Adam for InceptionV3 as 
shown in Table 3, it is passed on to the next step of the 
evaluation. Approximately, the same reasoning can be 
used regarding the test with Xception since it produces a 
p-value of approximately 0.0469. Its null hypothesis can 
also be rejected, however, here at a confidence level of 
over 95%. Since Adam performs a higher accuracy than 
mini-batch gradient descent as shown in Table 3, it is 
passed on to the next step of the evaluation.

The two final combinations to evaluate are, thus, Incep-
tionV3 with mini-batch gradient descent, and Xception with 
Adam. As seen in Table 3, they produce a validation accu-
racy of 94.78% and 94.77% respectively. Thus, further tests 
are needed to show which performs better on the data. To 
evaluate this, a box plot is used to show the variance and 
consistency in validation accuracies for the different epochs.

Table 2   Information about the eight recordings included in the data 
generation. Each row represents a recording. The columns represent 
the person’s age, gender, the total number of generated images as 
well as the total time of video material for that recording. The eight 
recordings consisted of five different subjects, meaning recording one 
and six, as well as two and eight, were done by the same two persons 
respectively

Rec. Age Gender #Imgs Rec. Time (s)

1 22 Male 5 191 519
2 23 Female 5 200 520
3 53 Male 5 200 520
4 23 Female 4 401 440
5 53 Female 5 200 520
6 22 Male 5 077 508
7 24 Male 5 200 520
8 23 Female 5 134 513

Fig. 5   User flow of the web application when using the webcam to 
take a picture. The first image presents the home page where a but-
ton for using your webcam is placed on the bottom right. The second 
image presents the page of the webcam where the user can take, and 
re-take a picture. The final image presents the results page that shows 
the sign with the highest confidence on the top

Fig. 6   One image per recording in the dataset for SSL. The images 
are shown in the same order as the recordings shown in Table 2. The 
images represent the letters A, L, P, H, A, B, E, and T



	 SN Computer Science (2021) 2:207207  Page 10 of 15

SN Computer Science

Evaluation of Spread and Consistency of Validation 
Accuracy

As seen in Fig. 7, InceptionV3 with mini-batch gradient 
descent has a low spread in the validation accuracies per 
epoch and produces consistently high accuracies. Xcep-
tion with Adam, however, show a large variance in the 
results as well as consistently lower accuracies than the 

other combination. This shows that Adam is more prone 
to get stuck in local minima. Thus, even though the two 
combinations perform equally as stated in Table 3, Incep-
tionV3 and mini-batch gradient descent are shown to be 
more reliant since the validation accuracies per epoch 
are more consistent. This increased reliance is an advan-
tage since it simplifies the tuning of hyper-parameters 
as every run is more prone to deliver good results. This 
combination also increases the replicability of the experi-
ments. Thus, the combination of InceptionV3 and mini-
batch gradient descent is used as the basis for the final 
network architecture.

Hyper‑parameters Tuning

The hyper-parameters for the network based on InceptionV3 
and mini-batch gradient descent are now tuned. Two hyper-
parameters are in focus: the step size factor, and the number 
of frozen layers of the pre-trained model. The results from 
these tests are presented in Fig. 8. The figure shows that 
the two combinations with the highest validation accuracy 
are with step size factor 1.2 and five frozen layers, and with 
step size factor 0.7 and 50 frozen layers. These two com-
binations are trained two times more each to find the aver-
age accuracy over several runs. This results in an accuracy 
of 96.46% for the combination of a step-size factor of 1.2 
and five frozen layers, and an accuracy of 93.90% for the 
combination of a step size factor of 0.7 and 50 frozen lay-
ers. Thus the final values of the hyper-parameters are five 
frozen layers and a step-size factor of 1.2. The value of the 
step size factor, corresponds to a learning rate close to, but 
bigger than, the number of training data samples divided 
by the batch size.

Final Network Architecture

The accuracy tests end with one final network architecture 
with the highest validation accuracy. It consists of the fol-
lowing properties: the pre-trained model is InceptionV3, the 
optimization algorithm is mini-batch gradient descent, the 
batch size is 32, the step-size factor is 1.2, and the number 
of frozen layers of the pre-trained model is five. To come 
up with the final architecture, several decisions are made. 

