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Abstract
This paper provides a generic deep learning method to solve open set recognition problems. In open set recognition, only 
samples of a limited number of known classes are given for training. During inference, an open set recognizer must not only 
correctly classify samples from known classes, but also reject samples from unknown classes. Due to these specific require-
ments, conventional deep learning models that assume a closed set environment cannot be used. Therefore, special open 
set approaches were taken, including variants of support vector machines and generation-based state-of-the-art methods 
which model unknown classes by generated samples. In contrast, our proposed method models unknown classes by atypi-
cal subsets of training samples. The subsets are obtained through intra-class splitting (ICS). Based on a recently proposed 
two-stage algorithm using ICS, we propose a one-stage method based on alternating between ICS and the training of a deep 
neural network. Finally, several experiments were conducted to compare our proposed method with conventional and other 
state-of-the-art methods. The proposed method based on dynamic ICS showed a comparable or better performance than all 
considered existing methods regarding balanced accuracy.

Keywords  Open set recognition · Dynamic intra-class splitting · Deep learning · End-to-end

Introduction

Over recent years, complex classification tasks such as 
natural image classification have been solved with high 
accuracy [33]. One major step toward a high classification 
accuracy was deep learning, since it enabled to train large 
models in an end-to-end manner without requiring manual 
feature engineering [16]. However, most of the research has 
been limited to closed set problems in which the number 
of occurring classes is known in advance. This is not the 
case in many real-world applications. For example, in face 
recognition, new faces may occur during inference, which 

were not known during training [8]. In such a case, open set 
recognition is necessary.

In open set recognition (OSR), samples of K known 
classes are given during training. During inference, sam-
ples of both K known and U unknown classes may occur. An 
open set recognizer is able to classify samples from known 
classes and to reject samples from unknown classes [27]. 
Figure 1 visualizes the difference between a closed set clas-
sifier and an open set recognizer.

Since its goal is closed and tight decision boundaries, 
OSR requires special methods. Conventional OSR methods 
are mostly based on decision scores obtained by closed set 
classifiers, such as support vector machines (SVMs) [34]. 
By selecting a threshold, they compare decision scores with 
this threshold to decide whether to reject a test sample. In 
contrast, state-of-the-art methods often utilize generative 
models to generate fake samples which model unknown 
classes. More details about related work are presented in 
the next section.

Recently, we proposed a novel approach toward OSR 
based on intra-class splitting (ICS) [30]. Its idea is to split 
given training samples into two subsets: typical and atypi-
cal samples. Then, the atypical samples are used to model 
unknown classes. This enables to transform a K-class open 
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set problem into a K+1-class closed set problem as shown in 
Fig. 2. This transformation is also common for generation-
based methods. However, the ICS-based method achieved 
better results. A possible reason is that atypical subsets of 
training samples are closer to real unknown classes com-
pared to generated samples.

Although the ICS-based method showed a good perfor-
mance, it requires two stages, the ICS and the training of an 
open set recognizer. As the splitting is so far done by train-
ing another model, the method requires the training of two 
different deep neural networks. Therefore, the training pro-
cedure of the first stage implicitly becomes a general hyper-
parameter, which is not user-friendly enough. Is it possible 
to combine both training steps?

In this paper, we answer this question by compressing the 
ICS-based method into a one-stage method. Furthermore, 
we provide an insight into open set recognition and the new 
method. To this end, many experiments on image datasets 
were conducted.

Related Work

Many previous studies summarize the algorithms toward 
OSR problems into two groups: conventional machine 
learning methods and deep learning methods. However, this 
grouping hides the key ideas of different approaches in solv-
ing OSR problems. Therefore, in this paper, we propose to 
group prior work into two categories: threshold-based meth-
ods and generation-based methods. In particular, threshold-
based approaches use predicted scores or re-calibrated prob-
abilities from a conventional classifier with a predefined 
threshold to reject samples from unknown classes. In con-
trast, generation-based methods try to model the unknown 
classes and therefore transform an OSR problem into a clas-
sification problem by discriminating generated samples from 
given known classes.

