
Vol.:(0123456789)

SN Computer Science (2020) 1:231
https://doi.org/10.1007/s42979-020-00242-8

SN Computer Science

ORIGINAL RESEARCH

Conditional Schedules for Processes with Temporal Constraints

Johann Eder1 · Marco Franceschetti1 · Josef Lubas1

Received: 4 May 2020 / Accepted: 24 June 2020 / Published online: 14 July 2020
© The Author(s) 2020

Abstract
Temporal aspects are among the most important quality criteria for executing business processes. It is mandatory to check process
definitions at design time for temporal properties to avoid that structural properties of process models cause time failures at run-time.
Here, we propose to check process models for conditional controllability and to compute conditional schedules for their execution
without time failures. Schedules have to be conditional, since it is a characteristics of business processes, that control flow decisions
are based on conditions, which can only be evaluated in the course of process execution at run-time and not before the process
starts. We present a procedure for checking the conditional controllability of processes with temporal constraints, which is both
sound and complete and effectively and efficiently computes conditional schedules for temporally constrained business processes.

Keywords Process scheduling · Contingent durations · Controllability · Temporal constraints · Process modelling

Introduction

Processes have been successfully introduced for modeling the
dynamics in many areas like trade, production, health care,
etc. in various forms like workflows [23], extended transac-
tions [29], business processes [13], web-service orchestra-
tions [11], distributed workflows [22], etc. In many of these
application areas, temporal aspects are crucial for the correct
and admissible execution of processes. This observation led
to a substantial body of research to master the plenitude of
temporal aspects of process engineering: expressing tempo-
ral aspects in process models, formulating different notions
of correctness of process models with temporal constraints,
checking the temporal correctness of process definitions,
computing execution schedules for processes, recognizing
and handling temporal exceptions, and supporting process
controllers to adhere to temporal constraints at run-time with
proactive time management (see [5, 20, 25] for overviews).

What is the right correctness criterion for temporally
constrained processes? Satisfiability, or conformance [10,
17] turned out to be not sufficient, respectively, not strong

enough, because satisfiability only checks, whether there
exists an execution of the process without time failures.
However, the execution might depend on factors, which can-
not be influenced by the process controller. Hence the pro-
cess controller cannot guarantee that the execution will be
free of time failures. Therefore, the notion of controllability
of process definitions [10, 36] gained support. In a nutshell:
the concept of controllability regards a process definition as
correct, if it is possible to state a schedule such that all tem-
poral constraints are obeyed, if all process steps are executed
within the intervals defined in the schedule [9]. Controllabil-
ity guarantees a correct execution for all foreseeable circum-
stances. Nevertheless, strict controllability is quite restric-
tive, such that more relaxed notions were developed, which
still hold the guarantee. Conditional controllability (also
called history dependent controllability [10, 14]) allows that
the execution interval for a step in a conditional schedule
depends on the observations of flow decisions, if these flow
decisions happen before the activation of this step. Dynamic
controllability relaxes this notion even further and requires
that there is an execution strategy for a process controller to
make decisions based on all observations (flow decisions
and observed duration of activities) temporally prior to the
enactment of an activity such that no temporal constraint is
violated. Similar problems where studied in the area of AI
and in the area of constraint satisfaction in form of temporal
constraint networks of different flavors as described in [8].

Several algorithms for checking controllability resp.
dynamic controllability of process definitions with several

This article is part of the topical collection “Future Data and
Security Engineering 2019” guest edited by Tran Khanh Dang.

 * Johann Eder
 johann.eder@aau.at

1 Department of Informatics-Systems, Alpen-Adria
Universität Klagenfurt, Klagenfurt, Austria

http://orcid.org/0000-0001-6050-468X
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-020-00242-8&domain=pdf

 SN Computer Science (2020) 1:231231 Page 2 of 18

SN Computer Science

sets of temporal constraints have been proposed for differ-
ent flavors of process models, e.g., [2, 3, 6, 8, 15, 26, 27, 30,
37]. Nevertheless, an algorithm which is computationally
feasible, both sound and complete and effectively computes
a conditional schedule was still missing. It is the ambition of
this paper to contribute to closing this gap. We build on our
earlier approaches for checking the correctness of tempo-
ral process specifications and the computation of execution
plans (schedules) [17–19, 21]. This paper is based on [14]
and extends it with several optimizations of the algorithms
reducing the average case complexity, increasing practical
scalability and improving the performance of computing
conditional schedules.

We present our methods with a seemingly rather sim-
ple model for defining processes with temporal constraints:
we only consider contingent nodes and upper-bound con-
straints on end-events of activities. This is, however, without
loss of generality, as it does not cause any restriction of the
expressiveness. We can show, that our lean process model is
expressive enough to also express non-contingency of activi-
ties, lower-bound constraints, constraints on the start-events
of activities, and contingent and non-contingent constraints
on links between activities [16].

The particular contributions of this paper are:

– We provide a formalization of conditional controllability.
– We propose a procedure for checking the conditional con-

trollability of temporally constrained process definitions
and proof that it is both sound and complete.

– This algorithm also computes a conditional schedule.
– We proof that the problem of computing a conditional

schedule for a temporally constrained process has expo-
nential complexity in the worst case.

– We provide optimizations for computing conditional
schedules where the complexity corresponds to the intri-
cacy of mutually influencing temporal constraints and
structural characteristics.

The rest of this paper is organized as follows: first, we define
our process modelling notation. Given that, we introduce
schedules and controllability, and in the next section, we pre-
sent an algorithm for computing schedules. In the following
section, we introduce conditional schedules and conditional
controllability and the notion of an unfolded graph, and we
show the relationship between conditional controllability
and the controllability of an unfolded process. After that, we
analyse the complexity of conditional schedules. In the fol-
lowing section, we show an improved algorithm for checking
conditional controllability with a partially unfolded process
graph. Later we present an implementation and report on a
series of experiments with the proposed algorithms. In the

last sections, we contrast our approach to related work and
draw some conclusions.

Process Model with Temporal Constraints

We consider here a minimal but quite expressive process
model: we focus on the standard minimum workflow con-
trol patterns [35]: acyclic workflow nets composed of
nodes and edges. Some of the nodes are XOR-splits and
-joins. All other nodes contain implicitly AND-splits and
-joins. XOR-splits have exactly 2 outgoing and XOR-joins
1 or 2 incoming nodes. XOR-joins have the semantics of
simple merge, i.e., it is not possible that more than pre-
decessors of an XOR-join node will be executed in a sin-
gle process instance. For all nodes with the exception of
XOR-splits: if there are several successor nodes, then the
semantics is that of an (implicit) AND-split. For all nodes
with the exception of XOR-joins: if there are several pre-
decessors the semantics is that of an AND-join.

This definition of a process graph is a relaxation of the
usual workflow net definitions [34] and it is easy to see
that all traditional workflow nets can easily be expressed
in this formalism. Nevertheless, we introduce the model
below, as it makes the transformations we propose in the
following sections for checking controllability a lot easier
and more comprehensive and does not require to introduce
an additional model for the result of unfolding operations.

In addition, we consider the following temporal infor-
mation and constraints: minimum and maximum duration
of nodes, and upper-bound constraints. See Fig.1 as an
example for such a process with labels, discussed below.
Activities are represented as rectangles with their activ-
ity name (e.g., G, their minimum and maximum duration
(e.g., 5..8) and their labels (e.g.,{p,¬p} . XOR-split nodes
are represented as diamonds, XOR-join nodes as shaded
diamonds. Upper-bound constraints are represented as
dashed arrows from destination to source.

Temporal aspects are represented by durations and time
points in form of real numbers, where all durations have
to be greater or equal 0. Time points are represented as
distance to a time origin (here usually the time point of the
start of a process). Activity instances start at a certain time
point (time point for the start event of an activity instance)
and end at a certain time point (end event); their distance
is the duration of an activity instance.

In the following we only consider contingent activities.
The duration of contingent activities can only be observed
by the process controller, but not influenced. The pro-
cess controller can only rely on the actual duration being
between the minimum and maximum duration specified.

In analogy to [8], we use propositional labels for nodes
to indicate through which path(s) a node can be reached,

SN Computer Science (2020) 1:231 Page 3 of 18 231

SN Computer Science

i.e., which decisions were taken to reach a node. In con-
trast to [8], we define a label as a set of different possible
decisions which can lead to the considered node. We for-
mally define the basis for representing these paths and for
comparing these paths below.

