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Abstract
Our recent work (Ayral et al. in Proceedings of IEEE computer society annual symposium on VLSI, ISVLSI, pp 138–140, 
2020. https​://doi.org/10.1109/ISVLS​I4921​7.2020.00034​) showed the first implementation of the Quantum Divide and Com-
pute (QDC) method, which allows to break quantum circuits into smaller fragments with fewer qubits and shallower depth. 
This accommodates the limited number of qubits and short coherence times of quantum processors. This article investigates 
the impact of different noise sources—readout error, gate error and decoherence—on the success probability of the QDC 
procedure. We perform detailed noise modeling on the Atos Quantum Learning Machine, allowing us to understand tradeoffs 
and formulate recommendations about which hardware noise sources should be preferentially optimized. We also describe 
in detail the noise models we used to reproduce experimental runs on IBM’s Johannesburg processor. This article also 
includes a detailed derivation of the equations used in the QDC procedure to compute the output distribution of the original 
quantum circuit from the output distribution of its fragments. Finally, we analyze the computational complexity of the QDC 
method for the circuit under study via tensor-network considerations, and elaborate on the relation the QDC method with 
tensor-network simulation methods.

Keywords  Quantum circuit compilation · Noise modeling · Simulation · NISQ

Introduction

The advent of Noisy Intermediate Scale Quantum (NISQ) 
technologies [2] makes multiqubit processors with modest 
but increasing numbers of qubits available. Google, IBM, 
and Intel have recently announced quantum computers with 
72, 65, and 49 qubits, respectively [3–5]; and new systems 
with 50–200 qubits are expected to be commercially avail-
able in the next few years. However, our ability to use the 
hardware to solve interesting problems is lagging. Solving 
practical computational problems typically requires evaluat-
ing quantum circuits with many hundreds or even thousands 

of qubits, exceeding the size of the devices. In addition, large 
gate errors and short qubit coherence times prevent accurate 
evaluations of deep circuits.

Despite the remarkable progress in manufacturing and 
controlling these small multiqubit systems, building hard-
ware with a sufficiently high number of high-fidelity qubits 
remains an extremely challenging task. Engineering chal-
lenges worsen as the systems scale and are inherent for all 
major qubit technologies, including superconducting qubits 
(errors due to Josephson junction defects and spurious 
microwave resonances [6]), ion traps (susceptibility to noise 
and difficulty to address individual ions [7]), neutral atoms 
(motion of the atoms inside the lattice [8]), and quantum 
dots (difficulty to entangle multiple qubits [9, 10]).

Successfully solving practical computational problems 
can be achieved only by developing techniques that can 
simultaneously map large problems onto small qubit sys-
tems and mitigate the effects of noise. The Quantum Divide 
and Compute (QDC) approach is one such technique. In this 
approach, we divide a large and potentially deep quantum 
circuit to suit the number of qubits and coherence times 
available in current quantum hardware. We then perform 
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the computations on the subcircuits obtained by this division 
on a quantum processor, and we finally recombine our out-
put results to obtain the output of the original circuit. This 
allows us to compute the outputs of quantum circuits that 
are too deep or too wide to be run on existing small-scale 
quantum processors.

There has been some previous work related to this 
approach. Bravyi et al. [11] showed that a quantum circuit 
on n + k qubits can be simulated by sparse circuits on n 
qubits and exponential classical processing that takes time 
2O(k)poly(n). A more general approach that allows fragment-
ing larger quantum circuits into smaller subcircuits was 
introduced in [12]. In this work, tensor-network techniques 
were used to show how to decompose a circuit with a large 
quantum volume [13] into smaller subcircuits with quantum 
volumes compatible with NISQ devices. The classical com-
puting overhead of the circuit fragmenting techniques was 
reduced in [14], and maximum likelihood tomography was 
applied on top of the circuit fragmentation to ensure that the 
reconstructed probability distributions are strictly non-neg-
ative and normalized. This work also showed, with the help 
of classical simulations, that the QDC strategy, when com-
bined with maximum likelihood tomography, can estimate 
the output of a clustered circuit with higher fidelity than the 
full circuit execution. In [15], a method was introduced to 
locate the optimal location of the cut (the location where 
the circuit should be fragmented). The QDC strategy was 
applied to commonly known circuits in quantum computing 
such as supremacy circuits, Grover and Bernstein-Vazirani 
circuits, and was shown to achieve a high quantum circuit 
evaluation fidelity.

The ultimate test for the quantum computing field—the 
ability to use controlled quantum systems to perform tasks 
surpassing what can be done using classical computers, also 
called quantum supremacy [16]—has received considerable 
attention from both the scientific community and the general 
public. The largest classical supercomputers are capable of 
reliably simulating quantum systems with approximately 50 
qubits [17, 18], and there is evidence that devices with more 
than 50 qubits may be able to demonstrate quantum suprem-
acy even in the presence of noise  [19]. While quantum 
supremacy is not one of the goals of this work, the developed 
techniques will allow increasing the size of circuits that can 
be evaluated on quantum hardware as well as on quantum 
simulators run on classical hardware [20–23] by a constant 
factor. Consequently, it will be possible to evaluate quantum 
circuits with hundreds of qubits and use quantum algorithms 
to solve problems larger than ever before.

