
Vol.:(0123456789)

SN Computer Science (2020) 1:247
https://doi.org/10.1007/s42979-020-00265-1

SN Computer Science

SURVEY ARTICLE

On Algorithmic Descriptions and Software Implementations
for Multi‑objective Optimisation: A Comparative Study

Shahin Rostami1,2 · Ferrante Neri3 · Kiril Gyaurski2

Received: 11 June 2020 / Accepted: 21 July 2020 / Published online: 4 August 2020
© The Author(s) 2020

Abstract
Multi-objective optimisation is a prominent subfield of optimisation with high relevance in real-world problems, such as
engineering design. Over the past 2 decades, a multitude of heuristic algorithms for multi-objective optimisation have been
introduced and some of them have become extremely popular. Some of the most promising and versatile algorithms have
been implemented in software platforms. This article experimentally investigates the process of interpreting and imple-
menting algorithms by examining multiple popular implementations of three well-known algorithms for multi-objective
optimisation. We observed that official and broadly employed software platforms interpreted and thus implemented the same
heuristic search algorithm differently. These different interpretations affect the algorithmic structure as well as the software
implementation. Numerical results show that these differences cause statistically significant differences in performance.

Keywords Multi-objective optimisation · Evolutionary algorithms · Optimisation software platforms

Introduction

Optimisation is a fundamental and multidisciplinary field
that most generically aims to detect within a set of potential
solution that one that satisfies the most one or more objec-
tives. Within the plethora of possible optimisation methods,
a clear distinction can be made between mathematical and
heuristic optimisation:

– mathematical optimisation: methods that, under some
hypotheses, are guaranteed to rigorously detect the opti-
mum [48];

– heuristic optimisation: methods that, without requiring
specific hypotheses on the problem, search for a solution
that is close enough to the optimum [1–3, 13, 26].

Algorithms of mathematical optimisation are often itera-
tive methods that are rigorously justified and endowed with
proofs of convergence [48]. The software implementation of
an algorithm of mathematical optimisation is thus a straight-
forward decodification of mathematical formulas.

Algorithms of heuristic optimisation are software pro-
cedures usually described by means of words and formulas
and justified by means of metaphors, see [26, 40]. To ensure
that a heuristic algorithm can be understood and reproduced
by the reader and the community, modern articles provide
pseudocode of their proposed algorithms.

However, whilst the pseudocode of modern heuristics can
be effective to communicate the general idea of the proposed
algorithm, they often do not capture all the implementation
details due to their complexity. Although ideas can be gen-
erally understood and re-implemented, due to the lack of
mathematical rigour, a misinterpretation of an idea can be
implemented into an algorithm which still performs reason-
ably well on an optimisation problem. This is likely to be
an experience common to any person who has attempted to
implement a program based on the idea of a colleague.

The present article discusses the topic of potential ambi-
guity in heuristic optimisation and how algorithmic descrip-
tions could be subject to misinterpretation with a specific
reference to multi-objective problems. We chose this sub-
field since multi-objective problems are naturally hard to

 * Ferrante Neri
 ferrante.neri@nottingham.ac.uk

 Shahin Rostami
 shahin@polyra.com; srostami@bournemouth.ac.uk

1 Data Science Lab, Polyra Limited, Bournemouth BH8 9JN,
UK

2 Department of Computing and Informatics, Bournemouth
University, Bournemouth BH12 5BB, UK

3 COL Laboratory, School of Computer Science, University
of Nottingham, Nottingham NG8 1BB, UK

http://orcid.org/0000-0002-6100-6532
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-020-00265-1&domain=pdf

 SN Computer Science (2020) 1:247247 Page 2 of 23

SN Computer Science

solve, e.g. to the difficulty of comparing candidate solutions
belonging to the same non-dominated set, and heuristics are
often fairly complex. More specifically, we pose the follow-
ing question

Is the process of implementation of a multi-objec-
tive algorithm from its description straightforward and
unambiguous?

To address this point we have performed an extensive
experimental study. We have focussed on three popular algo-
rithmic frameworks:

– Non-dominated sorting genetic algorithm II (NSGA-II)
[11].

– Generalized differential evolution 3 (GDE3) [34].
– Multi-objective evolutionary algorithm based on decom-

position with dynamic resource allocation (MOEA/D-
DRA) [57].

Each of these frameworks has been extensively implemented
by multiple researchers and in various research software
platforms such as jMetal [16]. We compared the behaviour
and performance of the different implementations/interpreta-
tions of each framework. More specifically, five implementa-
tions of NSGA-II, five implementations of GDE3, and four
implementations of MOEA/D-DRA are evaluated using the
test functions provided by the ZDT, DTLZ and WFG test
suites, see [12, 25, 59]. Furthermore, the source code of the
tested implementations has been analysed to identify the
differences in the implementation.

The article is organised as follows. Section “Basic Defini-
tions and Notation” provides the reader with the basic defi-
nitions and notation which are used throughout the paper.
Section “Algorithmic Frameworks in This Study” provides a
description of NSGA-II, GDE3, and MOEA/D-DRA accord-
ing to their original presentations but with the standardised
notation used throughout the paper. Section “Software Imple-
mentations of the Algorithmic Frameworks” presents the soft-
ware platforms where the three algorithmic frameworks under
examination have been implemented. Section “Experimental

Setup” describes the experimental design, including test prob-
lems, parameter settings, and methods used to perform the
comparisons. Section “Experimental Results and Discussion”
presents the numerical results of this study. Section “Differ-
ences in the Implementations” highlights the algorithmic
and software engineering differences across the software
platforms under consideration. Finally, section “Conclusion”
presents the conclusion to this study.

Basic Definitions and Notation

Definition 1 (Multi-objective Optimisation Problem) A
multi-objective optimisation problem can be defined as
follows:

The sets ℝn and ℝk represent the decision space and the
objective space, respectively (Fig. 1). The set � ⊆ ℝn is also
known as the feasible set and is associated with equality and
inequality constraints.

The function f ∶ ℝ
n
→ ℝ

k represents a transformation
from the decision space � into the objective space � that can
be used to evaluate the quality of each solution. The image
of � under the function f represents a subset of the function
space known as the feasible set in the objective function
space. It is denoted by � = f (�) [37].

Definition 2 (Pareto dominance) Unlike single-objective opti-
misation in which the relation ≥ can be used to compare the
quality of solutions, comparing solutions in multi-objective
optimisation problems is not as straightforward (there is no
order relation). A relation that is usually adopted to compare
solutions to such problems is known as Pareto dominance.1

maximise/minimise � = (f1(�), f2(�),… , fn(�))

where � =
(
x1,… , xd

)
∈ � ⊂ ℝ

n (decision vector)

� =
(
y1,… , yn

)
∈ � ⊂ ℝ

k (objective vector).

Fig. 1 Illustration of the deci-
sion space and the objective
space of a multi-objective
optimisation problems

x₂

x₁

y₂

y₁

y₃

Decision Space Objective Space

1 The concept is named after Vilfredo Pareto, who used it in his stud-
ies of economic efficiency and income distribution.

SN Computer Science (2020) 1:247 Page 3 of 23 247

SN Computer Science

Without loss of generality let us assume that all objec-
tives need to be simultaneously maximised. For any two
objective vectors

and the corresponding decision vectors �� and �� , it can be
said that �� ≻ �� (�� dominates ��) if no component of ��
outperforms the corresponding component of �� , and at least
one component of �� outperforms the corresponding com-
ponent of ��:

In the event that �� does not dominate �� and �� does not
dominate �� , it can be said that the two vectors are indiffer-
ent

(
�� ∼ ��

)
.

Figure 2 illustrates the concept of Pareto dominance. The
blue rectangle represents the region of the objective space
that dominates the objective vector � . All the objective

�� =
(
y1
1
,… , y1

n

)

�� =
(
y2
1
,… , y2

n

)

∀k = 1 ∶ n, y1
k
≥ y2

k

∃k�} y1
k
> y2

k
.

vectors in that region have at least one objective value that
outperforms the corresponding objective value of vector �
and the other objective is bigger than or equal to the objec-
tive of vector � . The red rectangle contains the objective
vectors that are dominated by vector � , and the vectors that
are not in one of the two rectangles are indifferent to vector
�.

Definition 3 (Pareto optimality) Pareto optimality is a con-
cept that is based on Pareto dominance. A solution �∗ ∈ �
is Pareto optimal if there is no other solution � ∈ � that
dominates it [37]. A Pareto optimal solution denotes that
there does not exist another solution that can increase the
quality of a given objective without decreasing the quality
of at least one other objective [53].

Definition 4 (Pareto optimal set) Instead of having one opti-
mal solution, multi-objective optimisation problems may
have a set of Pareto optimal solutions. This set is also known
as the Pareto optimal set. It is defined as follows:

Definition 5 (Pareto front) The Pareto front represents the
image of the Pareto optimal set in the objective function
space (Fig. 3). It can be defined as follows:

Definition 6 (Approximation set) The main goal of multi-
objective optimisation is to find the Pareto front of a given
multi-objective optimisation problem. However, since Pareto
fronts usually contain a large number of points, finding all of
them might require an undefined amount of time and there-
fore a more practical solution is to find a good approxima-
tion of the Pareto front. This set approximating the Pareto is
called approximation set. A good approximation set should
be as close as possible to the actual Pareto front and should
be uniformly spread over it, otherwise the obtained approxi-
mation of the Pareto front will not offer sufficient informa-
tion for decision making [53].

P∗ = {� ∈ � | ∄ �∗ ∈ � ∶ �∗ ⪰ �}.

PF∗ = {f (�)|� ∈ P∗}.

f₂

f₁

is
dominated

dominates indifferent

indifferent

B

E

D

C

Fig. 2 Illustration of the Pareto dominance relation

Fig. 3 Illustration of the Pareto
optimal set and the Pareto front x₂

x₁

f₂

f₁Pareto frontPareto optimal set

Decision Space Objective Space

Pareto front

 SN Computer Science (2020) 1:247247 Page 4 of 23

SN Computer Science

Algorithmic Frameworks in This Study

The heuristic algorithms investigated in this study can all
be considered under the umbrella name of evolutionary
multi-objective optimisation (EMO) algorithms, see [31].
During the past decades, a wide variety of EMO algorithms
have been proposed and applied to many different real-world
problems.

Although EMO algorithms can differ by major aspects,
they can still be considered to be members of the same fam-
ily that is characterised by the general algorithmic structure
outlined in Algorithm 1.

Algorithm 1 Main steps of a typical evolutionary algorithm
1: Initialise population with randomly generated candidate solutions;
2: Evaluate each solution in the population;
3: while Termination condition is not met do
4: Select parents;
5: Breed new individuals with the use of variation operators;
6: Evaluate new individuals;
7: Select individuals for the next generation;
8: end while

The following subsections introduce the three popular
EMO algorithms under examination: the non-dominated
sorting genetic algorithm II, the generalized differential

evolution 3 algorithm, and the multi-objective evolutionary
algorithm based on decomposition with dynamic resource
allocation.

Non‑dominated Sorting Genetic Algorithm II

The non-dominated sorting genetic algorithm II (NSGA-
II) was proposed in [11] as an improvement to NSGA-I
[49]. It addresses some of the main issues with the origi-
nal version such as high-computational complexity of the

non-dominated sorting algorithm, lack of elitism, and the
need to specify a sharing parameter. Algorithm 2 illustrates
the life cycle of NSGA-II.

Algorithm 2 NSGA-II
1: Initialise initial population P of size N with randomly generated solutions;
2: Sort the solutions using the fast non-dominated sorting algorithm as in Algorithm

3;
3: Apply selection, recombination and mutation operators to create offspring Q of size N ;
4: while Termination condition is not met do
5: Combine P and Q into a combined population R of size 2N ;
6: Sort the solutions using the fast non-dominated sorting algorithm as in Algo-

rithm 3 to produce a set containing all non-dominated fronts (F1 to Fm) of R;
7: Initialise empty Pnew;
8: Set i = 1;
9: while there is enough space in Pnew for all members of Fi; do
10: Calculate crowding-distance as in Algorithm 4 for the members of Fi;
11: Add members of Fi to Pnew;
12: i = i+ 1;
13: end while
14: Sort Fi in descending order using crowding-distance calculated as in Algorithm 4;
15: Fill the remaining spaces in Pnew with the best solutions of Fi;
16: Create new offspring Qnew:
17: Apply binary tournament selection operator based on the crowding-distance as in

Algorithm 4
18: Apply recombination operator;
19: Apply mutation operator;
20: P = Pnew; Q = Qnew;
21: end while

SN Computer Science (2020) 1:247 Page 5 of 23 247

SN Computer Science

NSGA-II starts by building a population of randomly
generated candidate solutions. Each solution is then evalu-
ated and assigned a fitness rank equal to its non-domination
level (with 1 being the best level) using a fast non-dominated
sorting algorithm. Binary tournament selection, recombina-
tion, and mutation operators are then applied to create an
initial offspring population. In the original paper (as well as
in many implementations thereafter), NSGA-II employs the
simulated binary crossover (SBX) operator and polynomial
mutation, see [19]. Then the generational loop begins. The
parent population and the offspring population are com-
bined. Since the best solutions from both the parent and off-
spring populations are included, elitism is ensured. The new
combined population is then partitioned into fronts using the
fast non-dominated sorting, see Algorithm 3.