Threshold-based Open Set Recognizers Open set recog-
nition was first formally formulated by Scheirer et al. [27]. 
In this work, a 1-vs-set support vector machine was pro-
posed by adding an additional hyperplane between a learned 
decision boundary and non-matching data. Thus, samples 
located in the space between the two hyperplanes were con-
sidered to belong to unknown classes. However, this method 
was only a linear model and resulted in a loose decision 
boundary.

Afterward, Scheirer et al. proposed the Weibull sup-
port vector machine (WSVM)  [28]. It utilizes decision 
scores obtained by a one-class support vector machine 
(OCSVM) [32] and a binary support vector machine [5] 
to fit a Weibull distribution [23]. Subsequently, the fitted 
cumulative density function was used to calibrate scores for 

(a) (b) (c)

Fig. 1   Exemplary comparison between closed set classification and 
open set recognition based on a three known classes A, B and C. b 
A closed set classifier can only learn decision boundaries that divide 
the feature space into three parts and thus cannot be used to detect 

unknown samples. c In contrast, in open set recognition, tight deci-
sion boundaries around the known classes are desired. Therefore, the 
gray space represents unknown classes

Fig. 2   Basic idea of the ICS method: Split given data from K known 
classes, here A, B and C, into typical and atypical subsets. By dis-
criminating the K typical subsets and one additional class combining 
all atypical subsets from each other, a trained K+1-class classifier is 
expected to reject samples from unknown classes (gray) (color figure 
online)
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classification. Although this model could outperform previ-
ous approaches toward OSR problems, it was thresholded 
and thus had sensitive hyperparameters. Similarly, Jain 
et al. [11] proposed a PI-SVM based on WSVM by intro-
ducing an automatic threshold estimation.

Moreover, Rudd et al. [24] proposed the extreme value 
machine (EVM) which used distances among training sam-
ples to fit a Weibull distribution. Given a new sample, an 
EVM estimates inclusion probabilities for each known class. 
According to a threshold, a sample is then either rejected or 
assigned to the class with the highest inclusion probability.

As the first deep-learning-based method, Bendale 
et al. [3] proposed OpenMAX to be used as an output layer 
in a deep neural network, enabling the rejection of unknown 
classes. However, it introduced three additional hyperparam-
eters, which should be carefully selected based on unknown 
classes or validation sets. This is not always feasible in 
practice. Moreover, the OpenMAX layer was not used dur-
ing training. In other words, the OpenMAX method can be 
considered as an extended EVM for a feature space learned 
by a deep neural network.

Generation-based Open Set Recognizers One recent 
generation-based method is the counterfactual image gen-
eration method (CF) proposed by Neal et al. [19]. It mod-
els unknown classes by generated samples which enable 
to reformulate an OSR problem into a classification task. 
Indeed, the authors first trained a modified Wasserstein-
GAN [7, 18, 35] to obtain an encoder and a decoder. Then, 
the encoder transformed samples of known classes into 
latent representations. With a pretrained multi-class neu-
ral network, they sought latent representations in the fea-
ture space which were close to known classes but had low 
decision scores. Subsequently, these representations were 
decoded into counterfactual images. Accordingly, an OSR 
problem could be reformulated into a classification problem 
by discriminating among known classes and the counterfac-
tual image class. Although this method achieved state-of-
the-art performance in the literature, it suffers from common 
problems with GAN-based methods such as mode collapse. 
Furthermore, the numbers of training steps for a GAN and 

optimization steps for the counterfactual image generation 
are difficult to determine, because there are few quantity 
metrics to evaluate such generation qualities. Beyond that, 
there are other studies based on generation-based methods. 
For example, Jo et al. generated fake unknown data by mod-
eling a noisy distribution in a latent space [12].

Intra-class Splitting Intra-class splitting (ICS) is a strat-
egy to model unknown classes [30, 31]. More precisely, 
given training samples are split into typical and atypical sub-
sets. The atypical subsets are then used to model unknown 
classes. This is because samples with less frequent pat-
terns are often less important to model known classes and 
thus are not representative for them. For example, in the 
field of image classification, training a classifier on images 
with many redundant details may mislead the classifier and 
decrease the performance as shown in [29, 30]. Similarly, 
Li et al. [17] stated that misclassified samples from a train-
ing dataset can be considered as outliers or hard examples, 
which are not representative.

