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Abstract
Pattern Search is a family of gradient-free direct search methods for numerical optimisation problems. The characterising 
feature of pattern search methods is the use of multiple directions spanning the problem domain to sample new candidate 
solutions. These directions compose a matrix of potential search moves, that is the pattern. Although some fundamental 
studies theoretically indicate that various directions can be used, the selection of the search directions remains an unad-
dressed problem. The present article proposes a procedure for selecting the directions that guarantee high convergence/high 
performance of pattern search. The proposed procedure consists of a fitness landscape analysis to characterise the geometry 
of the problem by sampling points and selecting those whose objective function values are below a threshold. The eigenvec-
tors of the covariance matrix of this distribution are then used as search directions for the pattern search. Numerical results 
show that the proposed method systematically outperforms its standard counterpart and is competitive with modern complex 
direct search and metaheuristic methods.

Keywords  Pattern search · Local search · Fitness landscape analysis · Covariance matrix · Numerical optimisation

Introduction

Modern numerical optimisation problems are often com-
plex and do not allow the application of gradient-based 
algorithms, see [4]. Some of the main reasons why a gradi-
ent-based approach may be infeasible or impractical are the 
following (see [10]):

–	 the first derivatives or objective functions are not avail-
able, e.g. the function is the result of a simulation or an 
experiment;

–	 the numerical approximation of the gradient is compu-
tationally expensive and leads to an unacceptable over-
head;

–	 the objective function is noisy, e.g. coming from meas-
urements or uncertain data, and the gradient is therefore 
unreliable.

In these cases, a derivative-free method may be the only fea-
sible option [3, 10]. Derivative-free methods are algorithms 
that search for a null-gradient point, i.e. the closest local 
optimum, without calculating the gradient of the objective 
function.

Derivative free methods can be divided into two 
macro-categories:

–	 model-based methods construct a surrogate model of 
the objective function, e.g. by sampling points and inter-
polating them, and then calculating the gradient of the 
surrogate model to search for the optimum (some modern 
brilliant examples are reported in [8, 9]);

–	 direct search methods use only the objective function 
values to explore the domain and search for the optimum.
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Direct search methods may employ various strategies to 
sample and test new points [7]. Amongst the many strate-
gies, we can consider the following to be some of the most 
prevalent in the literature:

–	 linesearch methods iteratively identify a unidimensional 
direction trans-passing the n-dimensional space, and then 
optimise the objective function along this direction, see 
[2];

–	 pattern search methods use multiple directions to gener-
ate a set of potential moves (a pattern) to cover the entire 
domain, see [23, 27];

–	 simplex methods define a geometric figure (a simplex 
that is the generalisation of the triangle) and makes use 
of its vertices to set the exploratory rules, see [37];

–	 population-based metaheuristics define a large cat-
egory of methods where multiple candidate solutions 
are stored and recombined to sample new points. Some 
methods refer to an evolutionary metaphor, e.g. the clas-
sical examples of Genetic Algorithms and Evolution 
Strategies [13], while some others refer to the motion 
of animals/particles, e.g. the Particle Swarm Optimisa-
tion [28] and Differential Evolution [43] (the latter is 
not associated with a swarm metaphor but is often con-
sidered a swarm intelligence algorithm in terms of its 
operation, see [50]).

A scheme summarising this partial taxonomy is reported 
in Fig. 1.

Pattern search methods have been used in the past sev-
enty years, and there have been various implementations 
spanning from early versions preceding electronic comput-
ers, to modern hybrid versions embedding global search 

mechanisms [45, 46], as well as studies on dynamic optimi-
sation [36]. This article focuses on pattern search and pro-
poses a novel method belonging to this family of methods. 
The design of the proposed method is based on a fitness 
landscape analysis approach: in order to have a problem 
specific solver, the optimisation problem is analysed by an 
Artificial Intelligence tool and the results of the analysis are 
used to design the algorithm, see [7, 25, 32, 33]. In the spe-
cific case, the proposed pattern search aims to detect a pref-
erential pattern that suits the specific problems. This article 
extends our previous work presented in [42]. More specifi-
cally, while in [42] we introduced a specific implementa-
tion of a pattern search method that uses a fitness landscape 
analysis, we extensively present here the fitness landscape 
analysis method and its applicability to the entire pattern 
search family. Furthermore, we investigate for the first time 
the theoretical standpoint of the proposed class of methods 
and provide a theoretical justification of the method.

The remainder of this article is organised in the following 
way. "Basic Notation and Pattern Search" section provides 
the background of the pattern search method, describes its 
evolution over the years, and highlights the open problem 
of selecting the pattern. "The Proposed Covariance Pat-
tern Search" section describes the proposed pattern search 
variant from an implementation perspective. "Theoretical 
Justification of Covariance Pattern Search" section analyses 
the theoretical foundations of the proposed pattern search 
and justifies the conjecture on which the method is based. 
"Numerical Results" section experimentally validates the 
proposed method by comparing it against the pattern search 
method (without the fitness landscape analysis approach) 
and against modern algorithms. "Limitations of Covariance 
Pattern Search and Future Developments" section highlights 
the limitations and points out the opportunities for future 
work following this preliminary study. Finally, "Conclusion" 
section provides the conclusions to this study.

Basic Notation and Pattern Search

To clarify the notation employed, we will refer to the mini-
mization problem of an objective function f (�) in the con-
tinuous domain. The candidate solution � is a vector of n 
design variables in a hyper-cubical decision space D ⊂ ℝ

n:

In its original implementation, Pattern Search (PS) main-
tains a single solution and, while moving along the axes, 
improves upon its performance (objective function value). 
This procedure was part of the experimental description 

� =
(
x1, x2,… , xn

)
.

Fig. 1   Overview of gradient-free optimisation methods
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carried out by Nicholas Metropolis and Enrico Fermi, see 
[11, 29]. They were identifying the parameters of a physi-
cal model to minimise the error between the model and the 
experimental data. For this purpose, they varied one param-
eter of the model at a time by using a certain step size, and 
when no improvement in this error function was detected the 
step size was halved until it was smaller than a predefined 
threshold, see [1].

More formally, a starting solution � is inputted. Subse-
quently, the current best solution � is varied and a trial solu-
tion �� generated. The trial solution:

is generated by applying the update rules/search moves of a 
PS for each design variable ∀i = 1, 2,… , n:

where � is the step size or exploratory radius. The expression 
xi ± � means that, according to the specific PS implementa-
tion, either or both the points xt

i
= xi + � and xt

i
= xi − � are 

visited. Let us consider the orthonormal basis of ℝn

and rewrite the update equations for the i th design variable 
in the vector form

where � ⋅ �i indicates the product of the scalar step size � 
and the versor �i.

If a trial solution is found to have outperformed the cur-
rent best solution, it replaces it, i.e. if f

(
��
) ≤ f (�) then 

� = �� (or equivalently � ← ��).
If we modify the notation to include the iteration index, 

k, where �k is the candidate solution at the k th iteration, the 
trial solution can be generated by an equation of the type

and if f
(
��
) ≤ f

(
�k
)
 then �k+1 = �� . As a note for all the 

Pattern Search implementations in this section, the scalar 
� could be a vector if it is desired to individually assign a 
different step size to each design variable. This can happen 
when the algorithmic designer possesses auxiliary knowl-
edge of the problem or if range of variability is different 
from one design variable to another (D is hyper-rectangular).

�� =
(
xt
1
, xt

2
,… , xt

n

)

xt
i
= xi ± �

�1 = (1, 0,… 0)

�2 = (0, 1,… 0)

…

�n = (0, 0,… 1)

�� = � ± � ⋅ �i

(1)�� = �k ± � ⋅ �i

Original Pattern Search

The early Pattern Search (PS) implementations were steepest 
descent methods [21]: all the variables were explored before 
a new current solution was selected. For this reason, 2n trial 
vectors are sampled before the best trial vector is selected 
as the new current best.

Let us consider two trial solutions ��i+ and ��i− which 
have been generated at the iteration k for the design variable 
i, where:

The mechanism makes the algorithm revisit the same solu-
tions on a regular basis. For example, in ℝ2 , an exploration 
involves four trial solutions. When a new current best is 
selected the new exploration includes one already calculated 
point. Fig. 2 illustrates this issue of revisiting solutions, 
where it is shown that if the successful trial point is ��i+ , 
one search move would revisit the solution �k.

