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Abstract
Temporal networks have been successfully applied to analyse dynamics of networks. In this paper we focus on an approach 
recently introduced to identify dense subgraphs in a temporal network and we present a heuristic, based on the local search 
technique, for the problem. The experimental results we present on synthetic and real-world datasets show that our heuris-
tic provides mostly better solutions (denser solutions) and that the heuristic is fast (comparable with the fastest method in 
literature, which is outperformed in terms of quality of the solutions). We present also experimental results of two variants 
of our method based on two different subroutines to compute a dense subgraph of a given graph.
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Introduction

Real-world interactions are usually represented with a net-
work (or a graph), where elements are nodes and relations 
are edges. In many cases, real-world networks are dynamic, 
that is new interactions among nodes are observed or exist-
ent interactions cease. In order to represent this evolution, 
the definition of network must be extended to temporal net-
work, so that it includes information about the presence/
absence of edges over a temporal time. In particular, a tem-
poral network defines the relations between a set of nodes by 
considering a discrete number of timestamps and defining 
for each timestamp which edges (interactions) are active.

Temporal networks have been analyzed to model different 
kinds of interactions, such as human communication net-
works, social networks, citation networks, economic net-
works, brain networks and biological networks [15, 25]. For 
example, for human communication, consider the data that 
come from mobile phone operators. Two users that exchange 
data (via a phone call or a message sent) are nodes of the 
human communication network and their interaction hap-
pens over a time interval [15, 20]. In economic networks, 

studies of Bitcoin transactions [18] and credit card transac-
tions [28] can be naturally represented as a temporal set of 
interactions.

Dynamics of human activity (postings, defining new con-
nections, etc.) on social network platforms have been stud-
ied in many research communities [10, 26]. As an example, 
consider interesting events that occur in online social media, 
such as twitter hashtags, that can be represented as a tempo-
ral network [25]. In real-time story identification in online 
social networks, the aim is to identify emerging stories by 
looking for dense subgraphs induced by groups of tightly-
coupled entities [1].

Analyzing temporal networks provides valuable insights 
about their framework. Many problems have been studied 
under temporal dimension of networks, such as community 
detection [23, 6, 11], frequent subgraph discovery and tem-
poral motifs in time-dependent networks [27, 19], link-based 
object ranking [8, 13], connectivity for temporal networks 
[17], and more.

One of the most studied problem in static network mining 
is the densest subgraph problem. This problem asks for a 
subgraph of maximum density (or equivalently a subgraph 
of maximum average-degree density) of an input graph. 
The densest subgraph problem is particularly relevant for 
the identification of cohesive subgraphs, which is a funda-
mental property in graph minining, as such subgraphs are 
related to relevant parts of networks, such as communities. 
Although several definitions of cohesive subgraph have 
been proposed in literature, the dense subgraph problem is 
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one of the most applied in network mining for this purpose. 
The densest subgraph problem can be solved in polynomial-
time via Goldberg’s algorithm [14] and it admits a linear-
time greedy algorithm (called Charikar’s algorithm) with 1

2
-approximate factor [2, 5].

In several applications, finding dense subgraphs is rel-
evant to understand the properties of a network. A recent 
approach called Top-k-Overlapping Densest Subgraphs 
studied in [12, 7] asks for a collection of top k densest, 
possibly overlapping, distinct subgraphs and it has been 
applied also to biological networks [16]. A similar approach 
has been introduced in [4] to find a set of k subgraphs of 
maximum density, such that the maximum pairwise Jaccard 
coefficient of the subgraphs in the solution is bounded. The 
densest subgraph problem has been applied also to dynamic 
graphs [9, 21, 22].

Several real-world applications have temporal patterns 
and thus a natural problem in the analysis of temporal net-
works is the identification of dense subgraphs. It is interest-
ing to identify a set of intervals that show interesting struc-
tures (dense subgraphs). These subgraphs can be considered 
to be related to interesting episodes, for example a group of 
users highly interacting in some temporal interval.

The first attempt to consider the discovering of dense sub-
graphs in a temporal network is the k-Densest-Episodes 
problem, introduced in [25, 24]. k-Densest-Episodes, 
given a temporal graph over a certain time domain as input, 
asks for k ≥ 1 densest subgraphs that belong to disjoint time 
intervals. Such a solution can be determined by computing 
a segmentation of the time domain into not overlapping time 
intervals and by computing, for each interval of the segmen-
tation, a densest subgraph.