Proposed Method

Similar to our previous approach [30], the proposed method 
transforms a K-class open set problem into a K+1-class 
closed set problem. Thereby, intra-class splitting is used to 
find atypical samples which then serve as an additional class 
representing unknown classes. In addition, the proposed 
method shares the same neural network structure [30] as 
shown in Fig. 3. Equal to the previous approach, the closed 
set (CS) layer with K outputs is used as a closed set regulari-
zation to increase the closed set classification performance 
of atypical samples. During inference, only the combination 
of the deep feature extractor and the open set (OS) layer with 
K+1 outputs is used as an open set recognizer.

In contrast to the previous approach, intra-class split-
ting is now performed by directly using the outputs of the 
CS layer instead of training a separate neural network. 
Moreover, the splitting is not performed once before train-
ing, but dynamically epoch by epoch. We call this dynamic 

Fig. 3   The DICS network 
architecture consisting of a deep 
feature extractor, an open set 
(OS) layer with K+1 outputs 
and a closed set (CS) layer with 
K output neurons. During infer-
ence, the deep feature extractor 
and OS layer form the final 
open set recognizer
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intra-class splitting (DICS). Based on DICS, the original 
two-stage method is transformed into a one-stage method 
in which only one neural network must be trained. In the 
following, DICS and the training procedure are described 
in more detail.

Dynamic Intra‑class Splitting (DICS)

Let D = {(x1, y1), (x2, y2),… , (xN , yN)} denote a training 
dataset with N samples affiliated to K known classes. Cor-
respondingly, each sample xi ∈ X = {x1, x2,… , xN} has an 
individual class label yi ∈ {1, 2,… ,K} . After the e-th train-
ing epoch, the score s(e)

i
 of an input sample xi depends on its 

predicted class label ŷ(e)
i,cs

:

where P̂(yi|xi) is the conditional class probability modeled 
by the closed set classifier, i.e., the concatenation of deep 
feature extractor and CS layer in Fig. 3. Note that a higher 
score means a more typical sample. Per e-th training epoch, 
scores for all training samples are collected as a score set 
S
(e) = {s

(e)

1
, s

(e)

2
,… , s

(e)

N
} for the e-th training epoch. Let 

0 < 𝜌 < 1 be a predefined intra-class splitting ratio and S(e)
�

 
be the �-th fraction of S(e) with the lowest scores. Then, 
� (e)
�

= maxS(e)
�

 acts as a threshold between atypical and typi-
cal samples. Hence, the training dataset is split according to:

Thereby, the goal of the scoring procedure is to find those 
samples which are either incorrectly classified or correctly 
classified but with a low confidence. As a result, � shows 
how many samples from known classes are allowed to be 
incorrectly rejected as unknown classes, similar to [31].

Training

Let the deep feature extractor from Fig. 3 be denoted as f0(⋅) , 
the OS layer be named fos(⋅) and the CS layer be denoted as 
fcs(⋅) . Then, the resulting open set recognizer is defined as

while the conventional closed set regularization is denoted 
as

Based on these definitions, the objective of the proposed 
method at each training epoch can be defined as:

(1)∀xi ∈ X ∶ s
(e)

i
=

{
P̂(yi|xi), if ŷ

(e)

i,cs
= yi

0, otherwise

(2)∀xi ∈ X ∶ xi ∈

{
Xtypical, if s

(e)

i
> 𝜏(e)

𝜌

Xatypical, else

(3)fosr(⋅) = (fos ◦ f0)(⋅) ,

(4)fcsr(⋅) = (fcs ◦ f0)(⋅) .

where the OS loss Los and CS loss Lcs are the learning objec-
tives for regular K+1 - and K-class classification problems, 
respectively. Moreover, the hyperparameter � controls the 
trade-off between both losses.

In this work, the categorical entropy loss is used for both 
terms in the objective function. Note that �(⋅)(e) is an indica-
tor function that returns 1 if a given sample is affiliated to 
the typical subset and otherwise returns 0. This means that 
typical samples maintain their original ground truths while 
atypical samples are assigned to a new label of zero dur-
ing the optimization. The superscript (e) is used to empha-
size that the outputs of �(⋅)(e) may change epoch by epoch 
because of the dynamic ICS.