Circuit cutting naturally complements variational quan-
tum-classical algorithms such as the Variational Quantum 
Eigensolver (VQE) [24, 25] and the Quantum Approxi-
mate Optimization Algorithm (QAOA)  [26]. These 
approaches have successfully produced suitable quantum 

circuits for optimization problems by combining shallow 
quantum circuits with classical processing; and they allow 
some control over the width, depth, and connectivity of the 
circuits. However, the quality of the approximate solutions 
produced by VQE and QAOA decreases as the width and 
depth of their circuits decreases, and solving most inter-
esting problems still requires hundreds of qubits [27, 28].

Circuit cutting offers numerous benefits. First, the tech-
nique does not compromise the quality of the solution as 
the size of the subcircuits decreases (overhead may scale 
exponentially with the number of cuts, however). Second, 
the technique can be applied to any sparsely connected 
quantum circuit, irrespective of the structure of the prob-
lem. Third, circuit cutting has a close relationship with 
tensor network quantum simulation techniques that are 
used to address scalability limitations due to memory 
requirements that grow exponentially with the size of the 
simulated systems. Fourth, circuit cutting can enhance 
the performance of existing quantum-classical variational 
approaches because it can increase the size of the sub-
problems tackled by the variational quantum eigensolver.

In this article, we follow up on our previous work on 
the topic [1]: we start by giving a detailed derivation of 
the formula for the output reconstruction of the original 
circuit from the outputs of its fragments, and a description 
of the noise models we chose to reproduce the experimen-
tal results (“Methods”). We quantify the performance of 
the QDC method by recalling our previous results [1] on 
a 20-qubit IBM processor for different qubit counts and 
fragment sizes (“Summary of Previous Results”). Then 
in “Results”, based on noisy simulations, we quantify 
the differential influence of various noise sources such as 
readout error, gate error and decoherence on the success 
probability of the algorithm for different qubit counts and 
fragment sizes. Finally, we discuss the classical complex-
ity of the method, its relation to tensor-network simulation 
approaches, and its implications for homogeneous and het-
erogeneous quantum computing.

Methods

Circuit Cutting

An algorithm that allows circuit cutting was first described 
in [12]. In this section, we provide a self-contained deriva-
tion that allows to compute the probability distribution of a 
circuit that has been fragmented into several smaller discon-
nected pieces. We first derive a formula that uses probabil-
ity distributions of two fragments to obtain the probability 
distribution of the original circuit. We then generalize the 
formula for cases with more than two fragments.
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Two‑Fragment Case: Definitions

Let us consider a m-qubit circuit described as the following 
composition of operations:

where the support of superoperators Ob
A
 and Ob

B
 is a biparti-

tion of the qubits; similarly, the support of Oa
A
 and Oa

B
 is a 

bipartition such that the two “a” (for “after”) sets differ from 
the “b” (for “before”) sets by one qubit. Without loss of gen-
erality, one can assume that up to a relabeling, the support 
of Ob

A
 is q0,… qn and that of Ob

B
 is qn+1,… qm−1 , and the “a” 

supports, q0,… qn−1 and qn,… qm−1 (see Fig. 1a).
The final state of the circuit is given by the density matrix:

where �0 is the initial density matrix. The probabil-
ity of measuring a state i with binary representation 
i = (b̂0(i),… b̂m−1(i)) is given by

where �i is the projector on state i ( i = 0… 2m ). It can be 
expressed as 𝛱i = �i⟩⟨i� = ⊗m−1

k=0
�b̂k(i)⟩⟨b̂k(i)� , where b̂k(i) is 

the value of the kth bit of i. We note that �†

i
= �i , and ∑

i 𝛱i = ⊗k

∑1

b̂k=0
�b̂k⟩⟨b̂k� = I . Thus:

We now switch to a Pauli-basis representation (see “Appen-
dix A” for a reminder). Using Eq. (16), we get

O = O
a
A
◦O

a
B
◦O

b
A
◦O

b
B
,

� = O(�0) = O
a
A
◦O

a
B
◦O

b
A
◦O

b
B
(�0)

(1)p(i) = Tr
[
�i ⋅ �

]
,

(2)p(i) = Tr
[
�†

i
⋅O

a
A
◦O

a
B
◦O

b
A
◦O

b
B
(�0)

]
.

(3)p(i) = 2m⟨⟨�i�Ra
A
R

a
B
R

b
A
R

b
B
��0⟩⟩

where Ra/b
A∕B

 is the Pauli transfer matrix (PTM) representa-
tion of superoperator Oa/b

A∕B
.

Bipartite Splitting Formula

Basic formula We now derive the splitting formula. Let us 
decompose the one-qubit PTM representation of the identity 
superoperator as

where ��b
�
⟩⟩ are the (real) coordinates in the Pauli basis 

of the density matrix corresponding to the bth eigen-
vector ��b

�
⟩ of Pauli matrix �� . The 𝛾̃ tensor is given by 

𝛾̃bb
�

X
= 𝛾̃bb

�

Y
= 2𝛿bb� − 1 and 𝛾̃bb�

Z
= 2𝛿bb�.