Algorithm 3 Non-dominated sorting algorithm
1: INPUT population P;
2: for i = 1 : N do
3: Initialise empty Si set of points dominated by xi and ni = 0 points that dominate

xi;
4: for j = 1 : N do
5: if xi � xj then
6: Update the set Si = Si ∪ xj;
7: else if xj � xi then
8: Update the counter ni = ni + 1;
9: end if
10: if ni = 0 that is xi belongs to the first front then
11: F1 = F1 ∪ xi;
12: end if
13: end for
14: Initialise nj to the size of Si;
15: k = 1;
16: while Fk �= ∅ do
17: Sj = ∅;
18: for i = 1 : size of Fk do
19: for j = 1 : size of Si do
20: nj = nj − 1;
21: if nj = 0 then
22: Sj = Sj ∪ xj;
23: end if
24: end for
25: end for
26: k = k + 1;
27: Fk = Sj;
28: end while
29: end for
30: RETURN F1,F2, . . .Fm;

The algorithm then iterates through the set of fronts (from
best to worst), and adds their solutions to the population
for the next generation until there is not enough space to
accommodate all of the solutions of a given front. After the
end of the procedure, if there are any places left in the new
population, the solutions of the next front that could not be
added are sorted in descending order based on their crowd-
ing distance and the best ones are added to the population
until it is full. The new population is then used for selection,
recombination and mutation to create an offspring popula-
tion for the next generation. The algorithm uses the crowd-
ing distance during the selection process in order to main-
tain diversity in front by ensuring that each member stays
a crowding distance apart which supports the algorithm in
exploring the objective space [6]. Algorithm 4 shows how

 SN Computer Science (2020) 1:247247 Page 6 of 23

SN Computer Science

the crowding distance is calculated. The process is repeated
until a termination condition is met.

Similar to other EMO algorithms, GDE3 starts by generat-
ing a population with N candidate solutions and evaluating their
fitness. The main loop of the algorithm then begins. An empty
offspring population with maximum size 2N is initialised. The
algorithm then iterates through the initial population. At each
position, differential evolution selection and differential evolution

Algorithm 4 Crowding algorithm
1: INPUT a non-dominated set I;
2: Calculate the size of I and assign it to l;
3: Initialise the distance vector d = (d1, d2, . . . , dl) = (0, 0, . . . , 0);
4: for j = 1 : k do
5: Sort I according to the objective fj ;
6: d1 = dl = ∞ distance associated with the best and worst point;
7: for i=2:l-1 do
8: di = di +

|fj(I(i+1))−fj(I(i−1))|
|fj(I(1))−fj(I(l))| ;

9: end for
10: end for
11: RETURN d;

Generalized Differential Evolution 3

The generalized differential evolution 3 (GDE3) algorithm
was proposed by Kukkonen and Lampinen in [34]. It is the
third version of the GDE algorithm. GDE3 achieves better

performance than previous versions by employing a grow-
ing offspring population that can accommodate twice as
many solutions as there are in the parent population, and

non-dominated sorting with pruning of non-dominated solu-
tions to reduce the size of the population back to normal
at the end of each generation. This technique improves the

diversity of the obtained solution set and makes the algo-
rithm less reliant on the selection of control parameters.
The execution life cycle of the algorithm can be seen in
Algorithm 5.

Algorithm 5 GDE3
1: Initialise the population P of size N with randomly generated solutions and evaluate

their fitness;
2: while Termination condition is not met do
3: Initialise empty offspring population with size 2N ;
4: for i = 1 : N do
5: Randomly select three distinct parent solutions xr1,xr2,xr3 and a random variable

index jrand;
{Apply mutation}

6: u = xr3 + F xr1 − xr2
)
with F scale factor [1];

{Apply binomial crossover [1]}
7: for j = 1 : d do
8: if rand[0, 1) < CR OR j = jrand (CR crossover rate) then
9: ui

j = ui
j ;

10: else
11: ui

j = xi
j ;

12: end if
13: end for
14: Evaluate the fitness f1 (u) , f2 (u) , . . . fk (u);
15: if the child solution u and the solution xi of the parent population are indifferent

to each other then
16: Add both solutions to offspring population;
17: else if xi ≺ u then
18: Add solution xi to offspring population;
19: else
20: Add child solution u to offspring population;
21: end if
22: end for
23: Sort the offspring population as in Algorithm 3;
24: Choose the best N solutions for the next generation;
25: end while

SN Computer Science (2020) 1:247 Page 7 of 23 247

SN Computer Science

Tchebycheff approach in the paper in which it was introduced,
and MOEA/D outperformed or performed similarly to NSGA-
II on a number of test functions.

Over the years, many different versions of MOEA/D have
been proposed, see [32, 35, 41, 58]. One of the versions that
has become very popular is MOEA/D with dynamic resource
allocation (MOEA/D-DRA [58]. In the original version of
MOEA/D, all of the sub-problems are treated equally and all
of them receive equal computational effort. However, different
sub-problems might have different computational difficulties
and, therefore, they require different amount of computational
effort. Because of this, MOEA/D-DRA introduces dynamic
resource allocation which allows the algorithm to assign differ-
ent amounts of computational effort to different sub-problems.
The amount of computational resources each sub-problem i gets
is based on the computation of a utility value �i.

The basic principles of MOEA/D-DRA are described
in Algorithm 6 which highlights the 5-step structure char-
acterising the framework as highlighted in the paper that
originally proposed it, see [58]. It must be observed that
MOEA/D-DRA is a relatively complex framework and con-
tains multiple heuristic rules and a problem-specific internal
parameter setting as it was designed for entry in the IEEE
CEC 2009 competition. Hence, for the sake of brevity, we
omitted the details of some of the formulas in Algorithm 6
and refer the original paper for the interested reader.

variation operators are used to select parents and generate a child
solution. The fitness of the child solution is then evaluated. It
is then compared to the solution at the current position of the
population. If the two solutions are indifferent to each other, both
are added to the offspring solution, otherwise only the dominat-
ing solution is added. After the algorithm is finished iterating
through the initial population, the offspring population is sorted
and pruned to form the population for the next generation.

The GDE3 algorithm has been successfully applied
to many real-world problems from various fields such as
molecular biology [33] and electronics [22].

Multi‑objective Evolutionary Algorithm Based
on Decomposition with Dynamic Resource
Allocation

The multi-objective evolutionary algorithm based on decom-
position (MOEA/D) was proposed in [57]. MOEA/D uses a
decomposition method to decompose a multi-objective problem
into a number of scalar optimisation sub-problems by means
of several weight vectors. A sub-problem is optimised using
information from its neighbouring sub-problems, which leads
to lower computational complexity than NSGA-II. Different
approaches to decomposition exist in the literature. Some of the
most popular ones are the weighted sum approach [18, 30], the
Tchebycheff approach [38], and the normal-boundary intersec-
tion approach [9]. The authors of the algorithm employed the

Algorithm 6 MOEA/D-DRA
1: {Step 1: Initialisation}
2: Compute the Euclidean distances between any two weight vectors and find the closest

T weight vectors to each weight vector;
3: Generate an initial population of size N of the type x1,x2, . . . ,xN by uniformly ran-

domly sampling from the search space;
4: Initialise parameters – generation gen = 0; πi = 1 for each sub-problem; z = (z1, ..., zn)

(the ideal objective vector) where zi = min{fi x1
)
, fi x2

)
, . . . , fi xN

)
};

{Step 2: Selection of Subproblems for Search}
5: while Termination condition is not met do
6: Select sub-problems for search by using 10-tournament selection based on πi value

[58];
{Step 3: Selection Reproduction and Update}

7: for every selected sub-problem do
8: Select mating/update range according to a randomised criterion [58];
9: Apply differential evolution mutation and crossover operators to generate a child

solution, see Algorithm 5;
10: Perturb the child solution by means of a mutation;
11: Evaluate child solution;
12: if the child solution is not within the boundaries of the decision space then
13: Randomly reset the solution within the boundaries;
14: end if
15: Update z with the newly found best objective values;
16: Update of solutions according to the update algorithm [58];
17: end for
18: gen = gen+ 1;

{Step 5: Restart of πi}
19: if generation is multiplication of 50 then
20: Update the utility value πi of each sub-problem according to a heuristic rule [58];
21: end if
22: end while

{Step 4: Stopping Criteria}

 SN Computer Science (2020) 1:247247 Page 8 of 23

SN Computer Science

Software Implementations
of the Algorithmic Frameworks

In this article, we focus on five popular software platforms
and libraries for heuristic optimisation:

– jMetal-Java (version 4.5.2).
– jMetal-.NET (version 0.5).
– MOEA Framework (version 2.12)
– Platypus (GitHub commit 723ad6763abff99b-

4f31305191b754c2c26867b0).
– PlatEMO (version 2.8.0).

jMetal-Java jMetal-Java is a java-based framework intro-
duced by Durillo and Nebro in 2006 [16]. The main goal of
the framework is to provide an easy to use tool for develop-
ing heuristics (and metaheuristics) for solving multi-objec-
tive optimisation problems. It also provides implementations
of many state-of-the-art EMO algorithms, test problems and
performance indicators, and has been used in several experi-
ments described in the literature [44–47, 50].

In 2011, the authors of the framework started a project
to implement jMetal using C# and in present days, the C#
version provides almost all of the features that can be found
in the Java version. The latter version is known as jMetal.
NET.

MOEA The MOEA Framework library (here referred
to also as MOEA for brevity) is a Java-based open-source
library for multi-objective optimisation introduced by Hadka
in 2011 [23]. Similarly to jMetal, MOEA also provides
means to quickly design, develop and execute EMO algo-
rithms. It supports genetic algorithms, differential evolution,
genetic programming, and more. A number of state-of-the-
art EMO algorithms, test problems, and quality indicators
are provided out-of-the-box and have been used in multiple
experiment studies detailed in the EMO literature [5, 15, 52].

Platypus Platypus is a python-based framework for evo-
lutionary computing, whose focus lays on EMO algorithms.
It was developed by Hadka and was introduced in 2015 [24].
It also provides implementations of several state-of-the-art
algorithms, test problems and quality indicators, and also
supports parallel processing. The algorithm implementations
provided by the library have been used for various experi-
ments in the EMO literature [4, 39].

PlatEMO is a MATLAB platform for evolutionary multi-
objective optimisation [54]. It contains implementations of
multiple state-of-the-art EMO algorithms as well as numer-
ous test problems.

These algorithmic frameworks under consideration are
present in these software platforms according to the follow-
ing scheme

– NSGA-II → jMetal-Java, jMetal.NET, MOEA, Platypus,
PlatEMO.

– GDE3 → jMetal-Java, jMetal .NET, MOEA,
Platypus,PlatEMO.

– MOEA/D-DRA → jMetal-Java, jMetal.NET, MOEA,
PlatEMO.

Experimental Setup

The three algorithmic frameworks under consideration in the
eleven above-mentioned implementations have been exten-
sively tested on the test functions of the ZDT [59], DTLZ
[12], and WFG [25] test suites.

The performance of the implementations is measured
with the use of the Hypervolume indicator and Inverted
Generational Distance+. In order to determine if there is
a significant difference between different implementations
of the same EMO algorithm, the experimental results have
been tested with the Wilcoxon signed-rank test.

This section is organised as follows. The next subsection
describes the test problems used in this study, and explic-
itly provides the reader with all the parameters associated
with the problem followed by which the parameters that
have been used by each EMO algorithmic framework are
displayed. The final subsection describes in detail how the
comparisons have been carried out.

Test Problems

ZDT The ZDT test suite was proposed by Zitzler, Deb and
Thiele in 2000 [59]. It consists of six bi-objective synthetic
test functions, five of which (ZDT1–ZDT4; ZD6) are real-
coded and one (ZDT5) which is binary-coded. In this study,
only the real-coded test problems were selected. ZDT5 was
not selected due to its requirement for binary encoded prob-
lem variables. The parameter configuration of the ZDT test
functions have been listed in Table 1.

DTLZ The DTLZ test suite was proposed by Deb, Thiele,
Laumanns and Zitzler in 2002 [12]. It contains seven scala-
ble multi-objective test functions with diverse characteristics
such as non-convex, multimodal, and disconnected Pareto

Table 1 Parameter configurations for the ZDT test functions

Problem #Var #Obj HV reference vector
(n) (M)

ZDT1 30 2 11, 11
ZDT2 30 2 11, 11
ZDT3 30 2 11, 11
ZDT4 10 2 300, 300
ZDT6 10 2 11, 11

SN Computer Science (2020) 1:247 Page 9 of 23 247

SN Computer Science

fronts. In this study, two and three objectives are consid-
ered for each problem, and the number of decision variables
is set to 7, 12 and 22 for DTLZ1, DTLZ2-6, and DTLZ7,
respectively. The parameter configurations for the DTLZ test
functions have been listed in Table 2.

