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Abstract
FLASH is a multiphysics software package that was created in 1998 by combining three preexisting packages and has 
undergone three major revisions. Software design and engineering practices were integrated early in the development and 
maintenance processes of FLASH, and these processes have evolved strongly at each of the revisions. As high-performance 
computing enters the age of exascale, challenges along the orthogonal axes of node-level hardware and solver heterogene-
ity force developers of complex multiphysics software to consider a software architecture overhaul. Because of the nature 
and scope of necessary changes, an effort to refactor and grow the architecture of the FLASH code has been launched as a 
separate software project. For this project to succeed, its development team must evaluate, improve, and modernize software 
processes and policies to meet the unique challenges posed by the exascale era. We describe here our experiences, lessons we 
have learned, and the methods that we have developed as part of this ongoing project. Within the context of the challenges 
posed by exascale, we review the FLASH design approach as well as some of the main software engineering processes and 
tools that have been implemented or updated throughout the lifetime of FLASH. Modernization applied to these processes 
and tools is also detailed. Reviewing and reevaluating the FLASH experience of establishing and updating software design 
and engineering practices have been helpful in understanding the needs of the project as it transitions to exascale and in 
planning the transition. We find that our historical design methodology is still important and relevant. We also believe that 
using a mixture of plan-based and agile methods is still the best for our project and is in accord with the guidance found in 
the literature. We present a section on inferences and lessons learned related to software design and engineering practices.
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Introduction

FLASH [1] is a highly configurable scientific software pack-
age that has been in development since 1998, when three 
preexisting code bases were combined to produce general-
purpose software for simulating reactive flows often found 
in astrophysics. The three component codes provided distinct 
functionalities: Paramesh [2] is an adaptive mesh refinement 
(AMR) library, Prometheus [3] computes reactive hydro-
dynamics, and another collection of functions computes 
equations of state and nuclear burning [4]. The code is writ-
ten primarily in Fortran, and the current production release 
contains approximately 1.5 million lines of code. The people 
responsible for this software are distributed across several 
academic institutions and national laboratories and function 
effectively as a “team of small teams.” Development and 
maintenance are therefore carried out by graduate students, 
postdoctoral researchers, university professors, and profes-
sional research staff.

This article is part of the topical collection “Software Challenges 
to Exascale Computing” guest edited by Amit Majumdar and Ritu 
Arora.
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The importance of good software development and engi-
neering practices was recognized early in the project. Efforts 
have been made to study such practices in industry and in 
other computational science, engineering, and mathematics 
projects and to adapt useful, relevant practices to the needs 
and challenges of developing FLASH. Where tools and prac-
tices were not appropriate for FLASH or were nonexistent, 
the FLASH team carried out research and development to 
produce tools and processes to address shortcomings.

FLASH has undergone three major version updates, and 
the software engineering and auditing process has evolved 
strongly with each revision [5, 6]. Two of these were refac-
torings that included deep changes to the software architec-
ture of the code [7]; the third added a significant number of 
new physics capabilities to enable FLASH’s use in high-
energy-density physics (HEDP) research. Much of this evo-
lution occurred dynamically as the team reacted to specific 
challenges posed by the revisions.

As a general rule, when evaluating or designing possible 
software engineering processes and tools, preference has 
been given to simplicity and informality in the interest of 
limiting overhead, which can be important for ensuring pro-
ductivity in small research teams that are also responsible 
for professional development of junior team members. This 
goal is partially responsible for the aforementioned need 
to adapt processes found, for example, in industry and in 
library development projects.

As we consider the landscape of exascale and post-
exascale supercomputers, we are confronted with the 
orthogonal axes of both platform heterogeneity and solver 
heterogeneity. While the onset of platform heterogeneity 
is a well-known challenge, a concern that is discussed less 
frequently is that greater scientific understanding has given 
rise to larger and more complex codebases with diverse solv-
ers that must interoperate. When combined, these two axes 
of complexity substantially stress the code infrastructure, 
forcing us to consider a fundamental architectural redesign. 
Because this architectural update is the most challenging 
refactoring to date, it also requires the reevaluation and 
improvement of software processes.

