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Abstract
Multi-objective optimisation is a prominent subfield of optimisation with high relevance in real-world problems, such as 
engineering design. Over the past 2 decades, a multitude of heuristic algorithms for multi-objective optimisation have been 
introduced and some of them have become extremely popular. Some of the most promising and versatile algorithms have 
been implemented in software platforms. This article experimentally investigates the process of interpreting and imple-
menting algorithms by examining multiple popular implementations of three well-known algorithms for multi-objective 
optimisation. We observed that official and broadly employed software platforms interpreted and thus implemented the same 
heuristic search algorithm differently. These different interpretations affect the algorithmic structure as well as the software 
implementation. Numerical results show that these differences cause statistically significant differences in performance.

Keywords Multi-objective optimisation · Evolutionary algorithms · Optimisation software platforms

Introduction

Optimisation is a fundamental and multidisciplinary field 
that most generically aims to detect within a set of potential 
solution that one that satisfies the most one or more objec-
tives. Within the plethora of possible optimisation methods, 
a clear distinction can be made between mathematical and 
heuristic optimisation:

– mathematical optimisation: methods that, under some 
hypotheses, are guaranteed to rigorously detect the opti-
mum [48];

– heuristic optimisation: methods that, without requiring 
specific hypotheses on the problem, search for a solution 
that is close enough to the optimum [1–3, 13, 26].

Algorithms of mathematical optimisation are often itera-
tive methods that are rigorously justified and endowed with 
proofs of convergence [48]. The software implementation of 
an algorithm of mathematical optimisation is thus a straight-
forward decodification of mathematical formulas.

Algorithms of heuristic optimisation are software pro-
cedures usually described by means of words and formulas 
and justified by means of metaphors, see [26, 40]. To ensure 
that a heuristic algorithm can be understood and reproduced 
by the reader and the community, modern articles provide 
pseudocode of their proposed algorithms.

However, whilst the pseudocode of modern heuristics can 
be effective to communicate the general idea of the proposed 
algorithm, they often do not capture all the implementation 
details due to their complexity. Although ideas can be gen-
erally understood and re-implemented, due to the lack of 
mathematical rigour, a misinterpretation of an idea can be 
implemented into an algorithm which still performs reason-
ably well on an optimisation problem. This is likely to be 
an experience common to any person who has attempted to 
implement a program based on the idea of a colleague.

The present article discusses the topic of potential ambi-
guity in heuristic optimisation and how algorithmic descrip-
tions could be subject to misinterpretation with a specific 
reference to multi-objective problems. We chose this sub-
field since multi-objective problems are naturally hard to 
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solve, e.g. to the difficulty of comparing candidate solutions 
belonging to the same non-dominated set, and heuristics are 
often fairly complex. More specifically, we pose the follow-
ing question

Is the process of implementation of a multi-objec-
tive algorithm from its description straightforward and 
unambiguous?

To address this point we have performed an extensive 
experimental study. We have focussed on three popular algo-
rithmic frameworks:

– Non-dominated sorting genetic algorithm II (NSGA-II) 
[11].

– Generalized differential evolution 3 (GDE3) [34].
– Multi-objective evolutionary algorithm based on decom-

position with dynamic resource allocation (MOEA/D-
DRA) [57].

Each of these frameworks has been extensively implemented 
by multiple researchers and in various research software 
platforms such as jMetal [16]. We compared the behaviour 
and performance of the different implementations/interpreta-
tions of each framework. More specifically, five implementa-
tions of NSGA-II, five implementations of GDE3, and four 
implementations of MOEA/D-DRA are evaluated using the 
test functions provided by the ZDT, DTLZ and WFG test 
suites, see [12, 25, 59]. Furthermore, the source code of the 
tested implementations has been analysed to identify the 
differences in the implementation.

The article is organised as follows. Section “Basic Defini-
tions and Notation” provides the reader with the basic defi-
nitions and notation which are used throughout the paper. 
Section “Algorithmic Frameworks in This Study” provides a 
description of NSGA-II, GDE3, and MOEA/D-DRA accord-
ing to their original presentations but with the standardised 
notation used throughout the paper. Section “Software Imple-
mentations of the Algorithmic Frameworks” presents the soft-
ware platforms where the three algorithmic frameworks under 
examination have been implemented. Section “Experimental 

Setup” describes the experimental design, including test prob-
lems, parameter settings, and methods used to perform the 
comparisons. Section “Experimental Results and Discussion” 
presents the numerical results of this study. Section “Differ-
ences in the Implementations” highlights the algorithmic 
and software engineering differences across the software 
platforms under consideration. Finally, section “Conclusion” 
presents the conclusion to this study.

Basic Definitions and Notation

Definition 1 (Multi-objective Optimisation Problem) A 
multi-objective optimisation problem can be defined as 
follows:

The sets ℝn and ℝk represent the decision space and the 
objective space, respectively (Fig. 1). The set � ⊆ ℝn is also 
known as the feasible set and is associated with equality and 
inequality constraints.

The function f ∶ ℝ
n
→ ℝ

k represents a transformation 
from the decision space � into the objective space � that can 
be used to evaluate the quality of each solution. The image 
of � under the function f represents a subset of the function 
space known as the feasible set in the objective function 
space. It is denoted by � = f (�) [37].

Definition 2 (Pareto dominance) Unlike single-objective opti-
misation in which the relation ≥ can be used to compare the 
quality of solutions, comparing solutions in multi-objective 
optimisation problems is not as straightforward (there is no 
order relation). A relation that is usually adopted to compare 
solutions to such problems is known as Pareto dominance.1

maximise/minimise � = (f1(�), f2(�),… , fn(�))

where � =
(
x1,… , xd

)
∈ � ⊂ ℝ

n (decision vector)

� =
(
y1,… , yn

)
∈ � ⊂ ℝ

k (objective vector).

Fig. 1  Illustration of the deci-
sion space and the objective 
space of a multi-objective 
optimisation problems

x₂

x₁

y₂

y₁

y₃

Decision Space Objective Space

1 The concept is named after Vilfredo Pareto, who used it in his stud-
ies of economic efficiency and income distribution.
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Without loss of generality let us assume that all objec-
tives need to be simultaneously maximised. For any two 
objective vectors

and the corresponding decision vectors �� and �� , it can be 
said that �� ≻ �� ( �� dominates �� ) if no component of �� 
outperforms the corresponding component of �� , and at least 
one component of �� outperforms the corresponding com-
ponent of ��:

In the event that �� does not dominate �� and �� does not 
dominate �� , it can be said that the two vectors are indiffer-
ent 

(
�� ∼ ��

)
.

Figure 2 illustrates the concept of Pareto dominance. The 
blue rectangle represents the region of the objective space 
that dominates the objective vector � . All the objective 

�� =
(
y1
1
,… , y1

n

)

�� =
(
y2
1
,… , y2

n

)

∀k = 1 ∶ n, y1
k
≥ y2

k

∃k�} y1
k
> y2

k
.

vectors in that region have at least one objective value that 
outperforms the corresponding objective value of vector � 
and the other objective is bigger than or equal to the objec-
tive of vector � . The red rectangle contains the objective 
vectors that are dominated by vector � , and the vectors that 
are not in one of the two rectangles are indifferent to vector 
�.

Definition 3 (Pareto optimality) Pareto optimality is a con-
cept that is based on Pareto dominance. A solution �∗ ∈ � 
is Pareto optimal if there is no other solution � ∈ � that 
dominates it [37]. A Pareto optimal solution denotes that 
there does not exist another solution that can increase the 
quality of a given objective without decreasing the quality 
of at least one other objective [53].

Definition 4 (Pareto optimal set) Instead of having one opti-
mal solution, multi-objective optimisation problems may 
have a set of Pareto optimal solutions. This set is also known 
as the Pareto optimal set. It is defined as follows:

Definition 5 (Pareto front) The Pareto front represents the 
image of the Pareto optimal set in the objective function 
space (Fig. 3). It can be defined as follows:

Definition 6 (Approximation set) The main goal of multi-
objective optimisation is to find the Pareto front of a given 
multi-objective optimisation problem. However, since Pareto 
fronts usually contain a large number of points, finding all of 
them might require an undefined amount of time and there-
fore a more practical solution is to find a good approxima-
tion of the Pareto front. This set approximating the Pareto is 
called approximation set. A good approximation set should 
be as close as possible to the actual Pareto front and should 
be uniformly spread over it, otherwise the obtained approxi-
mation of the Pareto front will not offer sufficient informa-
tion for decision making [53].

P∗ = {� ∈ � | ∄ �∗ ∈ � ∶ �∗ ⪰ �}.

PF∗ = {f (�)|� ∈ P∗}.

f₂

f₁

is
dominated

dominates indifferent

indifferent

B

E

D

C

Fig. 2  Illustration of the Pareto dominance relation

Fig. 3  Illustration of the Pareto 
optimal set and the Pareto front x₂

x₁

f₂

f₁Pareto frontPareto optimal set

Decision Space Objective Space

Pareto front
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Algorithmic Frameworks in This Study

The heuristic algorithms investigated in this study can all 
be considered under the umbrella name of evolutionary 
multi-objective optimisation (EMO) algorithms, see [31]. 
During the past decades, a wide variety of EMO algorithms 
have been proposed and applied to many different real-world 
problems.

Although EMO algorithms can differ by major aspects, 
they can still be considered to be members of the same fam-
ily that is characterised by the general algorithmic structure 
outlined in Algorithm 1.