WFG The WFG tool-kit was introduced by Huband,
Hingston, Barone and While in 2006 [25]. The tool-kit

makes it possible to construct synthetic test problems which
incorporate common characteristics of real-world problems
such as variable linkage and separability. To demonstrate
its functionality, the authors constructed nine test problems
(WFG1-9) with scalable variables and problem objectives.
The proposed test functions are referred to as the WFG test
suite. In this study, two and three objectives are considered
for each problem. The full parameter configurations for each
test problem can be seen in Table 3.

Parameter Setting

The parameters used to configure the implementations of the
selected algorithms can be seen in Tables 4, 5 and 6. The
implementations of NSGA-II and MOEA/D-DRA are con-
figured with the parameters proposed by the authors of the
algorithms, while GDE3 is configured with the parameters
used in the experiment described in [17]. The maximum

Table 2 Parameter configurations for the DTLZ test functions

Problem #Var #Obj HV reference vector
(n) (M)

DTLZ1 7 2, 3 11, 11 when M = 2
11, 11, 11 when M = 3

DTLZ2 12 2, 3 11, 11 when M = 2
11, 11, 11 when M = 3

DTLZ3 12 2, 3 11, 11 when M = 2
11, 11, 11 when M = 3

DTLZ4 12 2, 3 11, 11 when M = 2
11, 11, 11 when M = 3

DTLZ5 12 2, 3 11, 11 when M = 2
11, 11, 11 when M = 3

DTLZ6 12 2, 3 15, 15 when M = 2
15, 15, 15 when M = 3

DTLZ7 22 2, 3 15, 15 when M = 2
15, 15, 15 when M = 3

Table 3 Parameter configurations for the WFG test functions

Parameter Value

Number of objectives, M 2, 3
Number of variable, n 24
Number of position variables, k 2(M − 1)

Number of distance vairables, l n − k

HV reference vector when M = 2 11, 11
HV reference vector when M = 3 11, 11, 11

Table 4 Parameter configurations of the chosen NSGA-II implemen-
tations

NSGA-II

Recombination Simulated binary crossover +
polynomial mutation

Crossover probability 0.9
Crossover distribution index 20
Mutation probability 1/number of decision variables
Mutation distribution index 20
Selection operator Binary tournament
Population size 100
Generation count 500

Table 5 Parameter
configurations of the chosen
GDE3 implementations

GDE3

Recombination Differen-
tial evo-
lution
varia-
tion

Crossover rate 0.1
Scaling factor 0.5
Selection operator Differen-

tial evo-
lution
selec-
tion

Population size 100
Generation count 500

Table 6 Parameter configurations of the chosen MOEA/D-DRA
implementations

MOEA/D-DRA

Recombination Differential evolution variation +
polynomial mutation

Crossover rate 1
Scaling factor 0.5
Mutation probability 1/number of decision variables
Mutation distribution index 20
T (size of the neighbourhood) 0.1 × population size
nr

(maximum number of solutions
replaced by each child solution)

0.01 × population size

� (mating probability) 0.9
Population size 600 when M = 2, 1000 when M

= 3
Generation count 500

 SN Computer Science (2020) 1:247247 Page 10 of 23

SN Computer Science

number of generations per execution is set to 500, with a
sample size of 30 executions per test function.

Comparison Method

In the last decades, various performance indicators have
been proposed to assess the performance of EMO algo-
rithms, see [27]. The most popular performance indica-
tor amongst the EMO society in recent years has been the
Hypervolume (HV) indicator [42] and the Inverted Genera-
tional Distance+ (IGD+), see [27, 29, 51].

The HV indicator is a performance metric proposed by
Zitzler and Thiele in [60]. It measures the volume of the
objective space dominated by an approximation set (Fig. 4).
The HV indicator is a popular choice for researchers as it
does not require knowledge about the true Pareto optimal
front, which is an important factor when working with multi-
objective optimisation problems that are yet to be solved
[43].

A reference point is required for the calculation of the HV
indicator. When the HV indicator is used to compare EMO
algorithms, the reference point must be the same otherwise
the results will not be accurate or comparable. Selecting the
reference point is an important issue and the difficulty of
selecting such a point increases with the number of objec-
tives [36]. The reference points used in the experimental
study are selected by constructing a vector of the worst
objective values contained in the union of the approxima-
tion sets generated by the algorithm implementations chosen
for comparison. They have been listed in Tables 1, 2, and 3.

The IGD is a classical metric used to assess the quality
of a non-dominated set, see [7] on the basis of the study
reported in [8]. Let us consider a set of reference points
Z = {��, ��,… ��} that approximate the Pareto set. Let us

now consider the set of non-dominated points returned by
an algorithm X = {��, ��,… , ��} and the corresponding set
of objective vectors Y = {��, ��,… , ��} . The IGD of the set
Y is calculated as

where d
(
��, ��

)
 is the Euclidean distance between �� and ��:

where n is the dimensionality of the objective space.
For the sake of clarity, IGD is obtained from Z and Y. At

first, for each element of Z, the Euclidean distances between
the element of Z and all the elements of Y are calculated.
Then minimal distance is chosen. The average sum of all the
minimal distances is the desired IGD, see [28].

The IGD+ corrects the IGD using the modified distance
d+ instead of the Euclidean distance, [29]:

and then uses in the IGD+ calculation

To determine whether there is significant difference between
the results of different implementations of a given EMO
algorithm, it is necessary to carry out a statistical test. In
this paper, the mean hypervolume and IGD+ results of the
implementations used in the experiment are compared with
the use of the Wilcoxon signed [14, 20, 21, 55, 61]to test
for such statistical difference. The Wilcoxon test is a non-
parametric test used to test for a difference in the mean (or
median) of paired observations.

The results in tables are expressed as mean value ±
and standard deviation � . For all the tables presented in
this study, we have used jMetal-Java implementations as
the reference for the Wilcoxon test. This choice has been
made on the basis of the practical consideration that it is
the most complete framework amongst those considered in
this article. In each column of the Tables, a “+” indicates
that the implementation in that column outperforms the
jMetal counterpart, a “−” indicates that the implementation
is outperformed by the jMetal-Java implementation, an “=”
indicates that the two implementations have a statistically
indistinguishable performance.

IGDZ(Y) =
1

r

(
r∑

j=1

min{d
(
��, ��

)
|�� ∈ Y}

)

d
(
��, ��

)
=

√√√√
n∑

i=1

(
z
j

i
− yk

i

)2

,

d+
(
��, ��

)
=

√√√√
n∑

i=1

(
max{0,

(
z
j

i
− yk

i

)
}
)2

IGD+
Z
(Y) =

1

r

(
r∑

j=1

min{d+
(
��, ��

)
|�� ∈ Y}

)
.

R

y1

y2

y3

f₂

f₁

Fig. 4 Illustration of the HV indicator in two-dimensional space with
three solutions

SN Computer Science (2020) 1:247 Page 11 of 23 247

SN Computer Science

Ta
bl

e
7

 H
yp

er
vo

lu
m

e
re

su
lts

 (m
ea

n
va

lu
e

an
d

st
an

da
rd

 d
ev

ia
tio

n)
 fr

om
 3

0
ex

ec
ut

io
ns

 o
f fi

ve
 v

er
si

on
s o

f N
SG

A
-I

I o
n

tw
o

an
d

th
re

e
ob

je
ct

iv
e

te
st

fu
nc

tio
ns

 a
fte

r 5
00

 g
en

er
at

io
ns

M
 F

n
JM

et
al

-J
av

a
JM

et
al

-.N
ET

M
O

EA
Pl

at
yp

us
Pl

at
EM

O

M
ea

n
±
�

M
ea

n
±
�

M
ea

n
±
�

M
ea

n
±
�

2
ZD

T1
0.

99
71

90
2.

22
e−

06
0.

99
71

86
4.

21
e−

06
−

0.
99

71
91

2.
95

e−
06

=
0.

99
71

94
2.

92
e−

06
+

0.
99
76
79

1.
78

e−
06

+
2

ZD
T2

0.
99

44
37

3.
58

e−
06

0.
99

44
27

8.
03

e−
06

−
0.

99
44

37
3.

32
e−

06
=

0.
99

44
36

1.
57

e−
05

=
0.
99
54
04

1.
96

e−
06

+
2

ZD
T3

1.
06

42
54

1.
05

e−
06

1.
06

42
47

2.
97

e−
06

−
1.
06
42
55

1.
06

e−
y0

6
=

1.
06

42
53

2.
01

e−
05

−
0.

99
53

81
2.

87
e−

04
−

2
ZD

T4
0.

99
99

93
2.

28
e−

06
0.

00
13

40
1.

45
e−

07
−

0.
99

79
39

1.
14

e−
03

−
0.

00
12

75
5.

13
e−

05
−

0.
99
99
95

1.
34

e−
06

+
2

ZD
T6

0.
97

11
37

3.
16

e−
05

0.
97

11
15

2.
20

e−
05

−
0.

97
10

58
2.

56
e−

05
−

0.
96

91
37

1.
64

e−
05

−
0.
97
40
79

3.
71

e−
06

+
2

D
TL

Z1
0.

99
89

50
2.

26
e−

06
0.

99
89

52
2.

35
e−

06
+

0.
99

89
53

2.
23

e−
06

+
0.

99
89

43
3.

98
e−

05
=

0.
99
91
33

1.
67

e−
06

+
2

D
TL

Z2
0.

99
34

64
1.

73
e−

06
0.

99
34

65
1.

64
e−

06
+

0.
99

34
65

2.
44

e−
06

+
0.

99
34

68
1.

47
e−

06
+

0.
99
45
99

2.
00

e−
06

+
2

D
TL

Z3
0.

99
33

65
5.

45
e−

05
0.

99
26

42
3.

57
e−

03
=

0.
99

33
99

6.
97

e−
05

+
0.

99
12

58
9.

54
e−

03
−

0.
99
45
38

3.
57

e−
05

+
2

D
TL

Z4
0.
98
22
15

2.
87

e−
02

0.
97

09
66

3.
73

e−
02

=
0.

96
53

41
3.

98
e−

02
=

0.
96

25
30

4.
07

e−
02

=
0.

97
40

01
3.

42
e−

02
=

2
D

TL
Z5

0.
99

34
64

1.
69

e−
06

0.
99

34
65

1.
49

e−
06

+
–

–
–

–
–

–
0.
99
46
00

1.
57

e−
06

+
2

D
TL

Z6
0.

99
63

76
9.

14
e−

05
0.

99
64

19
1.

04
e−

04
+

–
–

–
–

–
–

0.
99
70
95

9.
70

e−
07

+
2

D
TL

Z7
0.

84
18

93
7.

93
e−

07
0.

83
92

15
1.

44
e−

02
=

0.
84

18
93

9.
25

e−
07

+
0.

83
38

61
2.

41
e−

02
−

0.
85
66
22

7.
39

e−
07

+
2

W
FG

1
0.

91
24

00
1.

94
e−

02
0.

89
57

98
1.

70
e−

02
−

0.
82

90
89

1.
88

e−
02

−
0.

82
33

24
1.

82
e−

02
−

0.
97
32
73

5.
49

e−
03

+
2

W
FG

2
0.

93
19

30
2.

85
e−

02
0.

93
20

30
2.

86
e−

02
=

0.
93

36
59

2.
93

e−
02

=
0.

92
79

73
2.

71
e−

02
=

0.
93
79
88

2.
59

e−
02

=
2

W
FG

3
0.

96
50

88
3.

39
e−

04
0.

96
48

33
2.

66
e−

04
−

0.
96

49
86

2.
99

e−
04

=
0.

96
45

75
4.

72
e−

04
−

0.
97
12
15

2.
91

e−
04

+
2

W
FG

4
0.

94
69

02
1.

83
e−

04
0.

94
65

06
2.

55
e−

04
−

0.
94

68
51

1.
74

e−
04

=
0.

94
65

69
3.

33
e−

04
−

0.
95
60
92

1.
59

e−
04

+
2

W
FG

5
0.

93
49

80
2.

90
e−

03
0.

93
25

76
2.

37
e−

03
−

0.
93

41
78

2.
52

e−
03

=
0.

93
14

25
1.

86
e−

03
−

0.
94
50
10

2.
04

e−
03

+
2

W
FG

6
0.

94
02

06
8.

85
e−

04
0.

93
98

23
9.

90
e−

04
=

0.
93

98
98

1.
21

e−
03

=
0.

94
00

34
1.

09
e−

03
=

0.
94
99
22

8.
98

e−
04

+
2

W
FG

7
0.

94
73

62
6.

84
e−

05
0.

94
71

17
1.

42
e−

04
−

0.
94

72
64

7.
92

e−
05

−
0.

94
71

04
1.

46
e−

04
−

0.
95
65
80

4.
35

e−
05

+
2

W
FG

8
0.

93
07

34
9.

00
e−

04
0.

92
99

48
7.