In this paper, we briefly review some of the main software 
engineering processes and tools that have been implemented 
or updated throughout the lifetime of FLASH. The focus of 
the review is on practices that are either continuing to be 
useful or have been instrumental in providing insights that 
are useful now. This review leads into a detailed discussion 
of our approach to redesigning the software infrastructure 
and the evolution of our software engineering practices in 
response to the exascale challenges. Additionally, we pre-
sent a section on inferences and lessons learned related 
to software design and engineering practices. The contri-
butions of the paper are twofold: (1) a design methodol-
ogy that other codes can adopt to prepare for exascale and 

(2) a crystallization of experience with adapting software 
engineering practices for very complex scientific research 
applications developed and maintained by a small team. The 
former is effectively what we view as best practices for other 
projects with similar scope and challenges.

Background

Considerable studies have been done regarding refactor-
ing methods and tools. Among them, [8] provides a good 
survey and [9] considers motivations for refactoring. While 
the literature for commercial software refactoring is large, 
our experience has been that commercial techniques can 
require significant adaptation in order to meet the needs of 
developing FLASH [1]. Therefore, we focus our attention on 
publications related to software restructuring and refactor-
ing in the scientific world. Several of these papers, such as 
[9], are case studies from specific software projects. Articles 
such as [10–13] discuss the lack of software engineering 
practices in scientific software development, where refactor-
ing is one of the considered features. Among these [13] is 
notable in that it attempts to provide a systematic study of 
scientific software development. Literature on general stud-
ies of refactoring in scientific software is sparse, with a few 
exceptions such as [14, 15], which are restricted to Fortran 
code refactoring, and [16], which defines a methodology for 
code development taking into account ongoing changes in 
specifications that are an inevitable part of scientific soft-
ware development.

FLASH is a component-based code where different com-
binations of components constitute different applications. 
Furthermore, each component can have multiple alterna-
tive implementations of its functionality, which adds to 
the degree of composability of the code. While FLASH is 
implemented with procedural programming, the organi-
zation of files and subroutines and the build system were 
designed and implemented to take advantage of the benefits 
of architecting the code with object-oriented programming 
while still enjoying the benefits of procedural programming.

Specifically, related functionality and data that can be 
grouped as a single class are organized into a code unit in 
FLASH. Each unit is isolated in the FLASH source direc-
tory as a subdirectory hierarchy containing all related rou-
tines. Naming conventions differentiate between routines 
that implement the public interface of the unit from those 
that are internal to the unit. All public interfaces have null 
implementations as well as one or more full implementa-
tions. Therefore, by including its null implementation 
during configuration, this mechanism allows a unit to be 
excluded functionally without having to change the source 
code. Also, any of the full implementations can be selected 
during configuration, thus allowing for multiple alternative 
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implementations of the same API. The design allows for a 
simple form of inheritance so that common code may be 
written and either used or overwritten by any particular 
implementation.

An example of a unit with significantly different imple-
mentations is FLASH’s Grid unit, which manages the dis-
cretized mesh. To expose parallelism, the Grid unit decom-
poses the spatial domain into non-overlapping blocks, each 
of which is a logically rectangular collection of cells defined 
by the mesh. The mesh can be uniformly spaced everywhere, 
or it can be adaptive, where adaptivity is obtained by decom-
posing regions of the problem where fine-scale features exist 
with high-resolution blocks and by using only low-resolution 
blocks elsewhere. Besides managing the mesh definition and 
evolution of mesh resolutions in time, the Grid unit stores 
data defined on the mesh, provides access to the data, pro-
vides all mesh-related information for the simulation, and 
collaborates with other units through blocks and their asso-
ciated metadata. Because of its extensive support role, we 
commonly refer to the Grid unit as part of the infrastruc-
ture of FLASH and recognize its importance since it is used 
throughout much of the codebase. For instance, physics units 
request from the Grid unit a list of blocks on which to oper-
ate and proceed by typically looping over blocks to apply 
their operators (physics solvers) to the data. This mecha-
nism abstracts away the physical location of the block in the 
domain from the physics operator, which achieves a clean 
separation of infrastructure from physics.