The k-Densest-Episodes problem is polynomial-time 
solvable [25]. The polynomial-time algorithm computes a 
segmentation via dynamic programming and a densest sub-
graph in each time interval of the segmentation via Gold-
berg’s algorithm. While k-Densest-Episodes is polyno-
mial-time solvable, the time complexity of the algorithm is 
not scalable for large networks [25], hence in [25] other 
approaches have been considered to tackle the problem. 
Rozenshtein et al in [25] introduced KGAPPROX, an algo-
rithm based on approximate dynamic programming 
(ApproxDP, with approximation parameter �1 ) and an 
approximate algorithm for the incremental densest subgraph 
problem (ApprDens, with an approximation parameter �2 )  
[9]. KGAPPROX has approximation factor 2(1 + �1)(1 + �2) 
and runs in O

(
k2

�1�
2
2

|T|mlog2n
)
 time, where k is the number 

of intervals of a graph with n vertices and m edges, and 
T ⊆ ℕ is a discrete time domain. It follows that decreasing 
the values of parameters �1 and �2 (thus improving the quality 
of the returned solution), increases the running time of 
KGAPPROX.

Aiming at designing a fast computational (even if not 
exact) method to solve k-Densest-Episodes, in this paper 
we design an efficient heuristic for this problem. Our heuris-
tic, called Local-search Temporal Densest Subgraphs 
(LSTDS), is based on two techniques. First, an initial seg-
mentation is computed in linear-time based on the number 
of active edges in timestamps. Then, we apply a local search 
approach that, at each iteration, aims at possibly increas-
ing the overall density of the k subgraphs by expanding an 
interval of the segmentation. The computation of a dense 
subgraph in each interval can be computed either with the 
Goldberg’s algorithm or with the Chiarikar’s algorithm.

In “Experimental analysisExperimental analysis” we 
present experimental results on LSTDS, both on synthetic 
and real-world networks. First, we compare LSTDS with the 
algorithm that computes an optimal solution (called OPTI-
MAL). Due to the time complexity of OPTIMAL, we con-
sider a very small dataset for this comparison. The results 
show that LSTDS find solutions close to that of OPTIMAL, 
with significantly lower running time.

Then we generate larger synthetic datasets for further 
comparisons. We consider how our heuristic is influenced by 
the algorithm considered for the densest subgraph computa-
tion, that is we compare LSTDS using Goldberg’s algorithm 
with LSTDS using Charikar’s algorithm. The results show 
that the solutions returned by LSTDS with Charikar’s algo-
rithm have density close to those returned by LSTDS based 
on Goldberg’s algorithm, while, as expected, LSTDS with 
Charikar’s algorithm is significantly faster.

Then, we compare LSTDS with Charikar’s algorithm 
with the KGAPPROX algorihtm given in [25] by consider-
ing three different values of �1 and �2 and by varying the 
value of k.

The results on synthetic datasets (see “Synthetic data-
sets”) show that the density of the solutions returned by 
LSTDS is greater than the solutions returned by the KGAP-
PROX algorithm for different values of parameters �1 and �2 . 
Moreover, LSTDS is significantly faster than KGAPPROX 
when the parameters �1 and �2 are small ( �1 = �2 = 0.01 and 
�1 = �2 = 0.1 ). For the largest values of �1 and �2 consid-
ered ( �1 = �2 = 2 ), the running times of KGAPPROX and 
LSTDS are close, while the solutions returned by LSTDS are 
significantly denser. We also compare LSTDS and KGAP-
PROX on the synthetic datasets by considering how well 
the algorithms find planted communities on 100 independ-
ent run. The results show that in many cases LSTDS finds 
closer solutions to the ground-truth subgraphs with respect 
to KGAPPROX.

The experiment on real-world datasets (see “Real-world 
datasets”) confirms that LSTDS is efficient and produce 
high-quality results with respect to KGAPPROX. Following 
[25], we use four different real-world datasets from social 
network platforms and emails. On these real-world datasets, 
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we vary the number of intervals k and compare the density 
of the returned solutions and the running time of LSTDS and 
KGAPPROX. The results show that increasing the number 
of intervals k has a higher impact on the running time of the 
KGAPPROX algorithm. In particular, when k is increased 
to 20, LSTDS is always faster than KGAPPROX.

The paper is organized as follows. In “Introduction”, 
we present some definitions and we give the formal defini-
tion of the k-Densest-Episodes problem. In “Method”, 
we introduce the Local-search Temporal Densest Sub-
graphs algorithm. In “Experimental analysis”, we present 
the experimental results. Finally, we conclude the paper in 
“Conclusion” with some open problems.

Definition 1  Let G = (V , T,E) be a temporal graph, an epi-
sode is defined as a pair (T, W) where T ∈ T  is a temporal 
interval and W is a subgraph of G[T], that is W = (VW ,EW ) , 
where VW ⊆ V  and EW ⊆ E[T] ∩ (VW × VW ).

Given a graph W = (VW ,EW ) , then the density of W, 
denoted by dens(W) , is defined as follows:

Now, we introduce the problem we will focus in the paper, 
called k-Densest-Episodes.