Inserting RI (acting on qubit qn ) in the expression for the 
probability, Eq. (3), we obtain

We thus obtain the final formula (with i = (b̂0 … b̂m−1)):

(4)RI =
�

𝛼=X,Y ,Z

�

bb�∈{0,1}

𝛾̃bb
�

𝛼
�𝜎b

𝛼
⟩⟩⟨⟨𝜎b�

𝛼
�,

p(i) = 2m⟨⟨𝛱i� R
a
A

���
q0,…qn−1

R
a
B

���
qn,…qm−1

RI
���

qn

R
b
A

���
q0,…qn

R
b
B

���
qn+1…qm−1

�𝜌0⟩⟩

= 2m
�

𝛼=X,Y ,Z

�

bb�∈{0,1}

𝛾̃bb
�

𝛼

× ⟨⟨𝛱i�q0…qn−1
⟨⟨𝛱i�qn…qm−1

R
a
A

���
q0…qn−1

R
a
B

���
qn…qm−1

�𝜎b
𝛼
⟩⟩qn

× ⟨⟨𝜎b�

𝛼
�qn R

b
A

���
q0…qn−1

R
b
B

���
qn+1…qm−1

�𝜌0⟩⟩q0…qn
�𝜌0⟩⟩qn+1…qm−1

= 2m
�

𝛼=X,Y ,Z

�

bb�∈{0,1}

𝛾̃bb
�

𝛼
2−n−1p𝛼

A
(i�0…n−1;b

�) 2−m+n

× p𝛼b
B
(i�n…m−1).

Fig. 1   Cutting sketch in the two-fragment case. a Original circuit, b Upper fragment of the circuit, c lower fragment of the circuit, d lower frag-
ment in its Bell-state variant
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with

where we have regrouped RA ≡ R
a
A
R

b
A
 and RB ≡ R

a
B
R

b
B
 . In 

other words, p𝛼
A
(b̂0 … b̂n−1;b

�) is the probability of measur-
ing bitstring b̂0 … b̂n−1, b

� when measuring the final state of 
fragment A with a measurement on axis � for qubit qn (see 
Fig. 1b), and p𝛼b

B
(b̂n … b̂m−1) is the probability of measuring 

bitstring b̂n … b̂m−1 when measuring the final state of frag-
ment B with qubit qn initially prepared in the bth eigenstate 
of Pauli matrix �� (see Fig. 1c).

Variant using Bell pair We now derive a different 
expression based on the following idea: instead of prepar-
ing both eigenstates of �� , one can use an ancilla qubit, 
prepare a Bell state, and measure the value of the ancilla 
along measurement axis � and obtain an equivalent result, 
with a slightly different expression.

Switching from the Pauli-basis expression back to the 
original representation, Eq. (7) is equivalent to

where �b
�
= ��b

�
⟩⟨�b

�
� . Let us decompose

(5)
p(b̂0 … b̂m−1) =

1

2

∑

𝛼=X,Y ,Z

∑

bb�∈{0,1}

𝛾̃bb
�

𝛼
p𝛼
A
(b̂0 … b̂n−1;b

�)

× p𝛼b
B
(b̂n … b̂m−1)

(6)
p𝛼
A
(b̂0 … b̂n−1;b

�) ≡ 2n+1⟨⟨𝛱b̂0…b̂n−1
�⟨⟨𝜎b�

𝛼
�qnRA�𝜌0⟩⟩q0…qn

(7)
p𝛼b
B
(b̂n … b̂m−1) ≡ 2m−n⟨⟨𝛱b̂n…b̂m−1

�RB�𝜎b
𝛼
⟩⟩qn �𝜌0⟩⟩qn+1…qm−1

,

p𝛼b
B
(i) = Tr

[
𝛱iOB(𝜎

b
𝛼
⊗ 𝜌0)

]

then

where �b∗
�

= ��b∗
�
⟩⟨�b∗

�
� is the projector onto the complex 

conjugate of the bth eigenstate of the �� Pauli matrix, and 
��+ is the density matrix of the Bell state

In the second line, we have added an ancilla qubit. Now, let 
us note that for � = X, Z , ��b

�
⟩ = ��b∗

�
⟩ (the eigenvector is 

real-valued), while ��b∗
Y
⟩ = ��1−b

Y
⟩ , and let us define

Then

Thus, after relabeling b → 1 − b for � = Y  in the final for-
mula Eq. (5), we finally obtain the final expression:

where �bb�
X

= 2�bb� − 1 , �bb�
Y

= −�bb
�

X
 and �bb�

Z
= 2�bb�.

��b
�
⟩ =

�
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�
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p𝛼b
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�
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𝛼
⟩⟨𝜓b

𝛼
�k�⟩Tr

�
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�

=
�

kk�

⟨𝜓b∗
𝛼
�k⟩⟨k��𝜓b∗

𝛼
⟩

× Tr
��
I ⊗𝛱i

�
⋅

�
I⊗OB

�
(I ⊗ �k⟩⟨k��⊗ 𝜌0)

�

= Tr

��
�𝜓b∗

𝛼
⟩⟨𝜓b∗

𝛼
�⊗𝛱i

�

×
�
I⊗OB

�
�
�

kk�

�k⟩⟨k��⊗ �k⟩⟨k��⊗ 𝜌0

��

= 2Tr
��
𝛱b∗

𝛼
⊗ 𝛱i

�
⋅

�
I⊗OB

��
𝜌𝛷+ ⊗ 𝜌0

��

(8)��+⟩ ≡ 1√
2

�

k=0,1

�kk⟩.