02
e−

04
−

0.
93

06
06

6.
01

e−
04

=
0.

92
98

01
8.

25
e−

04
−

0.
94
16
28

3.
34

e−
04

+
2

W
FG

9
0.

92
38

18
6.

94
e−

03
0.

92
81

21
6.

16
e−

03
=

0.
92

80
68

6.
56

e−
03

+
0.

92
65

94
7.

21
e−

03
=

0.
93
60
21

6.
63

e−
03

+
3

D
TL

Z1
0.

99
98

89
4.

75
e−

04
0.

99
99

40
1.

03
e−

04
+

0.
99

99
71

2.
21

e−
05

+
0.

99
99

49
9.

40
e−

05
+

0.
99
99
83

4.
47

e−
07

+
3

D
TL

Z2
0.

99
94

30
9.

26
e−

05
0.

99
93

74
1.

09
e−

04
−

0.
99

94
24

1.
02

e−
04

=
0.

99
94

18
1.

39
e−

04
=

0.
99
96
48

3.
36

e−
06

+
3

D
TL

Z3
0.

99
78

73
3.

75
e−

03
0.

99
81

44
3.

28
e−

03
=

0.
99

49
59

1.
15

e−
02

=
0.

99
86

18
2.

05
e−

03
=

0.
99
96
38

9.
88

e−
06

+
3

D
TL

Z4
0.

99
95

03
4.

29
e−

05
0.

99
64

38
1.

62
e−

02
−

0.
99

34
77

2.
26

e−
02

=
0.

99
75

31
3.

01
e−

03
−

0.
99
96
51

2.
07

e−
06

+
3

D
TL

Z5
0.

99
10

03
4.

56
e−

06
0.

99
10

06
3.

19
e−

06
+

–
–

–
–

–
–

0.
99
25
45

3.
81

e−
06

+
3

D
TL

Z6
0.

99
50

73
7.

24
e−

05
0.

99
49

88
1.

72
e−

04
=

–
–

–
–

–
–

0.
99
59
67

1.
30

e−
06

+
3

D
TL

Z7
0.

81
60

21
1.

88
e−

04
0.

80
51

50
2.

70
e−

02
−

0.
81

33
74

1.
43

e−
02

=
0.

76
29

49
5.

18
e−

02
−

0.
83
11
59

1.
30

e−
02

+
3

W
FG

1
0.

81
25

72
1.

51
e−

02
0.

79
42

13
1.

28
e−

02
−

0.
76

77
95

4.
87

e−
03

−
0.

76
69

36
6.

01
e−

03
−

0.
92
97
29

8.
31

e−
03

+
3

W
FG

2
0.
96
14
18

4.
82

e−
02

0.
94

95
19

5.
09

e−
02

−
0.

94
00

65
5.

22
e−

02
−

0.
94

32
64

5.
25

e−
02

−
0.

95
61

54
4.

73
e−

02
=

3
W

FG
3

0.
92

73
09

1.
09

e−
03

0.
92

53
96

1.
79

e−
03

−
0.

92
72

93
1.

22
e−

03
=

0.
92

71
33

1.
48

e−
03

=
0.
93
94
82

1.
49

e−
03

+
3

W
FG

4
0.

96
76

84
3.

07
e−

03
0.

95
81

41
5.

17
e−

03
−

0.
96

65
89

2.
63

e−
03

=
0.

96
55

83
4.

16
e−

03
=

0.
97
77
61

1.
15

e−
03

+
3

W
FG

5
0.

95
57

07
2.

21
e−

03
0.

95
08

95
2.

92
e−

03
−

0.
95

53
07

1.
89

e−
03

=
0.

95
61

95
1.

64
e−

03
=

0.
96
48
17

2.
30

e−
03

+
3

W
FG

6
0.

93
35

26
2.

89
e−

03
0.

92
89

45
2.

47
e−

03
−

0.
93

33
33

2.
95

e−
03

=
0.

93
18

00
3.

00
e−

03
−

0.
97
01
24

2.
03

e−
03

+
3

W
FG

7
0.

96
97

58
3.

47
e−

03
0.

96
53

71
3.

41
e−

03
−

0.
97

04
01

3.
09

e−
03

=
0.

96
70

66
4.

62
e−

03
−

0.
98
13
23

4.
26

e−
04

+

 SN Computer Science (2020) 1:247247 Page 12 of 23

SN Computer Science

Experimental Results and Discussion

Table 7 displays the HV results for the five implementations
of NSGA-II. Table 8 displays the HV results for the five
implementations of GDE3. Table 9 displays the HV results
for the five implementations of MOEA/D-DRA.

It can be observed that the HV results for DTLZ4 and
DTLZ5 are missing in Tables 7, 8, 9. The lack of those
results is due to a malfunctioning of the MOEA and Platy-
pus platforms: there is a systematic crash in the system when
any of the three algorithms under examination is executed.
Hence, we decided to omit these results.

Numerical results in Tables 7, 8, 9 show that the imple-
mentations of the same algorithms on different platforms
leads to dramatically different results. For example, with
reference to Table 7, the NSGA-II implementations on
jMetal-Java and MOEA platforms display very different per-
formance, which is statistically different in about half of the
problems. A macroscopic difference displayed in Tables 7,
8 and 9 is that PlatEMO significantly outperforms the other
platforms on most of the problems, especially for NSGA-II
and MOEA/D-DRA.

The results on this extensive data set confirm the intuition
shown on the study on NSGA-II implementations published
in [56]. It was suggested that different implementations of
the same algorithm might perform significantly differently.
This means that newly proposed algorithms might perform
better than one implementation of the benchmark algorithm
but worse than another one.

When proposing a new algorithm, however, researchers
typically use only one implementation of the state-of-the-art
algorithms chosen for benchmarking. Algorithms are often
considered as conceptual paradigms which are associated
with their performance. On the contrary, implementations
are tasks of secondary importance which consist of commu-
nicating the conceptual paradigm expressed in equations and
pseudocode to a machine. Furthermore, the use of multiple
implementations while running tests is often overlooked
since, besides being perceived as a repeated operation, it can
be time consuming and onerous. However, the results in this
paper show that different implementations of the same algo-
rithm may perform significantly differently. Thus, the choice
of the implementation/software platform may likely have an
impact on the conclusion of research papers in algorithmics
and on the performance of newly proposed algorithms.

To provide the reader with a graphical representation
of the differences in HV performance across the platforms
under consideration, we plotted the evolution of the HV indi-
cator. Figure 5 depicts the three sets of trends for NSGA-II
in Fig. 5a, GDE3 in Fig. 5b, and MOEA/D-DRA in Fig. 5c,
respectively.

Th
e

be
st

re
su

lts
 a

re
 h

ig
hl

ig
ht

ed
 in

 b
ol

d

Ta
bl

e
7

 (c
on

tin
ue

d)

M
 F

n
JM

et
al

-J
av

a
JM

et
al

-.N
ET

M
O

EA
Pl

at
yp

us
Pl

at
EM

O

M
ea

n
±
�

M
ea

n
±
�

M
ea

n
±
�

M
ea

n
±
�

3
W

FG
8

0.
94

19
07

1.
85

e−
03

0.
93

55
78

2.
47

e−
03

−
0.

94
16

13
1.

80
e−

03
=

0.
94

05
70

1.
91

e−
03

−
0.
96
07
03

1.
68

e−
03

+
3

W
FG

9
0.

90
20

04
3.

43
e−

03
0.

90
42

41
6.

30
e−

03
=

0.
90

32
21

4.
86

e−
03

=
0.

90
17

62
5.

98
e−

03
=

0.
94
12
14

4.
92

e−
03

+

SN Computer Science (2020) 1:247 Page 13 of 23 247

SN Computer Science

Ta
bl

e
8

 H
yp

er
vo

lu
m

e
re

su
lts

 (m
ea

n
va

lu
e

an
d

st
an

da
rd

 d
ev

ia
tio

n)
 fr

om
 3

0
ex

ec
ut

io
ns

 o
f fi

ve
 v

er
si

on
s o

f G
D

E3
 o

n
tw

o
an

d
th

re
e

ob
je

ct
iv

e
te

st
fu

nc
tio

ns
 a

fte
r 5

00
 g

en
er

at
io

ns

M
 F

n
JM

et
al

-J
av

a
JM

et
al

-.N
ET

M
O

EA
Pl

at
yp

us
Pl

at
EM

O

M
ea

n
±
�

M
ea

n
±
�

M
ea

n
±
�

M
ea

n
±
�

2
ZD

T1
0.

99
72

06
1.

72
e−

07
0.

99
72

07
1.

56
e−

07
+

0.
99
72
07

1.
78

e−
07

+
0.

99
72

07
1.

87
e−

07
+

0.
99

50
13

1.
19

e−
03

−
2

ZD
T2

0.
99

44
52

1.
75

e−
07

0.
99

44
52

1.
16

e−
07

+
0.

99
44

52
1.

84
e−

07
+

0.
99
44
52

1.
57

e−
07

+
0.

97
96

90
3.

60
e−

03
−

2
ZD

T3
1.

06
42

61
1.

32
e−

06
1.
06
42
62

9.
56

e−
07

+
1.

06
42

61
4.

20
e−

06
=

1.
06

42
61

3.
31

e−
06

=
0.

99
54

80
1.

17
e−

04
−

2
ZD

T4
0.

99
99

82
7.

89
e−

05
0.
99
99
96

2.
61

e−
10

+
0.

99
97

54
3.

12
e−

04
=

0.
99

99
67

1.
10

e−
04

−
0.

94
87

69
1.

03
e−

02
−

2
ZD

T6
0.

97
11

97
1.

01
e−

07
0.

97
11

97
9.

88
e−

08
+

0.
97

11
97

7.
28

e−
08

+
0.

96
92

43
2.

45
e−

07
−

0.
97
40
86

3.
17

e−
07

+
2

D
TL

Z1
0.

99
89

56
4.

13
e−

08
0.
99
89
56

4.
28

e−
08

+
0.

99
89

56
3.

33
e−

07
+

0.
99

89
56

4.
65

e−
08

+
0.

71
63

49
1.

21
e−

01
−

2
D

TL
Z2

0.
99

34
77

2.
47

e−
07

0.
99

34
77

2.
31

e−
07

+
0.

99
34

77
1.

93
e−

07
+

0.
99

34
77

2.
15

e−
07

+
0.
99
45
90

1.
85

e−
06

+
2

D
TL

Z3
0.

99
34

77
2.

89
e−

07
0.
99
34
77

1.
87

e−
07

+
0.

82
53

74
2.

66
e−

01
−

0.
99

34
77

2.
61

e−
07

+
0.

10
39

77
2.

33
e−

01
−

2
D

TL
Z4

0.
99

34
77

2.
45

e−
07

0.
99

34
77

2.
55

e−
07

+
0.

99
34

77
1.

90
e−

07
+

0.
99

34
77

2.
18

e−
07

+
0.
99
45
89

1.
93

e−
06

+
2

D
TL

Z5
0.

99
34

77
2.

62
e−

07
0.

99
34

77
1.

95
e−

07
+

–
–

–
–

–
–

0.
99
45
90

1.
63

e−
06

+
2

D
TL

Z6
0.

99
64

92
1.

29
e−

07
0.

99
64

92
1.

58
e−

07
+

–
–

–
–

–
–

0.
99
71
01

1.
02

e−
07

+
2

D
TL

Z7
0.

84
18

98
1.

41
e−

07
0.
84
18
98

1.
82

e−
07

+
0.

84
18

98
4.

02
e−

07
+

0.
84

18
98

3.
05

e−
07

+
0.

83
97

94
1.

57
e−

02
=

2
W

FG
1

0.
94

68
91

5.
81

e−
03

0.
94
72
01

5.
30

e−
03

=
0.

86
49

56
4.

58
e−

03
−

0.
86

19
57

4.
10

e−
03

−
0.

83
04

00
1.

03
e−

03
−

2
W

FG
2

0.
97

05
57

2.
75

e−
05

0.
97

05
67

2.
29

e−
05

=
0.

97
06

42
2.

70
e−

05
+

0.
97

05
61

3.
34

e−
05

=
0.
97
07
10

1.
17

e−
03

=
2

W
FG

3
0.

96
64

67
2.

47
e−

05
0.

96
64

59
1.

50
e−

05
=

0.
96

64
79

2.
27

e−
05

=
0.

96
64

58
2.

36
e−

05
=

0.
96
95
72

3.
26

e−
04

+
2

W
FG

4
0.

94
61

84
4.

93
e−

04
0.

94
61

91
4.

14
e−

04
=

0.
94

62
39

6.
05

e−
04

=
0.
94
62
63

4.
40

e−
04

=
0.

94
35

74
1.

04
e−

03
−

2
W

FG
5

0.
92

94
49

1.
95

e−
03

0.
92

86
25

1.
89

e−
03

=
0.

92
90

74
1.

95
e−

03
=

0.
92

91
05

1.
60

e−
03

=
0.
94
01
35

1.
60

e−
03

+
2

W
FG

6
0.

94
26

51
8.

16
e−

04
0.