Definition 1 (Propositional Terms) Let L be a set of prop-
ositional letters. Let p ∈ L : then p and ¬p are literals, L
is the set of all literals over L. Let l1,… ln be literals, then
l1 ∧⋯ ∧ ln are conjunctive terms.

We call t a minterm over a set of letters L, if t is a con-
junctive term over the set of literals L and for each p ∈ L
either p or ¬p appears in t. M(L) is the set of all minterms
over L.

Two terms t1, t2 are compatible (t1 ≃ t2), if there exist a
minterm t ∈ M(L) such that t → t1 ∧ t → t2.

Two sets of conjunctive terms T1 and T2 are compat-
ible, (T1 ≃ T2), iff ∀t1 ∈ T1 ∃t2 ∈ T2 with (t1 ≃ t2), and
∀t2 ∈ T2 ∃t1 ∈ T1 with (t1 ≃ t2).

Let T = T1,…Tn be sets of conjunctive terms
over L . We define the cross conjunction of T as ⨂

T = {t1 ∧⋯ ∧ tn�ti ∈ Ti, 1 ≤ i ≤ n}.

We assign a unique propositional letter p to each XOR-
split and adorn one outgoing edge of the split node with p,
the other with ¬p . The labels, we assign to the nodes, are
sets of conjunctive terms over the propositional letters of
predecessors of these nodes. Each term in the label of a
node represents a different path to reach this node. In other
terms it represents all possible combinations of decisions at
XOR-split nodes leading to this node. In the following we
define the representation of the model in form of a process
graph formally.

Definition 2 (Process Graph) Let N be a set of nodes,
E ⊆ N × N a set of edges, B ⊆ N × N ×ℝ a set of temporal

constraints, and L a set of propositional letters. P(N, E, B, L)
is a temporally constrained process graph, iff (N, E) forms a
connected directed acyclic graph.

A node n has the following properties:
Type: n.type ∈ {node, xs, xj} , where xs represents Xor-

split and xj Xor-join.
Label: n.L ∈ P(L)

Duration: n.dmin (minimum duration) and n.dmax (maxi-
mum duration).

A n e d g e e ∈ E h a s t h e p r o p e r t y
e.l ∈ {True} ∪ L ∪ {¬l|l ∈ L}.

Constraints: B consist of upper-bound constraints, (s, d, �)
representing the constraint d ≤ s + � , where s ∈ N is called
the source and d ∈ N is called the destination node, and
� ≥ 0 is some real.

The function x.l assigns a unique propositional letter
p ∈ L to each Xor-split node x ∈ N . For each Xor-split node
x there are two outgoing edges e1 and e2 in E with e1.l = x.l
and e2.l = ¬x.l . All other edges have the label True.

A process graph has 1 start node, which has no predeces-
sor and at least 1 stop node which has no successor. There is
a path from the start node to every stop node. Every node is
on a path from the start node to a stop node. A node of type
xs has exactly 2 successor nodes, a node of type xj can have
one or two predecessor nodes.

E+ denotes the transitive closure of E. For a node n,
n.Pred denotes the set of all direct predecessors of n:
n.Pred ∶= {m|∃(m, n) ∈ E} , and n.Succ the set of all direct
successors of n: n.Succ ∶= {m|∃(n,m) ∈ E} . n.Pred+
denotes the set of all (direct or indirect) predecessors of n:
n.Pred+ ∶= {m|∃(m, n) ∈ E+} , and n.Succ+ is the set of all
successor of n: n.Succ+ ∶= {m|∃(n,m) ∈ E+}.

The label of a node n is defined as (1) n.L = {True} , if n
is a start node; (2) n.L =

⋃
m∈n.Pred m.L , if n.type = xj ; (3)

n.L =
⨂

{m.L�m ∈ n.Pred} for any other node. ◻

Fig. 1 Process graph with labels

 SN Computer Science (2020) 1:231231 Page 4 of 18

SN Computer Science

It is easy to see that every well formed workflow net [34]
can be represented as process graph according to the defini-
tion above. Figure 1 shows an example for a process graph
with labels. The activities are represented as rectangles with
their names, minimum and maximum duration, and labels.
White diamonds represent XOR-split nodes and black dia-
monds XOR-join nodes. Upper-bound constraints ubc(s, d, �)
are shown as dotted arcs from destination d to source node
s with the label �.

To avoid questionable process definitions with impossi-
ble paths, ill defined joins and void constraints we define
requirements for well-formed process graphs: for simple-
merge XOR-joins it must not happen that both of its prede-
cessor are executed in a single instance, i.e. the predeces-
sors of an XOR-join node must have disjoint labels. If a
node has several predecessors (implicit And-join) all these
predecessors have equivalent labels. For all nodes except
(except XOR-join nodes) we require that their predecessors
are not mutually exclusive, i.e., False must not appear in
labels of nodes. The stop nodes are mutually exclusive. And
finally, for source and destination nodes of an upper bound
constraint there has to be the possibility for an instance of
the process in which both are activated - requiring that their
labels are compatible.

Definition 3 (Well-Formed Process Graph) A process graph
P(N, E, B, L) is well-formed, iff

(1) ∀n, n1, n2 ∈ N ∶ n.type = xj, n1 ≠ n2, (n1, n), (n2, n) ∈

E ⇒ n1.L ∧ n2.L → False , and
(2) ∀n ∈ N ∀p ∈ n.L ∶ p ≠ False , and
(3) ∀s, s� ∈ N ∶ ∄(s, n) ∈ E ∶ ∀t ∈ M⇐L⇒ ∶ t → s.L ⇒

¬(t → s
�.L) , and

(4) ∀(s, d, �) ∈ B ∶ ∃t ∈ M(L) ∶ t → s.L, t → d.L

In the following, we assume that all process graphs are
well-formed. Below we formalize some properties of well
formed process graphs which we will need later. The first
observation is that the terms in the label of a node are pair-
wise disjoint.

Lemma 1 For a well-formed process graph P(N, E, B, L),
∀n ∈ N,∀p1 ≠ p2 ∈ n.L ∶ ¬(p1 ∧ p2).

Proof Follows from Definitions 2 and 4. ◻

The next lemma states that for all nodes except XOR-join
nodes, the label implies the label of the predecessor nodes.

Lemma 2 For a well-formed process graph P(N, E, B, L),
∀n ∈ N, n.type ≠ xj ∀p ∈ n.L ∀m ∈ n.Pred ∶ p → m.L.

Proof Follows from Definition 4(2): if the labels of the pre-
decessor of a node are incompatible, then the cross product
of their labels would contain False, which is a contradiction
to P being well-formed. ◻

We define 2 nodes as parallel if they can be both in one
run, but neither is successor of the other.

Definition 4 (Parallel) Two nodes n,m ∈ N a well-
formed process graph P(N, E, B, L) are parallel (n||m), iff
n ∉ m.Succ+ , m ∉ n.Succ+ , ∃t ∈ M⇐L⇒ ∶ (t → n.L) ∧ (t → m.L).

Lemma 3 For a well-formed process graph P(N, E, B, L),
∀n,m ∈ N with n||m the following holds:

(1) ∃a ∈ N, a.type ≠ xs, n,m ∈ a.Succ+,
(2) ∀p ∈ n.L∃q ∈ m.L ∶ p ≃ q,
(3) ∀r ∈ a.L,∀p ∈ n.Lp → r,∀q ∈ m.L ∶ p → r ∧ q → r ⇒ p ≃ q.

Proof

(1) If n and m are not successors in one way or the other,
and they are not mutually exclusive, they they must
have a common ancestor, which is not an XOR-split
node, since all nodes are successors of the start node.

(2) Definition 4(3) requires that both have a common suc-
cessor, which is not an XOR-join, and then, the lemma
follows from Lemma 2.

(3) The immediate successors of a node which is not an
XOR-split-node have the same labels. Parallel succes-
sors of a node can only have those propositional letters
in their labels in common, which are already in the
letter of their common predecessor (there cannot be
the same XOR-split node between n resp. m and their
closest common predecessor node. Hence, (3) follows
from Lemmas 1 and 2. ◻

The lemma above states that if 2 nodes are not successors
or mutually exclusive then they can both appear in a run
independent of the path by which they are reached.

Schedules and Controllability

Now, we can define the semantics of the temporal constraints
by defining which possible execution scenarios (traces with
time stamps) are considered as correct. Then we define
schedules as a definition of admissible intervals for the start
and end events of the nodes in a process graph. Based on
these definitions, we can define the properties of control-
lability and dynamic controllability as notions of the cor-
rectness of a process definition with temporal constraints.

