
Vol.:(0123456789)

SN Computer Science (2020) 1:223
https://doi.org/10.1007/s42979-020-0077-x

SN Computer Science

ORIGINAL RESEARCH

Distillation of Best Practices from Refactoring FLASH for Exascale

Anshu Dubey1 · Jared O’Neal1 · Klaus Weide2 · Saurabh Chawdhary1

Received: 1 July 2019 / Accepted: 20 February 2020 / Published online: 2 July 2020
© UChicago Argonne, LLC, Operator of Argonne National Laboratory 2020

Abstract
FLASH is a multiphysics software package that was created in 1998 by combining three preexisting packages and has
undergone three major revisions. Software design and engineering practices were integrated early in the development and
maintenance processes of FLASH, and these processes have evolved strongly at each of the revisions. As high-performance
computing enters the age of exascale, challenges along the orthogonal axes of node-level hardware and solver heterogene-
ity force developers of complex multiphysics software to consider a software architecture overhaul. Because of the nature
and scope of necessary changes, an effort to refactor and grow the architecture of the FLASH code has been launched as a
separate software project. For this project to succeed, its development team must evaluate, improve, and modernize software
processes and policies to meet the unique challenges posed by the exascale era. We describe here our experiences, lessons we
have learned, and the methods that we have developed as part of this ongoing project. Within the context of the challenges
posed by exascale, we review the FLASH design approach as well as some of the main software engineering processes and
tools that have been implemented or updated throughout the lifetime of FLASH. Modernization applied to these processes
and tools is also detailed. Reviewing and reevaluating the FLASH experience of establishing and updating software design
and engineering practices have been helpful in understanding the needs of the project as it transitions to exascale and in
planning the transition. We find that our historical design methodology is still important and relevant. We also believe that
using a mixture of plan-based and agile methods is still the best for our project and is in accord with the guidance found in
the literature. We present a section on inferences and lessons learned related to software design and engineering practices.

Keywords Exascale · Refactoring · Software design · Software engineering

Introduction

FLASH [1] is a highly configurable scientific software pack-
age that has been in development since 1998, when three
preexisting code bases were combined to produce general-
purpose software for simulating reactive flows often found
in astrophysics. The three component codes provided distinct
functionalities: Paramesh [2] is an adaptive mesh refinement
(AMR) library, Prometheus [3] computes reactive hydro-
dynamics, and another collection of functions computes
equations of state and nuclear burning [4]. The code is writ-
ten primarily in Fortran, and the current production release
contains approximately 1.5 million lines of code. The people
responsible for this software are distributed across several
academic institutions and national laboratories and function
effectively as a “team of small teams.” Development and
maintenance are therefore carried out by graduate students,
postdoctoral researchers, university professors, and profes-
sional research staff.

This article is part of the topical collection “Software Challenges
to Exascale Computing” guest edited by Amit Majumdar and Ritu
Arora.

 * Anshu Dubey
 adubey@anl.gov

 Jared O’Neal
 joneal@anl.gov

 Klaus Weide
 kweide@uchicago.edu

 Saurabh Chawdhary
 schawdhary@anl.gov

1 Argonne National Laboratory, Lemont, IL 60301, USA
2 University of Chicago, Chicago, IL 60637, USA

http://orcid.org/0000-0003-3299-7426
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-020-0077-x&domain=pdf

 SN Computer Science (2020) 1:223223 Page 2 of 9

SN Computer Science

The importance of good software development and engi-
neering practices was recognized early in the project. Efforts
have been made to study such practices in industry and in
other computational science, engineering, and mathematics
projects and to adapt useful, relevant practices to the needs
and challenges of developing FLASH. Where tools and prac-
tices were not appropriate for FLASH or were nonexistent,
the FLASH team carried out research and development to
produce tools and processes to address shortcomings.

FLASH has undergone three major version updates, and
the software engineering and auditing process has evolved
strongly with each revision [5, 6]. Two of these were refac-
torings that included deep changes to the software architec-
ture of the code [7]; the third added a significant number of
new physics capabilities to enable FLASH’s use in high-
energy-density physics (HEDP) research. Much of this evo-
lution occurred dynamically as the team reacted to specific
challenges posed by the revisions.