Algorithm 1 Main steps of a typical evolutionary algorithm
1: Initialise population with randomly generated candidate solutions;
2: Evaluate each solution in the population;
3: while Termination condition is not met do
4: Select parents;
5: Breed new individuals with the use of variation operators;
6: Evaluate new individuals;
7: Select individuals for the next generation;
8: end while

The following subsections introduce the three popular 
EMO algorithms under examination: the non-dominated 
sorting genetic algorithm II, the generalized differential 

evolution 3 algorithm, and the multi-objective evolutionary 
algorithm based on decomposition with dynamic resource 
allocation.

Non‑dominated Sorting Genetic Algorithm II

The non-dominated sorting genetic algorithm II (NSGA-
II) was proposed in [11] as an improvement to NSGA-I 
[49]. It addresses some of the main issues with the origi-
nal version such as high-computational complexity of the 

non-dominated sorting algorithm, lack of elitism, and the 
need to specify a sharing parameter. Algorithm 2 illustrates 
the life cycle of NSGA-II.

Algorithm 2 NSGA-II
1: Initialise initial population P of size N with randomly generated solutions;
2: Sort the solutions using the fast non-dominated sorting algorithm as in Algorithm

3;
3: Apply selection, recombination and mutation operators to create offspring Q of size N ;
4: while Termination condition is not met do
5: Combine P and Q into a combined population R of size 2N ;
6: Sort the solutions using the fast non-dominated sorting algorithm as in Algo-

rithm 3 to produce a set containing all non-dominated fronts (F1 to Fm) of R;
7: Initialise empty Pnew;
8: Set i = 1;
9: while there is enough space in Pnew for all members of Fi; do
10: Calculate crowding-distance as in Algorithm 4 for the members of Fi;
11: Add members of Fi to Pnew;
12: i = i+ 1;
13: end while
14: Sort Fi in descending order using crowding-distance calculated as in Algorithm 4;
15: Fill the remaining spaces in Pnew with the best solutions of Fi;
16: Create new offspring Qnew:
17: Apply binary tournament selection operator based on the crowding-distance as in

Algorithm 4
18: Apply recombination operator;
19: Apply mutation operator;
20: P = Pnew; Q = Qnew;
21: end while
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NSGA-II starts by building a population of randomly 
generated candidate solutions. Each solution is then evalu-
ated and assigned a fitness rank equal to its non-domination 
level (with 1 being the best level) using a fast non-dominated 
sorting algorithm. Binary tournament selection, recombina-
tion, and mutation operators are then applied to create an 
initial offspring population. In the original paper (as well as 
in many implementations thereafter), NSGA-II employs the 
simulated binary crossover (SBX) operator and polynomial 
mutation, see [19]. Then the generational loop begins. The 
parent population and the offspring population are com-
bined. Since the best solutions from both the parent and off-
spring populations are included, elitism is ensured. The new 
combined population is then partitioned into fronts using the 
fast non-dominated sorting, see Algorithm 3.

Algorithm 3 Non-dominated sorting algorithm
1: INPUT population P;
2: for i = 1 : N do
3: Initialise empty Si set of points dominated by xi and ni = 0 points that dominate

xi;
4: for j = 1 : N do
5: if xi � xj then
6: Update the set Si = Si ∪ xj;
7: else if xj � xi then
8: Update the counter ni = ni + 1;
9: end if
10: if ni = 0 that is xi belongs to the first front then
11: F1 = F1 ∪ xi;
12: end if
13: end for
14: Initialise nj to the size of Si;
15: k = 1;
16: while Fk �= ∅ do
17: Sj = ∅;
18: for i = 1 : size of Fk do
19: for j = 1 : size of Si do
20: nj = nj − 1;
21: if nj = 0 then
22: Sj = Sj ∪ xj;
23: end if
24: end for
25: end for
26: k = k + 1;
27: Fk = Sj;
28: end while
29: end for
30: RETURN F1,F2, . . .Fm;

The algorithm then iterates through the set of fronts (from 
best to worst), and adds their solutions to the population 
for the next generation until there is not enough space to 
accommodate all of the solutions of a given front. After the 
end of the procedure, if there are any places left in the new 
population, the solutions of the next front that could not be 
added are sorted in descending order based on their crowd-
ing distance and the best ones are added to the population 
until it is full. The new population is then used for selection, 
recombination and mutation to create an offspring popula-
tion for the next generation. The algorithm uses the crowd-
ing distance during the selection process in order to main-
tain diversity in front by ensuring that each member stays 
a crowding distance apart which supports the algorithm in 
exploring the objective space [6]. Algorithm 4 shows how 
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the crowding distance is calculated. The process is repeated 
until a termination condition is met.

Similar to other EMO algorithms, GDE3 starts by generat-
ing a population with N candidate solutions and evaluating their 
fitness. The main loop of the algorithm then begins. An empty 
offspring population with maximum size 2N is initialised. The 
algorithm then iterates through the initial population. At each 
position, differential evolution selection and differential evolution 

Algorithm 4 Crowding algorithm
1: INPUT a non-dominated set I;
2: Calculate the size of I and assign it to l;
3: Initialise the distance vector d = (d1, d2, . . . , dl) = (0, 0, . . . , 0);
4: for j = 1 : k do
5: Sort I according to the objective fj ;
6: d1 = dl = ∞ distance associated with the best and worst point;
7: for i=2:l-1 do
8: di = di +

|fj(I(i+1))−fj(I(i−1))|
|fj(I(1))−fj(I(l))| ;

9: end for
10: end for
11: RETURN d;

Generalized Differential Evolution 3

The generalized differential evolution 3 (GDE3) algorithm 
was proposed by Kukkonen and Lampinen in [34]. It is the 
third version of the GDE algorithm. GDE3 achieves better 

performance than previous versions by employing a grow-
ing offspring population that can accommodate twice as 
many solutions as there are in the parent population, and 

non-dominated sorting with pruning of non-dominated solu-
tions to reduce the size of the population back to normal 
at the end of each generation. This technique improves the 

diversity of the obtained solution set and makes the algo-
rithm less reliant on the selection of control parameters. 
The execution life cycle of the algorithm can be seen in 
Algorithm 5.

Algorithm 5 GDE3
1: Initialise the population P of size N with randomly generated solutions and evaluate

their fitness;
2: while Termination condition is not met do
3: Initialise empty offspring population with size 2N ;
4: for i = 1 : N do
5: Randomly select three distinct parent solutions xr1,xr2,xr3 and a random variable

index jrand;
{Apply mutation}

6: u = xr3 + F xr1 − xr2
)
with F scale factor [1];

{Apply binomial crossover [1]}
7: for j = 1 : d do
8: if rand[0, 1) < CR OR j = jrand (CR crossover rate) then
9: ui

j = ui
j ;

10: else
11: ui

j = xi
j ;

12: end if
13: end for
14: Evaluate the fitness f1 (u) , f2 (u) , . . . fk (u);
15: if the child solution u and the solution xi of the parent population are indifferent

to each other then
16: Add both solutions to offspring population;
17: else if xi ≺ u then
18: Add solution xi to offspring population;
19: else
20: Add child solution u to offspring population;
21: end if
22: end for
23: Sort the offspring population as in Algorithm 3;
24: Choose the best N solutions for the next generation;
25: end while
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Tchebycheff approach in the paper in which it was introduced, 
and MOEA/D outperformed or performed similarly to NSGA-
II on a number of test functions.

Over the years, many different versions of MOEA/D have 
been proposed, see [32, 35, 41, 58]. One of the versions that 
has become very popular is MOEA/D with dynamic resource 
allocation (MOEA/D-DRA [58]. In the original version of 
MOEA/D, all of the sub-problems are treated equally and all 
of them receive equal computational effort. However, different 
sub-problems might have different computational difficulties 
and, therefore, they require different amount of computational 
effort. Because of this, MOEA/D-DRA introduces dynamic 
resource allocation which allows the algorithm to assign differ-
ent amounts of computational effort to different sub-problems. 
The amount of computational resources each sub-problem i gets 
is based on the computation of a utility value �i.

The basic principles of MOEA/D-DRA are described 
in Algorithm 6 which highlights the 5-step structure char-
acterising the framework as highlighted in the paper that 
originally proposed it, see [58]. It must be observed that 
MOEA/D-DRA is a relatively complex framework and con-
tains multiple heuristic rules and a problem-specific internal 
parameter setting as it was designed for entry in the IEEE 
CEC 2009 competition. Hence, for the sake of brevity, we 
omitted the details of some of the formulas in Algorithm 6 
and refer the original paper for the interested reader.

variation operators are used to select parents and generate a child 
solution. The fitness of the child solution is then evaluated. It 
is then compared to the solution at the current position of the 
population. If the two solutions are indifferent to each other, both 
are added to the offspring solution, otherwise only the dominat-
ing solution is added. After the algorithm is finished iterating 
through the initial population, the offspring population is sorted 
and pruned to form the population for the next generation.

The GDE3 algorithm has been successfully applied 
to many real-world problems from various fields such as 
molecular biology [33] and electronics [22].