To avoid wasting a large portion of the computational 
budget by revisiting previously calculated candidate solu-
tions, a memory-based mechanism is often employed. The 
original naive version of Pattern Search, taking into account 
this revisiting issue, is reported in Algorithm 1.

(2)
��i+ = �k + � ⋅ �i

��i− = �k − � ⋅ �i

Fig. 2   The issue of revisiting solutions through Pattern Search. Let 
�k be the current best, and ��i+ ��i− ( i = 1, 2 ) (marked in blue) be 
the points visited during the exploration. If, for example, ��1+ is the 
new current best then the following exploration visits the four points 
marked in red. Hence, the algorithm would revisit �k
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As highlighted in [29], this approach can be accurate 
since it extensively explores the neighborhood before decid-
ing on a search direction. However, this implementation is 
likely to require a large number of objective function eval-
uations before it detects a solution close to the optimum. 
Consequently, this approach can be impractical in high-
dimensional domains.

At the opposite end of the spectrum, there are implemen-
tations of Pattern Search that are designed not to explore 
the entire neighborhood. In these implementations, Pattern 
Search can select and move as soon as a trial solution with a 
lower objective function value than that of the current best 
is detected. A greedy approach can yield good results when 
addressing large scale optimisation problems. For example, 
one search operator used in the large scale framework in [49] 
is fundamentally a greedy Pattern Search implementation 

Fig. 3   Search moves of gPS: two (n) successes lead to a diago-
nal move. Dashed lines indicate failed moves, solid lines successful 
moves, and red the line the move from the previous current best to the 
new current best

that, for each design variable, samples a trial solution and if 
the first move fails it attempts to explore the opposite direc-
tion. More specifically, this greedy Pattern Search, herein 
referred to as gPS, first samples:

and if this trial point is worse than the current best �k , it 
attempts to sample:

before moving to the following design variable. It must be 
observed that the step size is asymmetric in the two direc-
tions. This is a preventative measure to avoid revisiting pre-
viously visited solutions. This idea has also been employed 
within Memetic Computing frameworks, see [5, 7, 24, 52].

To illustrate the functioning of gPS a graphical represen-
tation of the moves in two-dimensional space ℝ2 is shown 
in Fig. 3. In two dimensions there are three potential out-
comes. (1) For each design variable, one move is successful: 
two trial solutions are accepted and then a diagonal move is 
performed; (2) One move is successful: the move is along 
one axis; (3) All the moves are unsuccessful: there is no suc-
cessful move and the step size is halved. In more than two 
dimensions, a diagonal move is produced by at least two suc-
cesses while the other two potential outcomes remain identi-
cal. Figure 3 displays the fist outcome with a diagonal move.

The details of Pattern Search according to the implemen-
tation in [49] is reported in Algorithm 2.

(3)�� = �k − � ⋅ �i

(4)�� = �k +
�

2
⋅ �i



SN Computer Science (2021) 2:171	 Page 5 of 22  171

SN Computer Science

Hooke–Jeeves Pattern Search

Although this paper and several recent studies [48] iden-
tify Pattern Search as a family of optimisation methods 
which dates back to the 1940s with Metropolis and Fermi’s 
method, the term “Pattern Search” was only coined in the 
1960s by Hooke and Jeeves [23]. In fact, Hooke and Jeeves 
referred to their method as “Direct Search”, but it is more 
commonly known today as the Hooke–Jeeves Method or 
Hooke–Jeeves Pattern Search, see [4, 47].

The Hooke–Jeeves Pattern Search (HJPS) [23] is com-
posed of two search moves, namely the exploratory and 
pattern moves, the latter of which has subsequently given 
the name to the method. The exploratory move scans all 
the decision variables and, in an approach similar to that 
of gPS in Algorithm 2, attempts one direction unless it 
fails, in which case it attempts the opposite direction. More 
specifically, at the generic k th iteration HJPS samples 
∀i = 1, 2… , n at first the trial solution:

(5)�� = �k + � ⋅ �i

and if this move fails ( f
(
��
)
> f

(
�k
)
 ), it attempts to sample:

If the moves in all directions fail, then the radius (step size) 
is halved. HJPS addresses the revisiting issue by applying 
the pattern move: if the exploratory move succeeded and 
a new current best solution is selected, a move along the 
direction identified by the previous and current best (the 
direction connecting the two points) is attempted. Let us 
indicate the previous best solutions with ���� and the current 
best solution with �k , then the pattern move generates a new 
trial solution with:

where � is a scalar named acceleration factor and usually set 
equal to 2. A new exploration is then carried out around the 
point �� . If the exploration fails, the following exploration is 
centered on �k , while if the exploration succeeds, it contin-
ues. Algorithm 3 displays the working principles of HJPS.

(6)�� = �k − � ⋅ �i.

(7)�� = ���� + �
(
�k − ����

)
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An illustration of the HJPS search logic is shown in 
Fig. 4. It can be seen that HJPS and gPS perform very simi-
lar search moves, see Figs. 4 and 3. The main difference 
is the double (possibly diagonal) step in HJPS. The latter 
can be viewed as an attempt to exploit a promising search 
direction.

Fig. 4   Search moves of HJPS: diagonal move due to the exploratory 
move and double step due to the pattern move. Dashed lines indicate 
failed moves, solid lines successful moves, the red line the explora-
tory move from the previous current best to the new current best, and 
the black line the pattern move

Generalised Pattern Search

Virginia Torczon in [48] conceptualised Pattern Search as a 
family of direct search methods, i.e. optimisation algorithms 
that do not require calculations of the gradient. Hence, Pat-
tern Search is a family of algorithms characterised by two 
elements:

–	 a set of search directions spanning the decision space;
–	 a trial step vector endowed with a step variation rule.

For example, in the original Pattern Search and gPS meth-
ods, the directions are given by the orthonormal basis 
B� = {�1, �2,… , �n} in both the possible orientations, e.g. 
�i and −�i . The vector of step sizes is a vector of length 
2n, whose elements are all � for the original Pattern Search 
method, or �

2
 and � for the gPS method. Pattern Search algo-

rithms differ in their implementations of the exploratory 
moves, e.g. a steepest descent or greedy logic.

This generalization of Pattern Search should be consid-
ered in relation to the definition of the multidirectional Pat-
tern Search introduced in [12], where directions different 
from those identified by the design variables (axes of the 
problem) are used during the search.
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The Generalized Pattern Search (GPS) introduced in [48] 
is a framework that includes all the algorithms within this 
category. Formally, with reference to the k th iteration, the 
search directions are determined by two matrices. The first 
is a non-singular matrix, namely the basis matrix, and it 
is indicated with � ∈ ℝ

n×n where ℝn×n is the set of square 
matrices of real numbers of order n. The second is a rectan-
gular matrix, namely the generating matrix, and it is indi-
cated with �k ∈ ℤ

n×p where ℤn×p is the set of matrices of 
relative numbers of size n × p with p > 2n and rank n. The 
matrix �k can be partitioned as:

where �k is a non-singular matrix of order n, −�k is the 
opposed matrix of �k , and �k is a n × (p − 2n) matrix that 
contains at least the null column vector � . The search direc-
tions are given by the columns of the matrix:

that is referred to as the pattern. Thus a pattern can be seen 
as a repository of search directions, with n of them being the 
direction of a basis of ℝn , n of them being the same direc-
tions but in the opposite orientation, and potentially some 
additional directions.

The GPS k th trial iteration along the i th direction is the 
vector �k , defined as:

where �k is a positive real number and �i
k
 is the i th column 

of the matrix �k . The parameter �k determines the step size 
while ��i

k
 is the direction of the trial step.

�k =
(
�k,−�k,�k

)

(8)�k = ��k =
(
��k,−��k,��k

)

(9)�k = �k��
i
k

If �k is the current best solution at the iteration k, the trial 
point generated by means of the trial step would be:

The set of operations that yields a current best point is called 
the exploratory move (coherently with the implementations 
seen above). The exploratory move succeeds when a solu-
tion with better performance is detected, and fails when no 
update of the current best occurs. Different Pattern Search 
implementations employ different strategies, e.g. by attempt-
ing only one trial vector per step or exploring all the col-
umns of �k�k . However, as explained in [48], Pattern Search 
implementations belong to the GPS framework only if the 
following hypotheses, namely the Strong Hypotheses, are 
verified.

Strong Hypotheses

Hypothesis 1  �k is generated by the pattern �k or, in other 
words, is a column vector of the matrix �k�k . The length is 
determined by the scalar �k.