As a general rule, when evaluating or designing possible
software engineering processes and tools, preference has
been given to simplicity and informality in the interest of
limiting overhead, which can be important for ensuring pro-
ductivity in small research teams that are also responsible
for professional development of junior team members. This
goal is partially responsible for the aforementioned need
to adapt processes found, for example, in industry and in
library development projects.

As we consider the landscape of exascale and post-
exascale supercomputers, we are confronted with the
orthogonal axes of both platform heterogeneity and solver
heterogeneity. While the onset of platform heterogeneity
is a well-known challenge, a concern that is discussed less
frequently is that greater scientific understanding has given
rise to larger and more complex codebases with diverse solv-
ers that must interoperate. When combined, these two axes
of complexity substantially stress the code infrastructure,
forcing us to consider a fundamental architectural redesign.
Because this architectural update is the most challenging
refactoring to date, it also requires the reevaluation and
improvement of software processes.

In this paper, we briefly review some of the main software
engineering processes and tools that have been implemented
or updated throughout the lifetime of FLASH. The focus of
the review is on practices that are either continuing to be
useful or have been instrumental in providing insights that
are useful now. This review leads into a detailed discussion
of our approach to redesigning the software infrastructure
and the evolution of our software engineering practices in
response to the exascale challenges. Additionally, we pre-
sent a section on inferences and lessons learned related
to software design and engineering practices. The contri-
butions of the paper are twofold: (1) a design methodol-
ogy that other codes can adopt to prepare for exascale and

(2) a crystallization of experience with adapting software
engineering practices for very complex scientific research
applications developed and maintained by a small team. The
former is effectively what we view as best practices for other
projects with similar scope and challenges.

Background

Considerable studies have been done regarding refactor-
ing methods and tools. Among them, [8] provides a good
survey and [9] considers motivations for refactoring. While
the literature for commercial software refactoring is large,
our experience has been that commercial techniques can
require significant adaptation in order to meet the needs of
developing FLASH [1]. Therefore, we focus our attention on
publications related to software restructuring and refactor-
ing in the scientific world. Several of these papers, such as
[9], are case studies from specific software projects. Articles
such as [10–13] discuss the lack of software engineering
practices in scientific software development, where refactor-
ing is one of the considered features. Among these [13] is
notable in that it attempts to provide a systematic study of
scientific software development. Literature on general stud-
ies of refactoring in scientific software is sparse, with a few
exceptions such as [14, 15], which are restricted to Fortran
code refactoring, and [16], which defines a methodology for
code development taking into account ongoing changes in
specifications that are an inevitable part of scientific soft-
ware development.

FLASH is a component-based code where different com-
binations of components constitute different applications.
Furthermore, each component can have multiple alterna-
tive implementations of its functionality, which adds to
the degree of composability of the code. While FLASH is
implemented with procedural programming, the organi-
zation of files and subroutines and the build system were
designed and implemented to take advantage of the benefits
of architecting the code with object-oriented programming
while still enjoying the benefits of procedural programming.

Specifically, related functionality and data that can be
grouped as a single class are organized into a code unit in
FLASH. Each unit is isolated in the FLASH source direc-
tory as a subdirectory hierarchy containing all related rou-
tines. Naming conventions differentiate between routines
that implement the public interface of the unit from those
that are internal to the unit. All public interfaces have null
implementations as well as one or more full implementa-
tions. Therefore, by including its null implementation
during configuration, this mechanism allows a unit to be
excluded functionally without having to change the source
code. Also, any of the full implementations can be selected
during configuration, thus allowing for multiple alternative

SN Computer Science (2020) 1:223 Page 3 of 9 223

SN Computer Science

implementations of the same API. The design allows for a
simple form of inheritance so that common code may be
written and either used or overwritten by any particular
implementation.

An example of a unit with significantly different imple-
mentations is FLASH’s Grid unit, which manages the dis-
cretized mesh. To expose parallelism, the Grid unit decom-
poses the spatial domain into non-overlapping blocks, each
of which is a logically rectangular collection of cells defined
by the mesh. The mesh can be uniformly spaced everywhere,
or it can be adaptive, where adaptivity is obtained by decom-
posing regions of the problem where fine-scale features exist
with high-resolution blocks and by using only low-resolution
blocks elsewhere. Besides managing the mesh definition and
evolution of mesh resolutions in time, the Grid unit stores
data defined on the mesh, provides access to the data, pro-
vides all mesh-related information for the simulation, and
collaborates with other units through blocks and their asso-
ciated metadata. Because of its extensive support role, we
commonly refer to the Grid unit as part of the infrastruc-
ture of FLASH and recognize its importance since it is used
throughout much of the codebase. For instance, physics units
request from the Grid unit a list of blocks on which to oper-
ate and proceed by typically looping over blocks to apply
their operators (physics solvers) to the data. This mecha-
nism abstracts away the physical location of the block in the
domain from the physics operator, which achieves a clean
separation of infrastructure from physics.