Multi‑objective Evolutionary Algorithm Based 
on Decomposition with Dynamic Resource 
Allocation

The multi-objective evolutionary algorithm based on decom-
position (MOEA/D) was proposed in [57]. MOEA/D uses a 
decomposition method to decompose a multi-objective problem 
into a number of scalar optimisation sub-problems by means 
of several weight vectors. A sub-problem is optimised using 
information from its neighbouring sub-problems, which leads 
to lower computational complexity than NSGA-II. Different 
approaches to decomposition exist in the literature. Some of the 
most popular ones are the weighted sum approach [18, 30], the 
Tchebycheff approach [38], and the normal-boundary intersec-
tion approach [9]. The authors of the algorithm employed the 

Algorithm 6 MOEA/D-DRA
1: {Step 1: Initialisation}
2: Compute the Euclidean distances between any two weight vectors and find the closest

T weight vectors to each weight vector;
3: Generate an initial population of size N of the type x1,x2, . . . ,xN by uniformly ran-

domly sampling from the search space;
4: Initialise parameters – generation gen = 0; πi = 1 for each sub-problem; z = (z1, ..., zn)

(the ideal objective vector) where zi = min{fi x1
)
, fi x2

)
, . . . , fi xN

)
};

{Step 2: Selection of Subproblems for Search}
5: while Termination condition is not met do
6: Select sub-problems for search by using 10-tournament selection based on πi value

[58];
{Step 3: Selection Reproduction and Update}

7: for every selected sub-problem do
8: Select mating/update range according to a randomised criterion [58];
9: Apply differential evolution mutation and crossover operators to generate a child

solution, see Algorithm 5;
10: Perturb the child solution by means of a mutation;
11: Evaluate child solution;
12: if the child solution is not within the boundaries of the decision space then
13: Randomly reset the solution within the boundaries;
14: end if
15: Update z with the newly found best objective values;
16: Update of solutions according to the update algorithm [58];
17: end for
18: gen = gen+ 1;

{Step 5: Restart of πi}
19: if generation is multiplication of 50 then
20: Update the utility value πi of each sub-problem according to a heuristic rule [58];
21: end if
22: end while

{Step 4: Stopping Criteria}
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Software Implementations 
of the Algorithmic Frameworks

In this article, we focus on five popular software platforms 
and libraries for heuristic optimisation:

– jMetal-Java (version 4.5.2).
– jMetal-.NET (version 0.5).
– MOEA Framework (version 2.12)
– Platypus (GitHub commit 723ad6763abff99b-

4f31305191b754c2c26867b0).
– PlatEMO (version 2.8.0).

jMetal-Java jMetal-Java is a java-based framework intro-
duced by Durillo and Nebro in 2006 [16]. The main goal of 
the framework is to provide an easy to use tool for develop-
ing heuristics (and metaheuristics) for solving multi-objec-
tive optimisation problems. It also provides implementations 
of many state-of-the-art EMO algorithms, test problems and 
performance indicators, and has been used in several experi-
ments described in the literature [44–47, 50].

In 2011, the authors of the framework started a project 
to implement jMetal using C# and in present days, the C# 
version provides almost all of the features that can be found 
in the Java version. The latter version is known as jMetal.
NET.

MOEA The MOEA Framework library (here referred 
to also as MOEA for brevity) is a Java-based open-source 
library for multi-objective optimisation introduced by Hadka 
in 2011 [23]. Similarly to jMetal, MOEA also provides 
means to quickly design, develop and execute EMO algo-
rithms. It supports genetic algorithms, differential evolution, 
genetic programming, and more. A number of state-of-the-
art EMO algorithms, test problems, and quality indicators 
are provided out-of-the-box and have been used in multiple 
experiment studies detailed in the EMO literature [5, 15, 52].

Platypus Platypus is a python-based framework for evo-
lutionary computing, whose focus lays on EMO algorithms. 
It was developed by Hadka and was introduced in 2015 [24]. 
It also provides implementations of several state-of-the-art 
algorithms, test problems and quality indicators, and also 
supports parallel processing. The algorithm implementations 
provided by the library have been used for various experi-
ments in the EMO literature [4, 39].

PlatEMO is a MATLAB platform for evolutionary multi-
objective optimisation [54]. It contains implementations of 
multiple state-of-the-art EMO algorithms as well as numer-
ous test problems.

These algorithmic frameworks under consideration are 
present in these software platforms according to the follow-
ing scheme

– NSGA-II → jMetal-Java, jMetal.NET, MOEA, Platypus, 
PlatEMO.

– GDE3 → jMetal-Java,  jMetal .NET, MOEA, 
Platypus,PlatEMO.

– MOEA/D-DRA → jMetal-Java, jMetal.NET, MOEA, 
PlatEMO.

Experimental Setup

The three algorithmic frameworks under consideration in the 
eleven above-mentioned implementations have been exten-
sively tested on the test functions of the ZDT [59], DTLZ 
[12], and WFG [25] test suites.

The performance of the implementations is measured 
with the use of the Hypervolume indicator and Inverted 
Generational Distance+. In order to determine if there is 
a significant difference between different implementations 
of the same EMO algorithm, the experimental results have 
been tested with the Wilcoxon signed-rank test.

This section is organised as follows. The next subsection 
describes the test problems used in this study, and explic-
itly provides the reader with all the parameters associated 
with the problem followed by which the parameters that 
have been used by each EMO algorithmic framework are 
displayed. The final subsection describes in detail how the 
comparisons have been carried out.

Test Problems

ZDT The ZDT test suite was proposed by Zitzler, Deb and 
Thiele in 2000 [59]. It consists of six bi-objective synthetic 
test functions, five of which (ZDT1–ZDT4; ZD6) are real-
coded and one (ZDT5) which is binary-coded. In this study, 
only the real-coded test problems were selected. ZDT5 was 
not selected due to its requirement for binary encoded prob-
lem variables. The parameter configuration of the ZDT test 
functions have been listed in Table 1.

DTLZ The DTLZ test suite was proposed by Deb, Thiele, 
Laumanns and Zitzler in 2002 [12]. It contains seven scala-
ble multi-objective test functions with diverse characteristics 
such as non-convex, multimodal, and disconnected Pareto 

Table 1  Parameter configurations for the ZDT test functions

Problem #Var #Obj  HV reference vector
(n) (M)

ZDT1 30 2 11, 11
ZDT2 30 2 11, 11
ZDT3 30 2 11, 11
ZDT4 10 2 300, 300
ZDT6 10 2 11, 11
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fronts. In this study, two and three objectives are consid-
ered for each problem, and the number of decision variables 
is set to 7, 12 and 22 for DTLZ1, DTLZ2-6, and DTLZ7, 
respectively. The parameter configurations for the DTLZ test 
functions have been listed in Table 2.

WFG The WFG tool-kit was introduced by Huband, 
Hingston, Barone and While in 2006 [25]. The tool-kit 

makes it possible to construct synthetic test problems which 
incorporate common characteristics of real-world problems 
such as variable linkage and separability. To demonstrate 
its functionality, the authors constructed nine test problems 
(WFG1-9) with scalable variables and problem objectives. 
The proposed test functions are referred to as the WFG test 
suite. In this study, two and three objectives are considered 
for each problem. The full parameter configurations for each 
test problem can be seen in Table 3.

Parameter Setting

The parameters used to configure the implementations of the 
selected algorithms can be seen in Tables 4, 5 and 6. The 
implementations of NSGA-II and MOEA/D-DRA are con-
figured with the parameters proposed by the authors of the 
algorithms, while GDE3 is configured with the parameters 
used in the experiment described in [17]. The maximum 

Table 2  Parameter configurations for the DTLZ test functions

Problem #Var #Obj HV reference vector
(n) (M)

DTLZ1 7 2, 3 11, 11 when M = 2
11, 11, 11 when M = 3

DTLZ2 12 2, 3 11, 11 when M = 2
11, 11, 11 when M = 3

DTLZ3 12 2, 3 11, 11 when M = 2
11, 11, 11 when M = 3

DTLZ4 12 2, 3 11, 11 when M = 2
11, 11, 11 when M = 3

DTLZ5 12 2, 3 11, 11 when M = 2
11, 11, 11 when M = 3

DTLZ6 12 2, 3 15, 15 when M = 2
15, 15, 15 when M = 3

DTLZ7 22 2, 3 15, 15 when M = 2
15, 15, 15 when M = 3

Table 3  Parameter configurations for the WFG test functions

Parameter Value

Number of objectives, M 2, 3
Number of variable, n 24
Number of position variables, k 2(M − 1)

Number of distance vairables, l n − k

HV reference vector when M = 2 11, 11
HV reference vector when M = 3 11, 11, 11

Table 4  Parameter configurations of the chosen NSGA-II implemen-
tations

NSGA-II

Recombination Simulated binary crossover + 
polynomial mutation

Crossover probability 0.9
Crossover distribution index 20
Mutation probability 1/number of decision variables
Mutation distribution index 20
Selection operator Binary tournament
Population size 100
Generation count 500

Table 5  Parameter 
configurations of the chosen 
GDE3 implementations

GDE3

Recombination Differen-
tial evo-
lution 
varia-
tion

Crossover rate 0.1
Scaling factor 0.5
Selection operator Differen-

tial evo-
lution 
selec-
tion

Population size 100
Generation count 500

Table 6  Parameter configurations of the chosen MOEA/D-DRA 
implementations

MOEA/D-DRA

Recombination Differential evolution variation + 
polynomial mutation

Crossover rate 1
Scaling factor 0.5
Mutation probability 1/number of decision variables
Mutation distribution index 20
T (size of the neighbourhood) 0.1 × population size
nr

(maximum number of solutions
replaced by each child solution)

0.01 × population size

� (mating probability) 0.9
Population size 600 when M = 2, 1000 when M 

= 3
Generation count 500
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number of generations per execution is set to 500, with a 
sample size of 30 executions per test function.

Comparison Method

In the last decades, various performance indicators have 
been proposed to assess the performance of EMO algo-
rithms, see [27]. The most popular performance indica-
tor amongst the EMO society in recent years has been the 
Hypervolume (HV) indicator [42] and the Inverted Genera-
tional Distance+ (IGD+ ), see [27, 29, 51].

The HV indicator is a performance metric proposed by 
Zitzler and Thiele in [60]. It measures the volume of the 
objective space dominated by an approximation set (Fig. 4). 
The HV indicator is a popular choice for researchers as it 
does not require knowledge about the true Pareto optimal 
front, which is an important factor when working with multi-
objective optimisation problems that are yet to be solved 
[43].