Hypothesis 2  If there exists a column vector � of (
��k,−��k

)
 such that f

(
�k + �

)
< f

(
�k
)
 , then the 

exploratory move must produce a trial step �k such that 
f
(
�k + �k

)
< f

(
�k
)
.

Hypothesis 3  The update of �k should follow some rules. 
In the case of a failed exploratory move, �k has to decrease, 
however, in the case of success �k must either remain the 
same or increase.

The pseudocode of GPS is given in Algorithm 4.

(10)��k = �k + �k.



	 SN Computer Science (2021) 2:171171  Page 8 of 22

SN Computer Science

It is worth mentioning that GPS may include a Pattern 
Search implementation where the search directions are 
updated during its operation.

The Proposed Covariance Pattern Search

The proposed algorithm is a GPS that allocates the initial 
part of its computational budget to the analysis of the prob-
lem, in order to determine a problem-specific pattern �k . 
This section describes the implementation aspects of the 
proposed algorithm, namely the Covariance Pattern Search 
(CPS). This section, just like the implementation, is divided 
into two parts: 

1.	 Fitness Landscape Analysis;
2.	 Algorithmic Search.

Fitness Landscape Analysis

A number of candidate solutions/points are sampled in the 
decision space D and their objective function values are cal-
culated. The function values are compared with a threshold 
thr and those values that are below thr are saved in a data 
structure, while the others are discarded. The purpose of this 
operation is to have a sample of points whose distribution 
describes the geometry of the problem.

To illustrate this fact let us consider the following four 
popular objective functions in two dimensions within 
[−100, 100]2 , see e.g. [30].

Sphere f (�) = x2
1
+ x2

2

Ellipsoid f (�) = 50x2
1
+ 200x2

2

Bent Cigar f (�) = x2
1
+ 106x2

2

Rosenbrock f (�) = 100
(
x2
1
− x2

)2
+
(
x1 − 1

)2

Fig. 5   Sampling of points 
within [−100, 100]2 for shifted 
and rotated Sphere, Ellipsoid, 
Bent Cigar, and Rosenbrock 
functions below the threshold 
values 103, 3 × 104 , 106 , and 
5 × 103 , respectively

Fig. 6   Distribution of points for a rotated ellipsoid associated with a 
covariance matrix � and eigenvector matrix �
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If we apply the procedure described above for these four 
problems after shifting and rotation, we obtain four sets of 
points that are distributed as shown in Fig. 5.

Let us consider the scenario where out of the points sam-
pled in D ⊂ ℝ

n , a set of m vectors/candidate solutions have 
an objective function value below the threshold thr:

�� =
(
x1
1
, x1

2
,… , x1

n

)
�� =

(
x2
1
, x2

2
,… , x2

n

)
…

�� =
(
xm
1
, xm

2
,… , xm

n

)

Subsequently, the n eigenvectors of the matrix � are cal-
culated by means of Cholesky Factorisation, see [38, 44]. 
These eigenvectors are the columns �i of a matrix �:

The directions of the eigenvectors are then used by the algo-
rithms to perform the search. Algorithm 5 displays the pseu-
docode of the Fitness Landscape Analysis.

� =
(
�1, �2,… , �n

)
.

Algorithmic Search

If � is the matrix of the eigenvectors, we propose a GPS 
whose basis matrix is � and its pattern matrix �k is thus:

the trial step along the ith direction is:

and if �k is the current best solution at the k th iteration, the 
corresponding trial solution ��k is determined by:

To exemplify the content of the proposal, let us see the pro-
posed implementations of gPS and HJPS. Since the main 
novel characteristic of the proposed idea is the use of the 
eigenvectors of a covariance matrix, we will refer to the 
implemented algorithms as Covariance Pattern Search, and 
these two implementations as greedy Covariance Pattern 
Search (gCPS) and Hooke-Jeeves Covariance Pattern Search 
(HJCPS).

In the case of gCPS in two dimensions ( n = 2 ), the basis 
matrix is the eigenvector matrix � while the generating 
matrix �k is:

(11)�k = ��k =
(
��k,−��k,��k

)

(12)�k = �k��
i
k

(13)��k = �k + �k.

and are allocated in the data structure �.
These points can be interpreted as the samples of a mul-

tivariate statistical distribution characterised by a mean 
vector:

and a covariance matrix:

where:

and:

� =
(
�1,�2,… ,�n

)
=

1

m

(
m∑
i=1

xi
1
,

m∑
i=1

xi
2
,… ,

m∑
i=1

xi
n

)

� =

⎛⎜⎜⎜⎝

c1,1 c1,2 … c1,n
c2,1 c2,2 … c2,n
… … … …

cn,1 cn,2 … cn,n

⎞⎟⎟⎟⎠

cj,j =
(
1

m

) m∑
i=1

((
xi
j
− �j

)(
xi
j
− �j

))

cj,l =
(
1

m

) m∑
i=1

((
xi
j
− �j

)(
xi
l
− �l

))
.
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and �k = � (which gets halved every time the exploration 
fails). Thus, the total set of possible moves is determined 
by ��k.

For example, the distribution in Fig. 6 obtained from a 
rotated ellipsoid function is associated with a covariance 
matrix:

whose eigenvector matrix would be:

One potential trial step could be:

�k =

(
1

2
0 − 1 0

1

2

1

2
− 1 − 1 0

0
1

2
0 − 1

1

2
− 1 − 1

1

2
0

)

� =

(
55.362 67.026

67.026 109.40

)

� =

(
−0.82881 0.55953

0.55953 0.8.2881

)

�k =�k��
6
k
= �

(
−0.82881 0.55953

0.55953 0.82881

)( 1

2

−1

)

=�

(
−0.97393

−0.54905

)

The pattern move attempts to search further along the direc-
tion of the successful exploratory move. With reference to 
Fig. 4, the successful exploratory move corresponds to the 
column:

In this case, the pattern move adds a vector to the explora-
tory move as follows:

Thus, the total possible move is:

Thus, the second submatrix of the generating matrix is:

Additionally, for HJCPS, �k = � and follows the halving 
logic. The other steps are analogous to what is shown for 
gCPS.

In the general n dimensional case, the trial step �k can be 
represented as a linear combination of eigenvectors:

where ∀i, �i ∈ {0,−�, �} and �� ∈ {1, �}.
Let us consider a given problem that has been analysed as 

shown in Algorithm 5 with the eigenvectors made available. 
The variation operators composing the exploratory moves 
for gPS and HJPS become: 

gPS gCPS

�� = � − � ⋅ �i �� = � − � ⋅ �i

�� = � +
�

2
⋅ �i �� = � +

�

2
⋅ �i

HJPS HJCPS
�� = � + � ⋅ �i �� = � + � ⋅ �i

�� = � − � ⋅ �i �� = � − � ⋅ �i

�� = ���� + �
(
� − ����

)
�� = ���� + �

(
� − ����

)

 For the sake of clarity, the gPS in Algorithm 2 is then revis-
ited and displayed in Algorithm 6.

��
k =

(
1 0 − 1 0 1 1 − 1 − 1 0

0 1 0 − 1 1 − 1 − 1 1 0

)

�i
k
=

(
1

−1

)
.

�
(
� − ����

)
= �

(
1

−1

)
.

(
1

−1

)
+ �

(
1

−1

)
=

(
1 + �

−1 − �

)

��
k =

(
1 + � 0 − 1 − � 0 1 + � 1 + � − 1 − � − 1 − � 0

0 1 + � 0 − 1 − � 1 + � − 1 − � − 1 + � 1 + � 0

)
.

�k = ��
(
�1�

1 + �2�
2 +…+ �n�

n
)

which can be re-written as:

In other words, in the n dimensional case every trial vector 
is the linear combination of the eigenvectors:

where the coefficients �i can take only three values: 
∀i, �i ∈ {0,−�,

�

2
}.

In the case of HJCPS in two dimensions ( n = 2 ), the basis 
matrix is the eigenvector matrix � . The generating matrix �k 
is slightly more complex due to the presence of the pattern 
move. Let us partition the matrix �k as:

where ��
k refers to the exploratory move and ��

k refers to 
the pattern move. The first submatrix is analogous to gCPS, 
i.e.:

�k = ��
(
1

2
�1 − �2

)
= �

(
1

2
�1�1 − �2

)
.