SN Computer Science (2020) 1:231 Page 5 of 18 231

SN Computer Science

Definition 5 (Scenario) A scenario S̄ for a process
P(N, E, B, L) associates each n ∈ N : with 2 timestamps ts
and te , the time points of the start and end events of a process
instance.

Definition 6 (Valid Scenario) A scenario S̄ for a process
P(N, E, B, L) is valid, iff the following constraints hold:
∀n,m ∈ N

(1) n.ts + n.dmin ≤ n.te ≤ n.ts + n.dmax,
(2) n ∈ m.Pred+ ⇒ n.te ≤ m.ts , and
(3) (n,m, �) ∈ B ⇒ m.te ≤ n.te + �.

A schedule defines execution intervals for activities.

Definition 7 (Schedule) A schedule S for a process
P(N, E, B, L) associates each n ∈ N with (Fs, Ts) and (Fe, Te) ,
execution intervals for start and end events. We write
(n, (Fs, Ts), (Fe, Te) ∈ S for a schedule entry.

In this definition Fs (From start) represents the earliest
time point for starting node n, Ts (To start) the latest time
point for starting n, and Fe (From end) the earliest time point
for finishing n, and finally Te (To end) the latest time point
for finishing n.

The property of controllability of a process requires that
there is a schedule for the process, such that all scenarios
are valid, for which the time-stamps of the scenarios are
taken from the respective intervals of this schedule. In the
following, we will call a schedule with such a property con-
trollability schedule.

Definition 8 (Controllability) A process P(N, E, B, L)
is controllable, iff it has a schedule S (controllabil-
ity schedule), such that each scenario S̄ for P is valid, if
∀n n.Fs ≤ n.ts ≤ n.Ts and n.Fe ≤ n.te ≤ n.Te.

This definition of controllability leads to rather rigid
schedules as controllability schedules, in which the start of
each activity is fixed to a single point in time instead of a
time interval. In practice, for some activities, an interval is
expected. Nevertheless, we follow here the usual definitions,
which are sufficient for theoretical considerations on con-
trollability and conditional controllability. This more rigid
definition is also easier and does not cause a loss of general-
ity. However, we consider that the definition of controllabil-
ity can be relaxed to allow more flexible schedules without
sacrificing the notion and the check-ability of controllability,
and our definition of schedule already cares for these less
rigid definitions.

Lemma 4 In each controllability schedule n.Fs = n.Ts has
to hold for all nodes n.

Proof If n starts at Ts then it has to finish before
Ts + n.dmax ; if it starts at Fs , then it could finish at Fs + d
or later. Hence, n.d ≤ Fe − Ts ≤ Te − Fs ≤ n.dmax , or
n.Ts + n.dmax ≤ n.Te ≤ n.Fs + n.dmax can only be satisfied if
n.Ts = n.Fs and n.Te = n.Fs + n.dmax has to hold, which is
only possible, if Ts = Fs ◻

Next, we define, when we regard a schedule as correct.
As might be expected, we are able to proof, that correct
schedules imply controllability.

Definition 9 (Correct Schedule) A schedule S of
a process P(N, E, B, L) is correct, iff ∀n,m ∈ N ,
∀(n, (Fs, Ts), (Fe, Te)) ∈ S , ∀(m, (F�

s
, T �

s
), (F�

e
, T �

e
)) ∈ S :

(1) Fe = Ts + n.dmin,
(2) Te = Fs + n.dmax,
(3) Fe + n.dmax − n.dmin ≤ Te,
(4) n ∈ m.Pred ⇒ Te ≤ F�

s
,

(5) (n,m, �) ∈ B, n.L ≃ m.L ⇒ T �
e
≤ Fe + �.

In this definition, the last item requires that the end event
of the destination node m is at most � time units after the
end event of the source node n, if there is an instance type
which contains both n and m. This is the case, if the labels
of n and m are not contradictory (n.L ≃ m.L). If no instance
type contains both source and destination node (their labels
are contradictory), then the upper-bound constraint is trivi-
ally satisfied.

Lemma 5 (Controllability Schedule) A process is control-
lable, iff it has a correct schedule.

Proof That a correct schedule fulfills all requirements of a
controllability schedule follows immediately from the defini-
tions. In the other direction: it is easy to see that each con-
trollability schedule is correct. ◻

All time points and durations in the definition of a tem-
porally constrained process are always relative to the pro-
cess start. If a schedule exists for a process, we can shift
the schedule as long as we maintain the relative position of
each event, i.e. we can add an integer to all start- and end-
times. Therefore, if a schedule exists, actually a manifold
of schedules exist, in particular one, where the start time of
the process is 0.

Lemma 6 (0-Schedule) If there is a correct schedule S for
P(N, E, B, L), then for each n ∈ N there is a correct condi-
tional schedule S0

n
 with n.Fs = n.Ts = 0.

 SN Computer Science (2020) 1:231231 Page 6 of 18

SN Computer Science

Proof Let S be a correct schedule, let n ∈ N , let
(n, (�s, �s), (�

�, ���)) ∈ S . Then, S0
n
 is derived from S by adding

−�s to all From and To values in S. S0
n
 is a correct schedule,

because adding a scalar � is an equivalence transformation
for the inequalities of Definition 9 and n.Fs = n.Ts = 0 . □

With this lemma, we know that it is sufficient to check
whether a schedule exists in which the start node of the pro-
cess starts at time point 0.

Computation of Schedules

In this section we combine the checking, whether a pro-
cess is controllable, with the actual computation of a correct
schedule for a process. For the rest of this section we assume
that a process has a deadline (�), i.e., an upper-bound con-
straint from the start node to all end nodes of the process.
In [14] we presented an algorithm without this assumption,
which splits up a process graph into cliques (strong con-
nected components), computes a schedule for each clique
and then stitches together a complete schedule from these
component schedules. In this paper, we essentially assume
the whole process graph is one clique by assuming a dead-
line. However, with reference to [14], we claim that this is
without loss of generality.

For computing a schedule for a temporally constrained
process we use an intermediary structure called schedule
frame (formerly also known as (unfolded) timed graph [14,
18, 19]). The schedule frame of a process P has the same
structure as P, but has additional attributes for each node.

Figure 2 shows the schedule frame for the process of
Fig. 1. Activities are represented as rectangles with their
activity name (e.g., G, their minimum and maximum dura-
tion (e.g. 5..8) and their labels (e.g., {p,¬p} . XOR-split
nodes are represented as diamonds, XOR-join nodes as

shaded diamonds. Upper-bound constraints are repre-
sented as dashed arrows from destination to source. Each
node shows the name of the activity, and the minimum and
maximum duration in the top line. Below the values for
Eb, Lb,Ew, andLw are given.

In a schedule frame we consider intervals for the end
event of each node x for each term in x.L. We will show later
that all entries of a 0-schedule have to be within these inter-
vals. The intervals are defined in terms of E- and L-values. A
node n of the schedule frame cannot finish before n.Eb (Earli-
est time point best case), if all contingent activities up to n
finish at their minimum duration. It cannot finish before n.Ew
(Earliest time point worst case), if they take their maximum
duration. The L-values represent time points when a node
has to finish at the latest, to satisfy all temporal constraints:
if n finishes before n.Lb all constraints are satisfied, if all
succeeding contingent activities only take their minimum
duration; if n finishes before n.Lw all constraints are satisfied,
even if all succeeding activities use their maximum duration.

Definition 10 (Schedule Frame) U(N, E, L, B) is a schedule
frame for a process P(N, E, L, B) with each n ∈ N associated
with intervals for end events of activities: Eb,Ew, Lw, Lb . A
schedule frame is correct , iff ∀n ∈ N,∀m ∈ n.Pred :

(1) n.Ew ≤ n.Lw,
(2) m.Ew + n.dmax ≤ n.Ew,
(3) m.Eb + n.dmin ≤ n.Eb,
(4) m.Lw + n.dmax ≤ n.Lw,
(5) m.Lb + n.dmin ≤ n.Lb,
(6) ∀(s, d, �) ∈ B, s.Eb + � ≤ d.Ew,
(7) ∀(s, d, �) ∈ B, s.Lw + d ≤ d.Lb

We now analyze the relationship between a schedule
frame and a schedule. It is easy to see that a schedule
frame is more general than a schedule. However, as we

Fig. 2 Correct schedule frame

SN Computer Science (2020) 1:231 Page 7 of 18 231

SN Computer Science

describe precisely in the next Lemma, processes either
have both or none.