Problem 1  k-Densest-Episodes
Input: A temporal graph G = (V , T,E) , a positive number 

k ∈ ℕ.
Output: A set S of k episodes, S = {(Ij,Wj)} ∶ 1 ≤ j ≤ k} , 

where {Ij ∶ 1 ≤ j ≤ k} is a set of disjoint intervals, such that ∑k

j=1
dens(Wj) is maximized.

Consider the example of Fig.  1, a temporal network 
with six nodes {v1, v2, v3, v4, v5, v6} and five timestamps 
[0, 1, 2, 3, 4]. A solution of k-Densest-Episodes with 
k = 2 consists of two episodes, defined over the two disjoint 
intervals I1 = [0, 1] and I2 = [2, 4] (each interval is included 

dens(W) =
|EW |
|VW |

.

in a box). In interval I1 , there are five active interactions/
edges {⟨v1, v2⟩, ⟨v1, v3⟩, ⟨v2, v3⟩, ⟨v4, v5⟩, ⟨v5, v6⟩} . The first 
episode is (I1,W1) , where W1 is the subgraph induced by 
{v1, v2, v3} . In interval I2 , there are eight active interactions/
edges {⟨v1, v2⟩ , ⟨v1, v3⟩ , ⟨v2, v3⟩ , ⟨v3, v5⟩ , ⟨v4, v5⟩ , ⟨v4, v6⟩ , 
⟨v5, v6⟩} . The second episode is (I2,W2) , where W2 is the 
subgraph induced by {v1, v2, v3, v4, v5, v6}.

Method

In this section, we present our efficient heuristic (LSTDS) 
for k-Densest-Episodes problem. LSTDS is based on a 
dense subgraph method (which can be Charikar’s algorithm 
or Goldberg’s algorithm) to find a dense subgraph of an 
active graph.

Given a temporal graph G = (V , T,E) and parameter 
k > 0 , LSTDS first applies a preliminary step and then it 
iterates local search to possibly improve the density of the 
computed solution.

We start by describing the preliminary step. In this step, 
LSTDS starts by computing a partition of the time domain 
into k disjoint temporal intervals as follows. LSTDS defines 
a parameter � , where � =

∑
l∈T �El[t]�

k
 , that is the overall num-

ber of active edges divided by k. Then, the intervals are 
defined starting from t = 0 and moving to tmax . LSTDS 
defines an interval Ij = [tj,1, tj,2] , with j = 1, 2,… , k − 1 , 
where tj,1 is the minimum timestamp that does not belong to 
any defined interval and tj,2 is the minimum timestamp such 
that |E[Ij]| ≥ � . Once we have computed the k − 1-th tempo-
ral interval Ik−1 = [tk−1,1, tk−1,2] , the k-th interval is defined 
as Ik = [tk−1,2 + 1, tmax].

Then, for each interval, LSTDS applies a dense sub-
graph method to compute a preliminary solution, that is a 
set of episodes S = {(Ij,Wj) ∶ j = 1, 2,… , k} , of total density 
dens(S) =

∑k

j=1
dens(Wj).

Next, LSTDS uses a local-search strategy in order to 
possibly improve the density of a computed solution S of 
k-Densest-Episodes. The episodes of S are defined as 
marked and unmarked. An unmarked episode of S is an 

Fig. 1   A temporal network 
with six nodes and five times-
tamps [0, 1, 2, 3, 4]. For each 
timestamp, solid lines represent 
interactions (edges) that happen 
at that timestamp, while dotted 
lines represent interactions 
(edges) that happen at different 
timestamps
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episode that has not been considered as a candidate epi-
sode by local search strategy, while the marked episodes 
of S are those episodes that have already been considered 
as candidate episodes by local search. When a solution is 
improved by local search, a new solution S′ is created and 
each episode in it is defined as unmarked.

At each iteration of local search, LSTDS considers a 
candidate episode (Ic,Wc) , such that it is unmarked and Wc 
has minimum density among the subgraphs belonging to 
unmarked episodes of S.

Then, in order to improve the density of Wc , LSTDS 
tries to expand the interval Ic in three possible ways and 
then computes the density of the new solution, using a 
dense subgraph method in each modified interval. More 
precisely, consider parameter � =

|T|
4k

 as a value of expan-
sion. The value of the parameter � has been chosen in 
order to provide a significant improvement in the size of 
the interval associated with the candidate episode, while 
avoiding to reduce the length of intervals of neighbor epi-
sodes to a value close to 0. LSTDS applies the following 
three different ways for expanding the interval Ic of the 
candidate episode: 

1.	 Expand from left side, that is Ic,1 = [ti − �, tj] . This is 
possible only if the interval Ic doesn’t contain the initial 
timestamp, otherwise LSTDS doesn’t apply this expan-
sion.