Table 3   Result, measured in accuracy, of the testing of pre-trained 
models and optimization algorithms. The columns correspond to the 
three pre-trained models tested, and the rows correspond to the two 

optimization algorithms. The results were obtained by basic layers 
added to the pre-trained models, and the new Swedish Sign Language 
data set

Optimization algorithms Pre-trained models

InceptionResNetV2 Xception InceptionV3

Adaptive Moment Estimation (Adam) 88.51% 94.77% 91.77%
Mini-batch gradient descent 87.98% 91.63% 94.78%

Fig. 7   Box plot of the validation accuracies of the two combinations, 
Xception and Adaptive Moment Estimation (Adam), as well as Incep-
tionV3 and mini-batch gradient descent, varied over the ten epochs. 
The boxes include 50% of the data points and, thus, shows the main 
distribution. The lines over and under the boxes represent the highest 
and lowest validation accuracies received for the different combina-
tions

Fig. 8   Results from the tuning of hyper-parameters based on Incep-
tionV3 and mini-batch gradient descent. Two hyper-parameters are 
tuned, the step size factor, and the number of frozen layers of the 
pre-trained model. The graph includes nine different combinations 
of the hyper-parameters and presents the combinations’ validation 
accuracies after training. The figure is made automatically by the tool 
Weights & Biases [33]



SN Computer Science (2021) 2:207	 Page 11 of 15  207

SN Computer Science

More specifically decisions regarding which pre-trained 
model, optimization algorithms and hyper-parameters to be 
tested and evaluated. First, only three pre-trained models 
are tested, based on the highest accuracy, as presented in 
Table 1. Then, mini-batch gradient descent and Adam are 
chosen as leads on optimization algorithms. Mini-batch gra-
dient descent is chosen since it is a well-balanced combina-
tion of the basic approaches of Stochastic Gradient Descent 
and batch gradient descent and is more stable than the others 
to converge to the global minimum. Furthermore, Adam is 
chosen since it generally converges fast and is well suited for 
problems with a large number of parameters. The combina-
tion of InceptionV3 and mini-batch gradient descent is then 
chosen since it produces the most reliable results based on 
the Wilcoxon signed-rank test as presented in Section 4.1.1. 
Three values of step-size factor and number of frozen layers 
are tested. These numbers are based on the recommendation 
from Keras, and then one smaller number and one bigger. 
The hyper-parameter values of a step-size factor of 1.2 and 
five frozen layers are chosen since they performed better 
than other values on the combination of pre-trained model 

and optimization algorithm as presented in Section 4.2. The 
final network architecture is thus based on five frozen layers 
of InceptionV3. Thus, transfer learning is used, however, not 
to the extent that the network becomes too specialized on the 
pre-trained model and its data.

On top of the pre-trained model, three convolutional lay-
ers are added. The first two with 1024 nodes, the third with 
512 nodes, and they all use ReLu as the activation function. 
The pooling layers use global average pooling. Finally, soft-
max is used to ensure that the probabilities end up between 
zero and one. To present the final accuracy of the network, it 
is trained one last time, this time during 30 epochs. The final 
model, as it is a CNN, consists of 25 488 698 parameters 
and 316 layers14.

Figure  9 shows the training and validation loss and 
accuracy over the 30 epochs. As we observe in the figure, 
the training and validation loss soften after approximately 
twelve epochs. The overfitting that appears in epoch two 
and nine is eliminated after more epochs. The final model 
is then tested on the testing dataset. The final Top-1 testing 
accuracy is 85%.

The performance is also evaluated using the confu-
sion matrix of the test dataset, presented in Fig. 10. We 
observe which classes (signs) the model performed bet-
ter and worse on. As seen in the figure, the number of 
correct predictions were significantly less on the letter P 
(where 0.75 of labels were predicted correctly), H (.76), 
and Z (.78). For these cases, it can be observed that the 
model is finding these inputs more challenging, resulting 
in worsened performance. The reason is that these signs 
are very similar visually, and even more so due to the 
exclusion of certain parts of the hand. This explanation 
can also be observed in the particularly high performance 
of the visually distinct letter V (.90). Without a desig-
nated depth sensor, the model will have more problems 
with recognizing the signs more dependent on the z-axis 
(depth) due to exclusion.

The dynamic video tool that is used when testing the 
models’ performances can be seen in Fig. 11. This par-
ticular picture is taken based on the final model.

Discussion

The delimitations can be constricted to those regarding the 
sign language and the model interpreting the signs.