Lemma 7 A temporally constrained process graph has a cor-
rect schedule, iff it has correct schedule frame.

Proof Algorithm 1 (CompS) computes a schedule from
a correct schedule frame. We can show that this sched-
ule frame is correct by checking all conditions of Defini-
tion 9 assuming the conditions of Definition 10 to hold.
On the other hand, the values of a correct schedule can be
immediately used for a correct schedule frame by setting
n.Eb = n.Ew = n.Fe and n.Lb = n.Lw = n.Fs for each n. ◻

Algorithm 1 CompS(U) Compute schedule from a correct schedule frame
1: {Input: U(N,E,L,B) correct schedule frame}
2: {Output: correct schedule S}
3: s :=start node in U
4: {Schedule entries for start nodes}
5: s.Fs := s.Eb − s.dmin; s.Ts := s.Fs

6: s.Fe := s.Eb; s.Te := s.Fe + s.dmax − s.dmin

7: for all n ∈ N − {s} in a topological order do
8: n.Fs := max({n.Eb − n.dmin} ∪ {m.Te|m ∈ n.Pred})
9: n.Ts := n.Fs

10: n.Fe := n.Fs + n.dmin

11: n.Te := n.Ts + n.dmax

12: end for
13: return

The procedure of computing a correct schedule frame
(Algorithm 2) consists of the following steps. First, we ini-
tialize the temporal values of the schedule frame: the E val-
ues of all nodes are set to 0, and the L values of all nodes
are set to the deadline � (for ubc(start, end,�)). Then we
compute the schedule frame according to the structural con-
straints defined by the topology of the graph by forward
calculation of E values and backward calculation of L val-
ues. Then we check all upper-bound constraints. If an upper-
bound constraint is violated, we incorporate it by increas-
ing the E values of the source node and/or the L values of
the destination node. This procedure is repeated, until all
constraints are satisfied, or there is a node n, for which the
invariant n.E < n.L is violated and hence no solution exists.
This algorithm is an adaption of the algorithms presented in
[19] to also deal with contingent activities.

Algorithm 2 CompTG(U,Ω) returns: Boolean – Compute correct schedule
frame U with deadline Ω
1: {Input: U(N,E,L,B) is a schedule frame}
2: {Output: return True and correct schedule frame or return False}
3: ok := False
4: for all n inN do
5: n.Eb, Ew := 0;Lb, Lw := Ω
6: end for
7: while not ok do
8: ok:= true
9: for all n ∈ N in a topological order do

10: {forward calculation}
11: n.Eb := max({n.Eb} ∪ {p.Eb + n.dmin|p ∈ n.Pred})
12: n.Ew := max({n.Ew, n.Eb + n.dmax − n.dmin} ∪ {p.Ew + n.dmax|p ∈

n.Pred})
13: if n.Lw < n.Ew then
14: return False
15: end if
16: end for
17: for all n ∈ N in a reverse topological order do
18: {backward calculation}
19: n.Lw := min({n.Lw} ∪ {s.Lw − s.dmax|s ∈ n.Succ})
20: n.Lb := min({n.Lb} ∪ {s.Lb − s.dmin|s ∈ n.Succ})
21: if n.Lw < n.Ew then
22: return False
23: end if
24: end for
25: for all (s, d, δ) ∈ B do
26: {incorporation of upper-bound constraints}
27: if δ < (d.Ew − s.Eb) then
28: ok:= false
29: s.Eb := max(s.Eb, d.Ew − δ)
30: s.Ew := max(s.Ew, s.Eb)
31: end if
32: if δ < (d.Lb − s.Lw) then
33: ok:= false
34: d.Lb := min(d.Lb, s.Lw + δ)
35: d.Lw := min(d.Lw, d.Lb)
36: end if
37: end for
38: end while
39: return True

Figure 2 shows the schedule frame for the our exam-
ple in Fig. 1 with the E and L values of each node after
CompTG finished successfully.

The next theorem states that the CompTG procedure is
sound and complete, which means that if there is a cor-
rect schedule for a temporally constrained process then
the procedure will compute a correct schedule and return
TRUE, and if there is no correct schedule for the process
it will return FALSE.

Theorem 1 CompTG (Algorithm 2) is sound and complete
in the sense that (a) if it returns TRUE then the computed
schedule frame is correct, and (b) if it returns FALSE then
there is no correct schedule frame.

 SN Computer Science (2020) 1:231231 Page 8 of 18

SN Computer Science

Proof Soundness can be easily shown as in CompTG all
conditions for a correct schedule frame are either checked
explicitly in the algorithm or are ensured by the assignments
in the forward and backward calculations. ◻

For showing completeness we refer to Lemma 6 and the
overall deadline � such that no correct schedule entry can
have a value outside the interval [0,�] can be valid. Hence
the schedule frame is correctly initialized. Furthermore, we
observe that for every node every execution interval of a
correct conditional 0-schedule has to be within the interval
of E and L values with which the schedule frame is initial-
ized. In addition, it is easy to show that the requirements of
correctness for a conditional schedule are more strict than
for a correct schedule frame. The forward resp. backward
calculations set the E values resp. L values to the lowest
resp. greatest values that satisfy the conditions (1) to (5) of
Definition 10. The algorithm iteratively checks all temporal
constraints. If an inequality in the definition of a constraint
is violated the algorithm sets the E values to the smallest
and L values to the greatest values such that this inequal-
ity is satisfied and thus computes the largest interval which
avoids this violation. So if the algorithm cannot compute a
correct schedule frame, there is no correct schedule frame
(and hence also no correct conditional schedule). ◻

With this theorem, we can conclude that applying the
CompTG procedure to a temporally constrained process with
a deadline is a sound and complete algorithm for checking
its controllability.

Conditional Schedules and Conditional
Controllability

As discussed above, a process is controllable if it admits a
schedule. This notion is known to be too restrictive [17, 27]
and therefore, the notion of a history-dependent or condi-
tional schedule was introduced [10, 14, 17], which offers
the possibility to define the execution intervals for a node
depending on past decisions or observations. In the defini-
tion of conditional controllability, we use here, the execution
interval of a node might depend on the observed outcomes of
XOR-splits preceding this node. There are other more gen-
eral definitions of dynamic controllability [3, 8, 27], which
allow all information (in particular start and end time of
contingent activities), which temporally precedes the node,
can be used by a node to define its allowed time interval.

Now, we can define the semantics of the temporal con-
straints by defining, which possible execution scenarios
(traces with time stamps) are considered as correct. A con-
ditional scenario takes into account that not every node of
the process appears in every process instance due to XOR-
splits. The possible combinations of nodes are determined
by any possible combination of decisions which are in turn
represented by all minterms over the propositional letters of
the process definition. In such a conditional scenario a node
n can have different time points for different minterms. A
conditional scenario is valid, if each of its scenario projec-
tions (defined by a particular minterm) is a valid scenario.

Definition 11 (Conditional Scenario) A conditional scenario
S̄ for P(N, E, L, B) associates for each t ∈ M(L) each n ∈ N
with t → n.L with 2 timestamps ts and te , the time points
of the start and end events of a process instance. We call
(t, n, ts, te) ∈ S̄ a scenario entry.

S̄ is valid, iff ∀t ∈ M⇐L⇒ ∀(t, n, nt
s
, nt

e
), (t,m,mt

s
,mt

e
) ∈ S̄

(1) nts + n.dmin ≤ nte ≤ nts + n.dmax,
(2) n ∈ m.Pred+ ⇒ nte ≤ mts , and
(3) ∀(n,m, �) ∈ B ∶ mte ≤ nte + �.

In a conditional schedule, the execution interval for a
node n in the process graph may depend only on the deci-
sions taken before the execution of n. The decisions are
observed by monitoring which outgoing edge of XOR split
nodes preceding n were taken, resp. which successors of an
XOR-split were enabled. Therefore, different paths to a node
n might lead to different execution intervals for n. The label
of a node n in a process graph P exactly contains the differ-
ent possibilities for reaching this node. So in a conditional
schedule we assign (possibly different) execution intervals
to each node for each of the terms in its label. As it is pos-
sible to assign the same execution interval for different paths
leading to a node, we use a more compact representation and
allow the disjunction of label elements in the definition of
schedule entries.