94
27

81
8.

38
e−

04
=

0.
94

22
24

1.
39

e−
03

=
0.

94
29

57
1.

14
e−

03
=

0.
94
38
32

3.
47

e−
03

=
2

W
FG

7
0.

94
77

92
4.

95
e−

06
0.

94
77

91
4.

91
e−

06
=

0.
94

77
90

5.
44

e−
06

=
0.

94
77

89
4.

90
e−

06
=

0.
95
49
14

1.
88

e−
04

+
2

W
FG

8
0.

93
17

46
6.

92
e−

04
0.

93
17

91
5.

49
e−

04
=

0.
93

17
79

6.
37

e−
04

=
0.

93
17

40
7.

42
e−

04
=

0.
93
91
53

1.
34

e−
03

+
2

W
FG

9
0.

91
92

40
3.

38
e−

03
0.

91
93

33
3.

58
e−

03
=

0.
91

92
80

3.
52

e−
03

=
0.

91
92

72
3.

49
e−

03
=

0.
92
94
79

1.
10

e−
04

+
3

D
TL

Z1
0.

99
99

69
3.

72
e−

05
0.

99
99

70
3.

20
e−

05
=

0.
99

98
55

4.
71

e−
04

=
0.
99
99
72

2.
89

e−
05

=
0.

97
38

84
1.

75
e−

02
−

3
D

TL
Z2

0.
99

95
40

2.
65

e−
06

0.
99

95
41

3.
41

e−
06

=
0.

99
95

40
3.

84
e−

06
=

0.
99

95
43

3.
15

e−
06

+
0.
99
96
24

3.
05

e−
06

+
3

D
TL

Z3
0.
99
90
07

1.
44

e−
03

0.
99

71
13

1.
04

e−
02

=
0.

96
30

73
6.

14
e−

02
−

0.
99

66
97

1.
02

e−
02

=
0.

17
42

85
3.

00
e−

01
−

3
D

TL
Z4

0.
99

95
40

2.
60

e−
06

0.
99

95
40

3.
91

e−
06

=
0.

99
95

43
3.

01
e−

06
+

0.
99

95
43

2.
59

e−
06

+
0.
99
96
26

3.
42

e−
06

+
3

D
TL

Z5
0.

99
10

26
5.

25
e−

07
0.

99
10

26
3.

37
e−

07
+

–
–

–
–

–
–

0.
99
25
30

3.
62

e−
06

+
3

D
TL

Z6
0.

99
51

38
1.

83
e−

07
0.

99
51

39
1.

56
e−

07
+

–
–

–
–

–
–

0.
99
59
74

1.
74

e−
07

+
3

D
TL

Z7
0.
81
63
46

2.
05

e−
04

0.
81

61
93

2.
04

e−
04

−
0.

81
63

43
1.

78
e−

04
=

0.
81

62
24

2.
37

e−
04

=
0.

77
20

90
2.

44
e−

02
−

3
W

FG
1

0.
83
46
92

1.
23

e−
02

0.
82

95
31

1.
74

e−
02

=
0.

79
20

34
1.

68
e−

03
−

0.
79

19
79

1.
17

e−
03

−
0.

77
92

00
1.

89
e−

03
−

3
W

FG
2

0.
99

55
30

2.
23

e−
04

0.
99
55
69

2.
12

e−
04

=
0.

99
54

02
2.

70
e−

04
=

0.
99

54
90

2.
48

e−
04

=
0.

97
50

30
2.

70
e−

03
−

3
W

FG
3

0.
92

70
05

1.
42

e−
03

0.
92

67
49

1.
13

e−
03

=
0.

92
70

73
9.

81
e−

04
=

0.
92
71
96

9.
67

e−
04

=
0.

91
01

17
3.

93
e−

03
−

3
W

FG
4

0.
97

03
17

8.
96

e−
04

0.
97

03
64

7.
92

e−
04

=
0.

97
05

16
8.

53
e−

04
=

0.
97
06
62

8.
49

e−
04

=
0.

94
98

62
2.

42
e−

03
−

3
W

FG
5

0.
95

38
22

1.
91

e−
03

0.
95

28
43

2.
63

e−
03

=
0.
95
43
45

1.
37

e−
03

=
0.

95
24

87
1.

85
e−

03
−

0.
94

86
43

4.
16

e−
03

−
3

W
FG

6
0.

94
03

10
2.

74
e−

03
0.

94
00

90
2.

66
e−

03
=

0.
94

10
17

2.
44

e−
03

=
0.

94
09

65
2.

59
e−

03
=

0.
95
98
81

2.
36

e−
03

+
3

W
FG

7
0.

97
59

23
4.

02
e−

04
0.

97
59

51
3.

30
e−

04
=

0.
97
59
72

4.
45

e−
04

=
0.

97
58

86
3.

84
e−

04
=

0.
94

39
61

3.
51

e−
03

−

 SN Computer Science (2020) 1:247247 Page 14 of 23

SN Computer Science

The HV trends in Fig. 5 show that for each algorithm
the various software implementations of the same algorithm
may lead to different results. It is worth noting that jMetal-
Java and jMetal-.NET lead to similar results. This is overall
expected since jMetal-.NET is based on jMetal-Java and thus
relies on the same interpretation of the algorithms. However,
Fig. 5a shows that for NSGA-II, the two jMetal versions
lead to different results. Furthermore, Fig. 5 shows that the
performance on PlatEMO implementations are dramatically
different.

Tables 10, 11, and 12 display the IGD+ results for
NSGA-II, GDE3, and MOEA/D-DRA, respectively. For
this set of results, we excluded PlatEMO since it does not
have IGD+ among the metrics available. The IGD+ results
clearly show that different software implementations can
lead to extremely different performance values. For exam-
ple, Table 10 shows that for ZDT4 the jMetal IGD+ val-
ues are about 100 times lower than those achieved by the
MOEA and Platypus platforms. We conclude that an expert
who analyses these results without knowing that they are
allegedly produced by the same algorithm would think that
they are produced by conceptually different algorithmic
frameworks.

To give a graphical representation of the IGD+ results,
Fig. 6 displays the IGD+ trends of the three algorithmic and
the four software platforms under investigation in the case
of WFG1 with two objectives. Figure 6a shows the results of
the four NSGA-II software implementations, Fig. 6b shows
the results of the four GDE3 software implementations and
Fig. 6c shows the results of the three MOEA/D-DRA soft-
ware implementations.

The results on IGD+ values confirm what was shown for
HV values: the various trends appear distinct with a similar-
ity between the two jMetal platforms.

Differences in the Implementations

To understand how the original papers, [11, 34], and [58]
have been interpreted by the authors of the software plat-
forms, we analysed the codes and highlighted the major dif-
ferences that impacted on the performance of the algorithms.
We classified these differences according to their type: (1)
algorithmic differences, i.e. different interpretations of the
text or pseudocode in the original publication; (2) software
engineering differences, i.e. implementation choices that are
not part of the algorithmic structure but are still important
elements that affect the runs and the results.

Furthermore, there is a difference in programming style
between PlatEMO and the other packages which appears
to heavily affect the performance for the algorithms and
problems considered in this study. In PlatEMO, the soft-
ware parameters are mostly pre−defined without opportunity Th

e
be

st
re

su
lts

 a
re

 h
ig

hl
ig

ht
ed

 in
 b

ol
d

Ta
bl

e
8

 (c
on

tin
ue

d)

M
 F

n
JM

et
al

-J
av

a
JM

et
al

-.N
ET

M
O

EA
Pl

at
yp

us
Pl

at
EM

O

M
ea

n
±
�

M
ea

n
±
�

M
ea

n
±
�

M
ea

n
±
�

3
W

FG
8

0.
94
80
81

1.
41

e−
03

0.
94

79
63

1.
20

e−
03

=
0.

94
76

49
1.

13
e−

03
=

0.
94

80
60

1.
43

e−
03

=
0.

91
64

87
5.

16
e−

03
−

3
W

FG
9

0.
90

18
62

3.
42

e−
03

0.
90

18
95

1.
50

e−
03

=
0.

90
14

71
1.

48
e−

03
=

0.
90

14
80

1.
56

e−
03

=
0.
93
23
99

2.
56

e−
03

+

SN Computer Science (2020) 1:247 Page 15 of 23 247

SN Computer Science

for user-specification outside of modifying the source code
directly. Many of the parameters appear to be pre−tuned and
orientated towards high performance.

In the following subsections, we highlight some of the
software differences that we were able to observe by com-
paring the five software platforms under consideration.

NSGA‑II

Simulated binary crossover (SBX) [10] is a popular and
established recombination operator which was motivated by
the binary crossover operators which were popular in early
genetic algorithms. SBX enables the single−point crossover
of two real-coded parent solutions to produce an offspring
solution through exploitation of the existing information,

Table 9 Hypervolume results (mean value and standard deviation) from 30 executions of the four versions available of MOEA/D-DRA on two
and three objective test functions after 500 generations

The best results are highlighted in bold

 M Fn JMetal-Java JMetal-.NET MOEA PlatEMO

Mean ±� Mean ±� Mean ±�

2 ZDT1 0.996866 1.84e−04 0.996867 1.11e−04 = 0.996832 1.88e−04 = 0.997717 9.02e−08 +
2 ZDT2 0.993775 4.08e−04 0.993905 2.79e−04 = 0.994002 3.50e−04 + 0.995440 3.23e−07 +
2 ZDT3 1.063422 4.12e−04 1.063270 4.93e−04 = 1.063735 2.46e−04 + 0.995342 1.58e−07 −
2 ZDT4 0.999803 3.06e−04 0.999888 2.15e−04 = 0.001215 4.16e−05 − 0.999997 1.22e−08 +
2 ZDT6 0.971207 5.91e−07 0.971207 1.25e−06 = 0.971207 4.55e−07 = 0.974105 1.81e−09 +
2 DTLZ1 0.998963 1.01e−06 0.998963 1.15e−06 = 0.998953 4.40e−05 − 0.999145 3.29e−08 +
2 DTLZ2 0.993485 7.90e−05 0.993453 1.85e−04 = 0.993500 1.50e−07 + 0.994630 7.53e−08 +
2 DTLZ3 0.970621 4.70e−02 0.361852 2.39e+00 = 0.976622 5.89e−02 = 0.994629 8.91e−07 +
2 DTLZ4 0.993485 6.63e−05 0.993451 1.42e−04 = 0.993500 4.80e−07 + 0.994630 3.35e−08 +
2 DTLZ5 0.993496 1.78e−05 0.993478 1.13e−04 = – – – 0.994630 9.08e−08 +
2 DTLZ6 0.996504 2.37e−06 0.996503 2.60e−06 = – – – 0.997112 1.36e−08 +
2 DTLZ7 0.825755 3.21e−02 0.823066 3.39e−02 = 0.820431 3.55e−02 = 0.849299 2.20e−02 +
2 WFG1 0.824744 3.98e−03 0.824837 5.55e−03 = 0.817420 1.18e−03 − 0.881350 9.64e−03 +
2 WFG2 0.968088 8.05e−04 0.968307 6.51e−04 = 0.968042 7.81e−04 = 0.968779 1.05e−02 +
2 WFG3 0.965243 1.76e−04 0.965217 2.96e−04 = 0.965193 2.01e−04 = 0.965377 1.04e−02 +
2 WFG4 0.936578 1.47e−03 0.936554 1.98e−03 = 0.939591 1.28e−03 + 0.946310 3.92e−03 +
2 WFG5 0.929594 1.67e−04 0.929791 9.96e−04 = 0.929648 1.18e−04 = 0.939962 7.63e−05 +
2 WFG6 0.934807 4.64e−03 0.933698 3.76e−03 = 0.933351 3.31e−03 = 0.942863 3.24e−03 +
2 WFG7 0.946899 3.77e−04 0.946981 1.50e−04 = 0.947348 8.87e−05 + 0.955748 9.98e−04 +
2 WFG8 0.930136 9.01e−04 0.930263 9.38e−04 = 0.931090 9.09e−04 + 0.933218 7.37e−03 +
2 WFG9 0.919549 3.16e−03 0.921628 5.43e−03 = 0.922045 5.44e−03 = 0.932398 4.38e−03 +
3 DTLZ1 0.999982 5.68e−08 0.999982 4.68e−08 + 0.999982 3.47e−08 − 0.999986 1.85e−08 +
3 DTLZ2 0.999584 4.23e−07 0.999584 3.45e−07 + 0.999584 2.99e−07 + 0.999688 2.63e−07 +
3 DTLZ3 0.999575 2.19e−05 0.999089 2.45e−03 = 0.999465 6.24e−04 − 0.999688 3.17e−07 +
3 DTLZ4 0.999579 2.21e−05 0.999573 3.02e−05 = 0.999585 2.90e−07 + 0.999516 9.08e−04 −
3 DTLZ5 0.991053 8.78e−07 0.991053 4.88e−07 + – – – 0.992588 5.95e−08 +
3 DTLZ6 0.995155 2.79e−06 0.995155 1.77e−06 = – – – 0.995987 3.69e−09 +
3 DTLZ7 0.789870 4.77e−02 0.797819 3.96e−02 = 0.787326 5.66e−02 = 0.824620 2.49e−02 +
3 WFG1 0.759856 7.37e−04 0.759663 6.46e−04 = 0.759832 7.98e−04 = 0.785441 5.32e−03 +
3 WFG2 0.993395 4.23e−04 0.993382 5.58e−04 = 0.993113 5.06e−04 − 0.990767 1.41e−03 −
3 WFG3 0.930985 6.73e−04 0.931089 7.48e−04 = 0.929534 7.99e−04 − 0.923832 4.46e−03 −
3 WFG4 0.961653 1.29e−03 0.961995 1.91e−03 = 0.963593 1.64e−03 + 0.969399 2.41e−03 +
3 WFG5 0.959014 5.25e−04 0.958856 5.63e−04 = – – – 0.967131 3.42e−04 +
3 WFG6 0.934261 7.18e−03 0.935157 8.01e−03 = 0.933285 6.64e−03 = 0.961945 2.17e−03 +
3 WFG7 0.975550 5.11e−04 0.975435 4.95e−04 = 0.976631 4.32e−04 + 0.979292 1.61e−03 +
3 WFG8 0.948587 2.31e−03 0.948924 2.58e−03 = 0.949332 2.12e−03 = 0.935644 1.37e−02 −
3 WFG9 0.913475 7.02e−03 0.913057 5.60e−03 = 0.913668 6.49e−03 = 0.946494 5.80e−03 +

 SN Computer Science (2020) 1:247247 Page 16 of 23

SN Computer Science

with the benefit of using a probability distribution for select-
ing offspring solutions. In particular, NSGA-II employs
the SBX operator when operating on problems consisting
of real-coded decision variables, and any difference in its

implementation will impact the convergence and search
pressure throughout the optimisation process.