(9)p̂𝛼
B
(b;i) ≡ Tr

[
𝛱b

𝛼
⊗ 𝛱i

(
I⊗OB

)
(𝜌𝛷+ ⊗ 𝜌0)

]
.

p𝛼b
B
(i) =

{
2p̂𝛼

B
(i;b) 𝛼 = X, Z

2p̂𝛼
B
(i;1 − b) 𝛼 = Y .

(10)p(b̂0 … b̂m−1) =
∑

𝛼=X,Y ,Z

∑

bb�∈{0,1}2

𝛾bb
�

𝛼
p𝛼
A
(b̂0 … b̂n−1;b

�)p𝛼
B
(b;b̂n … b̂m−1).

Fig. 2   Graphical representation 
of the contraction formula. a 
Two fragment case. b Mul-
tifragment case for the GHZ 
circuit shown in Fig. 1a
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The graphical representation for such a contraction is 
shown in Fig. 2a.

Multi‑fragment Case

The formula for the multi-fragment case can be inferred 
from that of the two-fragment case: the procedure sketched 
for the two-fragment case can be recast in more generic 
terms, as described in [12]. This is done by considering the 
directed acyclic graph G = (V ,E) corresponding to the quan-
tum circuit at hand (see Fig. 3 for an illustration of the pro-
cedure). Its vertices V are quantum operations such as qubit 
initialization, measurement and gates. The cutting procedure 
amounts to finding a subset E′ ⊂ E of M (directed) edges in 
this graph whose removal leads to K disconnected directed 
acyclic graphs {G(i) =

(
Vi,Ei

)
}i=1…K . In each disconnected 

graph, ni + mi vertices have a dangling edge corresponding 
to the original ni incoming and mi outgoing edges connecting 
it to the rest of the original graph, with 

∑
i ni =

∑
i mi = M . 

One then adds a measurement along axis �k ( �k = X, Y , Z) as 
a termination to each outgoing dangling edge ( k = 1… ni ), 
and a Bell-state gadget (as described in the previous sec-
tion), whose ancilla line is terminated by an �′

k
-measure-

ment, to each incoming dangling edge. Translating the fam-
ily of graphs G(i)

�1…�ni
,��

1…
��
mi

back to quantum circuits 

C
(i)

�1…�ni
,��

1…
��
mi

 , we can sample (using a quantum computer) the 

corresponding probability distributions. We denote as

the probability of measuring bitstring b1,… bni ;s;b
�
1
,… b�

mi
 , 

with s = (b̂1 … b̂pi ) a bitstring corresponding to the state of 
“final” qubits of circuit C(i) , and (b1,… bni) (resp. b�

1
,… b�

mi
) ) 

the bitstrings corresponding to the measured value for the 
measurements on the incoming (resp. outgoing) edges of 
sub-graph G(i) after pre-measurement rotations along axes 
�1 … �ni , �

�
1
… ��

mi
.

The final probability distribution is obtained by contract-
ing the tensor network defined by the graph Ĝ =

(
V̂ , Ê

)
 , with 

|V̂| = K +M and |Ê| = 2M . Here, K “fragment” vertices 

p
�1…�ni

,��
1
…��

mi

i

(
b1,… bni ;s;b

�
1
,… b�

mi

)

correspond to the K disconnected components {G(i)} , and 
M “connecting” vertices to the M removed edges. The 2M 
edges connect each of the K “fragment” vertices via one of 
the M “connecting” vertices. To each “fragment” vertex, 
we associate a distribution pi , while to each “connecting” 
vertex, we associate a � tensor [as defined below Eq. (10)].

We give an example of such a tensor network for the 
Greenberger–Horne–Zeilinger (GHZ) circuit we consid-
ered in our previous work as well in Fig. 2 b: in this case, 
the underlying graph turns out to be linear. We also show, 
in Fig. 3, an example with a more complex circuit and the 
resulting, more complex tensor network. Here, K = 3 and 
M = 3.

The contraction of these networks yields the sought-after 
distribution. The classical complexity of carrying out this 
contraction will be discussed in “Contraction Complexity 
and Relation to Tensor-Network Simulation”.

Noisy Simulation

NISQ processors are characterized by a substantial level of 
noise. In this section, we describe what noise processes we 
took into account in our simulation of the IBM Johannesburg 
quantum processor.