Definition 12 (Conditional Schedule) A conditional sched-
ule S for a process graph P(N, E, L, B) is a set of sched-
ule entries {(n, q, (Fs, Ts), (Fe, Te))} which associate each
n ∈ N and a propositional term q with intervals for the start
and end events of n, such that for each n ∈ N and for each
p ∈ n.L ∃(n, q, (Fs, Ts), (Fe, Te)) ∈ S with p → q and for each
(n, q, (Fs, Ts), (Fe, Te)) ∈ S there is a set {p1,… , pi} ⊆ n.L
with q ≡ p1 ∨⋯ ∨ pi.

SN Computer Science (2020) 1:231 Page 9 of 18 231

SN Computer Science

Fs (say From start) represents the earliest time point for
starting node n, Ts (To start) the latest time point for starting
n, and Fe (From end) the earliest time point for finishing n,
and finally Te (To end) the latest time point for finishing n.
The definition of conditional controllability requires that a
conditional schedule exists such that each scenario is valid,
if its time points are within the limits of the execution inter-
vals defined in the conditional schedule.

Definition 13 (Conditional Controllability) A process
graph P(N, E, L, B) is conditionally controllable, iff it has a
conditional schedule S such that each conditional scenario
S̄ is valid, if for each minterm t for each scenario entry
(t, n, ts, te) ∈ S̄ for (n, p, (Fs, Ts), (Fe, Te)) ∈ S with t → p :
Fs ≤ ts ≤ Ts and Fe ≤ te ≤ Te.

This definition is well formed since each minterm t
implies at most one term in the label of a node, as all terms
in a label are pairwise disjoint (Lemma 1).

Definition 14 (Correct Conditional Schedule) A conditional
schedule S of a process P(N, E, L, B) is correct, iff ∀n,m ∈ N ,
∀(n, p, (Fs, Ts), (Fe, Te)) ∈ S , ∀(m, q, (F�

s
, T �

s
), (F�

e
, T �

e
)) ∈ S

with p ≃ q

(1) Fe = Ts + n.dmin,
(2) Te = Fs + n.dmax,
(3) Fe + n.dmax − n.dmin ≤ Te,
(4) n ∈ m.Pred+ ⇒ Te ≤ F�

s
,

(5) (n,m, �) ∈ B, p ≃ q ⇒ T �
e
≤ Fe + �.

Lemma 8 A process is conditionally controllable, iff it has
a correct conditional schedule.

Proof From Definitions 12, 13, and 14 we can easily see,
that a correct conditional schedule fulfills all requirements
of a controllability conditional schedule. In the other direc-
tion: each controllability conditional schedule is correct as
it satisfies all conditions of Definition 14. ◻

If a process admits a correct conditional schedule, then
for all nodes n it also admits a correct schedule where the
node n starts at time point 0.

Lemma 9 (Conditional 0-Schedule) If there is a correct
conditional schedule S for P(N, E, L, B), then for each
n ∈ N there is a correct conditional schedule S0

n
 with

n.Fs = n.Ts = 0.

Proof Let S be a correct conditional schedule for a process
P(N, E, L, B), let n ∈ N , let (n, p, (�s, �s), (��, ���)) ∈ S . Then
, S0

n
 is derived from S by adding −�s to all From and To values

in S. S0
n
 is a correct conditional schedule since addition of

scalars is an equivalence transformation for the inequalities
of Definition 14 and n.Fs = n.Ts = 0 . ◻

The major difference between a schedule and a condi-
tional schedule is that a conditional schedule can assign dif-
ferent start times to a node in the process graph, depending
on the different paths by which this node can be reached.

We now define an unfolded process graph (shown in
Fig. 3) which separates all these paths by duplicating a node,
if it can be reached by several paths. The unfolded process
graph is equivalent to the original process graph in that it
admits exactly the same set of traces as the original graph
but separates the possible traces.

In an unfolded process each node of the source process
has a copy for each term in its label and the edges are wired
accordingly, if the predecessor has a compatible label.

Fig. 3 Unfolded process graph
with correct schedule

 SN Computer Science (2020) 1:231231 Page 10 of 18

SN Computer Science

In an unfolded graph each XOR-join node has exactly 1
predecessor.

Definition 15 (Unfolded Graph) U(N , E , L , B)
is an unfolded processes graph for a process
P(N�,E�, L,B�) , i f f N = {(n, l)|n ∈ N�, l ∈ n.L},
E = {((n, l), (m, k))|(n,m) ∈ E�, l ≃ k}, B = {((n, l), (m, k), �)|
(n,m, �) ∈ B

�, l ≃ k}.

Essentially, an unfolded process graph can be constructed
by duplicating all XOR-join nodes, which have more than
one predecessor, and all their successors.

Lemma 1 If P(N�,E�, L,B�) is a well-formed process, then
its unfolded process U(N, E, L, B) is a well formed process.

Proof Let a process graph P(N�,E�, L,B�) be well formed.
Its unfolded process graph is well formed (Definition 4) as

(1) in U each xj-node has only 1 predecessor
(2) ∀(n, p) ∈ N, (n, p).L = {p}andp ≠ False , since P is well

formed.
(3) ∀((s, p), (d, q), �) ∈ B ∶ ∃t ∈ M(L) ∶ t → s.L, t → d.L

holds since p ≃ q according to Definition 15. ◻

Now we can show the relationship between unfolding,
schedules and conditional schedules:

Theorem 2 A process graph is conditionally controllable, iff
its unfolded graph is controllable.

Proof Let P(N�,E�, L,B�) be process,and U(N, E, L, B)
its unfolded process. If P is conditionally controlla-
ble, it has a conditional schedule S′ . It is easy to see that
S = {((n, p), (Fs, Ts), (Fe, Te))|(n, p, (Fs, Ts), (Fe, Te)) ∈ S} is
a correct schedule for U, hence U is controllable. The other
direction follows in analogy. ◻

Figure 3 shows the schedule frame for the unfolded pro-
cess graph of Fig. 1. There are three different occurrences
of node H, as there are 4 different ways how node H can be
reached. Each occurrence is described by a different term
in the label of node H. The E and L values of the differ-
ent occurrences of node H are different which leads to a
conditional schedule, where the start of an activity depends
on the path by which this node is reached. However, not all

occurrences of H have different values are different, a prop-
erty, we will exploit below.

Problem Complexity

In this section, we study the complexity of the problem of
computing conditional schedules by analyzing the possible
size of a conditional schedule for a given process model. We
formalize and show below that in the worst case the size of a
schedule is exponential in the number of XOR-splits.

Theorem 3 (Problem Complexity) Let P(N, E, L, B)
and let x be the number of XOR-split nodes in N
(x = |{n ∈ N|n.type = xs}). The minimum size of a condi-
tional schedule for P is |N| and the maximum necessary size
is |N| ∗ 2x.

Proof For the minimum size: Any conditional schedule con-
tains at least one schedule entry for each activity. Actually,
if a process is controllable, then one schedule entry for each
node is also sufficient, making the number of nodes the mini-
mum size of a conditional schedule. ◻

For the maximum necessary size: The number of different
possible propositional terms in the labels of the nodes is 2x
for x = |{n ∈ N|n.type = xs} , a conditional schedule cannot
be larger than |N|x . We show that the size can be exponen-
tial in the number of XOR-splits by constructing a process
(proof-process) with x XOR-splits with a set of temporal
constraints and show that in its only schedule there is an
activity which has 2x different disjoint scheduling intervals.

Figure 4 shows the pattern for this process. It con-
sist of an activity A followed by n XOR-blocks numbered
from n to 1 followed by activity D. Each XOR-block
Xi, 1 ≤ i ≤ n consists of two alternate activities Bi and Ci .
The min- and max-durations of the nodes are as follows:
Bi.d = Bi.x = 1 and Ci.d = Ci.x = 2i−1 + 1 for all i from 1 to
n, D.d = D.x = 1 . All other nodes have duration 0. We define
the following upper-bound constraints: {(Bi+1,Bi,Ci.d),
(Ci+1,Bi, 1), (Bi + 1,Ci, 1), (Ci+1,Ci, Ci+1.d)|1 ≤ n − 1} ,
(A,Bn, 1) , (A,Cn,Cn.dmin), (B1,D, 1), (C1,D, 1) . After some
calculations it is easy to see that there is only one possi-
ble conditional schedule and in this conditional sched-
ule there are 2n non-overlapping intervals for activity D:
[n + 1, n + 1]… [2n + n] . Figure 5 shows the schedule for
n = 3 . ◻

SN Computer Science (2020) 1:231 Page 11 of 18 231

SN Computer Science

Efficient Computation of Conditional
Schedules

In a straightforward way we can exploit Theorem 2 to real-
ize a procedure to check the conditional controllability of a
process and to compute a conditional schedule: unfold the
process graph and then compute a schedule for the unfolded
process with the presented algorithm. It is easy to see that

this is a sound, complete, and effective procedure. The disad-
vantage of this procedure is, that the complexity of this algo-
rithm is always exponential. In the last section we showed
that indeed such as a procedure has to be exponential in
the number of XOR-split nodes in the worst case. However,
there are more efficient procedures for average cases. In the
best case, i.e., if the process is even strictly controllable,
the size of a conditional schedule is linear in the number of
nodes. Therefore, we aim at more efficient ways for comput-
ing a conditional schedule than by computing a schedule for
the original rather than the unfolded process.