The software platforms under considerations give differ-
ent interpretations of SBX and thus propose slightly dif-
ferent algorithms. In SBX, a random number determines
whether SBX performs the recombination according to the
crossover probability, but if this criterion is not satisfied then
the offspring solution directly inherits the decision variable
from the first parent. However, in jMetal, the offspring solu-
tion also inherits directly from the first parent if the absolute
difference between the decision variable from both parents is
greater than a pre−defined precision value. This extra swap
mechanism does not occur in the MOEA Framework. The
SBX operation in Platypus follows the same logic as MOEA
Framework. An empirical comparison using identical deci-
sion variables (for two parent solutions) and pre−generated
random numbers proved a difference in the output from both
jMetal and MOEA. The results are presented in Table 13.

An example of a software engineering difference is in
the epsilon (EPS) value used for precision in the frame-
works, where jMetal-Java and jMetal-.NET both use
1.0e − 14 , MOEAFramework uses 1.0e − 1 , and Platypus
uses 2.220446049250313e-1 (provided by “sys.float_info.
epsilon”). Additionally, the jMetal-.NET implementation of
NSGA-II had hard-coded the seed used by the random num-
ber generators. This meant that every execution on a problem
would produce identical results, so this was corrected for the
experiments in this paper.

Finally, another difference is in the use random seeds,
while jMetal implementations of NSGA-II make use of some
hard-coded seeds, MOEA and Platypus generate new ran-
dom numbers at each occurrence.

GDE3

The four software platform present a subtle different inter-
pretation of the crossover in GDE3. To decide which design
variables are copied from the parent solution, jMetal plat-
forms use the condition rand[0, 1) < CR as mentioned in the
original paper [34] whereas MOEA and Platypus platforms
reinterpret the expressions as rand[0, 1) ≤ CR . Although this
difference does not impact most of the comparisons, it is per-
formed many times in each run. Thus, it is likely to generate
some different offspring solutions and modify the behaviour
of the algorithm. For example, if we consider

with F = CR = 0.5 , the mutant vector is

�� = (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0)

��� = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0)

��� = (10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0)

��� = (2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0)

(a) HV trend for NSGA-II implementations

(b) HV trend for GDE3 implementations

(c) HV trend for MOEA/D-DRA implementations

Fig. 5 HV trends for the three algorithms and five software platforms
under consideration for the WFG1 problem with two objectives

SN Computer Science (2020) 1:247 Page 17 of 23 247

SN Computer Science

After a crossover where we have synthetically ensured that
CR will equal 0.5 in some instances (highlighted) through

� = ��� + F
(
��� − ���

)

= (−2.5, 0.5, 3.5, 6.5, 9.5, 12.5, 15.5, 18.5, 21.5, 24.5).

pre-generated random numbers, jMetal and MOEA plat-
forms produced the following, respectively,

which then affects the final results.

������� = (�.�, 0.5, 1.5, 6.5, �.�, 12.5, �.�, 4.0, 4.5, 24.5)

����� = (−�.�, 0.5, 1.5, 6.5, �.�, 12.5, ��.�, 4.0, 4.5, 24.5)

Table 10 Inverted generational distance+ results (mean value and standard deviation) from 30 executions of the four versions available of
NSGA-II on two and three objective test functions after 500 generations

The best results are highlighted in bold

 M Fn jMetal-Java jMetal-.NET MOEA Platypus

Mean ±� Mean ±� Mean ±� Mean ±�

2 ZDT1 0.003377 1.42e−04 0.003277 1.38e−04 − 0.003218 1.51e−04 − 0.003051 1.13e−04 −
2 ZDT2 0.002917 1.10e−04 0.002870 9.52e−05 = 0.002810 1.08e−04 − 0.002696 8.46e−05 −
2 ZDT3 0.001878 1.28e−04 0.001852 7.83e−05 = 0.001800 1.10e−04 − 0.001752 1.18e−04 −
2 ZDT4 0.003948 5.80e−04 0.003918 8.85e−04 = 0.552275 2.96e−01 + 0.473648 3.60e−01 +
2 ZDT6 0.002276 3.10e−04 0.002068 1.95e−04 − 0.002539 2.28e−04 + 0.046240 5.22e−05 +
2 DTLZ1 0.002037 3.03e−04 0.001855 3.02e−04 − 0.001751 2.80e−04 − 0.002047 3.69e−04 =
2 DTLZ2 0.002636 1.14e−04 0.002577 1.03e−04 − 0.002565 1.10e−04 − 0.002402 1.04e−04 −
2 DTLZ3 0.009267 3.84e−03 0.046039 1.80e−01 = 0.007021 4.85e−03 − 0.018784 9.75e−03 +
2 DTLZ4 0.005169 1.19e−02 0.009836 1.55e−02 = 0.012164 1.65e−02 = 0.013319 1.69e−02 =
2 DTLZ5 0.002632 9.79e−05 0.002589 1.12e−04 = – – – – – –
2 DTLZ6 0.016740 1.20e−02 0.011361 1.38e−02 = – – – – – –
2 DTLZ7 0.002555 1.28e−04 0.014401 6.43e−02 + 0.002448 1.69e−04 − 0.038190 1.07e−01 +
2 WFG1 0.414873 1.28e−01 0.543237 1.22e−01 + 0.973705 9.40e−02 + 1.016263 1.11e−01 +
2 WFG2 0.028480 1.41e−02 0.027585 1.44e−02 = 0.028867 1.63e−02 = 0.029839 1.37e−02 =
2 WFG3 0.131865 1.96e−03 0.132146 1.55e−03 = 0.132060 1.87e−03 = 0.132634 2.45e−03 =
2 WFG4 0.014480 1.29e−03 0.014899 1.24e−03 = 0.013973 1.06e−03 = 0.013069 1.02e−03 −
2 WFG5 0.068611 7.36e−04 0.068542 3.43e−04 = 0.068361 3.15e−04 = 0.067875 3.63e−04 −
2 WFG6 0.055747 5.97e−03 0.056628 6.35e−03 = 0.057441 8.16e−03 = 0.054451 7.75e−03 =
2 WFG7 0.011921 6.18e−04 0.012346 1.06e−03 = 0.012152 6.26e−04 = 0.012435 7.72e−04 +
2 WFG8 0.080751 3.70e−03 0.080975 3.05e−03 = 0.081074 2.92e−03 = 0.068803 4.90e−03 −
2 WFG9 0.076791 4.67e−02 0.046155 4.19e−02 − 0.049713 4.31e−02 − 0.057687 4.67e−02 =
3 DTLZ1 0.018335 1.39e−03 0.018857 1.81e−03 = 0.018475 1.95e−03 = 0.018796 2.59e−03 =
3 DTLZ2 0.034503 1.30e−03 0.035556 1.92e−03 = 0.034435 1.70e−03 = 0.033640 1.30e−03 −
3 DTLZ3 0.341154 5.79e−01 0.323672 5.51e−01 = 0.060478 4.76e−02 − 0.229931 3.36e−01 =
3 DTLZ4 0.025321 2.77e−03 0.032272 2.60e−02 + 0.035631 3.63e−02 = 0.042822 3.07e−02 =
3 DTLZ5 0.003060 1.71e−04 0.002944 1.35e−04 − – – – – – –
3 DTLZ6 0.009721 9.32e−03 0.019904 2.17e−02 = – – – – – –
3 DTLZ7 0.042005 2.12e−03 0.067606 6.20e−02 + 0.048011 3.30e−02 = 0.185682 1.77e−01 +
3 WFG1 1.091738 9.31e−02 1.187917 8.26e−02 + 1.361926 1.87e−02 + 1.369839 2.93e−02 +
3 WFG2 0.112497 1.88e−02 0.118701 2.06e−02 = 0.123861 2.02e−02 + 0.120128 1.93e−02 =
3 WFG3 0.075182 1.07e−02 0.080174 1.46e−02 = 0.072751 1.10e−02 = 0.080798 1.27e−02 =
3 WFG4 0.160639 9.79e−03 0.184817 1.25e−02 + 0.160405 8.38e−03 = 0.162036 8.88e−03 =
3 WFG5 0.181463 7.31e−03 0.194805 6.91e−03 + 0.181728 6.65e−03 = 0.179287 7.06e−03 =
3 WFG6 0.219942 1.42e−02 0.236777 1.09e−02 + 0.219577 1.63e−02 = 0.226750 1.52e−02 =
3 WFG7 0.125801 4.09e−03 0.138686 6.70e−03 + 0.126355 5.89e−03 = 0.145508 1.86e−02 +
3 WFG8 0.301378 7.83e−03 0.312256 8.48e−03 + 0.295862 7.36e−03 − 0.308839 7.92e−03 +
3 WFG9 0.259963 1.54e−02 0.247956 3.27e−02 = 0.255812 2.12e−02 = 0.262606 2.39e−02 +

�� =, �� ≠ �� =, �� ≠ �� =, �� ≠

 SN Computer Science (2020) 1:247247 Page 18 of 23

SN Computer Science

MOEA/D‑DRA

The first algorithmic difference in the MOEA/D-DRA
implementations is in the way the decision whether solu-
tions from the neighbourhood or from the entire population
should be selected during the mating process. The com-
parison of a random number against a threshold � is coded

as rand(0, 1] < 𝛿 in jMetal and rand(0, 1] ≤ � in MOEA,
respectively.