�k = �1�
1 + �2�

2 +…+ �n�
n

�k =
(
��

k,�
�
k

)



SN Computer Science (2021) 2:171	 Page 11 of 22  171

SN Computer Science

Theoretical Justification of Covariance 
Pattern Search

This section provides a theoretical justification of the pro-
posed approach. We structured this section into three parts 
addressing three subproblems: 

1.	 If the covariance matrix contains enough eigenvectors 
to generate a pattern �k.

2.	 If the proposed method is guaranteed to converge and 
under what hypotheses the convergence occurs.

3.	 Why the choice of eigenvectors as search directions of 
a pattern is proposed in this study.

To address the first question, we have to recall some basic 
linear algebra notions. Different square matrices (or different 
endomorphisms) of order n can have a different number of 
linearly independent eigenvectors, see [38]. Thus, in the gen-
eral case we might have a matrix � of order n and only n − 1 
linearly independent eigenvectors. In that case, the matrix � 
would be rectangular and there would not be enough direc-
tions to span the entire decision space.

In our case the covariance matrix � is guaranteed to be 
symmetric due to the commutativity of the product of num-
bers ∀j, l:

cj,l =
(
1

m

) m∑
i=1

((
xi
j
− �j

)(
xi
l
− �l

))

=
(
1

m

) m∑
i=1

((
xi
l
− �l

)(
xi
j
− �j

))
= cl,j.

Since the covariance matrix � is symmetric, as long as it is 
calculated by means of at least n + 1 linearly independent 
samples (vectors), the following properties are verified (see 
[38] for the proofs).

Proposition 1  Properties of the covariance matrix �.

–	 The eigenvalues of � are all real.
–	 Any two eigenvectors of � corresponding to two distinct 

eigenvalues are orthogonal.
–	 The covariance matrix � is always diagonalisable, that 

is, there exists a non singular matrix � of order n such 
that:

is diagonal.
–	 The covariance matrix � can be diagonalised by means 

of an orthogonal matrix �, that is �−� = �� , whose col-
umns are the eigenvectors of �.

Thus, in relation to the proposed method we can provide 
the following observation.

Observation 1  For an optimisation problem and an esti-
mated covariance matrix � from Algorithm 5, a non singu-
lar matrix of eigenvectors � and a pattern containing the 
direction of the eigenvectors �k =

(
��k,−��k,��k

)
 can 

always be found.

�−��� = �
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Regarding the second subproblem, the convergence of the 
method, we consider the study in [48] about the convergence 
of GPS and summarise some of the theoretical results in the 
following theorem.

Theorem 1  Let f be a continuously differentiable function on 
a compact neighborhood L

(
��
)
 . The sequence {�k} produced 

by GPS in Algorithm 4 with respect to the Strong Hypotheses 
converges to a null gradient point �:

where � is the null vector.

Since from a theoretical standpoint, this article does not 
propose a completely new algorithm but a novel implemen-
tation of GPS (that is the use of the basis matrix � = � ), 
the convergence of Covariance Pattern Search algorithms is 
subject to the same hypotheses discussed in [48] and sum-
marised in Theorem 1.

Let us verify the strong hypotheses for gCPS.

–	 Hypothesis 1: �k is a linear combination of the eigenvec-
tors that is a column of �k�k.

–	 Hypothesis 2: from Algorithm 6, when a better solution 
is found there is an update in the value of � . At the end of 
the exploratory moves the sum of all the updates contains 
the trial step �k.

lim
k→∞

|∇f (�)| = �

–	 Hypothesis 3: from Algorithm 6 , � remains the same 
when there is an update and decreases when the explora-
tory move failed

Similar considerations can be made about HJCPS. This leads 
to the following observation.

Observation 2  The proposed Covariance Pattern Search 
algorithms converge to a null gradient point (possibly a 
local optimum) under the same conditions of GPS. If the 
hypotheses on the problem are not valid then Covariance 
Pattern Search algorithms are heuristics.

From a practical position, the guarantee of convergence 
as in Theorem 1 is not itself a guarantee that the algorithm 
is usable and successful to solve real-world problems. The 
first reason is that many real problems are not continuously 
differentiable, and often the function is not available. The 
second reason is that a null gradient point (not necessarily a 
local optimum) is guaranteed to be found after a very large 
number of steps. On the other hand, the demand of real-
world optimisation is to detect a high-performance solution 
in a short time.

In this sense, the convergence rate (convergence speed 
is the term used for heuristics and metaheuristics) is a very 
important characteristic of a search algorithm. The proposal 
to use eigenvectors of the covariance matrix is driven by 

Fig. 7   Sampling of points 
within [−100, 100]2 and corre-
sponding eigenvector directions 
for shifted and rotated Sphere, 
Ellipsoid, Bent Cigar, and 
Rosenbrock functions below the 
threshold values 103 , 7 × 104 , 
106 , and 9 × 103 , respectively
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this motivation which is then summarised in the following 
conjecture.

Conjecture 1  If a distribution of points describes the geom-
etry of the problem, a Pattern Search performed along the 
directions of the eigenvectors (of the covariance matrix of 
this distribution) has higher convergence rate than the same 
Pattern Search performed along the directions of any other 
basis of ℝn.

Justification. To understand the rationale of the proposal 
we should consider the fundamental meaning of the covari-
ance matrix of a multivariate distribution, see [14].

The diagonal elements of the matrix directly describe the 
geometry of the problem since they represent the extent of 
the distribution along with a variable. A diagonal element 
much larger in value than that of other diagonal elements 
means that the distribution is stretched along with a design 

variable. In our case, the distribution approximates the basin 
of attraction [21] and the shape of the contour plot, and that 
is the geometry of the problem. With reference to Fig. 5, for 
the sphere the diagonal elements of the covariance matrix 
are very similar to each other while for a (non-rotated) ellip-
soid the diagonal elements would greatly differ from each 
other.

The extradiagonal elements represent the correlation 
between pairs of variables. A large value means a high corre-
lation while zero means no correlation. In our case, since the 
points are a level set, the correlation is meant with respect 
to the objective function: zero means that the function can 
be decomposed over the variables while a large value means 
that this decomposition is not possible. To intuitively visual-
ise this fact, the covariance matrix associated with a sphere 
or a non-rotated ellipsoid would be diagonal while that asso-
ciated to rotated problems, such as rotated bent cigar, would 
be full.

As shown above, Pattern Search algorithms generate the 
trial vector as a linear combination of vectors along with the 
directions of the basis � , hence they search the optimisation 
problem by decomposing it along with the directions of � . 
The vast majority of Pattern Search algorithms, e.g. [4, 23, 
41], use � equal to the identity matrix � , i.e. a search along 
with the directions of the design variables1. This strategy is 
efficient in solving problems whose associated covariance 
matrix is diagonal, however, they are far less efficient in 
solving problems whose associated covariance matrix is full, 
e.g. rotated bent cigar.

The main idea behind this proposal is to choose those 
directions that diagonalise the covariance matrix. The pro-
posed Covariance Pattern Search algorithms can be seen 
as methods that initially perform a change of coordinates 
and then search along with the variables of the new refer-
ence system. The problem can then be decomposed along 

Fig. 8   Functioning of gPS 
(yellow markers) and gCPS 
(red markers). The result of the 
fitness landscape analysis and 
directions of the eigenvectors 
are also displayed. The error of 
the algorithms is reported on 
the top of each figure

Fig. 9   Plot of the directional derivatives of gPS (continuous lines) 
and gCPS (dashed lines) along with their respective search directions 
(columns of matrix � ) on the bent cigar problem in two dimensions

1  An exception is multidirectional search [12] where the pattern fol-
lows a very different simplex-based logic.
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these new variables resulting in efficient Pattern Search 
Algorithms.

This concept is broadly used in other contexts, especially 
in Data Science, and is closely related to Principal Compo-
nent Analysis [26]. To better understand the direction of the 
exploration, Fig. 7 displays distribution points and eigen-
vector directions for the same problems displayed in Fig. 5

To better understand the functioning of the method, Fig. 8 
illustrate the points visited by gPS and gCPS respectively to 
solve the rotated ellipsoid and rotated bent cigar problems. 
Both the algorithms have been run until 𝜌 < 10−75 or a maxi-
mum function evaluation budget of 100000 × n . The points 
visited by gPS are marked in yellow while those visited by 
gCPS are marked in red. The final objective function errors 
are reported on the top of the figure.