Consequently, a minimization of the first term in Eq. 5 
equals forcing the decision boundary to be between the typi-
cal and atypical samples, i.e., minimizing the open risk [27]. 
On the contrary, a minimization of the second term corre-
sponds to minimizing the empirical risk on the training data 
from the known classes. Hence, the decision boundary is 
forced to enclosure the known classes.

Evaluation

Setup

In an open set recognition scenario, K known classes and U 
unknown classes are present. During the conducted experi-
ments, to be consistent with previous studies, K was equal to 
six while U varied depending on different datasets.

To evaluate the performance of an open set recognizer, 
the balanced accuracy (BACCU) [4] was used as the funda-
mental metric. In order to be consistent with prior work [19, 
26–28], known classes were also denoted as positive classes, 
while unknown classes were considered as negative classes. 
Accordingly, BACCU is defined as

where TN (true negative) is the number of correctly rejected 
negative samples and TP (true positive) is the number of 
correctly classified positive samples. The BACCU gives the 
same weights to both rejecting negative samples and cor-
rectly classifying positive samples. Finally, in order to be 
consistent with prior work [19, 28], the area under curve 
(AUC) and closed set accuracy (CSACCU) were taken into 
consideration, too.

The backbone neural network architecture of the DICS 
method shared the same settings with [31]. The batch size 

(5)

min
f0,fos

(
�(x,y)∼D[Los(fosr(x), �

(e)(x) ⋅ y)] + � ⋅ �(x,y)∼D[Lcs(fcsr(x), y)]
)
,

(6)

BACCU =
1

2
⋅

(
TN

# negative samples
+

TP

# positive samples

)
,
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was set to 64 and the network was trained for 80 epochs in 
each experiment.

Baseline Methods

We selected seven baselines including state-of-the-art meth-
ods from the literature for comparison.

Multi-Class Neural Network with Rejection Option (CRO) 
A multi-class classifier was trained on the known classes 
in a closed set configuration. Then, a rejection threshold � 
was selected by assuring up to 10% of the training samples 
were incorrectly rejected as unknown-class samples. During 
inference, samples with predicted scores lower than � were 
rejected as from unknown classes. Note that this multi-class 
classifier shared the same architecture and hyperparameters 
as the proposed method.

Extreme Value Machine (EVM) EVM was implemented 
based on  [24] with the default suggested hyperparame-
ters. � was set as 0.99 according to a grid search in the set 
{0.01, 0.05, 0.1, 0.5, 0.9, 0.99, 0.999}.

One-Class Support Vector Machine with Multi-Class 
Classifier (OCMC) An OCSVM  [32] was trained with 
� = 0.01 and a kernel with radial basis function (RBF) [6] 
on the given known samples to reject unknown samples dur-
ing inference. Then a multi-class classifier was trained on 
the known classes for a closed set prediction. Note that this 
multi-class classifier shared the same architecture and hyper-
parameters with the proposed method.

Weibull Support Vector Machine (WSVM) The OCSVM 
and binary SVM were implemented using [22]. Both SVMs 
utilized an RBF kernel. We selected the hyperparameters as 
follows: � = 0.01 for OCSVM, C = 2, � = 0.03125 for the 
binary SVM as suggested in [28]. A Weibull distribution 
was fitted according to [26]. The decision thresholds were 
set as �� = 0.001, �R = 0.5.

OpenMAX We modified the codes from [3] as little as 
possible to satisfy our datasets. In order to have a fair com-
parison, the backbone network shared the same architecture 
of our method. As suggested in [3], we used � = 1, � = 20 
for all experiments.

Counterfactual Image Generation for OSR (CF) We 
translated the original codes [19] from PyTorch [21] into 
Keras [1] in order to maintain a consistent experimental 
environment for all baselines. All hyperparameters were 
maintained the same as in [19].

Intra-class Splitting (ICS) We kept all hyperparameters 
as in [30].

Datasets

We used three image datasets to validate the effectiveness of 
our method and to evaluate the sensitivity to the key hyper-
parameters. The first dataset MNIST [15] contains images 
of handwritten digits from 0 to 9 in gray scale. The num-
ber of training samples is around 6000 per class, while the 
number of test samples is around 1000 per class. The second 
dataset SVHN [20] consists of color digit images from 0 to 
9 obtained in the real world. Thereby, most classes contain 
around 5000 training samples and 2000 test samples. The 
third dataset CIFAR-10 [13] is the most difficult considered 
dataset as it contains images of real-world objects such as 
airplanes, dogs and trucks. Each class in CIFAR-10 consists 
of 5000 training and 1000 testing samples. Figure 4 shows 
exemplary images from the three datasets.