FLASH Design

FLASH’s design was dictated from the outset by its over-
arching science goals and the composition of the team. Sci-
entific members of the team wanted a code with reusable
components that could be combined as needed for their
problems of interest. While many features were common
among these problems, they were still different enough to
warrant composability in configuration. The solution to this
challenge has been the most influential design choice to
date. A set of configuration files encoding meta-information,
which are generally referred to as Config files, and a Setup
tool to parse and interpret the Config files’ meta-informa-
tion were established in the first version of the code and
are used to configure a unique binary for each application.
This approach has persisted throughout the history of the
code. However, the syntax of the Config files and features
enabled by the setup script have been successively enriched.
In fact, the vast majority of changes to the code architec-
ture through version 4 have been enabled by augmenting
the Config file syntax and implementing the structure-based
inheritance mechanism in the Setup tool (see [7] for more
detailed description).

The second far-reaching design choice was engendered
by the unusual (for its time) composition of the team, which
consisted of astrophysicists, applied mathematicians, and
computer scientists. The team differed from those work-
ing on other contemporary code development efforts in
that although science concerns were driving the develop-
ment, the scientists were visionary enough to understand
that investing in well-designed and well-engineered code
would yield long-term efficiency and success. An enduring
design choice that came out of this interdisciplinary team
of developers was separation of concerns, achieved through
the establishment of an API for functional units of the code.

Design Approach

A methodology for code design is depicted in Fig. 1. It has
been implicit in our design process since the transition from
the second to third version, and insight from this methodol-
ogy is now used to inform most of our design process. The
premise of this methodology is that there is a fundamental
difference between the two types of components within the
code: those that are relatively stable and those that change
on a much smaller timescale. The code units that pertain to
the infrastructure and the framework are the stable backbone
of the code and generally are not the subjects of ongoing
research. This type of code does, however, tend to inter-
act with all other components, making it more difficult to
shield other code units from infrastructure modifications.
Therefore, their design space exploration should be deeper.
On the other hand, the solver units are subjects of science
and algorithmic research and are therefore liable to change
frequently. Since these units are clients of the infrastruc-
ture, they have a more contained sphere of influence, and
thus, their design and development are best done in an agile
manner.

Both types of code are encapsulated within functional
units encoded within a framework. The framework takes
care of the data layout, owns the global state data, arbitrates
among various units for ownership of other data, and man-
ages interaction among code units. Following object-ori-
ented programming principles, units differentiate between
protected and public functions, and there is explicit scoping
of local unit data. Interfaces are defined for each individual
unit, whether it is infrastructure or a physics solver, and are
the contracts that specify how units must interact.

The development and maintenance of the infrastructure
are done largely by a collocated group of developers at
Argonne National Laboratory and the University of Chi-
cago. Long-term researchers on this team help ensure long-
term quality and coherence across the stable portions of
the code and across all contributions made by shorter-term
contributors.

 SN Computer Science (2020) 1:223223 Page 4 of 9

SN Computer Science

Figure 2 demonstrates how the design methodology can
map onto a development process that allows parallel devel-
opment and coexistence of the stable and research code
units. If the interfaces of the infrastructure are mature and
are sufficiently general, matching the interface of a new
physics capability to the infrastructure should be natural
and easy. In order to include a new physics capability in
simulations, the physics code must expose its high-level
interface to the unit that drives the evolution of the simula-
tion so that it is invoked. Occasionally, a new capability

needs to make its presence known to an existing capability
(e.g., a new method for elliptical solve that can be used by
the Gravity unit), and in rare instances, a new capability
may need some augmentation of the infrastructure (e.g.,
mesh replication for radiation in HEDP simulations). In
such cases, new tests may need to be developed for verifi-
cation of interoperability.