The rotated ellipsoid in two dimensions is an easy prob-
lem for both the algorithms. However, we may observe 
that gCPS (red markers) reaches the axis of the ellipsoid in 
one step and then descend through it through the optimum, 
while gPS needs more steps to approach it. We found that 
gCPS reached its final value in 829 objective function calls 
(including the fitness landscape analysis to which a budget 
of 500 function calls was allocated) while gPS required 1005 
objective function calls.

For the bent cigar, the advantages of the proposed Covar-
iance Pattern Search over the standard gPS approach are 
more evident. The directions provided by the design vari-
ables appear unsuitable to descend the gradient along the 
thin stripe characterising the geometry of this problem. As a 
result, gPS fails to detect the local minimum. The proposed 
gCPS moves along the main dimension of the stripe (i.e. the 
direction of one eigenvector) and efficiently detects a point 
that is very close to the theoretical optimum.

Fig. 10   Plot of the directional derivatives of gPS (continuous lines) 
and gCPS (dashed lines) along their respective search directions (col-
umns of matrix � ) on the ill-conditioned ellipsoid in ten dimensions

Table 1   Basins of attraction functions

Function name Function calculation Basin of attraction 
in 2D

Sphere ������

� ← �p(� − �)

f1 ←
∑n

i=1
z2
i

Ellipsoid ������

� ← �p(� − �)

f2 ←
∑n

i=1
50
�
i2zi

�2

Ill-conditioned 
ellipsoid

������

� ← �p(� − �)

f3 ←
∑n

i=1

�
106

� i−1

n−1 z2
i

Bent cigar ������

� ← �p(� − �)

f4 ← z2
1
+ 106

�∑n

i=2
zi
�2

Discus ������

� ← �p(� − �)

f5 ← 106z2
1
+
�∑n

i=2
zi
�2

Sum of powers ������

� ← �p(� − �)

f6 ←

�
∑n

i=1
��zi��

�
2+4

i−1

n−1

�

To further justify Conjecture 1, with reference to the 
problem in Fig. 8, we performed the following test. From the 
optimum we performed ten steps of size � = 0.01 along the 
directions of the matrix � for gPS and gCPS. In other words, 
we performed ten steps in the directions of the variables and 
the directions of the eigenvectors of the covariance matrix 
� . At each step, we calculated and saved the objective func-
tion value. With the calculated objective function values we 
calculated the numerical gradient of the objective functions 
along these directions. Figure 9 illustrates the directional 
derivative along the directions of gPS (continuous line) and 
gCPS (dashed lines).

The test shows that gCPS optimises the objective function 
along a high derivative direction and a low derivative direc-
tion. The fitness landscape analysis identifies a search direc-
tion along which small steps quickly lead to large improve-
ments and another direction along which the problem is 
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where � is the shifting vector (the same used in [31]) and 
�p is a rotation matrix (a randomly generated orthogonal 
matrix) set for the p th problem.

The Pattern Search variants in this article have all been 
run with the initial radius � = 0.1× domain width = 20 . This 
parameter has been set by using the indication in [49] and 
then tuning for our testbed. The threshold thr for the prob-
lems in Table 1 are reported in Table 2. The threshold values 
have been set empirically by testing values of the codomain 
that allowed that some points were stored in the data struc-
ture � while some others were discarded. See Section 6 for 
further considerations about this issue.

Although Pattern Search is a deterministic algorithm, its 
performance can depend on the initial point and, for Covari-
ance Pattern Search, its performance depends also on the 

Table 2   Thresholds thr in 10, 
30, and 50 dimensions

n f1 f2 f3 f4 f5 f6

10 104 109 5 × 108 109 109 104

30 5 × 104 5 × 1011 2 × 109 2 × 109 108 105

50 105 5 × 1013 5 × 109 2 × 109 5 × 107 3 × 105

Table 3   Average error avg ± standard deviation � over 51 runs for 
the problems listed in Table 1: greedy Pattern Search (gPS) vs greedy 
Covariance Pattern Search (gCPS) with gCPS reference for Wilcoxon 
Test (W)

gPS gCPS

avg � avg � W

10 dimensions
f1 0.0000e+00 0.0000e+00 2.7768e-29 1.4329e-29 −
f2 1.8198e+03 1.9132e+03 1.1062e-03 3.4915e-03 +
f3 7.0241e+04 9.5716e+04 4.1064e+03 6.6534e+03 +
f4 5.3135e+03 3.7177e+03 3.3017e-06 9.9933e-06 +
f5 9.3944e+03 1.2996e+04 3.0984e-25 5.3080e-25 +
f6 5.5475e+01 9.4900e+01 2.6276e-05 1.3087e-05 +
30 dimensions
f1 0.0000e+00 0.0000e+00 1.3562e-28 5.1167e-29 −
f2 1.1636e+08 2.3036e+08 6.9435e+05 6.4717e+05 +
f3 2.9155e+05 2.4771e+05 1.8116e+04 1.1143e+04 +
f4 5.2064e+03 5.3776e+03 4.6182e-13 3.2833e-12 +
f5 8.4596e+03 3.4177e+04 5.3340e-28 3.2325e-27 +
f6 1.2427e+02 1.7049e+02 6.4462e-05 1.7549e-05 +
50 dimensions
f1 0.0000e+00 0.0000e+00 4.1998e-28 9.9033e-29 −
f2 4.3878e+08 8.6339e+08 1.6151e+07 1.3937e+07 +
f3 3.7522e+05 2.7408e+05 5.1237e+04 3.4165e+04 +
f4 5.6398e+03 7.4905e+03 5.5627e-22 1.4649e-21 +
f5 2.8261e+01 1.3792e+02 7.8822e-27 1.2792e-26 +
f6 1.8153e+02 2.0042e+02 1.0584e-04 2.3244e-05 +

nearly “flat”. Unlike gCPS, the standard gPS directions 
present intermediate gradient features.

We repeated the test for all the problems listed in Sect. 5 
for 2, 10, 30, and 50 dimensions. Apart from the sphere 
where all the lines of the gradient plot collapse in one 
line, the fitness landscape analysis of gCPS systematically 
detected a direction whose gradient was higher than that 
of any variable directions of gPS. In other words, the CPS 
mechanism appears to be able to detect some preferential 
directions along which a pattern search displays a high con-
vergence rate.

To show an example of the gradient in higher dimen-
sions, Fig. 10 illustrates the results of the test for the rotated 
ill-conditioned ellipsoid in ten variables, see Section 5 for 
details on the function.

The results in Fig. 10 clearly show that gCPS performs 
its search along one direction where the derivative is higher 
than any variable directions of gPS.

Numerical Results

Results in this section are divided into two subsections:

–	 Validation of the Covariance Pattern Search.
–	 Comparison against other algorithms.

To simulate the local search conditions we have considered 
and adapted a sample of the functions from the CEC 2013 
benchmark (focussing on unimodal problems), see [31]. We 
have used two versions of the ill-conditioned ellipsoid since 
the use of two versions was relevant to demonstrate the per-
formance of the local search. The ill-conditioned ellipsoid f3 
is the one in [30] while the ellipsoid f2 has been introduced 
by us in this study. The condition numbers of both f2 and f3 
worsen with the dimensionality of the problem. However, 
they worsen with the dimensionality at different speeds, see 
Table 1 . Each problem has been scaled to 10, 30, and 50 
dimensions and has been studied in [−100, 100]n . Table 1 
displays the functions and illustrates the shape of the cor-
responding basins of attraction. For each problem, a shift 
and a rotation has been applied: with reference to Table 1 
the variable:

� = �p(� − �)
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sampled points used to estimate the covariance matrix. 
Therefore, for each experiment, 51 independent runs have 
been performed and the associated mean value and ± stand-
ard deviation have been displayed.

Furthermore, to statistically investigate the question of 
whether the application of the proposed method results in 
performance gains, the Wilcoxon rank-sum test has been 
applied, see [17, 51]. In the Tables in this section, a “+” 
indicates that gCPS significantly outperforms competitor, a 
“-” indicates that the competitor significantly outperforms 
gCPS, and a “=” indicates that there is no significant differ-
ence in performance.

All the algorithms in this section have been executed with 
a budget of 10000 × n function calls where n is the problem 
dimensionality. To guarantee a fair comparison, the budget 
of the proposed Covariance Pattern Search has been split 
into two parts: 5000 × n function calls have been used to 
build the covariance matrix � , whilst 5000 × n function calls 
have been spent to execute the algorithm. Due to the nature 
of Pattern Search, i.e. deterministic local search, the bound 
handling has been performed by saturating the design vari-
able to the bound. We preferred the saturation to the bound 
over the toroidal insertion or reflection [13] since the latter 
two mechanisms would be equivalent to the sampling of a 
point. This sampling would disrupt the gradient estimation 
logic of Pattern Search.