Comparison

First, the proposed DICS method was compared to the other 
baselines on all three datasets. In each experiment on a data-
set, 6 classes from the training set were randomly selected 

Fig. 4   Exemplary images from 
the datasets
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as the known classes for training. Subsequently, we used all 
samples from the test set for the evaluation, i.e., 6 known 
classes and 4 unknown classes. The experiment was repeated 
five times for each dataset, and the results were reported by 
means and standard deviations (std.).

Table 1 shows the resulting BACCU on the three data-
sets mentioned above. DICS achieved a comparable or better 
performance than the original ICS method. On the datasets 
SVHN and CIFAR-10, the DICS method outperformed the 
original ICS. We argue that the DICS adds stochastic behav-
ior to the selection of atypical samples. This means that at 
each epoch, a small number of typical samples were wrongly 
labeled as atypical, which leads to a higher robustness of the 
entire open set recognizer and thus a better performance on 
more complex datasets.

In an open set configuration, the AUC is a measure for 
the ability of an open set recognizer to correctly reject a 
sample from unknown classes based on manually selected 
thresholds. As shown in Table 1, the AUC shows a similar 
trend as the BACCU. Thereby, bold values mark the best 
result. Both ICS and DICS outperformed other considered 
baselines. Considering ICS and DICS, the dynamic splitting 
procedure seems to be more superior for complex datasets 
such as CIFAR-10.

The major weakness of both ICS and DICS is the per-
formance regarding the closed set accuracy as shown in 
Table 1. In order to achieve a tight decision boundary, 
the key idea of all ICS-based methods is to use atypical 

samples to shrink the resulting decision boundaries. There-
fore, samples from known classes that are located near the 
decision boundaries are sometimes rejected as unknown 
classes. Nevertheless, in practice, a slightly lower closed 
set accuracy is tolerable [2, 19].

Openness

Openness is used to describe how “open” an OSR problem 
is [28]. It is defined as:

where K equals the number of known classes. Furthermore, 
C = K + U where U is the number of unknown classes 
encountered during testing. The more unknown classes are 
encountered during inference, the more open an OSR prob-
lem is. Thereby, an OSR problem with a higher openness 
typically requires a more advanced OSR algorithm. In other 
words, an optimal OSR algorithm should have consistent 
performance over different openness.

In this work, we compared the performance of WSVM, 
CF, ICS and the proposed DICS method under different 
openness. These four methods were trained on six ran-
domly selected classes from the dataset CIFAR-10. During 

(7)openness = 1 −

√
2 ⋅ K

K + C
∈ [0, 1) ,

Table 1   Results with 
performance metrics (std.) in %

Dataset CRO EVM OCMC WSVM OpenMAX CF ICS DICS

(a) BACCU​
MNIST 91.9

(± 1.0)
49.3
(± 1.6)

68.9
(± 0.6)

86.8
(± 2.6)

87.6
(± 0.2)

88.0
(± 0.5)

94.4
(± 0.6)

93.6
(± 1.2)

SVHN 78.8
(± 0.8)

44.5
(± 7.4)

58.1
(± 1.5)

63.7
(± 1.1)

76.1
(± 0.3)

76.2
(± 0.4)

82.1
(± 0.9)

82.6
(± 0.7)

CIFAR-10 65.0
(± 1.2)

47.3
(± 0.7)

48.4
(± 4.4)

53.3
(± 2.8)

54.9
(± 2.3)

52.7
(± 0.2)

72.0
(± 1.6)

73.8
(± 0.9)

(b) AUC​
MNIST 97.0

(± 1.1)
72.0
(± 5.5)

74.0
(± 2.2)

89.9
(± 5.1)

81.8
(± 0.7)

96.8
(± 0.2)

98.3
(± 0.2)

98.0
(± 0.8)

SVHN 88.0
(± 0.7)

61.3
(± 11.6)

71.6
(± 3.1)

76.4
(± 2.2)

80.6
(± 0.7)