Fig. 9   Loss and accuracy of the training and validation set per epoch 
for the final model. The first figure presents the loss, and the second 
figure presents the accuracy of the training and validation set. The 
figures are made automatically by the Tensorboard tool in the tool 
Weights and Biases [33]

14  All layers and parameters for the network can be found at https://​
app.​wandb.​ai/​sign-​inter​pretor/​sign-​inter​preter/​runs/​y11of​78x/​files/​
model-​best.​h5

https://app.wandb.ai/sign-interpretor/sign-interpreter/runs/y11of78x/files/model-best.h5
https://app.wandb.ai/sign-interpretor/sign-interpreter/runs/y11of78x/files/model-best.h5
https://app.wandb.ai/sign-interpretor/sign-interpreter/runs/y11of78x/files/model-best.h5


	 SN Computer Science (2021) 2:207207  Page 12 of 15

SN Computer Science

Sign Language Delimitations

One delimitation regarding the sign language is that only 
the static signs of the SSL hand alphabet is used. Words, 
and four of the letters, in SSL are dynamic. They consist of 
several signs conducted in a specific order after each other. 

The remaining 25 letters in the hand alphabet consist of only 
one still hand gesture and are thus static. The four letters that 
are dynamic are: Y, Å, Ä, and Ö. Å is, for example, the same 
sign as A but moved around in a full circle. Any individual 
frame extracted from the sign Å would be interpreted as A. 
Y, is a sign shaped like a boat moved vertically down. Even 
though Y is dynamic, it can be interpreted statically since no 
other letter is shaped like a boat causing ambiguities, and Y 
is, therefore, included in the paper. Å, Ä, and Ö, on the other 
hand, will not be included in the paper.

When interpreting words and sentences, facial expres-
sions are often involved when signing and this is not of focus 
in this paper. The focus is only on hand gestures which work 
well for the hand alphabet. Another factor when signing is 
that the room and objects around the signer are often used as 
a reference and commonly used to point at. This is not a crit-
ical factor for interpreting the hand alphabet, and thus, these 
references are not taken into consideration in this paper.

Model Delimitations

One delimitation regarding the model used to interpret the 
signs is the use of transfer learning. This paper focuses on 
using transfer learning for interpreting the hand alphabet 
of SSL. Thus, it does not necessarily suggest that the same 
thing can be done for the rest of the sign language or for the 
hand alphabets of other sign languages. Furthermore, the 
paper focuses on using transfer learning particularly, and 

Fig. 10   Confusion Matrix 
showing the performance of the 
model in regards to each of its 
classes on the test dataset. The 
x-axis is the predicted values. 
The y-axis is the actual ground 
truth. Both axes correspond to 
the signed letter (class labels). 
The values are normalized, 
meaning the value in each box 
represents the percentage of 
instances when the predicted 
sign corresponded to the actual 
sign. Thus, a perfect model with 
100% accuracy would only have 
1.0 across the diagonal, and all 
remaining cells being 0.0

Fig. 11   A caption of the video tool used for testing. This picture pre-
sents how a list of letters was signed and added to a word. The bottom 
left of the picture shows the basic helper functions included to be able 
to sign words



SN Computer Science (2021) 2:207	 Page 13 of 15  207

SN Computer Science

thus other models with or without the basis of ML will not 
be tested. Finally, the dataset used for SSL is specifically 
developed for this paper based on us signing, and thus, other 
possible data sources will not be used.

Related Work

There have been several studies aimed at interpreting sign 
languages. Some of them have been based on gloves that 
can interpret signs, while others rely on computer vision and 
statistical comparisons. Furthermore, there are studies focus-
ing on both SSL and CNNs. This section will present some 
of these studies. Section 6.1 focuses on studies performed 
without neural networks, while Section 6.2 focuses on stud-
ies with neural networks. Finally, Section 6.3 presents stud-
ies on sign language and transfer learning.

Sign Language Interpretation Using Human 
Supervision

Hern et al. [34] study the signer wearing an AcceleGlove 
when signing. In this work, the different angles per finger 
are used as input to a computer program that analyses the 
positions. It is tested on different subjects and is able to 
recognize 30 one-handed signs with an accuracy of 98%.