A reference point is required for the calculation of the HV 
indicator. When the HV indicator is used to compare EMO 
algorithms, the reference point must be the same otherwise 
the results will not be accurate or comparable. Selecting the 
reference point is an important issue and the difficulty of 
selecting such a point increases with the number of objec-
tives [36]. The reference points used in the experimental 
study are selected by constructing a vector of the worst 
objective values contained in the union of the approxima-
tion sets generated by the algorithm implementations chosen 
for comparison. They have been listed in Tables 1, 2, and 3.

The IGD is a classical metric used to assess the quality 
of a non-dominated set, see [7] on the basis of the study 
reported in [8]. Let us consider a set of reference points 
Z = {��, ��,… ��} that approximate the Pareto set. Let us 

now consider the set of non-dominated points returned by 
an algorithm X = {��, ��,… , ��} and the corresponding set 
of objective vectors Y = {��, ��,… , ��} . The IGD of the set 
Y is calculated as

where d
(
��, ��

)
 is the Euclidean distance between �� and ��:

where n is the dimensionality of the objective space.
For the sake of clarity, IGD is obtained from Z and Y. At 

first, for each element of Z, the Euclidean distances between 
the element of Z and all the elements of Y are calculated. 
Then minimal distance is chosen. The average sum of all the 
minimal distances is the desired IGD, see [28].

The IGD+ corrects the IGD using the modified distance 
d+ instead of the Euclidean distance, [29]:

and then uses in the IGD+ calculation

To determine whether there is significant difference between 
the results of different implementations of a given EMO 
algorithm, it is necessary to carry out a statistical test. In 
this paper, the mean hypervolume and IGD+ results of the 
implementations used in the experiment are compared with 
the use of the Wilcoxon signed [14, 20, 21, 55, 61]to test 
for such statistical difference. The Wilcoxon test is a non-
parametric test used to test for a difference in the mean (or 
median) of paired observations.

The results in tables are expressed as mean value ± 
and standard deviation � . For all the tables presented in 
this study, we have used jMetal-Java implementations as 
the reference for the Wilcoxon test. This choice has been 
made on the basis of the practical consideration that it is 
the most complete framework amongst those considered in 
this article. In each column of the Tables, a “+” indicates 
that the implementation in that column outperforms the 
jMetal counterpart, a “−” indicates that the implementation 
is outperformed by the jMetal-Java implementation, an “=” 
indicates that the two implementations have a statistically 
indistinguishable performance.

IGDZ(Y) =
1

r

(
r∑

j=1

min{d
(
��, ��

)
|�� ∈ Y}

)

d
(
��, ��

)
=

√√√√
n∑

i=1

(
z
j

i
− yk

i

)2

,

d+
(
��, ��

)
=

√√√√
n∑

i=1

(
max{0,

(
z
j

i
− yk

i

)
}
)2

IGD+
Z
(Y) =

1

r

(
r∑

j=1

min{d+
(
��, ��

)
|�� ∈ Y}

)
.

R

y1

y2

y3

f₂

f₁

Fig. 4  Illustration of the HV indicator in two-dimensional space with 
three solutions
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Experimental Results and Discussion

Table 7 displays the HV results for the five implementations 
of NSGA-II. Table 8 displays the HV results for the five 
implementations of GDE3. Table 9 displays the HV results 
for the five implementations of MOEA/D-DRA.  

It can be observed that the HV results for DTLZ4 and 
DTLZ5 are missing in Tables 7, 8, 9. The lack of those 
results is due to a malfunctioning of the MOEA and Platy-
pus platforms: there is a systematic crash in the system when 
any of the three algorithms under examination is executed. 
Hence, we decided to omit these results.

Numerical results in Tables 7, 8, 9 show that the imple-
mentations of the same algorithms on different platforms 
leads to dramatically different results. For example, with 
reference to Table 7, the NSGA-II implementations on 
jMetal-Java and MOEA platforms display very different per-
formance, which is statistically different in about half of the 
problems. A macroscopic difference displayed in Tables 7, 
8 and 9 is that PlatEMO significantly outperforms the other 
platforms on most of the problems, especially for NSGA-II 
and MOEA/D-DRA.

The results on this extensive data set confirm the intuition 
shown on the study on NSGA-II implementations published 
in [56]. It was suggested that different implementations of 
the same algorithm might perform significantly differently. 
This means that newly proposed algorithms might perform 
better than one implementation of the benchmark algorithm 
but worse than another one.

When proposing a new algorithm, however, researchers 
typically use only one implementation of the state-of-the-art 
algorithms chosen for benchmarking. Algorithms are often 
considered as conceptual paradigms which are associated 
with their performance. On the contrary, implementations 
are tasks of secondary importance which consist of commu-
nicating the conceptual paradigm expressed in equations and 
pseudocode to a machine. Furthermore, the use of multiple 
implementations while running tests is often overlooked 
since, besides being perceived as a repeated operation, it can 
be time consuming and onerous. However, the results in this 
paper show that different implementations of the same algo-
rithm may perform significantly differently. Thus, the choice 
of the implementation/software platform may likely have an 
impact on the conclusion of research papers in algorithmics 
and on the performance of newly proposed algorithms.

To provide the reader with a graphical representation 
of the differences in HV performance across the platforms 
under consideration, we plotted the evolution of the HV indi-
cator. Figure 5 depicts the three sets of trends for NSGA-II 
in Fig. 5a, GDE3 in Fig. 5b, and MOEA/D-DRA in Fig. 5c, 
respectively.

Th
e 

be
st 

re
su

lts
 a

re
 h

ig
hl

ig
ht

ed
 in

 b
ol

d

Ta
bl

e 
7 

 (c
on

tin
ue

d)

M
 F

n
JM

et
al

-J
av

a
JM

et
al

-.N
ET

M
O

EA
Pl

at
yp

us
Pl

at
EM

O

M
ea

n
±
�

M
ea

n
±
�

M
ea

n
±
�

M
ea

n
±
�

3
W

FG
8

0.
94

19
07

1.
85

e−
03

0.
93

55
78

2.
47

e−
03

−
0.

94
16

13
1.

80
e−

03
=

0.
94

05
70

1.
91

e−
03

−
0.
96
07
03

1.
68

e−
03

+
3

W
FG

9
0.

90
20

04
3.

43
e−

03
0.

90
42

41
6.

30
e−

03
=

0.
90

32
21

4.
86

e−
03

=
0.

90
17

62
5.

98
e−

03
=

0.
94
12
14

4.
92

e−
03

+



SN Computer Science (2020) 1:247 Page 13 of 23 247

SN Computer Science

Ta
bl

e 
8 

 H
yp

er
vo

lu
m

e 
re

su
lts

 (m
ea

n 
va

lu
e 

an
d 

st
an

da
rd

 d
ev

ia
tio

n)
 fr

om
 3

0 
ex

ec
ut

io
ns

 o
f fi

ve
 v

er
si

on
s o

f G
D

E3
 o

n 
tw

o 
an

d 
th

re
e 

ob
je

ct
iv

e 
te

st 
fu

nc
tio

ns
 a

fte
r 5

00
 g

en
er

at
io

ns

M
 F

n
JM

et
al

-J
av

a
JM

et
al

-.N
ET

M
O

EA
Pl

at
yp

us
Pl

at
EM

O

M
ea

n
±
�

M
ea

n
±
�

M
ea

n
±
�

M
ea

n
±
�

2
ZD

T1
0.

99
72

06
1.

72
e−

07
0.

99
72

07
1.

56
e−

07
+

0.
99
72
07

1.
78

e−
07

+
0.

99
72

07
1.

87
e−

07
+

0.
99

50
13

1.
19

e−
03

−
2

ZD
T2

0.
99

44
52

1.
75

e−
07

0.
99

44
52

1.
16

e−
07

+
0.

99
44

52
1.

84
e−

07
+

0.
99
44
52

1.
57

e−
07

+
0.

97
96

90
3.

60
e−

03
−

2
ZD

T3
1.

06
42

61
1.

32
e−

06
1.
06
42
62

9.
56

e−
07

+
1.

06
42

61
4.

20
e−

06
=

1.
06

42
61

3.
31

e−
06

=
0.

99
54

80
1.

17
e−

04
−

2
ZD

T4
0.

99
99

82
7.

89
e−

05
0.
99
99
96

2.
61

e−
10

+
0.

99
97

54
3.

12
e−

04
=

0.
99

99
67

1.
10

e−
04

−
0.

94
87

69
1.

03
e−

02
−

2
ZD

T6
0.

97
11

97
1.

01
e−

07
0.

97
11

97
9.

88
e−

08
+

0.
97

11
97

7.
28

e−
08

+
0.

96
92

43
2.

45
e−

07
−

0.
97
40
86

3.
17

e−
07

+
2

D
TL

Z1
0.

99
89

56
4.

13
e−

08
0.
99
89
56

4.
28

e−
08

+
0.

99
89

56
3.

33
e−

07
+

0.
99

89
56

4.
65

e−
08

+
0.

71
63

49
1.

21
e−

01
−

2
D

TL
Z2

0.
99

34
77

2.
47

e−
07

0.
99

34
77

2.
31

e−
07

+
0.

99
34

77
1.

93
e−

07
+

0.
99

34
77

2.
15

e−
07

+
0.
99
45
90

1.
85

e−
06

+
2

D
TL

Z3
0.

99
34

77
2.

89
e−

07
0.
99
34
77

1.
87

e−
07

+
0.

82
53

74
2.