The design methodology exists in the middle of the spec-
trum of possibilities between plan-based and agile meth-
odologies [17–19]. Specifically, informal plan-based tech-
niques are used for the development of the framework. We
prefer expending a reasonable amount of upfront resources
to understand the requirements of the more stable portion of
the code in the hope of increasing the likelihood that early in
the development process we will achieve clean, mature inter-
faces that are sufficiently general to be compatible with the
interface needs of the different physics codes. If we were to
use agile methods for this development, we perceive a higher
risk of having to undertake frequent, expensive refactoring
efforts. This is related to the possibility that delaying impor-
tant design decisions for as long as possible can itself be an
important design decision with serious consequences [17].

We also believe that another result of this informal style
of requirements engineering (see “Design Process” section)
is having a multidisciplinary team arrive at a minimally suf-
ficient, upfront understanding of its goals, the constraints
that are imposed on the design, and the constraints that
we choose to impose on the design. This understanding is
important because changes in the infrastructure and its inter-
face affect every other part of our large codebase. While this
does not imply that changes are not possible or not required

Fig. 1 Software design with separation of concerns by treating infra-
structure and research functional units differently. Infrastructure, such
as the mesh and I/O units, is more stable and needs a longer upfront
design cycle compared with physics and numerical units, which

evolve more rapidly. Although they are to be treated differently for
design, all components become part of a framework through defined
interfaces

Fig. 2 Methodology for developing infrastructure and research func-
tional units differently. Purple boxes indicate the points of interaction
between the two lines of development (color figure online)

SN Computer Science (2020) 1:223 Page 5 of 9 223

SN Computer Science

once the infrastructure has been implemented and accepted,
it does limit the number and size of changes.

Design Process

Beginning with version 3, FLASH’s design process has
involved a combination of brainstorming sessions to discover
our requirements, subsequent cost–benefit trade-off analysis,
and readjustment of the requirements. The results of these
discussions are captured as snapshots of white boards and
are archived for future reference so that they may serve as
guidelines for developing prototypes. The prototypes them-
selves are lightweight and are meant to explore the design
space rapidly. It is understood that none of these prototypes
are to be pulled into the code without going through the
auditing steps of testing, verification of coding standards,
and documentation.

The snapshots serve as a proxy for formally documented
requirements and design documents. Since the development
teams are small, simplifying formal processes such as docu-
mentation of requirements gathering and analysis is reason-
able and desirable. In mathematically complex software,
relying on new members of the team to become productive
through reading of such documents alone is unrealistic. Fol-
lowing agile principles, we therefore deem such documents
as low value and prefer a more effective process of veteran
team members mentoring new members, training new mem-
bers, and serving as a source of requirements knowledge.
Those members who stay with the team long enough become
veterans by acquiring a comprehensive mental model of the
software and storing the history of requirements in their head
and in private notes. We adopt such simplifications where
possible, with the understanding that at any time there must
be sufficient overlap between experienced and inexperienced
developers for this mentorship model to remain viable. Note
that this can allow junior staff to avoid engineering processes
that could be perceived to interfere with their immediate
career goals. Conversely, they are not exposed to potentially
important parts of software design and maintenance.

Preparing for Exascale

Prior refactoring experience has shown that a good first step
in restructuring complex software is to consider and plan
the degree and scope of change. For exascale, we identi-
fied several major functionalities that we need to add to the
infrastructure. Specifically, we need to expose and capital-
ize on parallelism at arbitrary levels of granularity, to have
more sophisticated load distribution and balancing in order
to achieve necessary scaling performance, and to introduce
asynchronicity within physics operators and between such
operators.

Some of these functionalities can be obtained by expand-
ing the capabilities of the Grid unit. To this end, this refac-
toring effort includes adding a new Grid unit implementation
based on the third-party adaptive mesh refinement library
AMReX that is being developed at Lawrence Berkeley
National Laboratory specifically for exascale applications.
In doing so, our software leverages AMReX developments
such as the inclusion of tiling for finer granularity in spatial
decomposition, better regridding for scaling, use of fork-join
parallelism for some degree of overlap between operators,
and asynchronicity between different levels of refinement
[20].