Glenn et al. [35] is based on computer vision and statisti-
cal comparisons. Each sign is filmed in a controlled envi-
ronment, the background is extracted, the image is cropped, 
resized and edge detected, and finally placed in an adaptive 
statistical database. To classify a sign as a particular word, 
the image is processed and then compared to all images in 
the statistical database.

Akram et al. [36] used a Kinect sensor to recognize SSL 
signs. The signer uses a RGB-D Kinect sensor placed in 
the hand. This allows the backgrounds to be removed, helps 
with the resolution when the hand was placed in front of the 
face, and simplifies the use of 3D signs. The classification is 
done through a statistical database. The results are different 
depending on who signs the signs. One signer received an 
accuracy of 77% while one had 94%.

On the other hand, the work of Segundo et al. [37] is 
conducted with the opposite goal to this paper, to translate 
spoken words into sign language. The system uses speech 
recognition, a natural language translator, and a 3D avatar 
to show translations for Spanish Sign Language. It achieves 
a 31.6% Sign Error Rate. This significantly differs from this 
paper as one of the most challenging aspects of this paper 
is to correctly identify the sign from an image, which is not 
needed during this direction of translation.

Most of the related work presented includes several forms 
of assisting equipment, such as depth cameras and gloves, to 
simplify isolation and identification of the hands performing 

the signs. In this paper, the focus is on making an accurate 
interpretation possible without any specialized equipment 
besides a basic RGB-camera.

Sign Language Interpretation Using CNNs

The studies presented in this section are based on ANN. 
The benefits of using neural networks rely on their ability to 
derive meaning from patterns too complex to be noticed by 
humans or traditional algorithms [19].

Weis et al. [11] focuse on gesture recognition. The experi-
ments are conducted with a CyberGlove, a glove with virtual 
reality sensors. The analysis is conducted by a multi-layered 
ANN, and the accuracy is close to 100% for some gestures. 
Pugeault et al. [38] present an interactive finger-spelling 
graphical user interface for ASL, which shows good perfor-
mance and robustness for multiple users. Nagendraswamy 
et al. [39] present a model for learning symbolic representa-
tion of sign language from video shots, achieving sign rec-
ognition accuracy of 96% using a dataset of signs made by 
communication impaired people of Mysore.

Koller et al. [40] exploited the discriminative power of CNNs 
with application to hand shape classification in the scope of sign 
language. Moc et al. [41] perform a study that aims at recog-
nizing a stream of continuous signs in a video. The computer 
architecture used is RNNs. The network has feedback connec-
tions that are suitable for video processing. The paper reaches an 
accuracy of 80% on a continuous stream of video data.

Quirk et al. [12] translate signs filmed with a webcam. The 
study aims to translate the Auslan Sign Language alphabet. 
The dataset for the Auslan alphabet is generated by extracting 
signs from YouTube videos and drawing boxes over the hands. 
They use CNNs and the final accuracy is 86%. This paper can 
utilize the fact that there were sign language instructional vid-
eos available on YouTube for the Auslan Alphabet and thus be 
used as data, which is something that is not currently available 
for SSL. Therefore, they do not utilize transfer learning to be 
less dependent on large datasets.

Cam et al. [42] focus on translating a continuous stream 
of sign language sentences. Specifically, they improve inter-
pretations when it comes to grammar. The paper is built on 
CNNs and attention-based encoders and results in several 
sentences being correctly interpreted. The paper focuses 
more on aspects of grammar, something this paper chooses 
to have as a delimitation.

Sign Language Interpretation Using Transfer 
Learning

The studies presented in this section are based on ANN and 
transfer learning. The datasets used on the pre-trained mod-
els have all been limited.



	 SN Computer Science (2021) 2:207207  Page 14 of 15

SN Computer Science

Moci et al. [43] build a system to interpret British Sign 
Language. The datasets of British Sign Language used are a 
corpus for standard English with transcriptions to sign lan-
guage and a pre-processed corpus called Penn Treebank. 
The videos from the corpora are split into sentences. The 
ML architectures used are both based on RNNs and CNNs. 
The study shows good results in words, but sentences are not 
interpreted grammatically correct. This study can also utilize 
the fact that a British corpus existed with more than just a 
few examples per sign (something not available for SSL). 
This eliminates the need to create new data for the transfer 
learning process.