FLASH Design

FLASH’s design was dictated from the outset by its over-
arching science goals and the composition of the team. Sci-
entific members of the team wanted a code with reusable 
components that could be combined as needed for their 
problems of interest. While many features were common 
among these problems, they were still different enough to 
warrant composability in configuration. The solution to this 
challenge has been the most influential design choice to 
date. A set of configuration files encoding meta-information, 
which are generally referred to as Config files, and a Setup 
tool to parse and interpret the Config files’ meta-informa-
tion were established in the first version of the code and 
are used to configure a unique binary for each application. 
This approach has persisted throughout the history of the 
code. However, the syntax of the Config files and features 
enabled by the setup script have been successively enriched. 
In fact, the vast majority of changes to the code architec-
ture through version 4 have been enabled by augmenting 
the Config file syntax and implementing the structure-based 
inheritance mechanism in the Setup tool (see [7] for more 
detailed description).

The second far-reaching design choice was engendered 
by the unusual (for its time) composition of the team, which 
consisted of astrophysicists, applied mathematicians, and 
computer scientists. The team differed from those work-
ing on other contemporary code development efforts in 
that although science concerns were driving the develop-
ment, the scientists were visionary enough to understand 
that investing in well-designed and well-engineered code 
would yield long-term efficiency and success. An enduring 
design choice that came out of this interdisciplinary team 
of developers was separation of concerns, achieved through 
the establishment of an API for functional units of the code.

Design Approach

A methodology for code design is depicted in Fig. 1. It has 
been implicit in our design process since the transition from 
the second to third version, and insight from this methodol-
ogy is now used to inform most of our design process. The 
premise of this methodology is that there is a fundamental 
difference between the two types of components within the 
code: those that are relatively stable and those that change 
on a much smaller timescale. The code units that pertain to 
the infrastructure and the framework are the stable backbone 
of the code and generally are not the subjects of ongoing 
research. This type of code does, however, tend to inter-
act with all other components, making it more difficult to 
shield other code units from infrastructure modifications. 
Therefore, their design space exploration should be deeper. 
On the other hand, the solver units are subjects of science 
and algorithmic research and are therefore liable to change 
frequently. Since these units are clients of the infrastruc-
ture, they have a more contained sphere of influence, and 
thus, their design and development are best done in an agile 
manner.

Both types of code are encapsulated within functional 
units encoded within a framework. The framework takes 
care of the data layout, owns the global state data, arbitrates 
among various units for ownership of other data, and man-
ages interaction among code units. Following object-ori-
ented programming principles, units differentiate between 
protected and public functions, and there is explicit scoping 
of local unit data. Interfaces are defined for each individual 
unit, whether it is infrastructure or a physics solver, and are 
the contracts that specify how units must interact.

The development and maintenance of the infrastructure 
are done largely by a collocated group of developers at 
Argonne National Laboratory and the University of Chi-
cago. Long-term researchers on this team help ensure long-
term quality and coherence across the stable portions of 
the code and across all contributions made by shorter-term 
contributors.
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Figure 2 demonstrates how the design methodology can 
map onto a development process that allows parallel devel-
opment and coexistence of the stable and research code 
units. If the interfaces of the infrastructure are mature and 
are sufficiently general, matching the interface of a new 
physics capability to the infrastructure should be natural 
and easy. In order to include a new physics capability in 
simulations, the physics code must expose its high-level 
interface to the unit that drives the evolution of the simula-
tion so that it is invoked. Occasionally, a new capability 

needs to make its presence known to an existing capability 
(e.g., a new method for elliptical solve that can be used by 
the Gravity unit), and in rare instances, a new capability 
may need some augmentation of the infrastructure (e.g., 
mesh replication for radiation in HEDP simulations). In 
such cases, new tests may need to be developed for verifi-
cation of interoperability.