Essentially, our strategy to improve the algorithm aims at
reducing the unfolding of the process graph, thus reducing
the size of the schedule frame for the computation using
partially unfolded graphs. We apply the following strategies:

The size of the schedule frame can be reduced, if not all
nodes are unfolded, but only those relevant for incorporation
of upper-bound constraints.

The goal of unfolding is to separate those paths of a
process graph which are affected by the incorporation of
an upper-bound constraint from those which are not. When
we incorporate an upper-bound constraint, we change E-
and L-values of nodes, which affect the values of other
nodes. We unfold to separate those nodes that have to be
affected by the change of values from those which need
not be changed.

In a partially unfolded process graph a node combines
potentially several nodes of the unfolded processes graph.
So there is not a copy of a node for each term in the label
of the node, but the labels are partitioned into disjoint
subsets of terms and there is a copy for each partition.

Definition 16 (Partially Unfolded Graph) U(N, E, L, B)
= � (P,N) is called a partially unfolded process graph for a
process P(N�,E�,B�, L) , iff

– N = {(n, p)|n ∈ N�, p ⊆ n.L} ,
∀(n, p), (n, q) ∈ N ∶ p = q ∨¬(p ≃ q)

– E = {((n, p), (m, q))|(n,m) ∈ E�, p ≃ q},
– B = {((n, p), (m, q), �)|(n,m, �) ∈ B�, p ≃ q}.

For defining a partially unfolded process graph, it is suf-
ficient to define a partition of the label of each node. The
edges and the constraints are then determined accordingly.

Fig. 4 Pattern for the proof-process

 SN Computer Science (2020) 1:231231 Page 12 of 18

SN Computer Science

Algorithm 3 P-UNFOLD(U) Partial Unfolding of a schedule frame U
1: {U(N, E,L, B) is a partially unfolded schedule frame}
2: for all x ∈ {(n ∈ N |n.type = xj,∃ubc(s, d, δ) ∈ B : n ∈ s.Succ+,∃m ∈

n.Pred,m /∈ s.Succ+} in a reverse topological order do
3: {x is an XOR-join node with 2 predecessors x.Pred1 (s or successor of

s) and x.Pred2 not successor of s}
4: for all n ∈ N do
5: copy[n] := n {initialize copy table}
6: end for
7: M := {x} ∪ x.Succ+

8: for all m ∈ M do
9: {duplicate all nodes after x including x}

10: m′ := CloneNode(m)
11: copy[m] := m′

12: end for
13: {create edges to/from duplicated nodes}
14: E := E ∪ {(copy[m], copy[n])|(m,n) ∈ E, (m ∈ M ∨ n ∈ M)}
15: {The copies are not successors of s}
16: E := E − {(x.Pred2, x), (x.Pred1, copy[x])}
17: {migrate upper bound constraints}
18: for all (s, d, δ) ∈ B|s ∈ M ∨ d ∈ M do
19: if d ∈ s.Succ+ then
20: if s ∈ M then
21: B := B ∪ {(copy[s], copy[d], δ)}
22: end if
23: else
24: a := ccp(s, d)
25: {a is the closest common predecessor of s and d}
26: if a ∈ M then
27: B := B ∪ {(copy[s], d, δ), (s, copy[d], δ), (copy[s], copy[d], δ)}
28: else
29: B := B ∪ {(copy[s], copy[d], δ)}
30: end if
31: end if
32: end for
33: end for
34: return

Which nodes have to be duplicated for a given upper-
bound constraint ubc(s, d, �) ? If we incorporate this upper-
bound constraint, we change the E values of s and the L

values of d. This in turn may cause changes in the pre-
decessors of s and the successors of d. We now have to
check which of these possible affected nodes in a partially
unfolded graph could be duplicated, such that one copy is
affected and the other not.

Let us first check the successors of s. Some of these
nodes might be also reachable by paths which do not
include s. And exactly these nodes form the unfold set of
nodes, as they could be unfolded, such that their twin is
not affected. Therefore, these nodes need to be duplicated
and the partially unfolded graph has to contain 2 copies of
these nodes: one which is a successor of s and one which
does not have s.

If d is a successor of s also d might be included in these
nodes and might be duplicated. If this is the case, only one
copy of d is the destination node of the upper-bound con-
straint, the other not.

In the other direction: all predecessors of d are affected
by a change of d’s L values. It is easy to see, that these nodes
can only be reached through nodes, which are also predeces-
sors of d in an unfolded graph. Hence, the predecessors of d
do not need to be considered for unfolding.

We formalize these considerations in the following
theorem, which states that a process graph is sufficiently
unfolded, if no successor of a source node s of an upper-
bound constraint ubc(s, d, �) is reachable through a path
which does not include this source node s. Formally, this
requires that each successor node of such s have only terms
in their label which imply a term in the label of s.

Fig. 5 Computed conditional
schedule for the proof-process
with the problem size n = 3

SN Computer Science (2020) 1:231 Page 13 of 18 231

SN Computer Science

Definition 17 (Sufficient Unfold) Let P(N�,E�,L,B�) be
a process graph; U(N, E, L, B) = � (P,N) is a partially
unfolded process graph. U is sufficiently unfolded, iff

(1) U is well formed.
(2) ∀ubc(s, d, �) ∈ B : ∀p ∈ s.L ∀q ∈ d.L : (s, {p}) ∈ N ,

(d, {q}) ∈ N.
(3) ∀ubc(s, d, �) ∈ B,

∀n ∈ s.Succ+ ∀p ∈ n.L ∃q ∈ s.L ∶ p → q.

The definition above requires (1) U to be well formed.
This means in particular, that if a node is duplicated, also
its successors are duplicated, as otherwise U would not be
well formed (see Definition 4). It also requires a proper map-
ping of upper-bound constraints, i.e., an upper-bound con-
straint ubc(s, d, �) is included, if all upper-bound constraints
are between nodes which can actually appear in the same
run, technically, if they are both induced by the same mint-
erm over M⇐L⇒ (see Definition 4). Then the definition
requires, that the source nodes of all upper-bound constraints
are fully unfolded, i.e., for each term in their labels, there is
a different node in the graph. The definition also requires (3)
that each successor n of a source node s can only be part of
a scenario, if the source node is also part of it. It also means
that each minterm over L which implies n.L also implies
s.L. Therefore, this condition requires essentially that if the
source node of an upper-bound constraint is unfolded, so are
all its successors.

Theorem 4 Let P(N�,E�, L,B�) be a process graph and
U(N, E, L, B) = � (P,N) a sufficiently unfolded process
graph.

P is conditionally controllable, iff U is controllable.

Proof Let P(N”,E”,B”,L) be a process graph, U’(N’,E’,B’,L)
a sufficiently unfolded graph, and let U(N,E,B,L) be a fully
unfolded graph. ◻

With Theorem 2, we have to show that all cop-
ies of node of a sufficiently unfolded graph in
an unfolded graph have the same values. I.e.
∀n ∈ N��,∀(n,Q) ∈ N�∀q ∈ Q,∀(n, q) ∈ N ∶ (n,Q).Eb = (n, q).Eb ,
etc.

The proof follows the argumentation above: the only con-
dition for values of a correct schedule frame, in which values
of a node do not depend on all of their immediate predeces-
sors, their immediate successor, or their own duration are
the conditions (6) and (7) of Definition 10, i.e. when the
values are determined by an upper-bound constraint. Dif-
ferences in the values of copies (n, p) and (n, q) of the same
node n ∈ N in the schedule frame are only possible, if n is
source or destination of an upper-bound constraint. As the
algorithm only changes the L values of a destination node,

and these changes are propagated to the predecessors of a
node anyhow, their unfolding would not change the values
of these predecessors. Changes to the E values of a source
node s of an upper-bound constraint, however propagates to
all successors, even if they are reachable through different
paths and therefore for runs which do not include S. Condi-
tion (3) of the definition requires, that all successors of a
source node can only be reached through this source node,
which eliminates the possibility above. ◻

With the theorem above, we now develop an algorithm for
computing a sufficiently unfolded graph for an upper-bound
constraint ubc(s, d, �).