In this study, we focus on the noise processes whose 
quantitative levels are reported by the hardware manufac-
turer, IBM (see Table 1 for a summary of the numerical 
values used in the noisy simulations below). This prag-
matic approach is justified a posteriori by the reasonable 

Fig. 3   Graphical representation 
of the contraction formula for 
a generic case (here with three 
fragments). a Sketch of the 
fragmentation of a four-qubit 
circuit in three fragments. b 
Corresponding tensor network 
to contract to get final distribu-
tion

Table 1   Johannesburg processor metrics, as retrieved from IBM 
Quantum Experience on March 5th, 2020

All rates are averages over all the qubits/qubit pairs

Parameter Value

Readout error rate � 4.1%

One-qubit-gate error rate �(1)avg
0.041%

Two-qubit-gate error rate �(2)avg
0.202%

Relaxation time T1 65 μs
Dephasing time T2 70 μs
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agreement of our numerical simulations with the experimen-
tal data (see Ref. [1], and “Results”). It should nevertheless 
be emphasized that (i) it uses rather simple noise models, 
that should be compared to noise models extracted from a 
full process tomography of the processor, and that (ii) it 
excludes some noise processes that are suspected to affect 
the final quantum state distribution in a non-negligible way, 
e.g., crosstalk (spatially correlated noise) and temporally 
correlated noise (like 1/f noise).

The most prominent source of error in today’s supercon-
ducting processors is the readout error. The duration of the 
dispersive readout conducted in transmon processors, of the 
order of a few microseconds, makes for a higher probability 
of error, most notably of the relaxation (or amplitude damp-
ing) type. We thus model the readout process as a two-out-
come POVM corresponding to an amplitude-damping quan-
tum channel of duration � followed by a perfect Z-axis 

measurement: {E, I − E} , with E =

(
0 0

0 1 − �

)
. The dura-

tion � is adjusted so as to obtain a readout error rate 
� = 1 − e−�∕T1 that matches the readout error rate reported 
by IBM. With � = 4.1% and T1 = 65 μs , we find � = 2.75 μ 
s, a duration that is consistent with the usual measurement 
durations of dispersive readout processes. Note that this 
noise model does not include measurement crosstalk 
effects [29].

Another source of error is gate noise, i.e. gate imperfec-
tions. Here, since the hardware manufacturer only reports 
average 1- and 2-qubit gate error rates, we picked the sim-
plest noise process to model gate noise, namely depolariz-
ing noise with a depolarization probability adjusted so that 
the average process fidelity Favg matches the qubit-averaged 
average error rates �avg = 1 − Favg reported by the hardware 
maker. We recall that the one-qubit depolarizing noise pro-
cess is characterized by the following Kraus operators:

where �i denote the Pauli spin matrices. We model two-qubit 
depolarization processes as a tensor product of the one-qubit 
depolarizing noise. Let us stress that more structured, and 
therefore more accurate, noise models could be extracted 
from quantum process tomography methods, at the cost of 
a larger characterization overhead. Furthermore, this noise 
model does not include any crosstalk effects (see, e.g. [30]), 
despite evidence that they play some role in today’s NISQ 
processors.

Finally, we include the effect of decoherence on idle 
qubits, i.e. qubits that are not being acted upon by a quantum 
gate, but are nevertheless coupled to the outside environ-
ment. This decoherence can be decomposed into two main 

K
D
0
=
√

1 − pD
(1)
I,

K
D
i
=
√

pD
(1)
�i, i = 1, 2, 3,

types, namely relaxation and dephasing. Relaxation (also 
known as amplitude damping or, in other contexts, spontane-
ous emission) causes excited qubits (i.e. in state �1⟩ ) to relax 
to their ground state ( �0⟩ ) with a probability that is character-
ized by a time T1 : pA.D�idle

= 1 − e−�idle∕T1 , namely, the longer the 
idling duration �idle , the higher the probability of a relaxation 
event. Similarly, dephasing events cause the two components 
�0⟩ and �1⟩ of a superposed state to acquire an unwanted 
dephasing with a certain probability. Under simplifying 
assumptions about the power spectral density (PSD) of the 
qubit-environment system, namely the assumption of a white 
noise PSD, this probability is given by pP.D

�idle
= 1 − e−2�idle∕T� , 

with 1
T�

=
1

T2
−

1

2T1
 . We note that this is a quite strong sim-

plification, as actual transmon processors are known to have 
a PSD that deviates from white noise, with, most notably, a 
sizable pink (1/f) noise component (see, e.g  [31] for a 
review) that leads to a deviation to the exponential decay of 
the formula we used. Let us also stress that such a noise 
modeling does not take into account temporally correlated 
noise. As a reminder, here are the Kraus operators associated 
with amplitude damping and (pure) dephasing:

The values we used for T1 and T2 are reported in Table 1.
The noisy simulations are conducted on the Atos Quan-

tum Learning Machine (QLM), a classical supercomputing 
platform dedicated to writing, simulating and optimizing 
quantum algorithms [22].

Before simulating the circuits resulting from the frag-
mentation procedure described in the previous section, we 
use the QLM’s Nnizer plugin to compile the circuits, i.e. 
most notably to adapt them to the Johannesburg processor’s 
restricted qubit topology (shown in Fig. 4). Then, we per-
form noisy simulations using a density-matrix-based noise 
simulator that uses a dense representation of the density 
matrix � of the qubit register.

Results

Summary of Previous Results

In [1], we investigated the performance of the circuit-cutting 
procedure for a simple GHZ-type circuit shown in Fig. 1a. 
As a proxy for the quality of the procedure, we chose the 
quantity

K
A.D
0

=

[
1 0

0
√

1 − pA.D
�idle

]
,KA.D

1
=

[
0
√

pA.D
�idle

0 0

]
,

K
P.D
0

=

[
1 0

0
√

1 − pP.D
�idle

]
,KP.D

1
=

[
0 0

0
√

pP.D
�idle

]
.
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which, given the GHZ circuit at hand, is unity in the absence 
of any noise.