66
e−

01
−

0.
99

34
77

2.
61

e−
07

+
0.

10
39

77
2.

33
e−

01
−

2
D

TL
Z4

0.
99

34
77

2.
45

e−
07

0.
99

34
77

2.
55

e−
07

+
0.

99
34

77
1.

90
e−

07
+

0.
99

34
77

2.
18

e−
07

+
0.
99
45
89

1.
93

e−
06

+
2

D
TL

Z5
0.

99
34

77
2.

62
e−

07
0.

99
34

77
1.

95
e−

07
+

–
–

–
–

–
–

0.
99
45
90

1.
63

e−
06

+
2

D
TL

Z6
0.

99
64

92
1.

29
e−

07
0.

99
64

92
1.

58
e−

07
+

–
–

–
–

–
–

0.
99
71
01

1.
02

e−
07

+
2

D
TL

Z7
0.

84
18

98
1.

41
e−

07
0.
84
18
98

1.
82

e−
07

+
0.

84
18

98
4.

02
e−

07
+

0.
84

18
98

3.
05

e−
07

+
0.

83
97

94
1.

57
e−

02
=

2
W

FG
1

0.
94

68
91

5.
81

e−
03

0.
94
72
01

5.
30

e−
03

=
0.

86
49

56
4.

58
e−

03
−

0.
86

19
57

4.
10

e−
03

−
0.

83
04

00
1.

03
e−

03
−

2
W

FG
2

0.
97

05
57

2.
75

e−
05

0.
97

05
67

2.
29

e−
05

=
0.

97
06

42
2.

70
e−

05
+

0.
97

05
61

3.
34

e−
05

=
0.
97
07
10

1.
17

e−
03

=
2

W
FG

3
0.

96
64

67
2.

47
e−

05
0.

96
64

59
1.

50
e−

05
=

0.
96

64
79

2.
27

e−
05

=
0.

96
64

58
2.

36
e−

05
=

0.
96
95
72

3.
26

e−
04

+
2

W
FG

4
0.

94
61

84
4.

93
e−

04
0.

94
61

91
4.

14
e−

04
=

0.
94

62
39

6.
05

e−
04

=
0.
94
62
63

4.
40

e−
04

=
0.

94
35

74
1.

04
e−

03
−

2
W

FG
5

0.
92

94
49

1.
95

e−
03

0.
92

86
25

1.
89

e−
03

=
0.

92
90

74
1.

95
e−

03
=

0.
92

91
05

1.
60

e−
03

=
0.
94
01
35

1.
60

e−
03

+
2

W
FG

6
0.

94
26

51
8.

16
e−

04
0.

94
27

81
8.

38
e−

04
=

0.
94

22
24

1.
39

e−
03

=
0.

94
29

57
1.

14
e−

03
=

0.
94
38
32

3.
47

e−
03

=
2

W
FG

7
0.

94
77

92
4.

95
e−

06
0.

94
77

91
4.

91
e−

06
=

0.
94

77
90

5.
44

e−
06

=
0.

94
77

89
4.

90
e−

06
=

0.
95
49
14

1.
88

e−
04

+
2

W
FG

8
0.

93
17

46
6.

92
e−

04
0.

93
17

91
5.

49
e−

04
=

0.
93

17
79

6.
37

e−
04

=
0.

93
17

40
7.

42
e−

04
=

0.
93
91
53

1.
34

e−
03

+
2

W
FG

9
0.

91
92

40
3.

38
e−

03
0.

91
93

33
3.

58
e−

03
=

0.
91

92
80

3.
52

e−
03

=
0.

91
92

72
3.

49
e−

03
=

0.
92
94
79

1.
10

e−
04

+
3

D
TL

Z1
0.

99
99

69
3.

72
e−

05
0.

99
99

70
3.

20
e−

05
=

0.
99

98
55

4.
71

e−
04

=
0.
99
99
72

2.
89

e−
05

=
0.

97
38

84
1.

75
e−

02
−

3
D

TL
Z2

0.
99

95
40

2.
65

e−
06

0.
99

95
41

3.
41

e−
06

=
0.

99
95

40
3.

84
e−

06
=

0.
99

95
43

3.
15

e−
06

+
0.
99
96
24

3.
05

e−
06

+
3

D
TL

Z3
0.
99
90
07

1.
44

e−
03

0.
99

71
13

1.
04

e−
02

=
0.

96
30

73
6.

14
e−

02
−

0.
99

66
97

1.
02

e−
02

=
0.

17
42

85
3.

00
e−

01
−

3
D

TL
Z4

0.
99

95
40

2.
60

e−
06

0.
99

95
40

3.
91

e−
06

=
0.

99
95

43
3.

01
e−

06
+

0.
99

95
43

2.
59

e−
06

+
0.
99
96
26

3.
42

e−
06

+
3

D
TL

Z5
0.

99
10

26
5.

25
e−

07
0.

99
10

26
3.

37
e−

07
+

–
–

–
–

–
–

0.
99
25
30

3.
62

e−
06

+
3

D
TL

Z6
0.

99
51

38
1.

83
e−

07
0.

99
51

39
1.

56
e−

07
+

–
–

–
–

–
–

0.
99
59
74

1.
74

e−
07

+
3

D
TL

Z7
0.
81
63
46

2.
05

e−
04

0.
81

61
93

2.
04

e−
04

−
0.

81
63

43
1.

78
e−

04
=

0.
81

62
24

2.
37

e−
04

=
0.

77
20

90
2.

44
e−

02
−

3
W

FG
1

0.
83
46
92

1.
23

e−
02

0.
82

95
31

1.
74

e−
02

=
0.

79
20

34
1.

68
e−

03
−

0.
79

19
79

1.
17

e−
03

−
0.

77
92

00
1.

89
e−

03
−

3
W

FG
2

0.
99

55
30

2.
23

e−
04

0.
99
55
69

2.
12

e−
04

=
0.

99
54

02
2.

70
e−

04
=

0.
99

54
90

2.
48

e−
04

=
0.

97
50

30
2.

70
e−

03
−

3
W

FG
3

0.
92

70
05

1.
42

e−
03

0.
92

67
49

1.
13

e−
03

=
0.

92
70

73
9.

81
e−

04
=

0.
92
71
96

9.
67

e−
04

=
0.

91
01

17
3.

93
e−

03
−

3
W

FG
4

0.
97

03
17

8.
96

e−
04

0.
97

03
64

7.
92

e−
04

=
0.

97
05

16
8.

53
e−

04
=

0.
97
06
62

8.
49

e−
04

=
0.

94
98

62
2.

42
e−

03
−

3
W

FG
5

0.
95

38
22

1.
91

e−
03

0.
95

28
43

2.
63

e−
03

=
0.
95
43
45

1.
37

e−
03

=
0.

95
24

87
1.

85
e−

03
−

0.
94

86
43

4.
16

e−
03

−
3

W
FG

6
0.

94
03

10
2.

74
e−

03
0.

94
00

90
2.

66
e−

03
=

0.
94

10
17

2.
44

e−
03

=
0.

94
09

65
2.

59
e−

03
=

0.
95
98
81

2.
36

e−
03

+
3

W
FG

7
0.

97
59

23
4.

02
e−

04
0.

97
59

51
3.

30
e−

04
=

0.
97
59
72

4.
45

e−
04

=
0.

97
58

86
3.

84
e−

04
=

0.
94

39
61

3.
51

e−
03

−



 SN Computer Science (2020) 1:247247 Page 14 of 23

SN Computer Science

The HV trends in Fig. 5 show that for each algorithm 
the various software implementations of the same algorithm 
may lead to different results. It is worth noting that jMetal-
Java and jMetal-.NET lead to similar results. This is overall 
expected since jMetal-.NET is based on jMetal-Java and thus 
relies on the same interpretation of the algorithms. However, 
Fig. 5a shows that for NSGA-II, the two jMetal versions 
lead to different results. Furthermore, Fig. 5 shows that the 
performance on PlatEMO implementations are dramatically 
different.

Tables  10, 11, and 12 display the IGD+ results for 
NSGA-II, GDE3, and MOEA/D-DRA, respectively. For 
this set of results, we excluded PlatEMO since it does not 
have IGD+ among the metrics available. The IGD+ results 
clearly show that different software implementations can 
lead to extremely different performance values. For exam-
ple, Table 10 shows that for ZDT4 the jMetal IGD+ val-
ues are about 100 times lower than those achieved by the 
MOEA and Platypus platforms. We conclude that an expert 
who analyses these results without knowing that they are 
allegedly produced by the same algorithm would think that 
they are produced by conceptually different algorithmic 
frameworks.

To give a graphical representation of the IGD+ results, 
Fig. 6 displays the IGD+ trends of the three algorithmic and 
the four software platforms under investigation in the case 
of WFG1 with two objectives. Figure 6a shows the results of 
the four NSGA-II software implementations, Fig. 6b shows 
the results of the four GDE3 software implementations and 
Fig. 6c shows the results of the three MOEA/D-DRA soft-
ware implementations.

The results on IGD+ values confirm what was shown for 
HV values: the various trends appear distinct with a similar-
ity between the two jMetal platforms.

Differences in the Implementations

To understand how the original papers, [11, 34], and [58] 
have been interpreted by the authors of the software plat-
forms, we analysed the codes and highlighted the major dif-
ferences that impacted on the performance of the algorithms. 
We classified these differences according to their type: (1) 
algorithmic differences, i.e. different interpretations of the 
text or pseudocode in the original publication; (2) software 
engineering differences, i.e. implementation choices that are 
not part of the algorithmic structure but are still important 
elements that affect the runs and the results.