We observe that the label of a node is different from the
label of its predecessor node only if it is (i) an XOR-join
node (then the labels of its predecessors are disjoint), or (ii)
the successor of a XOR-split node, where the label of the
successor implies the label of the predecessor.

Each node, which has to be duplicated, has a predecessor
XOR-join node, which also has to be duplicated. A node will
be duplicated, if this preceding XOR-join node is duplicated.
It is therefore sufficient to check for XOR-join nodes, which
are successor of s and which have a direct predecessor, which
is not a successor of s. We therefore define the unfold set for
s as {(n, p) ∈ N|n.type = xj, (n, p) ∈ s.Succ+,∃(m, q) ∈ (n, p).

Pred, (m, q) ∉ s.Succ+} and unfold the graph at these nodes.
Algorithm 7 shows the procedure for partially unfolding

a process graph. It unfolds the graph for all XOR-join nodes
in the unfold set of all upper-bound constraints. Unfolding
at a particular XOR-join node x duplicates all successors of
x and adjusts the edges accordingly.

Now, we study the mapping of an upper-bound constraint
ubc(s, d, �) for the unfolding of one XOR-join node x, which
duplicates some of the nodes. The nodes s, d, and their clos-
est common predecessor a might each be duplicated, with
s′, d′, a′ , respectively, as their possible twins with s′ ≠ s ,
d′ ≠ d , a′ ≠ a , or they are not duplicated which means that
(s� = s , d� = d , a� = a). The following cases have to be
distinguished for the inclusion of additional upper-bound
constraints:

(1) s ≠ s′ and d ≠ d′ and d ∈ s.Succ+ : ubc(s�, d�, �)
(2) s = s� and d ≠ d′ , d ∈ s.Succ+ , and d� ∈ s.Succ+ :

ubc(s, d�, �)

(3) d ∉ s.Succ+, a = a�∶
ubc(s, d�, �), ubc(s�, d, �), ubc(s�, d�, �)

(4) d ∉ s.Succ+, a ≠ a� : ubc(s�, d�, �)

Figure 6 shows the schedule frame for the partially
unfolded process of Fig. 1 (for explanations see Fig. 2).
The partial unfolding of a schedule frame leads to smaller
graphs and hence to a faster computation of a correct sched-
ule frame in comparison to a fully unfolded graph. Although

 SN Computer Science (2020) 1:231231 Page 14 of 18

SN Computer Science

in this example, the difference to the fully unfolded schedule
frame in Fig. 3 is not breathtaking, and of course, the reduc-
tion in size depends on the number and position of upper-
bound constraints and XOR-split and XOR-join nodes. In
the worst case, the partially unfolded graph is identical to
the fully unfolded graph. In the next section, we empirically
explore the possible gains.

Implementation and Evaluation

We implemented all the presented algorithms for full unfold,
partial unfold (Algorithm 7), checking (conditional) control-
lability by computation of correct schedule frames (Algo-
rithm 2) and computation of correct schedules (Algorithm 1)
in Java. With these implementations, we performed experi-
ments to evaluate the feasibility of the approach and, in
particular, to explore potential improvements achieved by
partial unfold versus full unfold.

We ran our experiments on a Windows 10 server with an
Intel Xeon CPU with 16 cores and 2.2 GHz computation
power and 132 GB of RAM. For the experiments we ran-
domly generated 1600 processes with around 200 activities
each and varying numbers of XOR constructs and upper-
bound constraints. Also the placement of the defined number
of XOR-splits and XOR-joins was generated randomly, as
well as the defined number of upper-bound constraints.

We structured the test set into subsets according to their
number of XOR-splits and UBCs. We specified a time-
out after 30 min of computation, considering exceeding
instances as not feasible. The following graphs summarize
the figures collected by the experiments.

Figure 7 shows the size of the graphs in number of nodes
for the full unfolded graph and the partial unfolded graph
in relation to the number of XOR-splits. The experiments
showed convincingly that the number of nodes of the par-
tially unfolded graphs is significantly smaller.

Figure 8 shows the size of the graphs for different
amounts of upper-bound constraints. The size of the fully
unfolded graph only depends on the number and placement
of XOR-splits and -joins. The slight variations are due to
the randomly selected placement of these nodes. Apart from
this, the size of the graph does not depend on the number of
upper-bound constraints. In contrast, the number of nodes
of partially unfolded graphs increases with the number of
upper-bound constraints. However, even for very large num-
bers of upper-bound constraints (50 in our experiments), the
size of the partially unfolded graphs is still 40% smaller than
the size of the fully unfolded graphs.

Figure 9 documents the high performance gains achieved
by applying the partial unfold algorithm in comparison to
the full unfold. The performance figures are given for the
different amounts of XOR constructs. This figure also shows
that the approach is feasible for realistic sizes of process
graphs. For 200 activities with 17 XOR constructs, the aver-
age time for computing a correct schedule frame did not
exceed 40 s.

We can summarize the results of the experiments as fol-
lows: the presented approach for checking the conditional
controllability of temporally constrained processes proved to
be feasible for realistic sizes of processes and temporal con-
straints, in particular taking into account, that these are design
time algorithms. In addition, the experiments show that apply-
ing partial rather than full unfold greatly reduces the size of
the graphs and significantly improves the performance of the
computation of conditional schedules.

Related Work

Our approach tries to contribute to the integration of time
management in workflows, temporal consistency in ser-
vice composition [24] and temporal constraint networks.
There is already quite some body of research results in
the area of temporal aspects of workflows and business
processes. We refer to [5, 20, 25] for an overview. Recently
the work of Lanz et al. [31, 32] brought some consolida-
tion of expressing temporal constraints and defining the
semantics of temporal constraints. The upper-bound con-
straints used here are correspond to TP 3 “maximum time
lag between events”.

Early approaches checking temporal qualities of pro-
cess definitions are [1, 19, 33] with techniques rooted in
network analysis, scheduling, or constraint networks. These
techniques stimulated the development of more advanced
networks, the consideration of inter-organizational processes
and for supporting temporal service level agreements for
service compositions [4, 24].

Our approach is based on the algorithms for computing
schedules for time constrained workflows presented in [17],
but is extended to capture the uncertainty of the duration of
contingent activities, and delivers a new formalization and
proofs for soundness and completeness of the algorithms.
This paper is an extension of [14] now including partial
unfold as well as a set of additional experiments in the evalu-
ation. The terminology was changed from history-dependent
controllability to conditional controllability, as the latter,
although introduced in the literature earlier (e.g. [10]) lead

SN Computer Science (2020) 1:231 Page 15 of 18 231

SN Computer Science

to frequent misunderstanding with schedules derived from
process logs (or process histories).

Another stream of research studies temporal constraint
networks [12], which were applied for workflows in [1],
and now reached the necessary expressiveness for analyz-
ing business process models: checking the controllability
[7] and dynamic controllability of temporal networks, as

discussed in [8]. In particular, [6, 26, 28] present algorithms
for checking the controllability of conditional simple tem-
poral networks with a sound-and-complete algorithm for
conditional simple temporal networks with uncertainty
(CSTNU), the type of network corresponding to the pro-
cess models discussed here. While these approaches check,
whether an execution strategy avoiding time failures exists,

Fig. 6 Partially unfolded pro-
cess graph with correct schedule
(max 15xors)

Fig. 7 Average number of nodes
per XOR

0

500

1000

1500

2000

2500

3000

3500

<10 10 11 12 13 14 15 16 17

SED
O

N F
O REB

M
U

N GVA

NUMBER OF XOR'S

Full unfolded graph

Par�al unfolded graph

 SN Computer Science (2020) 1:231231 Page 16 of 18

SN Computer Science

our approach actually computes conditional schedules which
guide the execution at run-time. For dynamic controllability,
however, computing a schedule is not feasible.

Algorithms for other types of temporal constraint net-
works have been proposed in [2, 37]. Algorithms for com-
puting conditional schedules for these types of networks is
subject of ongoing research.