2.	 Expand from right side, that is Ic,2 = [ti, tj + �] . This is 
possible only if the interval Ic doesn’t contain the last 
timestamp, otherwise LSTDS doesn’t apply this expan-
sion.

3.	 Expand from both sides, that is Ic,3 = [ti − �, tj + �].

The expansion steps may affect an interval of a neighbor 
episode, even if this latter episode is already marked. Notice 
that some expansion steps in some iteration may not be 
applied, if due to the expansion, the length of an interval of 
a neighbor episode becomes 0.

Then, for each of three ways of expansion Ic,l , 1 ≤ l ≤ 3 , 
we compute a solution Sc,l of k-Densest-Episodes, by 
applying a dense subgraph method in each interval of Ic,l . 
We define S� = arg max(dens(Sc,l)) , 1 ≤ l ≤ 3 , as the densest 
set of episodes among the three new solutions.

Then, we have two following cases: 

	 (I)	 dens(S�) > dens(S) , that is, the value of total density 
is improved by one of the new solutions. Then, we 
define S = S� and all the episodes in the updated S 
are unmarked. Therefore, LSTDS applies the local 
improvement on the updated set S of episodes.

	 (II)	 dens(S�) ≤ dens(S) , that is, the value of total density 
is not improved by one of the new solutions. Then, 
the candidate episode considered in this iteration 

is marked and a new iteration of local search is 
applied.

From a theoretical point of view, LSTDS stops when all 
episodes of S (possibly computed with some improve-
ments) are marked. Notice that this approach is guaranteed 
to stop. Indeed, each time a solution S′ improves a solution 
S, it follows that it has higher density. Thus solution S will 
not be reconsidered by LSTDS and after a finite number of 
improvements LSTDS will stop.

In practice, in order to speed up the algorithm, we bound 
the number of iterations itermax of LSTDS to k. The value 
k was chosen so that either the preliminary solution is 
improved by local search or each episode of the preliminary 
solution is marked.

L e m m a  1   L S D T S  h a s  t i m e  c o m p l e x i t y 
O(|T| + (k + itermax)fdense) , where fdense is the time required 
by a dense subgraph method and itermax is the bound on the 
number of iterations of LSTDS.

Proof  The preliminary step requires time O(|T| + kfdense) , 
since LSTDS reads the time domain T  from left to right to 
compute a segmentation and a dense subgraph method is 
applied in every interval of the segmentation.

Local search requires itermax iterations. In each iteration, 
an unmarked episode of minimum density is found in con-
stant time by using an ordered list of unmarked episodes. 
Then, a dense subgraph method is applied at most three 
times (once for the candidate episode and at most twice for 
the neighbor episodes). Thus, the overall time complexity of 
local search is O(itermaxfdense) and the overall time complex-
ity of LSDTS is O(|T| + (k + itermax)fdense) . 	�  ◻

Experimental Analysis

In this section, we present the experimental results for our 
heuristics (LSTDS) on synthetic and real-world datasets. 
We compare LSTDS with KGAPPROX with parameters 
�1 = �2 = 0.01 , �1 = �2 = 0.1 and �1 = �2 = 2 . The values 
of the parameters have been chosen according to [25]. We 
implemented LSTDS in Python (notice that also KGAP-
PROX was implemented in Python). The experiments were 
run on MacBook-Pro (OS version 10.15.1) with proces-
sor 2.9 GHzIntel Core i5 and 8GB 2133 MHz LPDDR3 of 
RAM, Intel Iris Graphics 550 1536 MB.

Synthetic Datasets

Synthetic temporal networks are generated based on Erdős-
Rényi model. Following [25], the temporal graph consists 
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of k planted communities (k planted subgraphs) and a back-
ground network. The background network G includes all 
nodes over the discrete time domain T  varying edge dis-
tribution according to average degree of the background 
graph G (below we specify how density changes in different 
experiments). The k planted communities G′ are defined in 
non-overlapping intervals and they have the same density.

Three families of synthetic networks, called Synthetic-
small, Synthetic1 and Synthetic2, are generated for differ-
ent purposes, varying time domain, number of nodes/edges, 
background graph and communities.

A small synthetic network called Synthetic-small is 
generated for comparison with optimal solution. Synthetic-
small contains a background graph with 20 nodes, while 
each community has 4 nodes and the time domain consists 
of 60 timestamps.

For the other two cases (Synthetic1 and Synthetic2), 
the network is generated in a time domain T  of length 
|T| = 1000 and the edges of each planted community in G′ 
are generated in intervals consisting of 100 timestamps.

Synthetic1 tests the robustness of the algorithms against 
background noise, by varying the average degree of the 
background graph from 0.5 to 4, and by fixing the density 
of the planted graphs to 4. Synthetic2 tests the robustness 
of the algorithms against density of the planted communi-
ties (containing 8 nodes), by varying their density from 2 to 
7, where the average degree of the background network is 
fixed to 2.