Furthermore, there is a difference in programming style 
between PlatEMO and the other packages which appears 
to heavily affect the performance for the algorithms and 
problems considered in this study. In PlatEMO, the soft-
ware parameters are mostly pre−defined without opportunity Th
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for user-specification outside of modifying the source code 
directly. Many of the parameters appear to be pre−tuned and 
orientated towards high performance.

In the following subsections, we highlight some of the 
software differences that we were able to observe by com-
paring the five software platforms under consideration.

NSGA‑II

Simulated binary crossover (SBX) [10] is a popular and 
established recombination operator which was motivated by 
the binary crossover operators which were popular in early 
genetic algorithms. SBX enables the single−point crossover 
of two real-coded parent solutions to produce an offspring 
solution through exploitation of the existing information, 

Table 9  Hypervolume results (mean value and standard deviation) from 30 executions of the four versions available of MOEA/D-DRA on two 
and three objective test functions after 500 generations

The best results are highlighted in bold

 M  Fn JMetal-Java JMetal-.NET MOEA PlatEMO

Mean ±� Mean ±� Mean ±�

2 ZDT1 0.996866 1.84e−04 0.996867 1.11e−04 = 0.996832 1.88e−04 = 0.997717 9.02e−08 +
2 ZDT2 0.993775 4.08e−04 0.993905 2.79e−04 = 0.994002 3.50e−04 + 0.995440 3.23e−07 +
2 ZDT3 1.063422 4.12e−04 1.063270 4.93e−04 = 1.063735 2.46e−04 + 0.995342 1.58e−07 −
2 ZDT4 0.999803 3.06e−04 0.999888 2.15e−04 = 0.001215 4.16e−05 − 0.999997 1.22e−08 +
2 ZDT6 0.971207 5.91e−07 0.971207 1.25e−06 = 0.971207 4.55e−07 = 0.974105 1.81e−09 +
2 DTLZ1 0.998963 1.01e−06 0.998963 1.15e−06 = 0.998953 4.40e−05 − 0.999145 3.29e−08 +
2 DTLZ2 0.993485 7.90e−05 0.993453 1.85e−04 = 0.993500 1.50e−07 + 0.994630 7.53e−08 +
2 DTLZ3 0.970621 4.70e−02 0.361852 2.39e+00 = 0.976622 5.89e−02 = 0.994629 8.91e−07 +
2 DTLZ4 0.993485 6.63e−05 0.993451 1.42e−04 = 0.993500 4.80e−07 + 0.994630 3.35e−08 +
2 DTLZ5 0.993496 1.78e−05 0.993478 1.13e−04 = – – – 0.994630 9.08e−08 +
2 DTLZ6 0.996504 2.37e−06 0.996503 2.60e−06 = – – – 0.997112 1.36e−08 +
2 DTLZ7 0.825755 3.21e−02 0.823066 3.39e−02 = 0.820431 3.55e−02 = 0.849299 2.20e−02 +
2 WFG1 0.824744 3.98e−03 0.824837 5.55e−03 = 0.817420 1.18e−03 − 0.881350 9.64e−03 +
2 WFG2 0.968088 8.05e−04 0.968307 6.51e−04 = 0.968042 7.81e−04 = 0.968779 1.05e−02 +
2 WFG3 0.965243 1.76e−04 0.965217 2.96e−04 = 0.965193 2.01e−04 = 0.965377 1.04e−02 +
2 WFG4 0.936578 1.47e−03 0.936554 1.98e−03 = 0.939591 1.28e−03 + 0.946310 3.92e−03 +
2 WFG5 0.929594 1.67e−04 0.929791 9.96e−04 = 0.929648 1.18e−04 = 0.939962 7.63e−05 +
2 WFG6 0.934807 4.64e−03 0.933698 3.76e−03 = 0.933351 3.31e−03 = 0.942863 3.24e−03 +
2 WFG7 0.946899 3.77e−04 0.946981 1.50e−04 = 0.947348 8.87e−05 + 0.955748 9.98e−04 +
2 WFG8 0.930136 9.01e−04 0.930263 9.38e−04 = 0.931090 9.09e−04 + 0.933218 7.37e−03 +
2 WFG9 0.919549 3.16e−03 0.921628 5.43e−03 = 0.922045 5.44e−03 = 0.932398 4.38e−03 +
3 DTLZ1 0.999982 5.68e−08 0.999982 4.68e−08 + 0.999982 3.47e−08 − 0.999986 1.85e−08 +
3 DTLZ2 0.999584 4.23e−07 0.999584 3.45e−07 + 0.999584 2.99e−07 + 0.999688 2.63e−07 +
3 DTLZ3 0.999575 2.19e−05 0.999089 2.45e−03 = 0.999465 6.24e−04 − 0.999688 3.17e−07 +
3 DTLZ4 0.999579 2.21e−05 0.999573 3.02e−05 = 0.999585 2.90e−07 + 0.999516 9.08e−04 −
3 DTLZ5 0.991053 8.78e−07 0.991053 4.88e−07 + – – – 0.992588 5.95e−08 +
3 DTLZ6 0.995155 2.79e−06 0.995155 1.77e−06 = – – – 0.995987 3.69e−09 +
3 DTLZ7 0.789870 4.77e−02 0.797819 3.96e−02 = 0.787326 5.66e−02 = 0.824620 2.49e−02 +
3 WFG1 0.759856 7.37e−04 0.759663 6.46e−04 = 0.759832 7.98e−04 = 0.785441 5.32e−03 +
3 WFG2 0.993395 4.23e−04 0.993382 5.58e−04 = 0.993113 5.06e−04 − 0.990767 1.41e−03 −
3 WFG3 0.930985 6.73e−04 0.931089 7.48e−04 = 0.929534 7.99e−04 − 0.923832 4.46e−03 −
3 WFG4 0.961653 1.29e−03 0.961995 1.91e−03 = 0.963593 1.64e−03 + 0.969399 2.41e−03 +
3 WFG5 0.959014 5.25e−04 0.958856 5.63e−04 = – – – 0.967131 3.42e−04 +
3 WFG6 0.934261 7.18e−03 0.935157 8.01e−03 = 0.933285 6.64e−03 = 0.961945 2.17e−03 +
3 WFG7 0.975550 5.11e−04 0.975435 4.95e−04 = 0.976631 4.32e−04 + 0.979292 1.61e−03 +
3 WFG8 0.948587 2.31e−03 0.948924 2.58e−03 = 0.949332 2.12e−03 = 0.935644 1.37e−02 −
3 WFG9 0.913475 7.02e−03 0.913057 5.60e−03 = 0.913668 6.49e−03 = 0.946494 5.80e−03 +
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with the benefit of using a probability distribution for select-
ing offspring solutions. In particular, NSGA-II employs 
the SBX operator when operating on problems consisting 
of real-coded decision variables, and any difference in its 

implementation will impact the convergence and search 
pressure throughout the optimisation process.

The software platforms under considerations give differ-
ent interpretations of SBX and thus propose slightly dif-
ferent algorithms. In SBX, a random number determines 
whether SBX performs the recombination according to the 
crossover probability, but if this criterion is not satisfied then 
the offspring solution directly inherits the decision variable 
from the first parent. However, in jMetal, the offspring solu-
tion also inherits directly from the first parent if the absolute 
difference between the decision variable from both parents is 
greater than a pre−defined precision value. This extra swap 
mechanism does not occur in the MOEA Framework. The 
SBX operation in Platypus follows the same logic as MOEA 
Framework. An empirical comparison using identical deci-
sion variables (for two parent solutions) and pre−generated 
random numbers proved a difference in the output from both 
jMetal and MOEA. The results are presented in Table 13.

An example of a software engineering difference is in 
the epsilon (EPS) value used for precision in the frame-
works, where jMetal-Java and jMetal-.NET both use 
1.0e − 14 , MOEAFramework uses 1.0e − 1 , and Platypus 
uses 2.220446049250313e-1 (provided by “sys.float_info.
epsilon”). Additionally, the jMetal-.NET implementation of 
NSGA-II had hard-coded the seed used by the random num-
ber generators. This meant that every execution on a problem 
would produce identical results, so this was corrected for the 
experiments in this paper.

Finally, another difference is in the use random seeds, 
while jMetal implementations of NSGA-II make use of some 
hard-coded seeds, MOEA and Platypus generate new ran-
dom numbers at each occurrence.

GDE3

The four software platform present a subtle different inter-
pretation of the crossover in GDE3. To decide which design 
variables are copied from the parent solution, jMetal plat-
forms use the condition rand[0, 1) < CR as mentioned in the 
original paper [34] whereas MOEA and Platypus platforms 
reinterpret the expressions as rand[0, 1) ≤ CR . Although this 
difference does not impact most of the comparisons, it is per-
formed many times in each run. Thus, it is likely to generate 
some different offspring solutions and modify the behaviour 
of the algorithm. For example, if we consider

with F = CR = 0.5 , the mutant vector is

�� = (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0)

��� = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0)

��� = (10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0)

��� = (2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0)

(a) HV trend for NSGA-II implementations

(b) HV trend for GDE3 implementations

(c) HV trend for MOEA/D-DRA implementations

Fig. 5  HV trends for the three algorithms and five software platforms 
under consideration for the WFG1 problem with two objectives
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After a crossover where we have synthetically ensured that 
CR will equal 0.5 in some instances (highlighted) through 

� = ��� + F
(
��� − ���

)

= (−2.5, 0.5, 3.5, 6.5, 9.5, 12.5, 15.5, 18.5, 21.5, 24.5).

pre-generated random numbers, jMetal and MOEA plat-
forms produced the following, respectively,

which then affects the final results.