Validation of Covariance Pattern Search

To validate the functioning of Covariance Pattern Search 
we compared gPS and gCPS detailed in Algorithms 2 and 
6, respectively. It must be remarked that the algorithms have 
the same structure except for the matrix �.

Table 3 shows the numerical results of gPS vs gCPS.

Fig. 11   Performance trend (logarithmic scale) of gPS vs gCPS for the 
ellipsoid f3 in 10D

Fig. 12   Performance trend (logarithmic scale) of gPS vs gCPS for the 
discus f5 in 30D

Table 4   Average error avg ± standard deviation � over 51 runs for the 
problems listed in Table 1 subject to a random rotation at each run: 
greedy Pattern Search (gPS) vs greedy Covariance Pattern Search 
(gCPS) with gCPS reference for Wilcoxon Test

gPS gCPS

avg � avg � W

10 dimensions
f1 0.0000e+00 0.0000e+00 3.6603e-29 2.0133e-29 −
f2 1.2340e+03 1.2462e+03 3.7683e-04 1.1634e-03 +
f3 1.3739e+05 2.3991e+05 2.9764e+03 2.7313e+03 +
f4 3.5615e+03 6.8974e+03 3.8205e+01 1.0569e+02 +
f5 7.8684e+03 1.1461e+04 1.0087e-23 3.1002e-23 +
f6 1.3676e+02 4.3249e+02 2.6698e-05 1.0627e-05 +
30 dimensions
f1 0.0000e+00 0.0000e+00 1.3810e-28 5.9062e-29 −
f2 9.8109e+07 2.6281e+08 7.2563e+05 9.0521e+05 +
f3 1.7506e+05 1.8632e+05 1.7248e+04 1.0875e+04 +
f4 5.8954e+03 1.0909e+04 2.2632e-01 1.6163e+00 +
f5 1.1985e+03 5.2373e+03 7.9322e-26 4.2633e-25 +
f6 1.3485e+02 1.8275e+02 6.4239e-05 1.8127e-05 +
50 dimensions
f1 0.0000e+00 0.0000e+00 4.2394e-28 9.7414e-29 −
f2 8.2205e+08 1.7628e+09 1.5302e+07 1.2051e+07 +
f3 3.1913e+05 2.8232e+05 5.8034e+04 3.0679e+04 +
f4 9.3975e+03 1.0959e+04 3.8535e-21 1.4037e-20 +
f5 1.2639e+02 4.5309e+02 2.8811e-26 1.2290e-25 +
f6 1.8761e+02 1.8060e+02 9.1000e-05 1.8870e-05 +
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Numerical results in Table 3 show that, apart from f1 , 
the proposed gCPS consistently outperforms the standard 
gPS across the three dimensions under consideration. The 
problem f1 is characterised by a central symmetry, mean-
ing that the rotation is ineffective and any reference sys-
tem would broadly perform in the same way. In this sense, 
gCPS “wastes” half of its budget to find a search direction 
whilst gPS uses its entire budget to search for the optimum. 
With regards to the other five problems, the use of the eigen-
vectors of � as search directions not only systematically 
improves upon gPS but appears to solve some problems for 
which gPS would fail, see f4 and f5.

Figures 11 and 12 illustrate the performance trends of 
gPS and gCPS for the ill-conditioned ellipsoid f3 and the 
discus f5 functions, respectively (see Table 1).

As shown in both Figs. 11 and 12, the performance trend 
of gCPS does not lead to any improvement for the first half 
of the budget. This is due to the computational cost that we 
have allocated to the fitness landscape analysis. Following 
the fitness landscape analysis, gCPS quickly improves upon 
the initial value and reaches a solution whose objective func-
tion value is orders of magnitude lower than that detected 
by the standard gPS.

To ensure that the results are not biased by specific rota-
tion matrices, the experiments have been repeated on the 
problems in Table 1 with a modified experimental condition. 
For each run a new rotation matrix has been generated and 
both gPS and gCPS have been run on the rotated problem. 
An additional 51 independent runs have been executed under 
this new condition. Table 4 displays the results for this set of 
experiments with random matrices.

Numerical results in Table 4 show that gCPS maintains 
the same performance irrespective of the rotation matrix. 
These results allow us to conjecture that the proposed mech-
anism of optimising along the direction of the eigenvectors 
is effective and that the generation of the covariance matrix 
is robust.

Comparison Against Other Algorithms

We have compared gCPS against the following three 
algorithms:

–	 Probabilistic Global Search Lausanne (PGSL) [45];
–	 Covariance Matrix Adaptive Evolution Strategy 

(CMAES) [20];
–	 Whale Optimisation Algorithm (WOA) [34].

Table 5   Average error avg ± standard deviation � over 51 runs for the 
problems listed in Table 1: greedy Covariance Pattern Search (gCPS) 
with gCPS reference for Wilcoxon vs Probabilistic Global Search 

Lausanne (PGSL) [45], Covariance Matrix Adaptive Evolution Strat-
egy (CMAES) [20], and Whale Optimisation Algorithm (WOA) [34]

PGSL CMAES WOA gCPS

avg � W avg � W avg � W avg �

10 dimensions
f1 9.3911e-11 5.1542e-11 + 2.1589e-15 2.9083e-15 + 1.0214e-03 6.1787e-04 + 2.7768e-29 1.4329e-29
f2 8.0344e+04 8.4760e+04 + 1.4746e-15 1.1443e-15 − 6.0491e+05 9.2856e+05 + 1.1062e-03 3.4915e-03
f3 9.6851e+04 6.7100e+04 + 1.0489e-15 8.2847e-16 − 4.7535e+05 5.6977e+05 + 4.1064e+03 6.6534e+03
f4 4.4803e+02 1.0111e+03 + 1.8441e-14 8.2847e-16 = 1.4087e+03 2.1832e+03 + 3.3017e-06 9.9933e-06
f5 5.2501e+00 2.9491e+01 + 1.5539e-14 2.8869e-14 + 2.1305e+03 6.7707e+03 + 3.0984e-25 5.3080e-25
f6 1.5045e-03 6.0847e-04 + 9.8517e-13 9.4715e-13 − 2.3042e-02 8.1963e-03 + 2.6276e-05 1.3087e-05
30 dimensions
f1 1.0067e-07 6.2153e-08 + 1.2862e-15 2.3923e-16 + 8.7062e-03 3.6387e-03 + 1.3562e-28 5.1167e-29
f2 7.0010e+07 3.2542e+07 + 1.2574e-15 3.6076e-16 − 3.4145e+07 2.2654e+07 + 6.9435e+05 6.4717e+05
f3 7.1768e+05 3.0764e+05 + 1.1737e-15 2.4995e-16 − 6.7736e+05 5.3299e+05 + 1.8116e+04 1.1143e+04
f4 1.3380e-01 3.0262e-01 + 1.2556e-14 2.0370e-14 = 2.5780e+02 3.3855e+02 + 4.6182e-13 3.2833e-12
f5 1.6386e-01 3.3514e-01 + 8.7935e-15 1.1728e-14 + 6.8149e-02 3.6128e-01 + 5.3340e-28 3.2325e-27
f6 2.2218e-02 7.4020e-03 + 1.1134e-11 9.1361e-12 − 6.2324e-02 1.1138e-02 + 6.4462e-05 1.7549e-05
50 dimensions
f1 8.0474e-07 4.4488e-07 + 1.1017e-15 4.7700e-16 + 2.2366e-02 6.9947e-03 + 4.1998e-28 9.9033e-29
f2 1.9910e+09 7.2381e+08 + 9.1890e-15 2.0913e-15 − 3.8112e+08 1.7733e+08 + 1.6151e+07 1.3937e+07
f3 3.8261e+06 1.1263e+06 + 1.2302e-15 7.1779e-16 − 1.1605e+06 6.5088e+05 + 5.1237e+04 3.4165e+04
f4 1.2430e-01 2.2500e-01 + 1.2606e+04 3.3045e+04 + 1.1822e+03 3.5112e+03 + 5.5627e-22 1.4649e-21
f5 4.4505e-01 1.3905e+00 + 9.0248e-03 4.4211e-02 + 2.5731e+01 1.4155e+02 + 7.8822e-27 1.2792e-26
f6 1.7938e+00 3.3942e+00 + 4.8125e-11 2.8066e-11 − 9.1245e-02 1.9504e-02 + 1.0584e-04 2.3244e-05
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The motivation behind these three competitors is the fol-
lowing: (1) PGSL, like gCPS, is a modern Pattern Search 
implementation; (2) CMAES is a prevalent algorithm that, 
like gCPS, is based on theoretical considerations about 

multivariate distributions and the covariance matrix; (3) 
WOA is a population-based metaheuristic recently proposed 
in the literature.