Comparison with Optimal Solution

We evaluate quality of solutions and running times of 
LSTDS versus OPTIMAL, where LSTDS applies Charikar’s 
algorithm (denote by LSTDS-Charikar’s) and Goldberg’s 
algorithm (denoted by LSTDS-Goldberg’s) as the dense sub-
graph method. Following [25], OPTIMAL is the dynamic 
programming algorithm that computes an optimal solution 
of k-Densest-Episodes, and it applies the Goldberg’s algo-
rithm to compute a densest subgraph of an active graph. Due 

to the time complexity of OPTIMAL, we consider only the 
Synthetic-small dataset for this comparison analysis.

The number k of intervals varies from 2 to 14. Table 1 
illustrates the value of the total density and the running 
time of the considered methods. The results on Synthetic-
small show that LSTDS is able to find near-optimal solu-
tions, while it is significantly faster than OPTIMAL. Notice 
that the time required by OPTIMAL highly increases as k 
increases, and that thus OPTIMAL is not scalable for large 
graphs, even for moderate value of k.

LSTDS‑Charikar’s vs LSTDS‑Goldberg’s

We evaluate quality of the solutions and running times of 
LSTDS varying the dense subgraph method, that is Chari-
kar’s and Goldberg’s algorithm. The goal of this comparison 
is to understand the impact of the dense subgraph method 
on the efficiency and the quality (density of the returned 
solutions) of LSTDS.

As reported in Table 1, LSTDS-Charikar’s returns solu-
tions that are close to those computed by LSTDS-Gold-
berg’s. Notice that LSTDS-Charikar’s is at least 25 times 
(for k = 14 ) and at most 35 times (for k = 2 ) faster than 
LSTDS-Goldberg’s algorithm on this small dataset.

For this purpose, we use also the two synthetic datasets 
Synthetic1 and Synthetic2, averaged over 100 independent 
runs for k = 3 . In Table 2, we report average, minimum and 
maximum density improvement1 between these two vari-
ants of LSTDS. Using Goldberg’s algorithm, the average 
improvement is equal to 0.3% , the maximum improvement is 
equal to 3% and the minimum improvement is equal to −2% . 
This negative result, that is the fact that by using Charikar’s 
algorithm we obtain better solutions than using Goldberg’s 
algorithm, is due to the fact that the candidate episodes cho-
sen by the two variants of LSTDS can be different. Hence, 

Table 1   Comparison between 
LSTDS-Charikar’s algorithm, 
LSTDS-Goldberg’s algorithm 
and OPTIMAL on Synthetic-
small

Running time is in seconds

k LSTDS-Charikar’s LSTDS-Goldberg’s Optimal

Time Density Time Density Time Density

2 0.02 5.25 0.70 5.25 9.23 5.25
4 0.08 9.34 2.52 9.42 80.64 9.71
6 0.13 12.04 4.45 12.10 137.39 12.72
8 0.23 13.58 6.61 14.11 247.77 14.53
10 0.32 15.66 9.08 16.48 526.66 17.14
12 0.42 16.97 11.48 18.36 664.67 19.62
14 0.57 20.87 14.66 21.44 911.79 22.52

1  The improvement is given by the difference between the densities 
of the solutions returned by LSTDS-Goldberg’s and LSTDS-Chari-
kar’s, divided by the density of LSTDS-Charikar’s.



	 SN Computer Science (2021) 2:158158  Page 6 of 11

SN Computer Science

in some cases LSTDS-Charikar’s algorithm may choose 
and improve a candidate episode that is not considered by 
LSTDS-Goldberg’s algorithm, for example because is not 
that of minimum density. Notice that in 64% of the examples 
the two variants return solutions with the same density.

As for the running time, we report in Table 2, average, 
minimum and maximum running time over 100 examples. 
As reported in Table 2, LSTDS-Charikar’s algorithm with 
respect to LSTDS-Goldberg’s algorithm is faster on aver-
age around 31 times, minimum 23.5 times and maximum 
39 times.

The results of Table 2 confirm that LSTDS-Charikar’s 
finds solutions having density close to those reported by 
LSTDS-Goldberg’s, with significant lower running time. 
Due to the performance of the two variants of LSTDS, 
in the rest of the experimental analysis we consider only 

LSTDS-Charikar’s algorithm. From now on, we refer to 
LSTDS-Charikar’s algorithm simply as LSTDS.

Comparison Analysis: LSTDS vs KGAPPROX

We evaluate the performance of LSTDS and KGAPPROX 
with �1 = �2 = 0.01 , �1 = �2 = 0.1 and �1 = �2 = 2 . Tables 3 
and 4 report the quality of the solutions and running time of 
LSTDS and KGAPPROX over 100 independent runs. For 
this medium size synthetic datasets, we use moderate values 
for the k ( k = 3 and k = 5).