������� = (�.�, 0.5, 1.5, 6.5, �.�, 12.5, �.�, 4.0, 4.5, 24.5)

����� = (−�.�, 0.5, 1.5, 6.5, �.�, 12.5, ��.�, 4.0, 4.5, 24.5)

Table 10  Inverted generational distance+ results (mean value and standard deviation) from 30 executions of the four versions available of 
NSGA-II on two and three objective test functions after 500 generations

The best results are highlighted in bold

 M Fn jMetal-Java jMetal-.NET MOEA Platypus

Mean ±� Mean ±� Mean ±� Mean ±�

2 ZDT1 0.003377 1.42e−04 0.003277 1.38e−04 − 0.003218 1.51e−04 − 0.003051 1.13e−04 −
2 ZDT2 0.002917 1.10e−04 0.002870 9.52e−05 = 0.002810 1.08e−04 − 0.002696 8.46e−05 −
2 ZDT3 0.001878 1.28e−04 0.001852 7.83e−05 = 0.001800 1.10e−04 − 0.001752 1.18e−04 −
2 ZDT4 0.003948 5.80e−04 0.003918 8.85e−04 = 0.552275 2.96e−01 + 0.473648 3.60e−01 +
2 ZDT6 0.002276 3.10e−04 0.002068 1.95e−04 − 0.002539 2.28e−04 + 0.046240 5.22e−05 +
2 DTLZ1 0.002037 3.03e−04 0.001855 3.02e−04 − 0.001751 2.80e−04 − 0.002047 3.69e−04 =
2 DTLZ2 0.002636 1.14e−04 0.002577 1.03e−04 − 0.002565 1.10e−04 − 0.002402 1.04e−04 −
2 DTLZ3 0.009267 3.84e−03 0.046039 1.80e−01 = 0.007021 4.85e−03 − 0.018784 9.75e−03 +
2 DTLZ4 0.005169 1.19e−02 0.009836 1.55e−02 = 0.012164 1.65e−02 = 0.013319 1.69e−02 =
2 DTLZ5 0.002632 9.79e−05 0.002589 1.12e−04 = – – – – – –
2 DTLZ6 0.016740 1.20e−02 0.011361 1.38e−02 = – – – – – –
2 DTLZ7 0.002555 1.28e−04 0.014401 6.43e−02 + 0.002448 1.69e−04 − 0.038190 1.07e−01 +
2 WFG1 0.414873 1.28e−01 0.543237 1.22e−01 + 0.973705 9.40e−02 + 1.016263 1.11e−01 +
2 WFG2 0.028480 1.41e−02 0.027585 1.44e−02 = 0.028867 1.63e−02 = 0.029839 1.37e−02 =
2 WFG3 0.131865 1.96e−03 0.132146 1.55e−03 = 0.132060 1.87e−03 = 0.132634 2.45e−03 =
2 WFG4 0.014480 1.29e−03 0.014899 1.24e−03 = 0.013973 1.06e−03 = 0.013069 1.02e−03 −
2 WFG5 0.068611 7.36e−04 0.068542 3.43e−04 = 0.068361 3.15e−04 = 0.067875 3.63e−04 −
2 WFG6 0.055747 5.97e−03 0.056628 6.35e−03 = 0.057441 8.16e−03 = 0.054451 7.75e−03 =
2 WFG7 0.011921 6.18e−04 0.012346 1.06e−03 = 0.012152 6.26e−04 = 0.012435 7.72e−04 +
2 WFG8 0.080751 3.70e−03 0.080975 3.05e−03 = 0.081074 2.92e−03 = 0.068803 4.90e−03 −
2 WFG9 0.076791 4.67e−02 0.046155 4.19e−02 − 0.049713 4.31e−02 − 0.057687 4.67e−02 =
3 DTLZ1 0.018335 1.39e−03 0.018857 1.81e−03 = 0.018475 1.95e−03 = 0.018796 2.59e−03 =
3 DTLZ2 0.034503 1.30e−03 0.035556 1.92e−03 = 0.034435 1.70e−03 = 0.033640 1.30e−03 −
3 DTLZ3 0.341154 5.79e−01 0.323672 5.51e−01 = 0.060478 4.76e−02 − 0.229931 3.36e−01 =
3 DTLZ4 0.025321 2.77e−03 0.032272 2.60e−02 + 0.035631 3.63e−02 = 0.042822 3.07e−02 =
3 DTLZ5 0.003060 1.71e−04 0.002944 1.35e−04 − – – – – – –
3 DTLZ6 0.009721 9.32e−03 0.019904 2.17e−02 = – – – – – –
3 DTLZ7 0.042005 2.12e−03 0.067606 6.20e−02 + 0.048011 3.30e−02 = 0.185682 1.77e−01 +
3 WFG1 1.091738 9.31e−02 1.187917 8.26e−02 + 1.361926 1.87e−02 + 1.369839 2.93e−02 +
3 WFG2 0.112497 1.88e−02 0.118701 2.06e−02 = 0.123861 2.02e−02 + 0.120128 1.93e−02 =
3 WFG3 0.075182 1.07e−02 0.080174 1.46e−02 = 0.072751 1.10e−02 = 0.080798 1.27e−02 =
3 WFG4 0.160639 9.79e−03 0.184817 1.25e−02 + 0.160405 8.38e−03 = 0.162036 8.88e−03 =
3 WFG5 0.181463 7.31e−03 0.194805 6.91e−03 + 0.181728 6.65e−03 = 0.179287 7.06e−03 =
3 WFG6 0.219942 1.42e−02 0.236777 1.09e−02 + 0.219577 1.63e−02 = 0.226750 1.52e−02 =
3 WFG7 0.125801 4.09e−03 0.138686 6.70e−03 + 0.126355 5.89e−03 = 0.145508 1.86e−02 +
3 WFG8 0.301378 7.83e−03 0.312256 8.48e−03 + 0.295862 7.36e−03 − 0.308839 7.92e−03 +
3 WFG9 0.259963 1.54e−02 0.247956 3.27e−02 = 0.255812 2.12e−02 = 0.262606 2.39e−02 +

�� =, �� ≠ �� =, �� ≠ �� =, �� ≠
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MOEA/D‑DRA

The first algorithmic difference in the MOEA/D-DRA 
implementations is in the way the decision whether solu-
tions from the neighbourhood or from the entire population 
should be selected during the mating process. The com-
parison of a random number against a threshold � is coded 

as rand(0, 1] < 𝛿 in jMetal and rand(0, 1] ≤ � in MOEA, 
respectively.

The main algorithmic difference is in the way sub-prob-
lems are selected. In MOEA sub-problem’s indices are 
randomly selected from the entire list of problems. Thus, 
the MOEA Framework allows the same subproblem to be 
selected multiple times. The jMetal platforms implement a 

Table 11  Inverted generational distance+ results (mean value and standard deviation) from 30 executions of the four versions available of GDE3 
on two and three objective test functions after 500 generations