Dhi et al. [13] use transfer learning to interpret Indian Sign 
Language. A 3D camera is used to help with depth interpre-
tation, which differs from this paper as it aims to only use a 
basic RGB-webcam without that assistance. The data used 
are based both on images per sign but also depth images, 
which reduces the pre-processing time and also allows for 
better 3D processing. Further on, a pre-trained model based 
on the ImageNet dataset is used to increase the accuracy of 
the limited dataset. Then, several methods, including CNNs, 
are applied to the pre-trained model. The optimization algo-
rithms AdaDelta and Adam are used. The model achieves an 
accuracy of 66%. However, when applying the pre-trained 
model, the accuracy becomes lower, and they conclude that 
they would need a larger dataset (>1200). Because of the 
lack of data, the authors therefore not conclude whether the 
use of transfer learning was successful, something this paper 
manages to do thanks to a larger dataset.

Conclusion

In this paper, we proposed an end-to-end machine learning 
model based on CNNs to translate images from the hand 
alphabet of SSL. We demonstrate that the problem of having 
a small dataset of SSL data is solvable using transfer-learn-
ing with a pre-trained model: our model is able to classify 
sign images with an accuracy of 85%.

Our approach of using transfer-learning to boost the 
model accuracy might be replicable to many other sign 
languages. However, using neural networks, the impact of 
human supervision is minimized and some patterns that are 
too complex for human’s perception can be derived mean-
ing from. However, the use of neural networks also adds an 
abstraction layer in which humans have no control in under-
standing or changing. This means that the algorithm might 
do things it is not supposed to or derives too much meaning 
out of a binary situation. In this regard, the use of more tra-
ditional methods must not be neglected on the basis of new 
and more complex techniques.

In the long run, this research could benefit deaf people 
who have access to technology and enhance good health, 

quality education, decent work, and reduced inequalities. 
Suggestions for future work include integrating dynamic 
signing data to interpret words and sentences, evaluating 
the method on another sign language’s hand alphabet, and 
integrate dynamic interpretation in the web application for 
several letters or words to be interpreted in tandem.

Acknowledgements  This work is based on the thesis of Peterson and 
Halvardsson [44], which was conducted in collaboration with Prevas 
AB, a Swedish technical IT consulting firm focusing on several areas of 
industry such as energy, defense, and life science. It has also been par-
tially supported by the Wallenberg Autonomous Systems and Software 
Program (WASP) funded by Knut and Alice Wallenberg Foundation.

Funding  Open access funding provided by Royal Institute of 
Technology.

Declarations 

Conflict of Interest  The authors declare that there is no conflict of in-
terest regarding the publication of this article.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 World Health Organization. Addressing the rising prevalence of 
hearing loss. https://​apps.​who.​int/​iris/​bitst​ream/​handle/​10665/​
260336/​97892​41550​260-​eng.​pdf?​seque​nce=​1&​isAll​owed=y, 
2018. [Online; accessed 30-April-2020].

	 2.	 Paul PV. What’s it like to be deaf? reflections on signed language, 
sustainable development, and equal opportunities. American 
Annals of the Deaf Gallaudet University Press, 163, 2018.

	 3.	 Emmorey K. Language, Cognition, and the Brain: Insights From 
Sign Language Research. New Jersy: Lawrence Erlbaum Associ-
ates Inc; 2002.

	 4.	 Ray S. A quick review of machine learning algorithms. 2019 Inter-
national Conference on Machine Learning, Big Data, Cloud and 
Parallel Computing (COMITCon), 2019.

	 5.	 Kaur T. Implementation of backpropagation algorithm: A neural 
network approach for pattern recognition. International Journal of 
Engineering Research and Development, 1, 2012.

	 6.	 Rosenblatt F. Principles of Neurodynamics. New York: Spartan; 
1962.

	 7.	 Shi B, Martinez Del Rio A, Keane J, Brentari D, Shakhnarovich 
G, Livescu K. Fingerspelling recognition in the wild with itera-
tive visual attention. 2019 IEEE/CVF International Conference 
on Computer Vision (ICCV), pages 5399–5408, 2019.

http://creativecommons.org/licenses/by/4.0/
https://apps.who.int/iris/bitstream/handle/10665/260336/9789241550260-eng.pdf?sequence=1&isAllowed=y
https://apps.who.int/iris/bitstream/handle/10665/260336/9789241550260-eng.pdf?sequence=1&isAllowed=y


SN Computer Science (2021) 2:207	 Page 15 of 15  207

SN Computer Science

	 8.	 Atkinson PM, Tatnall ARL. Introduction neural networks in 
remote sensing. Int J Remote Sens. 1997;18.

	 9.	 Kim T, Keane J, Wang W, Tang H, Riggle J, Shakhnarovich G, 
Brentari D, Livescu K. Lexicon-free fingerspelling recognition 
from video: Data, models, and signer adaptation. Comput Speech 
Lang. 2017;46:209–32.