The density and running time reported in Table 3 for 
the considered algorithms are averaged over 100 examples. 
Table 4 reports, for 100 examples, the average, minimum 
and maximum density improvement2 of LSTDS with respect 
to the KGAPPROX with �1 = �2 = 0.01 , �1 = �2 = 0.1 and 
�1 = �2 = 2.

Table 3 shows that the solutions computed by LSTDS are 
denser on average than those returned by KGAPPROX, for 
all the values of �1 and �2 considered. Moreover, LSTDS is 
significantly faster than the KGAPPROX algorithm when 
�1 = �2 = 0.01 and �1 = �2 = 0.1 . More precisely, for k = 3 , 
LSTDS on average is 59.5 times faster than KGAPPROX 
with �1 = �2 = 0.01 and 3.7 times faster than KGAPPROX 
with �1 = �2 = 0.1 . For k = 5 , LSTDS is 82.5 times faster 
than KGAPPROX with �1 = �2 = 0.01 and 4.9 times faster 
than KGAPPROX with �1 = �2 = 0.1 . When �1 = �2 = 2 , 
KGAPPROX is faster than LSTDS, although the speed of 
the two methods are comparable. More precisely, for k = 3 
and k = 5 KGAPPROX is respectively 1.7 and 1.9 times 
faster than LSTDS. However, notice that in this case the 

Table 2   Comparison between LSTDS-Charikar’s and LSTDS-Gold-
berg’s algorithm

The values of the times are average, minimum and maximum over 
100 independent synthetic networks for k = 3 . The value of the 
density are averaged, minimum and maximum of improvement of 
LSTDS-Goldberg’s with respect to LSTDS-Charikar’s

Time (sec.) Density

Charikar Goldberg Charikar vs Goldberg

Average 0.29 9.09 0.003
Min 0.10 2.35 − 0.02
Max 0.43 16.86 0.03
solutions with 

equal density
– – 64 out of 100

Table 3   Comparison between 
LSTDS and KGAPPROX 
algorithm with �

1
= �

2
= 0.01 , 

�
1
= �

2
= 0.1 and �

1
= �

2
= 2

The results are average over 100 independent runs. The running time is in seconds

k LSTDS-Charikar KGAP. �
1
= �

2
= 0.01 KGAP. �

1
= �

2
= 0.1 KGAP. 

�
1
= �

2
= 2

Time Den. Time Den. Time Den. Time Den.

3 0.29 14.45 17.27 12.53 1.08 11.71 0.17 7.35
5 0.72 24.03 59.42 20.39 3.56 18.34 0.38 9.68

Table 4   Comparison of the 
solutions (densities) between 
LSTDS and KGAPPROX with 
�
1
= �

2
= 0.01 , �

1
= �

2
= 0.1 

and �
1
= �

2
= 2

The value of the density are averaged, minimum and maximum of improvement of LSTDS with respect to 
the KGAPPROX over 100 independent runs. The running time is in seconds

k KGAP. �
1
= �

2
= 0.01 KGAP. �

1
= �

2
= 0.1 KGAP. �

1
= �

2
= 2

Average Min Max Average Min Max Average Min Max

LSTDS 3 0.22 0.01 0.79 0.29 0.02 0.79 0.93 0.50 1.33
LSTDS 5 0.26 0.03 0.86 0.38 0.03 0.86 1.43 0.56 2.11

2  Similarly to the previous case, improvement is given by the differ-
ence between the densities of LSTDS and KGAPPROX divided by 
the density of KGAPPROX.
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solutions returned by LSTDS are at least 1.96 denser than 
those computed by KGAPPROX.

Table 4 shows that on average LSTDS improves the den-
sity of 22% , for k = 3 , and of 26% , for k = 5 , with respect 
to the best solution returned by KGAPPROX (that is when 
�1 = �2 = 0.01 ). Moreover, in the worst case the improve-
ment of LSTDS with respect to KGAPPROX is of 1% , for 
k = 3 , and of 3% , for k = 5.

Detecting Communities Respect to Ground‑Truth

The goal of this subsection is to evaluate both algorithms 
by considering how well they detect planted communities. 
We compare LSTDS and KGAPPROX with �1 = �2 = 0.01 
since it is the variant of KGAPPROX that returns the best 
density on synthetic datasets (Synthetic1 and Synthetic2).

For both algorithms, mean precision, recall, and F-meas-
ure with respect to the ground-truth subgraphs are reported 
in Fig. 2, for k = 3 , and in Fig. 3, for k = 5.

Figures 2 and 3 (first row) show the results for the com-
parison on Synthetic1, for k = 3 and k = 5 , respectively. 