While this is a significant advancement, many facets of
exploiting parallelism still remain to be addressed. These
include arbitration of what operators run on which device,
mapping data structures to different available memory types,
and accompanying cost–benefit analysis for determining
these mappings. Clearly, tackling all these enhancements in
the infrastructure simultaneously would make the process
too complex, with a high probability of failure. Efforts such
as [21] have demonstrated the feasibility of managing some
degree of platform heterogeneity within an existing code
architecture, which gave us confidence to rearchitect in two
stages.

Stages of Rearchitecting

In the first stage, we interfaced the code with AMReX in
a way that would allow us to use the advanced parallelism
features being added to it; in the second stage, we are opti-
mizing for remaining facets of parallelism by minimizing the
penalties of data movement through judicious orchestration
of computation on different devices. To manage this, it is
necessary to design the first stage with awareness of poten-
tial needs in the second stage so that a reasonable design in
the second stage is not precluded by the design in the first
stage. As the second stage development is in a very early
phase, we focus primarily on the first stage in this article.

A conceptual realization for the architecture of AMR-
based codes was presented in [22], which became our start-
ing point for the first stage. It has since been modified to
incorporate new information that has become available about
forthcoming platforms as well as the insights we have gained
during implementation. Our current working conceptualiza-
tion of high-level code architecture is shown in Fig. 3, where
the scope of the first stage of the process is in the top right-
hand quadrant above the dashed lines. During this stage, our
focus is on the virtualization of decomposed domain sections
so that the mesh manager can decompose or coalesce blocks
as needed. A beneficial side effect of this virtualization is
that it enables the mesh to operate asynchronously without
the necessity of any further changes to the mesh interface.

 SN Computer Science (2020) 1:223223 Page 6 of 9

SN Computer Science

Evaluation of Historic Processes and Updates

In any rearchitecting effort, it is not just the code and its
development that need to be considered. It is equally impor-
tant to evaluate software processes and plan for necessary
changes in policies and practices. This effort also provides
an opportunity to incorporate new tools and methodologies
developed by research in software engineering, productivity,
and sustainability. An evaluation of the development team’s
current processes and toolkit indicated that the launching of
the new project should include improvements to the version
control management of the code, licensing of the code, and
the release mechanism.

While previous instances of the FLASH code have been
managed via Subversion, an important upfront decision
was to manage the new project via the distributed ver-
sion control system Git and with the repository hosted
in GitHub. A side effect of this decision is the adoption
of the software development practice of social coding,
which leads to enhanced communication and collabora-
tion. An example of this is clearly laying out on the reposi-
tory’s landing page coding policies as well as rules that
govern how integration of parallel development of code
is managed through the version control system. Other
examples are triggering code reviews via pull requests,
using GitHub Issues to track work, and augmenting our

requirement engineering scheme by gathering require-
ments using Issues. This new layer of communication and
the fact that all team members use this layer and follow
our standards and policies allow individual developers to
follow easily the state of the overall project. The result
is a broader, inclusive understanding of the development
across the codebase so that each developer has a partial
understanding of the work being done by others and the
potential impacts of that work on their tasks. Notably, new
members of the team and especially those new to large-
scale development projects report that this practice allows
for learning the development process easily, in turn lead-
ing to quicker integration in the team.

The switch from a centralized version control system to a
distributed version control system inevitably led to reconsid-
ering the way in which many developers working in parallel
must collaborate by integrating their distinct and possibly
conflicting changes through the version control system. The
new code has adopted a Git workflow that relies more heav-
ily on branches and rigorous integrated testing. Specifically,
we have policies in place so that code contributions from a
larger base of contributors can be handled efficiently and
without sacrificing the correctness and quality of the code.
As shown in Fig. 4, we have adopted a workflow that has two
persistent branches, staged and development, in addition to
the customary master branch.