We carried out the procedure both using an actual 
20-qubit processor, IBM Johannesburg, and using the Atos 
Quantum Learning Machine’s noisy simulator.

The experimental success probabilities, shown in Fig. 5, 
display two clear trends: on the one hand, increasing the 
number of qubits leads to a decreasing success probability. 
This trend can be accounted for by the fact that increas-
ing the number of qubits increases the number of gates of 
the circuit, and thus the sensitivity to gate errors and envi-
ronmental decoherence. On the other hand, increasing the 
number of fragments in general leads to an improved success 
probability: the 6-8 fragment success probabilities are larger 
than the success probabilities obtained for lower numbers 

(11)Psuccess ≡ p
�
�0⟩⊗m∕2�1⟩⊗m∕2

�
+ p

�
�1⟩⊗m∕2�0⟩⊗m∕2

�
,

of fragments (with some exceptions to this observation: the 
one-fragment success probability often exceeds that of the 
2 and 4–5 fragment cases, maybe due to compiler optimiza-
tions on the hardware side for circuits with larger numbers of 
qubits; we also note a point at nqbits = 10 where the 4–5 frag-
ment success probability exceeds that of the 6–8 fragment 
case). This trend can be ascribed to the smaller gate count 
of each individual fragment, and thus a reduced sensitivity 
to errors. This smaller gate count not only comes from the 
mere cutting procedure, but also from the fact that smaller 
circuits better match the limited connectivity (Fig. 4) of the 
Johannesburg chip. Conversely, larger circuits need to be 
compiled to fulfill the connectivity constraints, leading to 
larger gate counts.

To substantiate these interpretations, we performed noisy 
simulations with noise models established using the con-
structor’s calibration data (Table 1). We show the results in 
Fig. 6: a 20% agreement is found between the noisy simula-
tions and the experimental data. In particular, the drops in 
success probability, which can be traced back to connectiv-
ity-related insertions of SWAP gates, are reproduced. We 
note that the error bars coming from the finite number of 
shots (8192) used for each fragment are contained within 
the data symbols.

Analysis of the Influence of the Different Noise 
Types

In this section, we study and compare the differential impact 
of all the noise types we have previously taken into account: 
gate imperfections, idling and readout errors. Our goal is to 
understand which types of noise have a particularly severe 
influence on the fidelity of the fragmenting procedure and to 
formulate recommendations as to which noise types should 
be addressed first if one wants to make the most of the frag-
menting procedure. Hence, we study the influence of the 
three noise types by simulating better readout measurements 
(Fig. 7), better gates (Fig. 8) and a better coherence time 
(Fig. 9).

Faster readout. First, we analyze the impact of readout 
errors by decreasing the duration � of the measurements 
on all the subcircuits generated by the splitting procedure. 
Readout error is at present the largest source of errors in 
superconducting processors, with error rates as high as a 
few percent. It is thus reasonable to assume that large exper-
imental efforts are going to be made to reduce this error 
rate. Here, we suppose the reduction in readout error rate to 
originate from a reduction of the readout duration (in prac-
tice by a factor 5), although it would be equivalent, in this 
noise model that assumes the errors to come only from an 
amplitude damping noise, to keep the readout duration fixed 
and to increase the T1 coherence time (by the same factor 
5). In reality, progress is being made on both fronts (see, e.g 

Fig. 4   Qubit connectivity map of the Johannesburg processor. Edges 
are shown between qubit pairs coupled via a resonator that allows 
application of the two-qubit CNOT gate

Fig. 5   Success probability as a function of circuit size (number of 
qubits) for various numbers of fragments using IBM’s Johannesburg 
processor
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[32, Fig. 2.c], for the increasing T1 trend, and [33] for recent 
efforts towards faster measurements).

We see in Fig. 9 that better readout improves the overall 
success probability all the more as the fragment number is 
large. The difference between the solid and the dashed lines 
qualitatively increases with the number of readout meas-
urements used, and consequently the number of fragments. 
Indeed, more fragments necessitate more measurements 
to characterize the quantum state of each fragment. Nev-
ertheless, we still see drops in the evolution of the success 
probability with the number of qubits. It can be explained 

by the topology constraints that require the use of several 
SWAP gates when we try to perform gates between physi-
cal qubits that are not adjacent. This calls the study of the 
next paragraph.

Better gates. To model the use of better gates, we choose 
to lower the amplitude of the depolarizing channel by divid-
ing the depolarizing error rate by a factor of 5. The limited 
gate fidelity is the second major source of errors in super-
conducting processors. It comes from calibration errors as 
well as decoherence. Here, we mimic the improvement in 
gate quality by simply dividing the error rate by a factor of 

Fig. 6   Success probability as a 
function of circuit size (number 
of qubits) for various numbers 
of fragments using IBM’s 
Johannesburg processor (solid 
black lines) and Atos QLM 
noisy simulation (dashed blue 
lines). The black integers next 
to each black disk indicate the 
maximum fragment size (in 
number of qubits)

Fig. 7   Effect of better readout: 
Same as Fig. 5, but with a read-
out duration divided by 5
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5. Such a factor is realistic, in view of the improvements in 
gate qualities of superconducting processors in the recent 
years, and of the variability in the error rates reported by 
the hardware providers (the two-qubit error rates reported 
for IBM Johannesburg [34], Google Sycamore [35, Fig.2, 
Table II] and Rigetti Aspen 7 [36], are, respectively, 0.2%, 
0.62% and 4.8%).