The design methodology exists in the middle of the spec-
trum of possibilities between plan-based and agile meth-
odologies [17–19]. Specifically, informal plan-based tech-
niques are used for the development of the framework. We 
prefer expending a reasonable amount of upfront resources 
to understand the requirements of the more stable portion of 
the code in the hope of increasing the likelihood that early in 
the development process we will achieve clean, mature inter-
faces that are sufficiently general to be compatible with the 
interface needs of the different physics codes. If we were to 
use agile methods for this development, we perceive a higher 
risk of having to undertake frequent, expensive refactoring 
efforts. This is related to the possibility that delaying impor-
tant design decisions for as long as possible can itself be an 
important design decision with serious consequences [17].

We also believe that another result of this informal style 
of requirements engineering (see “Design Process” section) 
is having a multidisciplinary team arrive at a minimally suf-
ficient, upfront understanding of its goals, the constraints 
that are imposed on the design, and the constraints that 
we choose to impose on the design. This understanding is 
important because changes in the infrastructure and its inter-
face affect every other part of our large codebase. While this 
does not imply that changes are not possible or not required 

Fig. 1  Software design with separation of concerns by treating infra-
structure and research functional units differently. Infrastructure, such 
as the mesh and I/O units, is more stable and needs a longer upfront 
design cycle compared with physics and numerical units, which 

evolve more rapidly. Although they are to be treated differently for 
design, all components become part of a framework through defined 
interfaces

Fig. 2  Methodology for developing infrastructure and research func-
tional units differently. Purple boxes indicate the points of interaction 
between the two lines of development (color figure online)
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once the infrastructure has been implemented and accepted, 
it does limit the number and size of changes.

Design Process

Beginning with version 3, FLASH’s design process has 
involved a combination of brainstorming sessions to discover 
our requirements, subsequent cost–benefit trade-off analysis, 
and readjustment of the requirements. The results of these 
discussions are captured as snapshots of white boards and 
are archived for future reference so that they may serve as 
guidelines for developing prototypes. The prototypes them-
selves are lightweight and are meant to explore the design 
space rapidly. It is understood that none of these prototypes 
are to be pulled into the code without going through the 
auditing steps of testing, verification of coding standards, 
and documentation.

The snapshots serve as a proxy for formally documented 
requirements and design documents. Since the development 
teams are small, simplifying formal processes such as docu-
mentation of requirements gathering and analysis is reason-
able and desirable. In mathematically complex software, 
relying on new members of the team to become productive 
through reading of such documents alone is unrealistic. Fol-
lowing agile principles, we therefore deem such documents 
as low value and prefer a more effective process of veteran 
team members mentoring new members, training new mem-
bers, and serving as a source of requirements knowledge. 
Those members who stay with the team long enough become 
veterans by acquiring a comprehensive mental model of the 
software and storing the history of requirements in their head 
and in private notes. We adopt such simplifications where 
possible, with the understanding that at any time there must 
be sufficient overlap between experienced and inexperienced 
developers for this mentorship model to remain viable. Note 
that this can allow junior staff to avoid engineering processes 
that could be perceived to interfere with their immediate 
career goals. Conversely, they are not exposed to potentially 
important parts of software design and maintenance.

Preparing for Exascale

Prior refactoring experience has shown that a good first step 
in restructuring complex software is to consider and plan 
the degree and scope of change. For exascale, we identi-
fied several major functionalities that we need to add to the 
infrastructure. Specifically, we need to expose and capital-
ize on parallelism at arbitrary levels of granularity, to have 
more sophisticated load distribution and balancing in order 
to achieve necessary scaling performance, and to introduce 
asynchronicity within physics operators and between such 
operators.