Precision, recall and F-measure of LSTDS are higher than 
those of KGAPPROX (in particular for k = 5 ) for all values 
of background noise. When the average degree of the back-
ground network increases more than 3, precision, recall and 
F-measure of KGAPPROX decreases significantly for k = 3 
and k = 5 . For LSTD, recall does not decrease significantly 
and precision and F-measure decrease more moderately than 
for KGAPPROX.

The second rows in Figs. 2 and 3, show the results for the 
comparison on Synthetic2, for k = 3 and k = 5 , respectively. 
For both values of k ( k = 3 and k = 5 ), recall of LSTDS is 
always higher than that of KGAPPROX for all values of 
average degree in planted communities. Furthermore, as 
reported in Figs. 2 and 3, in most of the cases precision and 
F-measure of LSTDS are higher than for KGAPPROX.

Real‑World Datasets

We consider four different real-world datasets taken from 
social network platforms and emails, that have been used in 
[25] for testing KGAPPROX.

Fig. 2   Precision, recall and F-measure on synthetic datasets for k = 3 . The two figures on the left show the performance of KGAPPROX with 
�
1
= �

2
= 0.01 , while the two figures on the right show the performance of LSTDS
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The first dataset, Students3, is taken from logs activ-
ity of students at the University of California, Irvine from 
2004.06.27 to 2004.10.26. Nodes represent students and 
edges are messages exchanged between students (direction 
is ignored). The Students dataset contains 10000 interac-
tions, 889 nodes and time domain T  of length |T| = 1000.

Enron4 dataset was originally made public and posted 
by the Federal Energy Regulatory Commission5 from 
1980.01.01 to 2002.02.13. Nodes represent mostly senior 
managements and edges are e-mail communications between 
them. The Enron dataset contains 6245 interactions, 1143 
nodes and time domain T  of length |T| = 815.

Facebook dataset is a subset of Facebook activity in 
the New Orleans regional community from 2006.05.09 to 
2006.08.20. Nodes represent users and edges represent users 
posting on the walls of other users. The Facebook dataset 

contains 10000 interactions, 4117 nodes and time domain 
T  of length |T| = 9984.

Twitter dataset represent interaction between the users 
of the Twitter platform in Helsinki from 2010.07.31 to 
2010.10.31. Nodes represent users and edges represent 
tweets that mention other users. The Twitter dataset con-
tains 11868 interactions, 4605 nodes and time domain T  of 
length |T| = 9968.

In Table 5 we report the total density and running time of 
LSTDS and KGAPPROX (for the three values of �1 and �2 
we have considered in this analysis) on real-world datasets. 
We run KGAPPROX fixing an upper bound of 10000 sec-
onds for running time, therefore in Table 5 one entry is miss-
ing because KGAPPROX was not able to solve the problem 
within the considered upper bound. As shown in Table 5, 
only in one case KGAPPROX (when �1 = �2 = 0.01 ) returns 
a solution denser than that reported by LSTDS (Enron data-
set, for k = 5 ). However, notice that, for this case, the density 
of the solutions returned by the two methods are very close 
(the solution returned by KGAPPROX is only 0.057% denser 
than that returned by LSTDS) and that KGAPPROX has a 

Fig. 3   Precision, recall and F-measure on synthetic datasets for k = 5 . The two figures on the left show the performance of KGAPPROX with 
�
1
= �

2
= 0.01 , while the two figures on the right show the performance of LSTDS

3  http://​toreo​psahl.​com/​datas​ets/#​onlin​esoci​alnet​work.
4  http://​www.​cs.​cmu.​edu/​~./​enron/.
5  https://​www.​ferc.​gov.

http://toreopsahl.com/datasets/#onlinesocialnetwork
http://www.cs.cmu.edu/%7e./enron/
https://www.ferc.gov
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significantly higher running time (2314.33 vs 3.57 seconds). 
Moreover, LSTDS improves the solution for k = 5 (for these 
four real-world datasets) of at most 36% and on average of 
around 13% with respect to the best solution returned by 
KGAPPROX. For k = 10 , LSTDS improves the quality 
of the solution at least 1.4% , at most 64% and on average 
around 23% with respect to the best solution returned by 
KGAPPROX.

As for the running time LSTDS is always faster than 
KGAPPROX with �1 = �2 = 0.01 and �1 = �2 = 0.1 , a result 
which confirms the comparison on synthetic dataset. For 
�1 = �2 = 2 , KGAPPROX and LSDTS have similar running 
time. However, notice that in this case the solutions returned 
by LSTDS are denser at least 54% and at most 122% , for 
k = 5 , and at least 77% and at most 161% , for k = 10 than 
those computed by KGAPPROX. The fastest variant of 
KGAPPROX (with �1 = �2 = 2 ) has lower running time 
than LSTDS when k = 5 in 3

4
 of the cases, when k = 10 in 1

4
 

of the cases. Moreover, as reported in Table 6, for k = 20 in 
all the cases LSTDS is faster than fastest KGAPPROX with 
�1 = �2 = 2.