	10.	 Liang H, Fu W, Yi F. A survey of recent advances in transfer 
learning. 2019 IEEE 19th International Conference on Commu-
nication Technology (ICCT), 2019.

	11.	 Weissmann J, Salomon R. Gesture recognition for virtual reality 
applications using data gloves and neural networks. IJCNN’99. 
Int Jt Conf Neural Netw. 1999;3:2043–6.

	12.	 Quirk T, Kamaal K. How we used ai to translate sign language 
in real time. https://​blog.​coviu.​com/​2018/​09/​21/​how-​we-​used-​ai-​
to-​trans​late-​sign-​langu​age-​in-​real-​time/, 2018. [Online; accessed 
30-April-2020].

	13.	 Dhiman M. Sign language recognition, 2017.
	14.	 Shu Y, Chen Y, Xiong C. Application of image recognition tech-

nology based on embedded technology in environmental pollution 
detection. Microprocessors and Microsystems. 2020;75.

	15.	 Fujiyoshi H, Hirakawa T, Yamashita T. Deep learning-based 
image recognition for autonomous driving. IATSS Research. 
2019;43:244–52.

	16.	 Jovanović I, Miljanović I, Jovanović T. Soft computing-
based modeling of flotation processes - a review. Miner Eng. 
2015;84:34–63.

	17.	 O’Mahony Niall, Campbell Sean, Carvalho Anderson, Harap-
anahalli Suman, Hernandez Gustavo Velasco, Krpalkova Lenka, 
Riordan Daniel, Walsh Joseph. Deep learning vs. traditional 
computer vision. In Science and Information Conference, pages 
128–144. Springer, 2019.

	18.	 Bui DT, Tsangaratos P, Nguyen V-T, Van LN, Trinh PT. Compar-
ing the prediction performance of a deep learning neural network 
model with conventional machine learning models in landslide 
susceptibility assessment. Catena, 188:104426, 2020.

	19.	 Stergiou C, Siganos D. Neural networks. urveys and Presentations 
in Information Systems Engineering (SURPRISE), 96, 1996.

	20.	 Shanthi T, Sabeenian RS, Anand R. Automatic diagnosis of skin 
diseases using convolution neural network. Microprocessors and 
Microsystems. 2020.

	21.	 Xu W, Zhang X, Yao L, Xue W, Wei B. A multi-view cnn-based 
acoustic classification system for automatic animal species iden-
tification. Ad Hoc Netw. 2020;102.

	22.	 Ahmadvand P, Ebrahimpour R, Ahmadvand P. How popular cnns 
perform in real applications of face recognition. 24th Telecom-
munications Forum, 2016.

	23.	 Shen S, Sadoughi M, Li M, Wang Z, Hu C. Deep convolutional 
neural networks with ensemble learning and transfer learning 
for capacity estimation of lithium-ion batteries. Applied Energy. 
2020;260.

	24.	 Canziani A, Paszke A, Culurciello E. An Analysis of Deep Neural Net-
work Models for Practical Applications. arXiv:​1605.​07678, May 2016.

	25.	 Hecht-Nielsen R. Neural Networks for Perception - Computation, 
Learning, and Architectures, chapter III.3 - Theory of the Back-
propagation Neural Network, Elsevier Inc, 1992.

	26.	 Christiansen NH, Torbergsen Voie PE, Winther O, Hogsberg J. 
Comparison of neural network error measures for simulation of 
slender marine structures. Journal of Applied Mathematics, 2014.

	27.	 Maki A. Lecture 3 in course dd2421 machine learning.

	28.	 Manjunath AVN, Mufti M, Basant A, Guru DS, Shamim . One 
shot cluster based approach for the detection of covid-19 from 
chest x-ray images. 2020.

	29.	 Horiguchi S, Ikami D, Aizawa K. Significance of softmax-based 
features in comparison to distance metric learning-based features. 
IEEE Trans Pattern Anal Mach Intell. 2019;42(5):1279–85.