Some of these functionalities can be obtained by expand-
ing the capabilities of the Grid unit. To this end, this refac-
toring effort includes adding a new Grid unit implementation 
based on the third-party adaptive mesh refinement library 
AMReX that is being developed at Lawrence Berkeley 
National Laboratory specifically for exascale applications. 
In doing so, our software leverages AMReX developments 
such as the inclusion of tiling for finer granularity in spatial 
decomposition, better regridding for scaling, use of fork-join 
parallelism for some degree of overlap between operators, 
and asynchronicity between different levels of refinement 
[20].

While this is a significant advancement, many facets of 
exploiting parallelism still remain to be addressed. These 
include arbitration of what operators run on which device, 
mapping data structures to different available memory types, 
and accompanying cost–benefit analysis for determining 
these mappings. Clearly, tackling all these enhancements in 
the infrastructure simultaneously would make the process 
too complex, with a high probability of failure. Efforts such 
as [21] have demonstrated the feasibility of managing some 
degree of platform heterogeneity within an existing code 
architecture, which gave us confidence to rearchitect in two 
stages.

Stages of Rearchitecting

In the first stage, we interfaced the code with AMReX in 
a way that would allow us to use the advanced parallelism 
features being added to it; in the second stage, we are opti-
mizing for remaining facets of parallelism by minimizing the 
penalties of data movement through judicious orchestration 
of computation on different devices. To manage this, it is 
necessary to design the first stage with awareness of poten-
tial needs in the second stage so that a reasonable design in 
the second stage is not precluded by the design in the first 
stage. As the second stage development is in a very early 
phase, we focus primarily on the first stage in this article.

A conceptual realization for the architecture of AMR-
based codes was presented in [22], which became our start-
ing point for the first stage. It has since been modified to 
incorporate new information that has become available about 
forthcoming platforms as well as the insights we have gained 
during implementation. Our current working conceptualiza-
tion of high-level code architecture is shown in Fig. 3, where 
the scope of the first stage of the process is in the top right-
hand quadrant above the dashed lines. During this stage, our 
focus is on the virtualization of decomposed domain sections 
so that the mesh manager can decompose or coalesce blocks 
as needed. A beneficial side effect of this virtualization is 
that it enables the mesh to operate asynchronously without 
the necessity of any further changes to the mesh interface.
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Evaluation of Historic Processes and Updates

In any rearchitecting effort, it is not just the code and its 
development that need to be considered. It is equally impor-
tant to evaluate software processes and plan for necessary 
changes in policies and practices. This effort also provides 
an opportunity to incorporate new tools and methodologies 
developed by research in software engineering, productivity, 
and sustainability. An evaluation of the development team’s 
current processes and toolkit indicated that the launching of 
the new project should include improvements to the version 
control management of the code, licensing of the code, and 
the release mechanism.

While previous instances of the FLASH code have been 
managed via Subversion, an important upfront decision 
was to manage the new project via the distributed ver-
sion control system Git and with the repository hosted 
in GitHub. A side effect of this decision is the adoption 
of the software development practice of social coding, 
which leads to enhanced communication and collabora-
tion. An example of this is clearly laying out on the reposi-
tory’s landing page coding policies as well as rules that 
govern how integration of parallel development of code 
is managed through the version control system. Other 
examples are triggering code reviews via pull requests, 
using GitHub Issues to track work, and augmenting our 

requirement engineering scheme by gathering require-
ments using Issues. This new layer of communication and 
the fact that all team members use this layer and follow 
our standards and policies allow individual developers to 
follow easily the state of the overall project. The result 
is a broader, inclusive understanding of the development 
across the codebase so that each developer has a partial 
understanding of the work being done by others and the 
potential impacts of that work on their tasks. Notably, new 
members of the team and especially those new to large-
scale development projects report that this practice allows 
for learning the development process easily, in turn lead-
ing to quicker integration in the team.