Furthermore, it must be remarked that as shown in [19], 
CMAES frameworks display excellent performance on uni-
modal problems and can be used as high-performance local 
search, see [35]. In order to provide further experimental evi-
dence of this fact and that the comparison against CMAES 
is fair, we reported in Appendix the performance of two 
local search algorithms against the proposed gCPS. Also, the 
WOA, as shown in [34], is an emerging metaheuristic that 
can solve unimodal problems more efficiently than a large 
number of metaheuristics used for comparison.

We used the parameters suggested by the authors of the 
original papers/software: PGSL has been run with 20 inter-
vals, 6 sub-intervals, and scale factors 0.96 and n−

1

n , respec-
tively (see [45]); CMAES has been run according to the 
implementation in [18] and the default parameters therein 
(initial � set to one third of the domain); WOA has been run 
with 30 agents and for 334 × n iterations (to make the budget 
equal to that of gCPS). Numerical results with fixed and ran-
dom rotation are displayed in Tables 5 and 6, respectively.

Numerical results show that the proposed gCPS outper-
forms PGSL and WOA consistently for all the problems 

Table 6   Average error avg ± standard deviation � over 51 runs for 
the problems listed in Table  1 subject to random rotation at each 
run: greedy Covariance Pattern Search (gCPS) with gCPS reference 

for Wilcoxon vs Probabilistic Global Search Lausanne (PGSL) [45], 
Covariance Matrix Adaptive Evolution Strategy (CMAES) [20], and 
Whale Optimisation Algorithm (WOA) [34]

PGSL CMAES WOA gCPS

avg � W avg � W avg � W avg �

10 dimensions
f1 9.3911e-11 5.1542e-11 + 1.6014e-15 1.3692e-15 + 1.0884e-03 7.2892e-04 + 3.6603e-29 2.0133e-29
f2 8.0344e+04 8.4760e+04 + 1.2555e-15 7.2449e-16 − 1.3625e+06 1.5057e+06 + 3.7683e-04 1.1634e-03
f3 9.6851e+04 6.7100e+04 + 1.5290e-15 1.1994e-15 − 1.0848e+06 1.2060e+06 + 2.9764e+03 2.7313e+03
f4 4.4803e+02 1.0111e+03 + 6.5782e-15 1.1870e-14 − 1.3327e+03 2.4924e+03 + 3.8205e+01 1.0569e+02
f5 5.2501e+00 2.9491e+01 + 9.9735e-15 1.1232e-14 + 3.2346e+03 1.1942e+04 + 1.0087e-23 3.1002e-23
f6 1.5045e-03 6.0847e-04 + 1.0527e-12 8.4632e-13 − 2.9221e-02 3.4593e-02 + 2.6698e-05 1.0627e-05
30 dimensions
f1 7.9845e-08 5.4124e-08 + 1.2502e-15 5.7056e-16 + 8.6939e-03 3.4908e-03 + 1.3810e-28 5.9062e-29
f2 7.3259e+07 3.5457e+07 + 3.8067e-15 1.3425e-15 − 4.7345e+07 3.7792e+07 + 7.2563e+05 9.0521e+05
f3 1.1240e+06 5.8522e+05 + 1.3093e-15 5.4862e-16 − 1.5773e+06 1.8218e+06 + 1.7248e+04 1.0875e+04
f4 2.2207e-01 4.4356e-01 + 1.2729e-01 1.4109e-01 = 1.1381e+03 2.6930e+03 + 2.2632e-01 1.6163e+00
f5 5.4108e-01 1.0309e+00 + 9.1100e+02 4.9137e+03 + 6.2115e+02 3.0196e+03 + 7.9322e-26 4.2633e-25
f6 2.2442e-02 6.8551e-03 + 1.9809e-11 2.4626e-11 − 5.7210e-02 1.7384e-02 + 6.4239e-05 1.8127e-05
50 dimensions
f1 7.4289e-07 2.8571e-07 + 1.0433e-15 3.9174e-16 + 2.2087e-02 7.2395e-03 + 4.2394e-28 9.7414e-29
f2 1.9884e+09 8.9922e+08 + 1.3719e-14 6.3332e-15 − 3.5048e+08 2.9147e+08 + 1.5302e+07 1.2051e+07
f3 4.3028e+06 1.4041e+06 + 1.4062e-15 5.6871e-16 − 1.1245e+06 + 8.5818e+05 + 5.8034e+04 3.0679e+04
f4 2.3907e+00 1.6129e+01 + 7.1375e+03 1.9090e+04 + 9.8717e+01 2.4355e+02 + 3.8535e-21 1.4037e-20
f5 2.5581e-01 3.3437e-01 + 1.9817e+04 1.0947e+05 + 1.5174e+03 8.4013e+03 + 2.8811e-26 1.2290e-25
f6 1.1738e+00 2.4084e+00 + 4.7564e-11 2.6402e-11 − 8.4904e-02 2.1078e-02 + 9.1000e-05 1.8870e-05

Fig. 13   Performance trend (logarithmic scale) for the Bent Cigar f4 in 
10 dimensions
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under consideration. It must be observed that while gCPS is 
designed as a “precision tool” to handle unimodal problems 
with rotation, WOA is a global optimiser to detect a solution 
close the optimum in multi-modal scenarios. In this sense 
we expected gCPS to outperform WOA. The comparison 
between gCPS and PGSL is more interesting. PGSL contains 
a pattern search logic with the same search directions of PS 
(directions of the variables) and various other elements inte-
grated to improve its performance. We observe that for the 
problems under examination, the simple exploratory logic of 
gCPS appears more effective than that of the PGSL which is 
more sophisticated. This fact confirms that the selection of 
proper search directions is fundamental in GPS.

Finally, the comparison of gCPS vs CMAES has been 
included with the deliberate intent of emphasising the limi-
tations and potentials of the proposed approach. For about 
half of the problems gCPS is competitive or outperforms 
CMAES, whilst for some other problems CMAES achieves 
results that are orders of magnitude better in performance 
than gCPS. This fact happens especially in cases of steep 
gradients, such as the ellipsoid functions f2 and f3 . The supe-
riority of CMAES for these problems highlights an area for 
improvement of gCPS: unlike CMAES that has an ingenious 
adaptive mechanism, CPS employs a naive search operation 
based on the same step size in all the directions. The lat-
ter is likely not suited for highly ill-conditioned problems. 
Nonetheless, the proposed logic can be exported to other 
schemes and more sophisticated operators, e.g. an adaptive 
search radius, can enhance upon the current performance.

An example of performance trends for all the algorithms 
involved in this study is illustrated in Fig. 13.

To further strengthen the statistical analysis of the pre-
sented results, we performed the Holm-Bonferroni [22] pro-
cedure for the five algorithms and thirty-six problems (6 
objective functions ×3 levels of dimensionality ×2 variants 
of rotation) under consideration. The results of the Holm-
Bonferroni procedure are presented in Table 7. The Holm-
Bonferroni procedure consists of the following. A score Rj 
for j = 1,… ,NA (where NA is the number of algorithms 
under analysis, NA = 5 in this paper) has been assigned. 
The score has been assigned in the following way: for each 
problem, a score of 5 is assigned to the algorithm display-
ing the best performance, 4 is assigned to the second best, 
3 to the third, and so on. For each algorithm, the scores 
obtained on each problem are summed up and averaged over 

the 36 test problems. With the calculated Rj values, gCPS 
has been taken as the reference algorithm. R0 indicates the 
rank of gCPS, and with Rj for j = 1,… ,NA − 1 the rank 
of the remaining four algorithms. Let j be the index of the 
algorithm, the values zj have been calculated as:

where NTP is the number of the 36 test problems. By means 
of the zj values, the corresponding cumulative normal distri-
bution values pj have been calculated, see [15]:

These pj values have then been compared with the corre-
sponding �∕j where � is the level of confidence, set to 0.05 
in this case. Table 7 displays the ranks, zj values, pj values, 
and corresponding �∕j obtained. Moreover, it is indicated 
whether the null-hypothesis (that the two algorithms have 
indistinguishable performance) is “Rejected”, i.e. the algo-
rithms have statistically different performance, or “Failed 
to Reject” if the test failed to assess that there is different 
performance (one does not outperform the other).