In order to further compare the speed of LSTDS and 
KGAPPROX, in particular for the dependency on k, we 
present experimental results for k = 20 . We consider only 
the values �1 = �2 = 2 , since, as illustrated in Table 5, when 
�1 = �2 = 0.01 and �1 = �2 = 0.1 , KGAPPROX is always 
slower than LSTDS. Hence, in Table 6, we report the total 
density and the running time of LSTDS and KGAPPROX 
with �1 = �2 = 2 . As for the previous cases, the solutions 
returned by LSTDS are much denser than those computed 
by KGAPPROX, on average 104% , at least 76% and at most 
109% than those returned by the fastest KGAPPROX (with 
�1 = �2 = 2).

When k = 20 , LSTDS is always faster than KGAPPROX. 
More precisely, according to Table 6, LSTDS is faster than 
KGAPPROX on average 2.85 times, at most 6.94 times (for 
the Students dataset) and at least 1.04 times (for the Twitter 
dataset). This result shows that the value of k has a greater 

impact on the running time of the KGAPPROX algorithm 
with respect to the running time of LSTDS.

Conclusion

In this paper, we have proposed a efficient heuristic (called 
LSTDS) for k-Densest-Episodes, a problem recently 
introduced to identify dense subgraphs in a temporal net-
work. We have presented experimental results on synthetic 
and real-world datasets. First, we have compared LSTDS 
with OPTIMAL (the optimal algorithm for k-Densest-
Episodes) on a small synthetic dataset, and the results 
have shown that LSTDS finds near-optimal solutions, with 
a significantly lower running time. We have also consid-
ered how the performances of LSTDS are influenced by the 
dense subgraph method applied (Goldberg’s algorihtm and 
Charikar’s algorithm). The experimental results on synthetic 
datasets have shown that, as expected, LSTDS with Chari-
kar’s algorithm is more efficient. Furthermore, the solutions 
returned by LSTDS with Charikar’s algorithm are close to 
those returned by LSTDS with Goldberg’s algorithm. Then 
we have compared LSTDS (with Charikar’s algorithm) with 
KGAPPROX [25], an approximation algorithm designed for 
k-Densest-Episodes, on synthetic and real-world datasets. 
The experimental results have shown that LSTDS performs 

Table 5   Comparison between 
LSTDS and KGAPPROX with 
�
1
= �

2
= 0.01 , �

1
= �

2
= 0.1 

and �
1
= �

2
= 2 on real-world 

datasets for k = 5 and k = 10

Running time is in seconds

k Set LSTDS KGAP. �
1
= �

2
= 0.01 KGAP. �

1
= �

2
= 0.1 KGAP. 

�
1
= �

2
= 2

Time Den. Time Den. Time Den. Time Den.

5 Students 4.66 26.37 1660.40 25.13 39.19 21.83 4.19 15.34
Enron 3.57 41.59 2314.33 41.83 47.95 39.71 4.93 18.72
Facebook 15.38 14.20 88.05 10.43 35.59 10.43 9.68 9.20
Twitter 14.85 23.19 8357.91 20.44 180.88 19.96 6.63 14.45

10 Students 9.95 39.60 7696.06 38.40 163.82 34.95 11.22 20.30
Enron 7.97 64.16 8597.59 63.27 186.19 55.93 17.63 24.55
Facebook 32.04 25.39 223.98 15.45 100.35 15.45 32.42 14.2
Twitter 34.17 34.36 – – 670.83 30.07 19.78 19.45

Table 6   Comparison between LSTDS and KGAPPROX with 
�
1
= �

2
= 2 on real-world datasets for k = 20

Running time is in seconds

k Set LSTDS KGAP. �
1
= �

2
= 2

Time Den. Time Den.

20 Students 23.33 63.41 36.18 30.29
Enron 9.50 93.62 65.95 38.49
Facebook 65.36 42.50 123.77 24.20
Twitter 64.64 56.17 67.49 29.79
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better than KGAPPROX in terms of density and running 
time, thus LSTDS is a promising method to analyze large 
temporal networks.

There are interesting open problems related to k-Dens-
est-Episodes and LSTDS. First, from a theoretical point of 
view it would be interesting to understand if LSTDS has a 
constant approximation factor. Moreover, it would be inter-
esting to provide conditional lower bound on k-Densest-
Episodes, as done for other graph problems [3]. From 
an experimental point of view, it would be interesting to 
consider different approaches to the preliminary phase of 
LSTDS and to study the performances of other local search 
strategies.
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