The switch from a centralized version control system to a 
distributed version control system inevitably led to reconsid-
ering the way in which many developers working in parallel 
must collaborate by integrating their distinct and possibly 
conflicting changes through the version control system. The 
new code has adopted a Git workflow that relies more heav-
ily on branches and rigorous integrated testing. Specifically, 
we have policies in place so that code contributions from a 
larger base of contributors can be handled efficiently and 
without sacrificing the correctness and quality of the code. 
As shown in Fig. 4, we have adopted a workflow that has two 
persistent branches, staged and development, in addition to 
the customary master branch.

Fig. 3  Schematic of software architecture with added abstraction lay-
ers for tackling heterogeneity. The main abstraction is achieved by 
looking at decomposition through a virtualization process. Spatial 
virtualization is obtained by surrounding each block with halo of 
ghost cells and mapping its physical location in the domain to an inte-

ger index space so that the operator views each block as a stand-alone 
domain. Similarly, the functional virtual view treats operators as col-
lections of functions with their dependencies articulated. The section 
of the figure above and to the right of dashed lines show the scope of 
this work
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Each new development or maintenance task is carried 
out on its own separate, dedicated feature branch, created 
strictly from master. In the spirit of continuous integra-
tion, these branches are usually expected to be short-lived. 
When a task is ready for formal inclusion in the software, 
the feature branch is first merged into development, where 
integration with other lines of new development occurs and 
where all merge conflicts are expected to be resolved. After 
developers manually run the entire code test suite, or a sub-
set of it, to ensure that to the best of their knowledge there 
are no remaining conflicts in this branch, a pull request from 
the feature branch into staged is created. The pull request is 
accepted after code review and if all workflow policies have 
been followed. A full test suite run can be triggered manu-
ally or occurs nightly through a Jenkins-based interface on 
both the staged and master branches. Merging of the feature 
branch into master is allowed to proceed only if all tests on 
staged pass. The insistence that feature branches must be 
merged into development and staged before master ensures 
that the contents of these three branches cannot diverge sig-
nificantly. These rules also effectively isolate master from 
the persistent branches on which integration is done and 
where abandoned work can be found. We intend to install 
automatic continuous integration testing with a small subset 
of tests to serve as immediate smoke testing.

The creation of test suites for different platforms and 
the management of test suite execution are done with a 
custom test framework known as FlashTest [23], which 
was developed into its current form with version 3 of the 
FLASH code. It evolved from a much simpler automated 
system developed at version 2 out of necessity due to the 
lack of Fortran-based testing frameworks at the time. While 
FlashTest lacks some features that are commonly found in 
modern test frameworks, we find that the tool is still good 
enough because of its ability to grow test suites easily, view 
detailed results of each test run, and easily group baseline 
results along with its context. Therefore, we choose to dedi-
cate resources to other tasks rather than modernizing the 
FLASH testing infrastructure.

Tests run with FlashTest can be classified either as regres-
sion tests or as tests that return to FlashTest a simple pass 
or fail status. Generally, the regression tests consist of full 
simulations whose runtime parameters have been judiciously 
chosen so as to test a specific functionality included in the 
simulation or to increase the sensitivity of the test to errors. 
The second class of tests often confirm correct functionality 
at the level of a FLASH unit. However, while integrating the 
library AMReX into FLASH as a new Grid unit implemen-
tation, we found that simulation-level regression tests and 
the comprehensive Grid unit test were too high level and 
coarse grained. This shortcoming exists because the amount 
of functionality provided by the Grid unit is high and some 
functionality is sufficiently complex that high-level tests are 
not useful for this type of integration. Therefore, we have 
expanded our development practices to include finer-grained 
testing at the level of routines within a unit, in the hope that 
this leads to more productive development. In addition, these 
tests, which have short runtimes, can be used in CI-based 
smoke testing and can also be used to more efficiently iden-
tify the location of bugs.