The results of this change in the noise model can be 
seen in Fig.  6. We notice that the slope is more regular 
as the number of qubits increases. Indeed, a smoothing of 
the “drops” in success probability is observed. These drops 

were the consequence of performing a gate between qubits 
that are not adjacent in the connectivity map (Fig. 4) and 
that require using several SWAP gates. Thus, better gates 
help mitigate the effect of topology. The insertion of addi-
tional SWAP gates because of topology constraints becomes 
less detrimental to the overall success probability when the 
inserted gates are of good fidelity.

Better coherence. Finally, to understand the impact 
of coherence on the splitting procedure, we increase the 
relaxation time T1 and the dephasing time T2 by multiply-
ing them by a factor of 5 (see “Noisy Simulation” for a 

Fig. 8   Effect of better gates: 
Same as Fig. 5, but with a depo-
larizing error per gate divided 
by 5

Fig. 9   Effect of better coher-
ence: Same as Fig. 5, but with 
T1 and T2 coherence times 
multiplied by 5
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definition of the corresponding Kraus operators). Deco-
herence errors indeed account for another portion of the 
errors incurred by a quantum processor. They not only 
lead to a decrease in gate fidelity, but also affect idle 
qubits. Here, the factor of 5 we chose is compatible with 
the improvements of the recent years (see [32], Fig 2c 
for the increasing T1 trend) Doing this will delay both 
spontaneous emission (amplitude damping) and phase flip 
(dephasing) events.

As shown in Fig. 9, better coherence only has a limited 
impact on the fragmenting procedure: it seems to improve 
more the success probability of the runs with fewer frag-
ments than the one of the runs with more fragments where 
the solid and dashed lines are closer one to the other. This 
behavior is expected. Using a larger number of fragments 
imply that the fragments are smaller in terms of qubits size 
and such small fragments are less sensitive to decoherence.

All these observations are summarized in Fig. 10, which 
shows the increased success probability using the new 
parameters compared to the success probabilities P(0)

success 
computed with the Johannesburg noise parameters. For 
each of the scenarios S introduced above, we compute the 
increase in probability defined as:

We see that, as discussed above, better readout is all the 
more helpful as the number of fragments is large, while, 
conversely, better coherence is more beneficial for smaller 
number of fragments. Achieving better gate fidelities, on the 
other hand, is equally beneficial with and without fragmen-
tation since the slope of the orange line is close to 1. (We 
stress that because of the arbitrariness in the quantitative 
choice of level of improvement for the three scenarios, one 
cannot conclude any quantitative insight from the value of 

(12)�P(S, nf) = ⟨Psuccess(S, nf, nq) − P(0)
success

(nf, nq)⟩nq .

the improvement; here, our conclusions are qualitative and 
only based on the slope with respect to the number of frag-
ments). Consequently, to make the most of the fragment-
ing procedure in the case of numerous fragments, the major 
error source to focus on is the measurement error by design-
ing faster readouts.

Contraction Complexity and Relation 
to Tensor‑Network Simulation

In this section, we elaborate on the complexity of the frag-
mentation algorithm. As presented in “Circuit Cutting”, the 
fragmentation method consists of a quantum and a classical 
step. In the quantum step, a batch of quantum circuits is 
executed on a Quantum Processing Unit (QPU). The num-
ber of such circuits scales as the number K of disconnected 
subgraphs of the original directed acyclic graph with some 
edges removed. The outcome of this step is a list of prob-
ability distributions pi . In the classical step, a tensor network 
with nodes corresponding either to the probability distribu-
tions or to the � tensors defined in “Circuit Cutting” needs 
to be contracted.

Here, we shall be interested in the contraction complexity 
of such a tensor network, assuming one wants to recover the 
probability of a single bitstring (b̂0,… b̂m−1) , i.e. for a fixed 
assignment of the external legs of the tensor network shown 
in Fig. 2b. A naive contraction of the tensor network at hand, 
namely a simultaneous summation over all internal indices 
(�i, bi, b

�
i
)
i=1…K−1

 , would entail a contraction complexity of 
12K−1 , i.e. a classical computation that is exponential in the 
number K of fragments. In our case, however, the linear 
structure of the graph underlying the tensor network allows 
for a much more efficient sequential contraction strategy. 
Such a strategy, which is also widely exploited for contract-
ing so-called Matrix Product States (see, e.g. [37, 38] for a 
review), consists in sequentially contracting the nodes of 
the network starting from one end of the linear graph. This 
is illustrated in Fig. 11, where we show the first three steps. 
The contraction complexity of the successive steps is 12, 36, 
12, 36, ..., 12, 36, 12, 6. For K fragments, this yields an over-
all contraction complexity of 48(K − 2) + 18 = 48K − 78 , 
i.e a linear complexity in the fragment number K.