	30.	 Christian S, Wei L, Yangqing J, Pierre SScott Reed, Dragomir 
Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew R. Going 
deeper with convolutions. In Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition, pages 1–9, 2015.

	31.	 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, 
and Zbigniew Wojna. Rethinking the inception architecture for 
computer vision. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2818–2826, 2016.

	32.	 L. Liu. Biostatistical basis of inference in heart failure study. 
Heart Failure: Epidemiology and Research Methods, pages 
43–82, 2018.

	33.	 L. Biewald. Experiment tracking with weights and biases, 2020. 
Software available from wandb.com.

	34.	 J. Hernandez-Rebollar, N. Kyriakopoulos, R. Lindeman. A new 
instrumented approach for translating American sign language 
into sound and text. Sixth IEEE International Conference on Auto-
matic Face and Gesture Recognition, 2004.

	35.	 Glenn CM, Mandloi D, Sarella K, Lonon M. An image processing 
technique for the translation of asl finger-spelling to digital audio 
or text. Rochester, NY: In Instructional Technology and Education 
of the deaf Symposium; 2005. p. 1–7.

	36.	 S. Akram, J. Beskow, and H. Kjellstrom. Visual Recognition of 
Isolated Swedish Sign Language Signs. arXiv:​1211.​3901, Novem-
ber 2012.

	37.	 San-Segundo R, Barra R, Córdoba R, D’Haro LF, Fernández F, 
Ferreiros J, Lucas JM, Macías-Guarasa J, Montero JM, Pardo JM. 
Speech to sign language translation system for spanish. Speech 
Commun. 2008;50(11–12):1009–20.

	38.	 N. Pugeault, R. Bowden. Spelling it out: Real-time asl finger-
spelling recognition. In: 2011 IEEE International Conference on 
Computer Vision Workshops (ICCV Workshops), pages 1114–
1119, 2011.

	39.	 Nagendraswamy HS, Guru DS, Naresh YG, et al. Symbolic repre-
sentation of sign language at sentence level. International Journal 
of Image, Graphics and Signal Processing. 2015;7(9):49.

	40.	 O. Koller, H. Ney, and R. Bowden. Deep hand: How to train a 
cnn on 1 million hand images when your data is continuous and 
weakly labelled. In 2016 IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR), pages 3793–3802, 2016.

	41.	 B. Mocialov, G. Turner, K. Lohan, and H. Hastie. Towards con-
tinuous sign language recognition with deep learning. 2017.

	42.	 N.C. Camgoz, S. Hadfield, O. Koller, H. Ney, and R. Bowden. 
Neural sign language translation. IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 7784–7793, 2018.

	43.	 B. Mocialov, H. Hastie, G. Turner. Transfer learning for british 
sign language modelling. In Proceedings of the Fifth Workshop 
on NLP for Similar Languages, Varieties and Dialects (VarDial 
2018), pages 101–110, 2018.

	44.	 Halvardsson G, Peterson J. Interpretation of swedish sign language 
using convolutional neural networks and transfer learning, 2020.

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://blog.coviu.com/2018/09/21/how-we-used-ai-to-translate-sign-language-in-real-time/
https://blog.coviu.com/2018/09/21/how-we-used-ai-to-translate-sign-language-in-real-time/
http://arxiv.org/abs/1605.07678
http://arxiv.org/abs/1211.3901

	Interpretation of Swedish Sign Language Using Convolutional Neural Networks and Transfer Learning
	Abstract
	Introduction
	Background
	Convolutional Neural Networks (CNNs)
	Transfer Learning
	Evaluation Criteria for CNNs

	Materials and Methods
	Pre-trained Models
	Swedish Sign Language Dataset
	Image Acquisition
	Image Processing

	Model Retraining
	Model Testing
	Accuracy Improvement
	Model Pre-training and Optimization
	Hyper-parameters Tuning


	Experimental Results
	Accuracy Testing
	Optimization Algorithm and Pre-Trained Model
	Statistical Validation
	Evaluation of Spread and Consistency of Validation Accuracy

	Hyper-parameters Tuning
	Final Network Architecture

	Discussion
	Sign Language Delimitations
	Model Delimitations

	Related Work
	Sign Language Interpretation Using Human Supervision
	Sign Language Interpretation Using CNNs
	Sign Language Interpretation Using Transfer Learning

	Conclusion
	Acknowledgements 
	References