Fig. 3 Schematic of software architecture with added abstraction lay-
ers for tackling heterogeneity. The main abstraction is achieved by
looking at decomposition through a virtualization process. Spatial
virtualization is obtained by surrounding each block with halo of
ghost cells and mapping its physical location in the domain to an inte-

ger index space so that the operator views each block as a stand-alone
domain. Similarly, the functional virtual view treats operators as col-
lections of functions with their dependencies articulated. The section
of the figure above and to the right of dashed lines show the scope of
this work

SN Computer Science (2020) 1:223 Page 7 of 9 223

SN Computer Science

Each new development or maintenance task is carried
out on its own separate, dedicated feature branch, created
strictly from master. In the spirit of continuous integra-
tion, these branches are usually expected to be short-lived.
When a task is ready for formal inclusion in the software,
the feature branch is first merged into development, where
integration with other lines of new development occurs and
where all merge conflicts are expected to be resolved. After
developers manually run the entire code test suite, or a sub-
set of it, to ensure that to the best of their knowledge there
are no remaining conflicts in this branch, a pull request from
the feature branch into staged is created. The pull request is
accepted after code review and if all workflow policies have
been followed. A full test suite run can be triggered manu-
ally or occurs nightly through a Jenkins-based interface on
both the staged and master branches. Merging of the feature
branch into master is allowed to proceed only if all tests on
staged pass. The insistence that feature branches must be
merged into development and staged before master ensures
that the contents of these three branches cannot diverge sig-
nificantly. These rules also effectively isolate master from
the persistent branches on which integration is done and
where abandoned work can be found. We intend to install
automatic continuous integration testing with a small subset
of tests to serve as immediate smoke testing.

The creation of test suites for different platforms and
the management of test suite execution are done with a
custom test framework known as FlashTest [23], which
was developed into its current form with version 3 of the
FLASH code. It evolved from a much simpler automated
system developed at version 2 out of necessity due to the
lack of Fortran-based testing frameworks at the time. While
FlashTest lacks some features that are commonly found in
modern test frameworks, we find that the tool is still good
enough because of its ability to grow test suites easily, view
detailed results of each test run, and easily group baseline
results along with its context. Therefore, we choose to dedi-
cate resources to other tasks rather than modernizing the
FLASH testing infrastructure.

Tests run with FlashTest can be classified either as regres-
sion tests or as tests that return to FlashTest a simple pass
or fail status. Generally, the regression tests consist of full
simulations whose runtime parameters have been judiciously
chosen so as to test a specific functionality included in the
simulation or to increase the sensitivity of the test to errors.
The second class of tests often confirm correct functionality
at the level of a FLASH unit. However, while integrating the
library AMReX into FLASH as a new Grid unit implemen-
tation, we found that simulation-level regression tests and
the comprehensive Grid unit test were too high level and
coarse grained. This shortcoming exists because the amount
of functionality provided by the Grid unit is high and some
functionality is sufficiently complex that high-level tests are
not useful for this type of integration. Therefore, we have
expanded our development practices to include finer-grained
testing at the level of routines within a unit, in the hope that
this leads to more productive development. In addition, these
tests, which have short runtimes, can be used in CI-based
smoke testing and can also be used to more efficiently iden-
tify the location of bugs.

Unlike earlier versions of FLASH, which have been
and continue to be released through a custom license with
restrictions on distribution, the new code is released under
the open source Apache 2.0 license. The new code is devel-
oped with continuous release with master branch tags. At
this writing, its releases are in the alpha stage and are largely
meant to give the community a preview of what to expect
and to become familiar with the changes.

Inferences and Future Work

Based on our experience during this first stage of refactor-
ing, as well as from the earlier refactoring efforts, we draw
the following inferences regarding likely best practices for
rearchitecting scientific software while preparing it for next-
generation platforms.

• It is critical to think through the motivation, scope, and
extent of changes to be made in the code before starting
the refactoring process. One should clearly have a map
between the starting stage and where the refactoring will
bring the code.

• Similarly, it is important to draft a decomposition of a
large refactoring task into smaller refactoring steps that
can each be executed independently and each verified by
preexisting tests. Our experience indicates that it is some-
times necessary to abandon a refactoring effort, redo the
refactoring decomposition into steps, and start anew.

• Resource estimation in terms of both developer time and
disruption in production schedule is necessary, but it is
extremely difficult to do accurately. One should err on

Fig. 4 Conflict resolution in the current Git workflow. The dev1
branch is able to merge cleanly, but conflicting work in parallel dev2
branch finds a merge conflict. The resolution is done in dev2 and rein-
tegrated in development before moving to stage

 SN Computer Science (2020) 1:223223 Page 8 of 9

SN Computer Science

the side of too much rather than too little. All the auxil-
iary activities such as test development and code cleanup
should be part of the estimate.