The best results are highlighted in bold

M  Fn jMetal-Java jMetal-.NET MOEA Platypus

Mean ±� Mean ±� Mean ±� Mean ±�

2 ZDT1 0.002450 1.50e−05 0.002397 1.14e−05 − 0.002391 1.72e−05 − 0.002401 1.72e−05 −
2 ZDT2 0.002241 1.03e−05 0.002195 9.74e−06 − 0.002199 9.53e−06 − 0.002191 9.17e−06 −
2 ZDT3 0.001432 3.13e−05 0.001424 3.05e−05 = 0.001410 3.13e−05 − 0.001421 3.01e−05 =
2 ZDT4 0.006560 2.21e−02 0.002404 1.89e−05 − 0.069640 8.62e−02 = 0.010605 3.07e−02 +
2 ZDT6 0.001453 5.00e−05 0.001416 4.65e−05 − 0.001414 6.28e−05 − 0.045895 4.01e−06 +
2 DTLZ1 0.001313 6.79e−06 0.001291 6.74e−06 − 0.001300 4.22e−05 − 0.001291 6.85e−06 −
2 DTLZ2 0.001887 3.92e−05 0.001849 3.40e−05 − 0.001849 2.46e−05 − 0.001852 3.67e−05 −
2 DTLZ3 0.001852 4.14e−05 0.001857 4.27e−05 = 3.012354 3.27e+00 + 0.001851 3.66e−05 =
2 DTLZ4 0.000364 4.99e−06 0.000356 3.34e−06 − 0.000357 4.04e−06 − 0.000355 4.38e−06 −
2 DTLZ5 0.001891 3.80e−05 0.001846 3.28e−05 − – – – – – –
2 DTLZ6 0.001895 3.33e−05 0.001855 2.93e−05 − – – – – – –
2 DTLZ7 0.001968 2.90e−05 0.001922 2.34e−05 − 0.001922 2.24e−05 − 0.001915 2.70e−05 −
2 WFG1 0.228657 3.76e−02 0.227381 3.52e−02 = 0.806974 3.32e−02 + 0.828995 3.25e−02 +
2 WFG2 0.003483 2.17e−04 0.003416 2.06e−04 = 0.002913 2.12e−04 − 0.003499 2.61e−04 =
2 WFG3 0.121656 2.20e−04 0.121666 1.66e−04 = 0.121540 1.99e−04 = 0.121721 2.38e−04 =
2 WFG4 0.011072 9.31e−04 0.010932 1.03e−03 = 0.010680 1.11e−03 = 0.011116 9.81e−04 =
2 WFG5 0.066166 3.53e−05 0.066120 2.15e−04 = 0.066184 4.98e−05 = 0.066132 1.80e−04 =
2 WFG6 0.038300 5.51e−03 0.037432 5.64e−03 = 0.041142 9.35e−03 = 0.036238 7.66e−03 =
2 WFG7 0.006454 1.35e−04 0.006419 1.21e−04 = 0.006426 1.49e−04 = 0.006493 1.03e−04 =
2 WFG8 0.070646 1.82e−03 0.071214 2.31e−03 = 0.071809 2.56e−03 = 0.071123 2.14e−03 =
2 WFG9 0.107254 2.34e−02 0.106928 2.46e−02 = 0.106981 2.41e−02 − 0.107079 2.40e−02 =
3 DTLZ1 0.034044 6.97e−02 0.032288 6.36e−02 = 0.115323 2.32e−01 = 0.028852 5.43e−02 =
3 DTLZ2 0.027628 1.08e−03 0.027207 6.20e−04 = 0.027533 1.06e−03 = 0.027202 1.09e−03 =
3 DTLZ3 0.176975 3.77e−01 0.263009 7.98e−01 = 2.357332 1.92e+00 + 0.400710 8.32e−01 =
3 DTLZ4 0.025929 2.55e−03 0.026120 3.02e−03 = 0.025413 2.26e−03 = 0.023907 2.04e−03 −
3 DTLZ5 0.001992 4.85e−05 0.001964 4.07e−05 − – – – – – –
3 DTLZ6 0.001899 6.78e−05 0.001862 6.39e−05 − – – – – – –
3 DTLZ7 0.034267 1.70e−03 0.034084 1.97e−03 = 0.033592 1.77e−03 = 0.034248 2.78e−03 =
3 WFG1 0.981482 7.38e−02 1.016024 1.03e−01 = 1.236083 1.12e−02 + 1.238163 8.73e−03 +
3 WFG2 0.089175 1.90e−02 0.090306 1.29e−02 = 0.087679 1.50e−02 = 0.094205 1.74e−02 =
3 WFG3 0.101445 1.87e−02 0.103290 1.41e−02 = 0.099624 1.48e−02 = 0.095262 1.29e−02 =
3 WFG4 0.148576 8.73e−03 0.150187 7.13e−03 = 0.149353 8.21e−03 = 0.143996 7.07e−03 =
3 WFG5 0.160164 4.38e−03 0.158253 2.52e−03 = 0.159672 4.98e−03 = 0.159302 4.45e−03 =
3 WFG6 0.179826 1.56e−02 0.182267 1.28e−02 = 0.175210 1.17e−02 = 0.176543 1.61e−02 =
3 WFG7 0.103230 4.77e−03 0.103144 4.34e−03 = 0.102714 4.80e−03 = 0.102019 4.03e−03 =
3 WFG8 0.274296 6.91e−03 0.274619 5.80e−03 = 0.275527 5.55e−03 = 0.275152 7.30e−03 =
3 WFG9 0.257143 1.23e−02 0.258771 6.30e−03 = 0.259092 6.93e−03 = 0.257639 6.93e−03 =

�� =, �� ≠ �� =, �� ≠ �� =, �� ≠
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Table 12  Inverted generational 
distance+ results (mean value 
and standard deviation) from 30 
executions of the three versions 
available of MOEA/D-DRA 
on two and three objective test 
functions after 500 generations

The best results are highlighted in bold

 M  Fn jMetal-Java jMetal-.NET MOEA

Mean ±� Mean ±� Mean ±�

2 ZDT1 0.006595 1.32e−03 0.006679 1.19e−03 = 0.004333 1.48e−03 −
2 ZDT2 0.005752 9.93e−04 0.005409 9.23e−04 = 0.002561 1.02e−03 −
2 ZDT3 0.006207 9.71e−04 0.006633 1.27e−03 = 0.002178 1.01e−03 −
2 ZDT4 0.038047 6.15e−02 0.027144 4.47e−02 = 0.887277 2.91e−01 +
2 ZDT6 0.001626 3.15e−05 0.001616 2.62e−05 − 0.000204 1.63e−06 −
2 DTLZ1 0.001850 9.86e−05 0.001862 1.09e−04 = 0.000288 2.75e−05 −
2 DTLZ2 0.002931 2.64e−05 0.002929 2.13e−05 = 0.000479 1.21e−05 −
2 DTLZ3 0.425098 8.31e−01 1.915119 5.47e+00 = 0.381288 1.10e+00 =
2 DTLZ4 0.000568 2.81e−05 0.000572 2.38e−05 = 0.000123 1.32e−05 −
2 DTLZ5 0.002929 1.82e−05 0.002923 2.69e−05 = – – –
2 DTLZ6 0.002752 3.43e−06 0.002751 3.05e−06 = – – –
2 DTLZ7 0.076527 1.42e−01 0.088456 1.51e−01 = 0.096806 1.59e−01 =
2 WFG1 1.103865 3.96e−02 1.107224 4.25e−02 = 1.181690 1.15e−02 +
2 WFG2 0.024700 4.93e−03 0.025237 3.74e−03 = 0.019033 4.75e−03 −
2 WFG3 0.131586 7.77e−04 0.131628 1.09e−03 = 0.126314 8.84e−04 −
2 WFG4 0.069671 8.09e−03 0.066713 6.18e−03 = 0.066275 5.49e−03 =
2 WFG5 0.068714 2.00e−04 0.068835 3.58e−04 = 0.065288 2.81e−04 −
2 WFG6 0.094490 3.24e−02 0.102064 2.62e−02 = 0.102580 2.30e−02 =
2 WFG7 0.015902 5.52e−04 0.015563 3.25e−04 − 0.007938 7.53e−04 −
2 WFG8 0.082901 5.86e−03 0.081415 5.36e−03 = 0.083355 5.57e−03 =
2 WFG9 0.106005 2.53e−02 0.091840 3.75e−02 = 0.086776 3.92e−02 −
3 DTLZ1 0.014400 2.23e−04 0.014357 2.00e−04 = 0.005766 8.10e−05 −
3 DTLZ2 0.029547 3.84e−04 0.029515 3.63e−04 = 0.010989 1.01e−04 −
3 DTLZ3 0.036820 9.46e−03 0.116035 3.80e−01 = 0.040343 1.39e−01 +
3 DTLZ4 0.020006 3.72e−03 0.019135 4.57e−03 = 0.004806 4.69e−04 −
3 DTLZ5 0.004480 1.22e−04 0.004475 8.71e−05 = – – –
3 DTLZ6 0.003606 9.28e−05 0.003601 8.72e−05 = – – –
3 DTLZ7 0.131559 1.54e−01 0.106514 1.19e−01 = 0.125522 2.12e−01 −
3 WFG1 1.443795 6.85e−03 1.443376 5.39e−03 = 1.421833 4.25e−03 −
3 WFG2 0.089475 1.22e−02 0.091613 1.39e−02 = 0.049289 7.47e−03 −
3 WFG3 0.052677 4.38e−03 0.052140 6.33e−03 = 0.047311 6.11e−03 −
3 WFG4 0.236131 5.75e−03 0.232860 8.93e−03 = 0.168144 6.48e−03 −
3 WFG5 0.176035 1.73e−03 0.176957 1.91e−03 = 0.110753 1.35e−03 −
3 WFG6 0.230581 2.95e−02 0.226527 3.40e−02 = 0.181344 2.94e−02 −
3 WFG7 0.124108 2.44e−03 0.124000 3.14e−03 = 0.072679 3.61e−03 −
3 WFG8 0.277606 9.76e−03 0.273707 1.13e−02 = 0.223948 1.01e−02 −
3 WFG9 0.237548 3.29e−02 0.238016 2.77e−02 = 0.176508 3.22e−02 −

�� =, � ≠ � =, �� ≠
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very different logic: the selected sub-problems are “black-
listed” so that they cannot be selected twice.

Moreover, MOEA shuffles the indices before returning 
them whereas jMetal does not.

Conclusion

This article performs an experimental study on various inter-
pretations and implementations of well-known algorithms. 
Numerical results clearly show that three popular heuristic 
algorithms for multi-objective optimisation, that is, NSGA-
II, GDE3, and MOEA/D-DRA, have been subject to various 
interpretations by four popular software platforms, that is, 
the two versions of jMetal, MOEA Framework, Platypus, 
and PlatEMO. As expected, each of these platforms make 
software engineering decisions which may affect the results, 
such as the use of different precision values or random 
number generator. More importantly, the platforms propose 
different logical implementations of the algorithms. Effec-
tively, these platforms run different algorithms under the 
same name.

Algorithmic and software engineering differences are 
evident in the presented Results section. Numerical results 
show that different implementations of the same algorithm 
lead to statistically different performance across the experi-
mental setup used in this study. According to our position, 
the differences are due to two concurrent reasons. The first 
is that several articles in the field may not be explicit about 
some important details of an algorithm. This may be due to 
the complexity of the algorithm and the decision by authors 
to use references from other articles instead of detailed 
explanations to enhance the readability of the proposed 
method. The second is that software platforms may crea-
tively change some of the details because they may be more 
convenient or for consistency across the platform, e.g. the 
use of “ ≤ ” in MOEA and “<” in jMetal.

We believe that the description of complex software and 
its explanation to a human is a difficult task which can eas-
ily lead to misinterpretations. Furthermore, we believe that 
this will have consequences not only in frameworks con-
tributed by and for the scientific community, but also for 

(a) IGD+ trend for NSGA-II implementations

(b) IGD+ trend for GDE3 implementations

(c) IGD+ trend for MOEA/D-DRA implementations

Fig. 6  IGD+ trends for the three algorithms and four software plat-
forms under consideration for the WFG1 problem with two objectives
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commercial platforms such as Kimeme2 and ModeFRON-
TIER3. Hence, we feel that the field of heuristic optimisation 
would greatly benefit from a standardised protocol to present 
new algorithms.
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need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.
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