The main algorithmic difference is in the way sub-prob-
lems are selected. In MOEA sub-problem’s indices are
randomly selected from the entire list of problems. Thus,
the MOEA Framework allows the same subproblem to be
selected multiple times. The jMetal platforms implement a

Table 11 Inverted generational distance+ results (mean value and standard deviation) from 30 executions of the four versions available of GDE3
on two and three objective test functions after 500 generations

The best results are highlighted in bold

M Fn jMetal-Java jMetal-.NET MOEA Platypus

Mean ±� Mean ±� Mean ±� Mean ±�

2 ZDT1 0.002450 1.50e−05 0.002397 1.14e−05 − 0.002391 1.72e−05 − 0.002401 1.72e−05 −
2 ZDT2 0.002241 1.03e−05 0.002195 9.74e−06 − 0.002199 9.53e−06 − 0.002191 9.17e−06 −
2 ZDT3 0.001432 3.13e−05 0.001424 3.05e−05 = 0.001410 3.13e−05 − 0.001421 3.01e−05 =
2 ZDT4 0.006560 2.21e−02 0.002404 1.89e−05 − 0.069640 8.62e−02 = 0.010605 3.07e−02 +
2 ZDT6 0.001453 5.00e−05 0.001416 4.65e−05 − 0.001414 6.28e−05 − 0.045895 4.01e−06 +
2 DTLZ1 0.001313 6.79e−06 0.001291 6.74e−06 − 0.001300 4.22e−05 − 0.001291 6.85e−06 −
2 DTLZ2 0.001887 3.92e−05 0.001849 3.40e−05 − 0.001849 2.46e−05 − 0.001852 3.67e−05 −
2 DTLZ3 0.001852 4.14e−05 0.001857 4.27e−05 = 3.012354 3.27e+00 + 0.001851 3.66e−05 =
2 DTLZ4 0.000364 4.99e−06 0.000356 3.34e−06 − 0.000357 4.04e−06 − 0.000355 4.38e−06 −
2 DTLZ5 0.001891 3.80e−05 0.001846 3.28e−05 − – – – – – –
2 DTLZ6 0.001895 3.33e−05 0.001855 2.93e−05 − – – – – – –
2 DTLZ7 0.001968 2.90e−05 0.001922 2.34e−05 − 0.001922 2.24e−05 − 0.001915 2.70e−05 −
2 WFG1 0.228657 3.76e−02 0.227381 3.52e−02 = 0.806974 3.32e−02 + 0.828995 3.25e−02 +
2 WFG2 0.003483 2.17e−04 0.003416 2.06e−04 = 0.002913 2.12e−04 − 0.003499 2.61e−04 =
2 WFG3 0.121656 2.20e−04 0.121666 1.66e−04 = 0.121540 1.99e−04 = 0.121721 2.38e−04 =
2 WFG4 0.011072 9.31e−04 0.010932 1.03e−03 = 0.010680 1.11e−03 = 0.011116 9.81e−04 =
2 WFG5 0.066166 3.53e−05 0.066120 2.15e−04 = 0.066184 4.98e−05 = 0.066132 1.80e−04 =
2 WFG6 0.038300 5.51e−03 0.037432 5.64e−03 = 0.041142 9.35e−03 = 0.036238 7.66e−03 =
2 WFG7 0.006454 1.35e−04 0.006419 1.21e−04 = 0.006426 1.49e−04 = 0.006493 1.03e−04 =
2 WFG8 0.070646 1.82e−03 0.071214 2.31e−03 = 0.071809 2.56e−03 = 0.071123 2.14e−03 =
2 WFG9 0.107254 2.34e−02 0.106928 2.46e−02 = 0.106981 2.41e−02 − 0.107079 2.40e−02 =
3 DTLZ1 0.034044 6.97e−02 0.032288 6.36e−02 = 0.115323 2.32e−01 = 0.028852 5.43e−02 =
3 DTLZ2 0.027628 1.08e−03 0.027207 6.20e−04 = 0.027533 1.06e−03 = 0.027202 1.09e−03 =
3 DTLZ3 0.176975 3.77e−01 0.263009 7.98e−01 = 2.357332 1.92e+00 + 0.400710 8.32e−01 =
3 DTLZ4 0.025929 2.55e−03 0.026120 3.02e−03 = 0.025413 2.26e−03 = 0.023907 2.04e−03 −
3 DTLZ5 0.001992 4.85e−05 0.001964 4.07e−05 − – – – – – –
3 DTLZ6 0.001899 6.78e−05 0.001862 6.39e−05 − – – – – – –
3 DTLZ7 0.034267 1.70e−03 0.034084 1.97e−03 = 0.033592 1.77e−03 = 0.034248 2.78e−03 =
3 WFG1 0.981482 7.38e−02 1.016024 1.03e−01 = 1.236083 1.12e−02 + 1.238163 8.73e−03 +
3 WFG2 0.089175 1.90e−02 0.090306 1.29e−02 = 0.087679 1.50e−02 = 0.094205 1.74e−02 =
3 WFG3 0.101445 1.87e−02 0.103290 1.41e−02 = 0.099624 1.48e−02 = 0.095262 1.29e−02 =
3 WFG4 0.148576 8.73e−03 0.150187 7.13e−03 = 0.149353 8.21e−03 = 0.143996 7.07e−03 =
3 WFG5 0.160164 4.38e−03 0.158253 2.52e−03 = 0.159672 4.98e−03 = 0.159302 4.45e−03 =
3 WFG6 0.179826 1.56e−02 0.182267 1.28e−02 = 0.175210 1.17e−02 = 0.176543 1.61e−02 =
3 WFG7 0.103230 4.77e−03 0.103144 4.34e−03 = 0.102714 4.80e−03 = 0.102019 4.03e−03 =
3 WFG8 0.274296 6.91e−03 0.274619 5.80e−03 = 0.275527 5.55e−03 = 0.275152 7.30e−03 =
3 WFG9 0.257143 1.23e−02 0.258771 6.30e−03 = 0.259092 6.93e−03 = 0.257639 6.93e−03 =

�� =, �� ≠ �� =, �� ≠ �� =, �� ≠

SN Computer Science (2020) 1:247 Page 19 of 23 247

SN Computer Science

Table 12 Inverted generational
distance+ results (mean value
and standard deviation) from 30
executions of the three versions
available of MOEA/D-DRA
on two and three objective test
functions after 500 generations

The best results are highlighted in bold

 M Fn jMetal-Java jMetal-.NET MOEA

Mean ±� Mean ±� Mean ±�

2 ZDT1 0.006595 1.32e−03 0.006679 1.19e−03 = 0.004333 1.48e−03 −
2 ZDT2 0.005752 9.93e−04 0.005409 9.23e−04 = 0.002561 1.02e−03 −
2 ZDT3 0.006207 9.71e−04 0.006633 1.27e−03 = 0.002178 1.01e−03 −
2 ZDT4 0.038047 6.15e−02 0.027144 4.47e−02 = 0.887277 2.91e−01 +
2 ZDT6 0.001626 3.15e−05 0.001616 2.62e−05 − 0.000204 1.63e−06 −
2 DTLZ1 0.001850 9.86e−05 0.001862 1.09e−04 = 0.000288 2.75e−05 −
2 DTLZ2 0.002931 2.64e−05 0.002929 2.13e−05 = 0.000479 1.21e−05 −
2 DTLZ3 0.425098 8.31e−01 1.915119 5.47e+00 = 0.381288 1.10e+00 =
2 DTLZ4 0.000568 2.81e−05 0.000572 2.38e−05 = 0.000123 1.32e−05 −
2 DTLZ5 0.002929 1.82e−05 0.002923 2.69e−05 = – – –
2 DTLZ6 0.002752 3.43e−06 0.002751 3.05e−06 = – – –
2 DTLZ7 0.076527 1.42e−01 0.088456 1.51e−01 = 0.096806 1.59e−01 =
2 WFG1 1.103865 3.96e−02 1.107224 4.25e−02 = 1.181690 1.15e−02 +
2 WFG2 0.024700 4.93e−03 0.025237 3.74e−03 = 0.019033 4.75e−03 −
2 WFG3 0.131586 7.77e−04 0.131628 1.09e−03 = 0.126314 8.84e−04 −
2 WFG4 0.069671 8.09e−03 0.066713 6.18e−03 = 0.066275 5.49e−03 =
2 WFG5 0.068714 2.00e−04 0.068835 3.58e−04 = 0.065288 2.81e−04 −
2 WFG6 0.094490 3.24e−02 0.102064 2.62e−02 = 0.102580 2.30e−02 =
2 WFG7 0.015902 5.52e−04 0.015563 3.25e−04 − 0.007938 7.53e−04 −
2 WFG8 0.082901 5.86e−03 0.081415 5.36e−03 = 0.083355 5.57e−03 =
2 WFG9 0.106005 2.53e−02 0.091840 3.75e−02 = 0.086776 3.92e−02 −
3 DTLZ1 0.014400 2.23e−04 0.014357 2.00e−04 = 0.005766 8.10e−05 −
3 DTLZ2 0.029547 3.84e−04 0.029515 3.63e−04 = 0.010989 1.01e−04 −
3 DTLZ3 0.036820 9.46e−03 0.116035 3.80e−01 = 0.040343 1.39e−01 +
3 DTLZ4 0.020006 3.72e−03 0.019135 4.57e−03 = 0.004806 4.69e−04 −
3 DTLZ5 0.004480 1.22e−04 0.004475 8.71e−05 = – – –
3 DTLZ6 0.003606 9.28e−05 0.003601 8.72e−05 = – – –
3 DTLZ7 0.131559 1.54e−01 0.106514 1.19e−01 = 0.125522 2.12e−01 −
3 WFG1 1.443795 6.85e−03 1.443376 5.39e−03 = 1.421833 4.25e−03 −
3 WFG2 0.089475 1.22e−02 0.091613 1.39e−02 = 0.049289 7.47e−03 −
3 WFG3 0.052677 4.38e−03 0.052140 6.33e−03 = 0.047311 6.11e−03 −
3 WFG4 0.236131 5.75e−03 0.232860 8.93e−03 = 0.168144 6.48e−03 −
3 WFG5 0.176035 1.73e−03 0.176957 1.91e−03 = 0.110753 1.35e−03 −
3 WFG6 0.230581 2.95e−02 0.226527 3.40e−02 = 0.181344 2.94e−02 −
3 WFG7 0.124108 2.44e−03 0.124000 3.14e−03 = 0.072679 3.61e−03 −
3 WFG8 0.277606 9.76e−03 0.273707 1.13e−02 = 0.223948 1.01e−02 −
3 WFG9 0.237548 3.29e−02 0.238016 2.77e−02 = 0.176508 3.22e−02 −

�� =, � ≠ � =, �� ≠

 SN Computer Science (2020) 1:247247 Page 20 of 23

SN Computer Science

very different logic: the selected sub-problems are “black-
listed” so that they cannot be selected twice.

Moreover, MOEA shuffles the indices before returning
them whereas jMetal does not.

Conclusion

This article performs an experimental study on various inter-
pretations and implementations of well-known algorithms.
Numerical results clearly show that three popular heuristic
algorithms for multi-objective optimisation, that is, NSGA-
II, GDE3, and MOEA/D-DRA, have been subject to various
interpretations by four popular software platforms, that is,
the two versions of jMetal, MOEA Framework, Platypus,
and PlatEMO. As expected, each of these platforms make
software engineering decisions which may affect the results,
such as the use of different precision values or random
number generator. More importantly, the platforms propose
different logical implementations of the algorithms. Effec-
tively, these platforms run different algorithms under the
same name.

Algorithmic and software engineering differences are
evident in the presented Results section. Numerical results
show that different implementations of the same algorithm
lead to statistically different performance across the experi-
mental setup used in this study. According to our position,
the differences are due to two concurrent reasons. The first
is that several articles in the field may not be explicit about
some important details of an algorithm. This may be due to
the complexity of the algorithm and the decision by authors
to use references from other articles instead of detailed
explanations to enhance the readability of the proposed
method. The second is that software platforms may crea-
tively change some of the details because they may be more
convenient or for consistency across the platform, e.g. the
use of “ ≤ ” in MOEA and “<” in jMetal.

We believe that the description of complex software and
its explanation to a human is a difficult task which can eas-
ily lead to misinterpretations. Furthermore, we believe that
this will have consequences not only in frameworks con-
tributed by and for the scientific community, but also for

(a) IGD+ trend for NSGA-II implementations

(b) IGD+ trend for GDE3 implementations

(c) IGD+ trend for MOEA/D-DRA implementations

Fig. 6 IGD+ trends for the three algorithms and four software plat-
forms under consideration for the WFG1 problem with two objectives

SN Computer Science (2020) 1:247 Page 21 of 23 247

SN Computer Science

commercial platforms such as Kimeme2 and ModeFRON-
TIER3. Hence, we feel that the field of heuristic optimisation
would greatly benefit from a standardised protocol to present
new algorithms.

Funding This study was funded by the institutions indicated in the
list of affiliations.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Al-Dabbagh RD, Neri F, Idris N, Baba MS. Algorithmic design
issues in adaptive differential evolution schemes: review and tax-
onomy. Swarm Evolut Comput. 2018;43:284–311.

 2. Bianchi L, Dorigo M, Gambardella LM, Gutjahr WJ. A survey
on metaheuristics for stochastic combinatorial optimization. Nat
Comput. 2009;8(2):239–87.

 3. Blum C, Roli A. Metaheuristics in combinatorial optimiza-
tion: overview and conceptual comparison. ACM Comput Surv.
2003;35(3):268–308.

 4. Boryssenko AO, Herscovici N. Machine learning for multiob-
jective evolutionary optimization in python for em problems. In:
2018 IEEE international symposium on antennas and propagation
& USNC/URSI national radio science meeting. 2018. p. 541–42

 5. Cocańa-Fernández A, Sanchez L, Ranilla J. Improving the eco-
efficiency of high performance computing clusters using eecluster.
Energies. 2016;9:197–213.

 6. Coello CAC, Lamont GB, Veldhuizen DAV. Evolutionary algo-
rithms for solving multi-objective problems. 2nd ed. Berlin:
Springer; 2007.

 7. Coello Coello CA, Reyes Sierra M. A study of the paralleliza-
tion of a coevolutionary multi-objective evolutionary algorithm.
In: Monroy R, Arroyo-Figueroa G, Sucar LE, Sossa H, editors.
MICAI 2004: advances in artificial intelligence. Berlin: Springer;
2004. p. 688–97.

 8. Czyźak P, Jaszkiewicz A. Pareto simulated annealing—a
metaheuristic technique for multiple-objective combinatorial
optimization. J Multi Criteria Decis Anal. 1998;7(1):34–47.

 9. Das I, Dennis J. Normal-boundary intersection: a new method for
generating the pareto surface in nonlinear multicriteria optimiza-
tion problems. SIAM J Optim. 1998;8(3):631–57.