• There is no substitute for investment in software archi-
tecture design. It may take some effort and non-trivial
amounts of resources in the beginning, but it pays off by
saving effort later [24].

• Use of an automated testing framework saves developer
time throughout the refactoring process. It can be as sim-
ple as a script that runs the tests and produces results that
can be easily and correctly interpreted by new members
and team members with insufficient domain knowledge.

• Checking for code coverage and developing useful tests
where there are gaps can prove to be the biggest saving
throughout the process. By useful tests, we mean tests
that can quickly help pinpoint errors when they occur. It
is also important to verify that the tests fail as expected
when there is an error.

• The refactoring process should allow for quick and dirty
prototyping to explore the design space, with appropriate
provisions for either rewriting or cleaning up the code
once there is convergence on a design. Applying a full
auditing process during design exploration is inefficient,
and allowing quick and dirty code to remain in the repos-
itory increases technical debt.

• Establishing a policy for development workflow and
branch management in the repository helps minimize the
technical debt without undue strain on team resources.
Branch structures can act as a filter for bad code, with
minimal investment needed for code review.

• The same applies to coding standards agreed upon at the
beginning of the refactoring project.

With an experienced though small team (4 developers at
20–60% time), infrastructure refactoring has taken roughly
2 years from the time we started to the time we had an alpha
release of the code. Details of the implementation of this
stage of work are given in [24]. We found that the early
investment in designing for separation of concern consider-
ably reduced the amount of code that needed to be modified
for this project. A large fraction of the original architecture
design during the revision to version 3 remains useful and
will continue to exist in the code.

In the second stage of refactoring the architecture, which
involves orchestration of data movement and work distribu-
tion among devices, we intend to leverage the configuration
system. The philosophy of the configuration system is to
distribute the knowledge of code unit developers as meta-
information encoded in the form of application-specific text-
based syntax, in appropriate places throughout the source
code. The aforementioned Setup tool can parse this informa-
tion and has sufficient intelligence built into it to configure
an application by selecting only the necessary pieces from

diverse components and their subcomponents. By dividing
the intelligence between both the meta-information provided
by the unit developer and the tool that reads it, we ensure
that entity needs to be neither too intelligent nor too com-
plex. We intend to use the same philosophy of dividing the
intelligence between meta-information encoding and the tool
that uses the information for configuration in the next stage
of architecture development to build an orchestration system
to manage data movement between various devices within
a compute node, whether these devices are accelerators or
different flavors of memory.

Acknowledgements This work was supported by the U.S. Department
of Energy Office of Science, Office of Advanced Scientific Computing
Research (ASCR), and by the Exascale Computing Project (17-SC-
20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security. The submitted
manuscript has been created by UChicago Argonne, LLC, Operator of
Argonne National Laboratory (“Argonne”). Argonne, a U.S. Depart-
ment of Energy Office of Science laboratory, is operated under Contract
No. DE-AC02-06CH11357. The U.S. Government retains for itself, and
others acting on its behalf, a paid-up non-exclusive, irrevocable world-
wide license in said article to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly and display publicly,
by or on behalf of the Government. The Department of Energy will
provide public access to these results of federally sponsored research in
accordance with the DOE Public Access Plan, http://energ y.gov/downl
oads/doe-publi c-acces s-plan.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Dubey A, Antypas K, Coon E, Riley K. Software process for mul-
tiphysics multicomponent codes. In: Carver J, Hong NC, Thiru-
vathukal G, editors. Software engineering for science. London:
Taylor & Francis Group; 2016.

 2. MacNeice P, Olson K, Mobarry C, de Fainchtein R, Packer C.
PARAMESH: a parallel adaptive mesh refinement community
toolkit. Comput Phys Commun. 2000;126(3):330–54.

 3. Fryxell B, Müller E, Arnett D. Numerical methods in astrophysics.
New York: Academic; 1989. p. 100.

 4. Timmes F. Integration of nuclear reaction networks. Astrophys J
Suppl Ser. 1999;124:241–63.

 5. Dubey A, Antypas K, Calder A, Fryxell B, Lamb D, Ricker P,
Reid L, Riley K, Rosner R, Siegel A, Timmes F, Vladimirova N,
Weide K. The software development process of FLASH, a mul-
tiphysics simulation code. In: Proceedings of the 5th international

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
http://creativecommons.org/licenses/by/4.0/

SN Computer Science (2020) 1:223 Page 9 of 9 223

SN Computer Science

workshop on software engineering for computational science and
engineering, San Francisco; 2013.