In the case of a general tensor network, the optimal con-
traction complexity can be shown to be at least of the order 
of O(eT ) , where T is the so-called treewidth of the network 
graph [39]. The treewidth of a graph can be defined as a 
combinatorial metric of closeness of the graph to a tree. 
There are a few ways to define the treewidth in more formal 
way: the minimum k for which a given graph is a partial 
k-tree, or the elimination width.

Tensor-network theory can also be leveraged to simulate 
quantum circuits classically. There are a number of tensor-
network-based simulators developed for such simulations: 

Fig. 10   Increase in success probability averaged over the number of 
qubits as a function of the number of fragments, �P(S, nf) , for a faster 
readout (blue, parameters of Fig. 7), better gates (orange, parameters 
of Fig. 8), better coherence (green, parameters of Fig. 9)
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QFlex [40], AC-QDP [41], Quimb [42], and QTensor [43]. 
These simulators are typically much faster and more efficient 
than state vector simulators for shallow circuits [44] such 
as the circuits in this work. In these tensor simulators, the 
circuits are not directly represented by tensors, but rather 
use line graphs, which was proposed by Boixo et al. [45]. 
This approach has multiple benefits. The only disadvantage 
of the line graph approach is that it has limited usability to 
simulate sub-tensors of amplitudes, which was resolved in 
the work by Schutski et al. [46].

The method studied in our work, circuit cutting, has a 
counterpart in tensor-network-based simulation. It is called 
tensor slicing. One way to understand the slice of a tensor 
as an index that can be viewed as the function of many vari-
ables evaluated at some value of one variable:

where variables can have integer values xi ∈ [0, d − 1] . Thus, 
in this technique, slicing reduces the number of indices of 
the tensor one by one. Since all sizes of indices we use are 
equal to 2, removal of n vertices allows to split the expres-
sion into 2n separate parts. This operation is also equivalent 
to decomposition of the full tensor expression. Each separate 
tensor is represented by a graph with lower connectivity than 
the original one. As a result, it dramatically reduces the com-
plexity of finding the optimal elimination. Thus, it results 
in a lower contraction cost. It is a powerful technique that 
allows to simulate large circuits as does the circuit-cutting 
technique described in this work.

Homogeneous and Heterogeneous Quantum 
Computing

One exciting application of the circuit-cutting technique is to 
allow to execute much larger circuits. It can be done in two 
ways: split circuits and run sequentially on a quantum device 
(as we demonstrated in [1]), or run at the same time on mul-
tiple quantum devices. The latter way can lead to an exciting 
new era of how quantum computation is done—distributed 
quantum computing. It can potentially not only allow for the 

f (x1, x2,… xn)|x1=a = f̃ (x2,… xn),

execution of larger circuits, but also for a much faster execu-
tion. It is arguably a more realistic approach in the near future 
compared to the “true” distributed quantum computing that 
requires a quantum network connecting quantum devices. 
In our approach, indeed, we would utilize only the classical 
network.

Conclusions

In this work, we further investigated the Quantum Divide and 
Conquer approach, whose first implementation was demon-
strated in a recent work of ours [1].

After giving more details as to the mathematical framework 
and physical models used for this implementation, we analyzed 
the influence of different noise sources on the success prob-
ability of a simple, GHZ-type circuit using classical noisy sim-
ulations on the Atos Quantum Learning Machine. We focused 
on the three main noise sources of today’s superconducting 
processors, namely readout errors, gate errors and decoher-
ence (relaxation and dephasing) on idle qubits. We showed that 
readout errors are the most detrimental to the QDC procedure, 
because QDC requires additional measurements as the number 
of fragments increases. Conversely, the effect of idling noise 
is mitigated by QDC, as QDC results in smaller circuits that 
are less susceptible to this source of noise.

We also analyzed the computational complexity of QDC 
using tensor-network methods. While for a general circuit 
the contraction complexity increases exponentially with the 
number of cuts, for the GHZ-like circuit we studied, the 
complexity increases linearly with the number of cuts.

Finding more complex circuits in which the contraction 
complexity is still manageable is an interesting future direc-
tion. Circuits that have a “clustered” structure [14], that are 
e.g required in methods like the Dynamic Quantum Vari-
ational Ansatz [47], are promising candidates. In these meth-
ods, indeed, the ansatz has a mixer unitary that is made up 
of partial mixers that can have limited connectivity between 
each other, and can therefore form clusters.

Fig. 11   First three contraction 
steps for the fragmentation of 
the GHZ-type circuit of Fig. 1
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Appendix A: Pauli‑Basis Representation 
of Operators and Superoperators

We can decompose any Hermitian operator (including den-
sity matrices) as

with d = 2nqbits and P� a generalized Pauli matrix on nqbits 
qubits. Similarly, superoperators can be decomposed on this 
basis,

R is called the Pauli transfer matrix (PTM) representation 
of O . Then the coordinates of �� = O(�) is the Pauli basis 
are simply given by

We note that

Defining the scalar product ⟨⟨A�B⟩⟩ ≡ ∑
� A

∗
�
B� , we thus 

have
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