79.7
(± 2.6)

89.8
(± 0.9)

89.8
(± 0.7)

CIFAR-10 74.0
(± 1.3)

55.4
(± 1.6)

64.7
(± 8.4)

66.7
(± 2.2)

61.1
(± 1.9)

71.7
(± 3.3)

80.2
(± 1.6)

82.3
(± 2.1)

(c) CSACCU​
MNIST 90.0

(± 0.8)
40.0
(± 1.3)

94.5
(± 0.0)

87.5
(± 2.0)

98.3
(± 0.2)

97.1
(± 0.0)

92.8
(± 0.5)

91.6
(± 0.3)

SVHN 70.5
(± 0.9)

34.2
(± 7.0)

86.1
(± 0.0)

65.5
(± 2.1)

91.6
(± 1.4)

79.4
(± 7.4)

82.2
(± 2.1)

84.2
(± 1.0)

CIFAR-10 63.3
(± 1.0)

38.1
(± 0.6)

79.0
(± 0.5)

53.1
(± 2.6)

82.6
(± 1.2)

76.8
(± 5.1)

76.2
(± 2.1)

74.8
(± 1.2)
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inference, randomly selected images from the datasets 
CIFAR-100 [13] and Tiny ImageNet [25] were used as 
unknown classes. Thereby, seven different numbers of 
unknown classes were considered in this work: 5, 10, 
20, 50, 75, 100 and 200.1 The images for the last case 
were randomly sampled from Tiny ImageNet, while the 
images for the other six cases were randomly selected from 
CIFAR-100. Here we only report the resulting balanced 
accuracy in Fig. 5a and AUC in Fig. 5b, because the closed 
set accuracy did not change in respect of variable numbers 
of unknown classes.

The ICS and DICS methods outperformed the other two 
models regarding BACCU and AUC. Figure 5 shows the 
performance over different openness with corresponding 
standard deviations of the four methods. In average, the 
proposed DICS method achieved a balanced accuracy com-
parable to the original ICS method as depicted in Fig. 5a. 
As discussed before, this improvement is caused by the bet-
ter robustness of DICS which was achieved by the dynamic 
splitting at each epoch.

Splitting Ratio

Similar to the original ICS method, the splitting ratio � plays 
a crucial role in the proposed DICS method. As shown in 
Fig. 6a, the balanced accuracy on all three datasets first 
increased and then decreased with ascending splitting 
ratios. Indeed, a small � such as � = 1% , means that almost 
all training data maintain their original ground truths. Such 
a training procedure is similar to closed set classification. 
Therefore, the trained model cannot well reject samples 
from unknown classes. On the contrary, a large splitting 
ratio � = 75% means that the majority of the given train-
ing data has new labels differing from the original ground 
truths. In this case, the proposed closed set regularization 
cannot guarantee maintaining a high closed set accuracy. 
This comparison can also be observed by the closed set 
accuracy shown in Fig. 6c. The proposed DICS achieved 
a high closed set accuracy with a small splitting ratio and 
vice versa. Interestingly, as shown in Fig. 6b, AUC does not 
have much variance over different splitting ratios. In a wide 
range of splitting ratios, such as 1% ≤ � ≤ 50% , the AUC is 
on a similar level.

Fig. 5   Performance metrics 
over different openness

(a)

(b)

1  The corresponding openness values are: 16.0%, 26.1%, 38.8%, 
56.0%, 62.9%, 67.3%, 76.2%.
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Initialization

In the DICS method, the given training data from the known 
classes are first split based on a randomly initialized net-
work, meaning the deep feature extractor and CS layer. 
Hence, the splitting results in a first training epoch may 
not be reliable because the atypical samples are randomly 
selected at the beginning.

Therefore, the proposed method was evaluated under dif-
ferent network initializations to examine their impact. In this 
subsection, the proposed DICS method was tested on the 
datasets MNIST, SVHN and CIFAR-10 with a randomly 

selected combination of known classes. After fixing the 
known classes for training, we repeated the experiment for 
five times with randomly initialized network weights and 
reported the averaged results and their standard deviations.