 10. Deb K, Agrawal RB. Simulated binary crossover for continuous
search space. Complex Syst. 1995;9(2):115–48.

 11. Deb K, Agrawal S, Pratap A, Meyarivan T. A fast elitist non-dom-
inated sorting genetic algorithm for multi-objective optimization:
Nsga-ii. In: Schoenauer M, Deb K, Rudolph G, Yao X, Lutton E,
Merelo JJ, Schwefel HP, editors. Parallel problem solving from
nature PPSN VI. Berlin: Springer; 2000. p. 849–58.

 12. Deb K, Thiele L, Laumanns M, Zitzler E. Scalable multi-objective
optimization test problems. In: Proceedings of the 2002 congress
on evolutionary computation, vol. 1. 2002. p. 825–30.

 13. Del Ser J, Osaba E, Molina D, Yang XS, Salcedo-Sanz S, Cama-
cho D, Das S, Suganthan PN, Coello Coello CA, Herrera F. Bio-
inspired computation: where we stand and what’s next. Swarm
Evolut Comput. 2019;48:220–50.

 14. Derrac J, García S, Molina D, Herrera F. A practical tutorial on the
use of nonparametric statistical tests as a methodology for com-
paring evolutionary and swarm intelligence algorithms. Swarm
Evolut Comput. 2011;1(1):3–18.

 15. Desjardins B, Falcon R, Abielmona R, Petriu E. A multi-objective
optimization approach to reliable robot-assisted sensor relocation.
In: 2015 IEEE congress on evolutionary computation. 2015. p.
956–64

 16. Durillo JJ, Nebro AJ. jmetal: a java framework for multi-objective
optimization. Adv Eng Softw. 2011;42:760–71.

 17. Durillo JJ, Nebro AJ, Coello CAC, Garcia-Nieto J, Luna F, Alba E.
A study of multiobjective metaheuristics when solving parameter
scalable problems. IEEE Trans Evolut Comput. 2010;14:618–35.

 18. Fonseca CM, Fleming PJ. Genetic algorithms for multiobjective
optimization: formulation, discussion and generalization. Morgan
Kaufmann. 1993. p. 416–423

 19. Fonseca CM, Fleming PJ. Multiobjective optimization and mul-
tiple constraint handling with evolutionary algorithms. I. A uni-
fied formulation. IEEE Trans Syst Man Cybern Part A Syst Hum.
1998;28(1):26–37.

Table 13 The offspring solutions generated by SBX implementations in jMetal.NET and MOEA Framework using identical inputs

The best results are highlighted in bold

Parent 1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Parent 2 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0
jMetal offspring 1 1.109694 9.000000 50.000000 7.000000 6.000000 6.057942 3.992455 3.000000 8.978759 10.022634
jMetal offspring 2 9.891858 2.000000 0.000000 4.000000 5.000000 4.942058 7.007545 8.000000 2.021247 0.979303
MOEA offspring 1 1.109694 2.000000 50.000000 4.000000 5.000000 6.057942 3.992455 8.000000 8.978759 10.022634
MOEA offspring 2 9.891858 9.000000 0.000000 7.000000 6.000000 4.942058 7.007545 3.000000 2.021247 0.979303

2 Developed by Cyber Dyne Srl, https ://cyber dyne.it/.
3 Developed by ESTECO SpA, https ://www.estec o.com/modef ronti
er.

http://creativecommons.org/licenses/by/4.0/
https://cyberdyne.it/
https://www.esteco.com/modefrontier
https://www.esteco.com/modefrontier

 SN Computer Science (2020) 1:247247 Page 22 of 23

SN Computer Science

 20. Garcia S, Fernandez A, Luengo J, Herrera F. A study of statis-
tical techniques and performance measures for genetics-based
machine learning: accuracy and interpretability. Soft Comput.
2008;13(10):959–77.

 21. García S, Molina D, Lozano M, Herrera F. A study on the use of
non-parametric tests for analyzing the evolutionary algorithms’
behaviour: a case study on the CEC’2005 Special Session on Real
Parameter Optimization. J Heuristics. 2008;15(6):617–44.

 22. Goudos SK, Sahalos JN. Pareto optimal microwave filter design
using multiobjective differential evolution. IEEE Trans Antennas
Propag. 2010;58(1):132–44.

 23. Hadka D. Moea—a free and open source java framework for mul-
tiobjective optimization. 2011. https ://githu b.com/MOEAF ramew
ork/MOEAF ramew ork

 24. Hadka D. Platypus—multiobjective optimization in python. 2015.
https ://githu b.com/Proje ct-Platy pus/Platy pus

 25. Huband S, Hingston P, Barone L, While L. A review of multiob-
jective test problems and a scalable test problem toolkit. IEEE
Trans Evolut Comput. 2006;10:477–506.

 26. Hussain K, Mohd Salleh MN, Cheng S, Shi Y. Metaheuris-
tic research: a comprehensive survey. Artif Intell Rev.
2019;52(4):2191–233.

 27. Ishibuchi H, Imada R, Masuyama N, Nojima Y. Comparison of
hypervolume, igd and igd+ from the viewpoint of optimal dis-
tributions of solutions. In: Deb K, Goodman E, Coello Coello
CA, Klamroth K, Miettinen K, Mostaghim S, Reed P, editors.
Evolutionary multi-criterion optimization. Springer International
Publishing; 2019. p. 332–45.

 28. Ishibuchi H, Imada R, Setoguchi Y, Nojima Y. Reference point
specification in inverted generational distance for triangular linear
pareto front. IEEE Trans Evolut Comput. 2018;22(6):961–75.

 29. Ishibuchi H, Masuda H, Tanigaki Y, Nojima Y. Modified distance
calculation in generational distance and inverted generational dis-
tance. In: Gaspar-Cunha A, Henggeler Antunes C, Coello CC,
editors. Evolutionary multi-criterion optimization. Springer Inter-
national Publishing; 2015. p. 110–25.

 30. Jakob W, Gorges-Schleuter M, Blume C. Application of genetic
algorithms to task planning and learning. In: Nanderick RMB,
editor. Parallel problem solving from nature, 2nd workshop, lec-
ture notes in computer science. North-Holland Publishing Com-
pany; 1992. p. 291–300.

 31. Kalyanmoy D. Multi objective optimization using evolutionary
algorithms. Wiley. 2001.

 32. Ke L, Zhang Q, Battiti R. Moea/d-aco: a multiobjective evolution-
ary algorithm using decomposition and antcolony. IEEE Trans
Cybern. 2013;43(6):1845–59.

 33. Kukkonen S, Jangam SR, Chakraborti N. Solving the molecular
sequence alignment problem with generalized differential evolu-
tion 3 (gde3). In: 2007 IEEE symposium on computational intel-
ligence in multi-criteria decision-making. New Jersey: Institute of
Electrical and Electronics Engineers (IEEE); 2007. p. 302–09.

 34. Kukkonen S, Lampinen J. Gde3: the third evolution step of gener-
alized differential evolution. In: 2005 IEEE congress on evolution-
ary computation, vol. 1. New Jersey: Institute of Electrical and
Electronics Engineers (IEEE); 2005. p. 443–450..

 35. Li H, Zhang Q. Multiobjective optimization problems with com-
plicated pareto sets, moea/ d and nsga-ii. IEEE Trans Evolut Com-
put. 2009;13(2):284–302.

 36. Li M, Yang S, Liu X. A performance comparison indicator for
pareto front approximations in many-objective optimization. In:
Proceedings of the 17th annual conference on genetic and evolu-
tionary computation. 2015. p. 703–10.

 37. López Jaimes A, Zapotecas-Martínez S, Coello Coello C. An
introduction to multiobjective optimization techniques. In: Gas-
par-Cunha A, Covas JA, editors. Optimization in polymer process-
ing. New York: Nova Science Publishers; 2011. p. 29–57.

 38. Miettinen K. Nonlinear multiobjective optimization, vol. 12. Ber-
lin: Springer; 1999.

 39. Mytilinou V, Kolios AJ. A multi-objective optimisation approach
applied to offshore wind farm location selection. J Ocean Eng Mar
Energy. 2017;3:265–84.

 40. Neri F, Cotta C. Memetic algorithms and memetic comput-
ing optimization: a literature review. Swarm Evolut Comput.
2012;2:1–14.

 41. Qi Y, Ma X, Liu F, Jiao L, Sun J, Wu J. Moea/d with adaptive
weight adjustment. Evolut Comput. 2014;22(2):231–64.

 42. Riquelme N, Von Lücken C, Baran B. Performance metrics in
multi-objective optimization. In: 2015 Latin American computing
conference. 2015. p. 1–11.

 43. Rostami S. Preference focussed many-objective evolutionary com-
putation. Ph.D. thesis, The Manchester Metropolitan University,
UK. 2014

 44. Rostami S, Neri F. Covariance matrix adaptation pareto archived
evolution strategy with hypervolume-sorted adaptive grid algo-
rithm. Integr Comput Aided Eng. 2016;23(4):313–29.

 45. Rostami S, Neri F. A fast hypervolume driven selection mecha-
nism for many-objective optimisation problems. Swarm Evolut
Comput. 2017;34:50–67.

 46. Rostami S, Neri F, Epitropakis M. Progressive preference articula-
tion for decision making in multi-objective optimisation problems.
Integr Comput Aided Eng. 2017;24(4):315–35.

 47. de Alcântara dos Santos Neto P, Britto R, de Andrade Lira Rabêo
R, de Almeida Cruz JJ, Lira WAL. A hybrid approach to sug-
gest software product line portfolios. Appl Soft Comput.
2016;49:1243–55.

 48. Sinha SM. Mathematical programming. Amsterdam: Elsevier;
2005.

 49. Srinivas N, Deb K. Muiltiobjective optimization using non-
dominated sorting in genetic algorithms. Evolut Comput.
1994;2(3):221–48.

 50. Strickler A, Lima JAP, Vergilio SR, Pozo AT. Deriving prod-
ucts for variability test of feature models with a hyper-heuristic
approach. Appl Soft Comput. 2016;49:1232–42.

 51. Sun Y, Yen GG, Yi Z. Igd indicator-based evolutionary algorithm
for many-objective optimization problems. IEEE Trans Evolut
Comput. 2019;23(2):173–87.

 52. Svensson M. Using evolutionary multiobjective optimization
algorithms to evolve lacing patterns for bicycle wheels. Master’s
thesis, NTNU-Trondheim. 2015

 53. Talbi EG. Metaheuristics: from design to implementation. Hobo-
ken: Wiley; 2008.

 54. Tian Y, Cheng R, Zhang X, Jin Y. Platemo: a matlab platform for
evolutionary multi-objective optimization [educational forum].
IEEE Comput Intell Mag. 2017;12(4):73–87.

 55. Wilcoxon F. Individual comparisons by ranking methods. Biometr
Bull. 1945;1:80–3.

 56. Wilson K, Rostami S. On the integrity of performance compari-
son for evolutionary multi-objective optimisation algorithms. In:
Lotfi A, Bouchachia H, Gegov A, Langensiepen C, McGinnity M,
editors. Advances in computational intelligence systems. Berlin:
Springer; 2019. p. 3–15.

 57. Zhang Q, Li H. Moea/d: a multiobjective evolutionary algo-
rithm based on decomposition. IEEE Trans Evolut Comput.
2007;11(6):712–31.

 58. Zhang Q, Liu W, Li H. The performance of a new version of
moea/d on cec09 unconstrained mop test instances. In: 2009 IEEE
congress on evolutionary computation. 2009. p. 203–208.

 59. Zitzler E, Deb K, Thiele L. Comparison of multiobjective
evolutionary algorithms: empirical results. Evolut Comput.
2000;8(2):173–95.

https://github.com/MOEAFramework/MOEAFramework
https://github.com/MOEAFramework/MOEAFramework
https://github.com/Project-Platypus/Platypus

SN Computer Science (2020) 1:247 Page 23 of 23 247

SN Computer Science

 60. Zitzler E, Thiele L. An evolutionary algorithm for multiobjective
optimization: the strength pareto approach. Tech. Rep. 43, Swiss
Federal Institute of Technology. 1998.

 61. Carrasco J, García S, Rueda MM, Das S, Herrera F. Recent trends
in the use of statistical tests for comparing swarm and evolution-
ary computing algorithms: Practical guidelines and a critical
review. Swarm and Evolutionary Computation. 2020;54:100665.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	On Algorithmic Descriptions and Software Implementations for Multi-objective Optimisation: A Comparative Study
	Abstract
	Introduction
	Basic Definitions and Notation
	Algorithmic Frameworks in This Study
	Non-dominated Sorting Genetic Algorithm II
	Generalized Differential Evolution 3
	Multi-objective Evolutionary Algorithm Based on Decomposition with Dynamic Resource Allocation

	Software Implementations of the Algorithmic Frameworks
	Experimental Setup
	Test Problems
	Parameter Setting
	Comparison Method

	Experimental Results and Discussion
	Differences in the Implementations
	NSGA-II
	GDE3
	MOEAD-DRA

	Conclusion
	References