The results of the Holm-Bonferroni procedure in Table 7 
show that gCPS and CMAES have better performance than 
the other algorithms and that gCPS significantly outperforms 
PGSL, gPS, and WOA for the 36 problems under considera-
tion. Conversely, the ranking values of gCPS and CMAES 
are very similar with slightly better performance for gCPS. 
However, the Holm-Bonferroni procedure shows that, statis-
tically, gCPS has the same performance as CMAES.

Limitations of Covariance Pattern Search 
and Future Developments

Although gCPS and the concept of Covariance Pattern 
Search appear to be extremely promising, we acknowledge 
that there are opportunities for improvement. Hence, this 
section highlights the limitations of the proposed approach 
and some ideas on how the research can be moved forward.

At first we wish to comment on a feature of gCPS as 
opposed to a strict limitation: gCPS works as a local search 

zj =
Rj − R0√
NA(NA+1)

6NTP

pj =
2√
� ∫

∞

−zj√
2

e−t
2

dt.

Table 7   Holm-Bonferroni 
Procedure with gCPS as 
reference (Rank 4.1944e+00)

Rj zj pj
�j

j

Test

CMAES 4.1667e+00 -7.4536e-02 9.4058e-01 5.00e-02 Failed to Reject
PGSL 2.4444e+00 -4.6957e+00 2.6564e-06 2.50e-02 Rejected
gPS 2.2222e+00 -5.2920e+00 1.2097e-07 1.67e-02 Rejected
WOA 1.9722e+00 -5.9628e+00 2.4788e-09 1.25e-02 Rejected
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algorithm and thus may be inefficient on its own to address 
multimodal problems. This is of course a limitation of local 
search algorithms and can be overcome by integrating gCPS 
within a global search framework, see [39, 40], or by simply 
using a resampling mechanism to periodically restart the 
search in an unexplored area of the decision space, see [6].

A second issue is that the performance of Covariance 
Pattern Search depends on the threshold parameter thr, see 
Algorithm 5 . This parameter should allow the generation 
of a data set that describes the geometry of the problem. 
With reference to minimisation, a value that is too low would 
result in a small or empty data set, while a value that is 
too high would generate a dataset that does not contain the 
geometrical features of the basin of attraction. Furthermore, 
this parameter is problem dependent as it depends on the 
specific objective function values. This means that to ensure 
high performance of gCPS, a tuning of this parameter is cur-
rently performed. Besides being inelegant, this procedure 
can also be computationally expensive in the high dimen-
sional domain.

The third limitation that we identified (especially when 
we compared the performance of gCPS against CMAES) is 
in the exploratory radius (step size) and the way it is han-
dled. The current naive implementation that uses the same 
radius along all the exploratory directions is inefficient in 
the case of high ill-conditioning. Although the preliminary 
analysis allows the detection of search directions with very 

different gradients, as shown in Figs. 9 and 10, this informa-
tion is not fully exploited during the optimisation. Quali-
tatively, we may say that we would like small steps when 
the gradient is high and large steps when it is low. Further 
works will investigate the use of gradient-based and adap-
tive step sizes.

Finally, further work will be made to integrate within the 
proposed gCPS techniques for constraint handling, such as 
the use of external penalties.

Conclusion

This paper proposes an implementation of Generalised Pat-
tern Search (GPS) in which search directions are given by 
the eigenvectors of the covariance matrix associated with the 
distribution of points whose objective function value falls 
below a prearranged threshold.

The theoretical analysis carried out in this study shows 
that the proposed algorithm, namely Covariance Pattern 
Search, is always applicable and converges to a null-gradient 
point under the same conditions of GPS. The conjecture that 
the eigenvectors enable fast convergence is confirmed by the 
experimental results that show a clear superiority of Covari-
ance Pattern Search with respect to its standard version. It 
should be observed that the proposed directions (eigenvec-
tors) allow the identification of a high gradient direction 

Table 8   Average error avg ± 
standard deviation � over 51 
runs for the problems listed in 
Table 1: greedy Covariance 
Pattern Search (gCPS) with 
gCPS reference for Wilcoxon 
vs Nelder-Mead Algorithm and 
Broyden–Fletcher–Goldfarb–
Shanno algorithm

NMA BFGS gCPS

avg � W avg � W avg �

10 dimensions
f1 2.8054e+02 7.2855e+02 + 1.8757e-20 2.4576e-21 + 2.7768e-29 1.4329e-29
f2 1.2455e+07 2.8567e+07 + 1.8956e-13 4.1016e-14 − 1.1062e-03 3.4915e-03
f3 1.5440e+06 3.1652e+06 + 6.6365e-11 2.6183e-12 − 4.1064e+03 6.6534e+03
f4 2.9546e+00 1.7939e+01 + 1.2818e-09 2.0603e-09 − 3.3017e-06 9.9933e-06
f5 1.0910e-08 9.9139e-09 + 3.9439e-12 7.2576e-12 + 3.0984e-25 5.3080e-25
f6 5.1821e+02 4.8882e+02 + 1.1967e-07 4.3589e-07 = 2.6276e-05 1.3087e-05
30 dimensions
f1 1.6594e+04 8.2122e+03 + 4.3857e-20 1.6043e-20 + 1.3562e-28 5.1167e-29
f2 2.3459e+10 1.4851e+10 + 1.3352e-09 3.3772e-10 − 6.9435e+05 6.4717e+05
f3 2.4294e+07 2.0055e+07 + 3.2738e-11 1.5479e-12 − 1.8116e+04 1.1143e+04
f4 1.2650e-01 6.5822e-01 + 1.8926e-08 2.5487e-08 + 4.6182e-13 3.2833e-12
f5 1.6725e-08 2.3167e-08 + 5.9737e-13 1.2614e-12 + 5.3340e-28 3.2325e-27
f6 5.1073e+03 4.2297e+03 + 1.2390e-05 2.84323e-064 = 6.4462e-05 1.7549e-05
50 dimensions
f1 2.9945e+04 1.4066e+04 + 8.5482e-20 1.9014e-20 + 4.1998e-28 9.9033e-29
f2 3.6255e+11 1.9270e+11 + 1.5972e-07 3.7724e-08 − 1.6151e+07 1.3937e+07
f3 7.0929e+07 4.2330e+07 + 9.2288e-11 4.6933e-12 − 5.1237e+04 3.4165e+04
f4 4.4606e+00 3.1855e+01 + 1.9741e-08 2.8660e-08 + 5.5627e-22 1.4649e-21
f5 1.3769e-08 3.1929e-08 + 1.5341e-13 3.2062e-13 + 7.8822e-27 1.2792e-26
f6 5.9676e+03 2.9671e+03 + 1.1253e-05 1.8968e-006 = 1.0584e-04 2.3244e-05
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which would enable the quick improvement upon an initial 
point.

Numerical results show that the specific implementation 
of Covariance Pattern Search proposed in this article out-
performs, on a set of rotated problems, modern algorithms 
based on pattern search and swarm intelligence.

Appendix: Comparison Against Local Search

In this section, we report some additional results display-
ing the performance of gCPS against two local search algo-
rithms, that is

–	 Nelder-Mead Algorithm (NMA) [37]
–	 Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm 

[16] with an estimation of the gradient such that it may 
be applied to black-box problems

Both NMA and BFGS have been run on the problems 
listed in Table 1 under the same experimental conditions of 
gCPS as in Tables 3 and 5, including computational budget, 
starting points, and rotation matrices. Numerical results in 
Table 8 show that gCPS outperforms NMA for all of prob-
lems considered in this section. The comparison between 
gCPS and BFGS shows that gCPS outperforms BFGS in 
some problems and is outperfomed on others. The com-
parison of gCPS and BFGS is analogous to the comparison 
of gCPS and CMAES. The results in this section confirm 
the study reported in [19] which shows that for unimodal 
problems, algorithms based on CMAES tend to outperform 
NMA and BFGS. Furthermore, our results confirm that as 
reported in [19] Nelder-Mead deteriorates its performance 
when the number of dimensions increase while BFGS is able 
to display good performance on some problems including 
those in higher dimensions.
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