 6. Dubey A, Antypas K, Calder A, Daley C, Fryxell B, Gallagher
J, Lamb D, Lee D, Olson K, Reid L, Rich P, Ricker P, Riley K,
Rosner R, Siegel A, Taylor N, Timmes F, Vladimirova N, Weide
K, ZuHone J. Evolution of FLASH, a multiphysics scientific simu-
lation code for high performance computing. Int J High Perform
Comput Appl. 2013;28(2):225–37.

 7. Dubey A, Antypas K, Ganapathy M, Reid L, Riley K, Sheeler
D, Siegel A, Weide K. Extensible component based architecture
for FLASH, a massively parallel, multiphysics simulation code.
Parallel Comput. 2009;35:512–22.

 8. Tourwe T, Mens T. A survey of software refactoring. IEEE Trans
Softw Eng. 2004;30(2):126–39.

 9. Mäntylä M, Lassenius C. Drivers for software refactoring deci-
sions. In: ACM/IEEE international symposium on empirical soft-
ware engineering, ISESE’06, New York; 2006.

 10. Hannay JE, MacLeod C, Singer J, Langtangen HP, Pfahl D, Wil-
son G. How do scientists develop and use scientific software? In:
2009 ICSE workshop on software engineering for computational
science and engineering; 2009.

 11. Sletholt M, Hannay JE, Pfahl D, Langtangen HP. What do we
know about scientific software development’s agile practices?
Comput Sci Eng. 2012;14(2):24–37.

 12. Storer T. Bridging the chasm: a survey of software engineer-
ing practice in scientific programming. ACM Comput Surv.
2017;50(4):47:1–32.

 13. Farhoodi R, Garousi V, Pfahl D, Sillito J. Development of
scientific software: a systematic mapping, a bibliometrics
study, and a paper repository. Int J Softw Eng Knowl Eng.
2013;23(4):463–506.

 14. Overbey JL, Negara S, Johnson RE. Refactoring and the evolu-
tion of Fortran. In: ICSE workshop on software engineering for
computational science and engineering; 2009.

 15. Overbey J, Xanthos S, Johnson R, Foote B. Refactorings for For-
tran and high-performance computing. In: The second interna-
tional workshop on software engineering for high performance
computing system applications; 2005.

 16. Tinetti M, Méndez FG. Change-driven development for scientific
software. J Supercomput. 2017;73(5):2229–57.

 17. Sommerville I. Software engineering. 10th ed. Boston: Pearson;
2016.

 18. Sillitt A, Succi G. Requirements engineering for agile methods.
In: Engineering and managing software requirements, Berlin, Hei-
delberg, Springer; 2005.

 19. Ruparelia NB. Software development lifecycle models. SIGSOFT
Softw Eng Notes. 2010;35(3):8–13.

 20. AMReX [Online]. https ://amrex -codes .githu b.io/.
 21. Messer O, Harris J, Parete-Koon S, Chertkow MA. Multicore and

accelerator development for a leadership-class stellar astrophys-
ics code. In: Proceedings of the 11th international conference on
applied parallel and scientific computing, Helsinki, Finland; 2013.

 22. Dubey A, Graves D: A design proposal for a next generation sci-
entific software framework. In: HeteroPar, Vienna; 2015.

 23. Dubey A, Weide K, Lee D, Bachan J, Daley C, Olofin S, Taylor
N, Rich P, Reid LB. Ongoing verification of a multiphysics com-
munity code: FLASH. Softw Pract Exp. 2015;45(2):233–44.

 24. O’Neal J, Weide K, Dubey A. Experience report: refactoring the
mesh interface in FLASH, a multiphysics software. In: 2018 IEEE
14th international conference on e-Science (e-Science), Amster-
dam; 2018.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://amrex-codes.github.io/

	Distillation of Best Practices from Refactoring FLASH for Exascale
	Abstract
	Introduction
	Background
	FLASH Design
	Design Approach
	Design Process

	Preparing for Exascale
	Stages of Rearchitecting
	Evaluation of Historic Processes and Updates

	Inferences and Future Work
	Acknowledgements
	References