Figure 7 shows the resulting performance. On the three 
datasets, the DICS method achieved a consistent perfor-
mance for different initializations of the neural networks. 
In particular, DICS had a low standard deviation regarding 
BACCU and AUC. As discussed before, the introduction 
of dynamic splitting enabled a higher robustness to reject 
unknown classes. On the contrary, we noticed that CSACCU 
had a slightly higher standard deviation than BACCU. A 

Fig. 6   Performance metrics 
over different splitting ratios

(a)

(b)

(c)
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possible reason is that DICS forces the classifier to be con-
fused with the true labels of some samples from the known 
classes for the early training epochs.

Discussion

Although one reason to develop a new method for OSR was the 
dependence of existing methods on hyperparameters, the pro-
posed DICS method also depends on one crucial hyperparam-
eter, the splitting ratio � . Why is this better than other methods?

In OSR, there is a trade-off between correctly rejecting 
unknown classes and identifying known classes. Hence, if no 
prior information at all about unknown classes is available, 
there must be at least one inevitable hyperparameter that sets the 
trade-off between the two contradictory objectives. Regarding the 
proposed DICS method, this hyperparameter corresponds to the 
splitting ratio � which sets the fraction of training samples to be 
considered as atypical. In practice, the inevitable hyperparameter 
in OSR can often be set based on given regulations or experience.

In contrast to the proposed method, existing methods do 
not only depend on one inevitable hyperparameter, but also 
on several algorithm-dependent hyperparameters. For exam-
ple, WSVM depends on � , �� and �R [28]. Likewise, CF also 
has many algorithm-dependent hyperparameters. For exam-
ple, CF utilizes the generated counterfactual images to rep-
resent unknown classes. Therefore, the quality of generated 
images plays a key role in this algorithm [19]. Accordingly, 
the entire training procedure can be considered as a general 
hyperparameter for CF, including the number of optimiza-
tion steps and ratios among all losses.

In fact, such algorithm-dependent hyperparameters com-
plicate the usage of open set recognizers, because the choice 
of these hyperparameters often requires a full understanding 
of the algorithm. Furthermore, algorithm-dependent hyper-
parameters are often sensitive and hard to fine-tune for new 
datasets or domains. Some of these hyperparameters even 
depend on the number of unknown classes, which is not 
feasible in practice. In contrast, the splitting ratio � of DICS 
is inevitable and easy to interpret.

Finally, it should be noted that the concrete network archi-
tectures are also hyperparameters in DICS. However, they can 

be considered as inevitable since they are common in almost 
all deep learning-based approaches.

Conclusion

We proposed a new method for open set recognition. By apply-
ing dynamic intra-class splitting (DICS), the method enables 
to use an arbitrary deep neural network as a one-stage end-to-
end open set recognizer. Experiments on several image datasets 
showed the superiority over state-of-the-art methods regarding 
a compromise between closed set accuracy and rejection capa-
bility. In addition, the proposed method achieves a comparable 
or better performance than a former proposed two-stage method 
using ICS. Thereby, DICS still depends on a hyperparameter. 
However, we argue that this hyperparameter is inevitable and 
easier to choose than algorithm-dependent hyperparameters of 
existing methods due to its easy interpretability. The experi-
ments indicated that DICS did not have the best closed set accu-
racy, although it might be tolerable in specific cases. Therefore, 
further research could focus on improving the closed set accu-
racy, for example by combining DICS with generative models 
or by choosing a more sophisticated network architecture.
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Appendix 1: Architecture

The proposed method is a generic methodology toward 
OSR problems and not limited to a concrete network 
architecture. In this work, we implemented a VGG-like 
neural network [33] with residual blocks [9] to evaluate 

the proposed method. The detailed network architecture 
is presented in Fig. 8. It consists of four convolutional 
residual blocks, each with two convolutional layers 
(“Conv.”), an activation layer with a leaky rectified lin-
ear unit (Leaky ReLU), an average pooling and a batch 
normalization layer [10]. Thereby, whenever two blocks 

Fig. 8   Architecture of the pro-
posed DICS method
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point into one block, a concatenation layer is used. At the 
end of the architecture, three dense layers with intermedi-
ate dropout layers [14] are utilized.

Appendix 2: Evaluation

The following tables contain the exact results for the cor-
responding figures in the main part of this paper (Tables 2, 
3, 4, 5, 6 and 7). Thereby, bold values mark the best result.
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