Unlike earlier versions of FLASH, which have been 
and continue to be released through a custom license with 
restrictions on distribution, the new code is released under 
the open source Apache 2.0 license. The new code is devel-
oped with continuous release with master branch tags. At 
this writing, its releases are in the alpha stage and are largely 
meant to give the community a preview of what to expect 
and to become familiar with the changes.

Inferences and Future Work

Based on our experience during this first stage of refactor-
ing, as well as from the earlier refactoring efforts, we draw 
the following inferences regarding likely best practices for 
rearchitecting scientific software while preparing it for next-
generation platforms.

• It is critical to think through the motivation, scope, and 
extent of changes to be made in the code before starting 
the refactoring process. One should clearly have a map 
between the starting stage and where the refactoring will 
bring the code.

• Similarly, it is important to draft a decomposition of a 
large refactoring task into smaller refactoring steps that 
can each be executed independently and each verified by 
preexisting tests. Our experience indicates that it is some-
times necessary to abandon a refactoring effort, redo the 
refactoring decomposition into steps, and start anew.

• Resource estimation in terms of both developer time and 
disruption in production schedule is necessary, but it is 
extremely difficult to do accurately. One should err on 

Fig. 4  Conflict resolution in the current Git workflow. The dev1 
branch is able to merge cleanly, but conflicting work in parallel dev2 
branch finds a merge conflict. The resolution is done in dev2 and rein-
tegrated in development before moving to stage
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the side of too much rather than too little. All the auxil-
iary activities such as test development and code cleanup 
should be part of the estimate.

• There is no substitute for investment in software archi-
tecture design. It may take some effort and non-trivial 
amounts of resources in the beginning, but it pays off by 
saving effort later [24].

• Use of an automated testing framework saves developer 
time throughout the refactoring process. It can be as sim-
ple as a script that runs the tests and produces results that 
can be easily and correctly interpreted by new members 
and team members with insufficient domain knowledge.

• Checking for code coverage and developing useful tests 
where there are gaps can prove to be the biggest saving 
throughout the process. By useful tests, we mean tests 
that can quickly help pinpoint errors when they occur. It 
is also important to verify that the tests fail as expected 
when there is an error.

• The refactoring process should allow for quick and dirty 
prototyping to explore the design space, with appropriate 
provisions for either rewriting or cleaning up the code 
once there is convergence on a design. Applying a full 
auditing process during design exploration is inefficient, 
and allowing quick and dirty code to remain in the repos-
itory increases technical debt.

• Establishing a policy for development workflow and 
branch management in the repository helps minimize the 
technical debt without undue strain on team resources. 
Branch structures can act as a filter for bad code, with 
minimal investment needed for code review.

• The same applies to coding standards agreed upon at the 
beginning of the refactoring project.

With an experienced though small team (4 developers at 
20–60% time), infrastructure refactoring has taken roughly 
2 years from the time we started to the time we had an alpha 
release of the code. Details of the implementation of this 
stage of work are given in [24]. We found that the early 
investment in designing for separation of concern consider-
ably reduced the amount of code that needed to be modified 
for this project. A large fraction of the original architecture 
design during the revision to version 3 remains useful and 
will continue to exist in the code.

In the second stage of refactoring the architecture, which 
involves orchestration of data movement and work distribu-
tion among devices, we intend to leverage the configuration 
system. The philosophy of the configuration system is to 
distribute the knowledge of code unit developers as meta-
information encoded in the form of application-specific text-
based syntax, in appropriate places throughout the source 
code. The aforementioned Setup tool can parse this informa-
tion and has sufficient intelligence built into it to configure 
an application by selecting only the necessary pieces from 

diverse components and their subcomponents. By dividing 
the intelligence between both the meta-information provided 
by the unit developer and the tool that reads it, we ensure 
that entity needs to be neither too intelligent nor too com-
plex. We intend to use the same philosophy of dividing the 
intelligence between meta-information encoding and the tool 
that uses the information for configuration in the next stage 
of architecture development to build an orchestration system 
to manage data movement between various devices within 
a compute node, whether these devices are accelerators or 
different flavors of memory.
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