Fig. 8 Average number of nodes
per upper-bound constraint

0

200

400

600

800

1000

1200

1400

1600

1800

10 20 30 40 50

AV
G

N
U

M
BE

R
O

F
N

O
DE

S

AMOUNT OF UBC'S

Full unfolded graph

Par�al unfolded
graph

Fig. 9 Average time consump-
tion per XOR in sec

SN Computer Science (2020) 1:231 Page 17 of 18 231

SN Computer Science

Conclusions

Among the most important quality criteria for the definition
and execution of processes is to fulfill temporal requirements
and do not violate temporal constraints. Time failures such
as missed deadlines cause exception handling and might be
costly. Therefore, we propose to use controllability and in
particular conditional controllability as important character-
istics for the quality of process definitions.

We presented a sound and complete algorithm for check-
ing conditional controllability of temporally constrained pro-
cess definitions, and for computing conditional schedules
at design time. This algorithm provides a good basis for
developing more efficient algorithms for the computation of
conditional schedules with better average case complexity.
The worst case complexity was shown to be exponential in
the number of XOR-splits in a process. However, with the
strategy to only partially unfold a process graph depend-
ing on the location of upper-bound constraints we achieved
a significant improvement of both the size of the resulting
graphs and the time for calculating conditional schedules.
Our experiments showed that the proposed procedure for
checking conditional controllability is feasible for realistic
sized process models.

Our major aim is to compute schedules, and to support
the time aware execution of processes avoiding temporal
failures. To improve the qualities of schedules, in particu-
lar less rigid schedules with start time intervals and a good
distribution of slack time as well as efficient algorithms for
computing good schedules remain on our research agenda.
Furthermore, efficient run-time monitoring of adherence to
schedules and efficient computing of task deadlines when
tasks are dispatched to actors is subject of ongoing research.

Acknowledgements Open access funding provided by University of
Klagenfurt.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Bettini C, Wang XS, Jajodia S. Temporal reasoning in workflow
systems. Distrib Parallel Databases. 2002;11(3):269–306.

 2. Cairo M, Rizzi R. Dynamic controllability made simple. In:
LIPIcs-Leibniz international proceedings in informatics, vol 90.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik; 2017.

 3. Cairo M, Rizzi R. Dynamic controllability of simple temporal
networks with uncertainty: simple rules and fast real-time execu-
tion. Theor Comput Sci. 2019;797:2–16.

 4. Cardoso J, Sheth A, Miller J, Arnold J, Kochut K. Quality of
service for workflows and web service processes. J Web Semant.
2004;1(3):281–308.

 5. Cheikhrouhou S, Kallel S, Guermouche N, Jmaiel M. The
temporal perspective in business process modeling: a sur-
vey and research challenges. Serv Oriented Comput Appl.
2015;9(1):75–85.

 6. Cimatti A, Hunsberger L, Micheli A, Posenato R, Roveri M.
Dynamic controllability via timed game automata. Acta Inform.
2016;53:681–722.

 7. Combi C, Gozzi M, Posenato R, Pozzi G. Conceptual modeling
of flexible temporal workflows. ACM Trans Auton Adapt Syst
(TAAS). 2012;7(2):1–29.

 8. Combi C, Hunsberger L, Posenato R. An algorithm for checking
the dynamic controllability of a conditional simple temporal net-
work with uncertainty—revisited. In: Agents and artificial intel-
ligence. Springer; 2014.

 9. Combi C, Posenato R. Controllability in temporal conceptual
workflow schemata. In: Business process management. Springer;
2009.

 10. Combi C, Posenato R. Towards temporal controllabilities for
workflow schemata. In: 2010 17th international symposium on
temporal representation and reasoning. IEEE. 2010. p. 129–136.

 11. Daniel F, Pernici B. Insights into web service orchestration and
choreography. Int J E-Bus Res (IJEBR). 2006;2(1):58–77.

 12. Dechter R, Meiri I, Pearl J. Temporal constraint networks. Artif
Intell. 1991;49(1–3):61–95.

 13. Dumas M, La Rosa M, Mendling J, Reijers HA, et al. Fundamen-
tals of business process management, vol. 1. Berlin: Springer;
2013.

 14. Eder J. Computing history-dependent schedules for processes with
temporal constraints. In: Dang TK, üng JK, Takizawa M, Bui SH,
editors, Future data and security engineering—6th international
conference, FDSE 2019, Nha Trang City, November 27–29, 2019,
Proceedings, Lecture Notes in Computer Science, vol 11814.
Springer. 2019. p. 145–164.

 15. Eder J, Franceschetti M, Köpke J. Controllability of business
processes with temporal variables. In: Proceedings of the 34th
ACM/SIGAPP symposium on applied computing. ACM. 2019.
p. 40–47.

 16. Eder J, Franceschetti M, Köpke J, Oberrauner A. Expressiveness
of temporal constraints for process models. In: International con-
ference on conceptual modeling. Springer. 2018. p. 119–133.

 17. Eder J, Gruber W, Panagos E. Temporal modeling of workflows
with conditional execution paths. In: Database and expert systems
applications. Springer. 2000.

 18. Eder J, Gruber W, Pichler H. Transforming workflow graphs. In:
Interoperability of enterprise software and applications. London:
Springer; 2006. p. 203–14.

 19. Eder J, Panagos E, Rabinovich M. Time constraints in workflow
systems. In: Advanced information systems engineering. Springer.
1999.

 20. Eder J, Panagos E, Rabinovich M. Workflow time management
revisited. In: Seminal contributions to information systems engi-
neering. Springer. 2013.

 21. Eder J, Pichler H. Response time histograms for composite web
services. In: Proceedings. IEEE international conference on web
services. IEEE. 2004. p. 832–33.

http://creativecommons.org/licenses/by/4.0/

 SN Computer Science (2020) 1:231231 Page 18 of 18

SN Computer Science

 22. Esteves S, Veiga L. Waas: workflow-as-a-service for the cloud
with scheduling of continuous and data-intensive workflows.
Comput J. 2016;59(3):371–83.

 23. Georgakopoulos D, Hornick M, Sheth A. An overview of work-
flow management: from process modeling to workflow automation
infrastructure. Distrib Parallel Databases. 1995;3(2):119–53.

 24. Guermouche N, Godart C. Timed model checking based approach
for web services analysis. In: ICWS. IEEE. 2009. p. 213–21.

 25. Hashmi M, Governatori G, Lam H, Wynn MT. Are we done
with business process compliance: state of the art and challenges
ahead. Knowl Inf Syst. 2018;57(1):79–133.

 26. Hunsberger L, Posenato R. Simpler and faster algorithm for check-
ing the dynamic consistency of conditional simple temporal net-
works. In: IJCAI. 2018. p. 1324–30.

 27. Hunsberger L, Posenato R, Combi C. The dynamic controllability
of conditional STNs with uncertainty (2012). arXiv :1212.2005.

 28. Hunsberger L, Posenato R, Combi C. A sound-and-complete prop-
agation-based algorithm for checking the dynamic consistency of
conditional simple temporal networks. In: Temporal representa-
tion and reasoning (TIME). IEEE. 2015.

 29. Jajodia S, Kerschberg L. Advanced transaction models and archi-
tectures. Berlin: Springer Science & Business Media; 2012.

 30. Lanz A, Posenato R, Combi C, Reichert M. Controllability of
time-aware processes at run time. In: On the move to meaningful
internet systems: OTM 2013 conferences. Springer. 2013.

 31. Lanz A, Reichert M, Weber B. Process time patterns: a formal
foundation. Inf Syst. 2016;57:38–68.

 32. Lanz A, Weber B, Reichert M. Workflow time patterns for pro-
cess-aware information systems. In: Enterprise: business-process
and information systems modeling. Springer. 2010.

 33. Marjanovic O, Orlowska M. On modeling and verification of
temporal constraints in production workflows. Knowl Inf Syst.
1999;1(2):157–92.

 34. Van Der Aalst WM. Workflow verification: Finding control-flow
errors using petri-net-based techniques. In: Business process man-
agement: Springer. 2000.

 35. Van Der Aalst WM, Ter Hofstede AH, Kiepuszewski B,
Barros AP. Workflow patterns. Distrib Parallel Databases.
2003;14(1):5–51.

 36. Vidal T, Fargier H. Contingent durations in temporal csps: from
consistency to controllabilities. In: 4th international workshop on
temporal representation and reasoning, TIME ’97, Daytona Beach,
May 10–11, 1997. IEEE Computer Society. p. 78–85.

 37. Zavatteri M, Viganò L. Conditional simple temporal networks with
uncertainty and decisions. Theor Comput Sci. 2019;797:77–101.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1212.2005

	Conditional Schedules for Processes with Temporal Constraints
	Abstract
	Introduction
	Process Model with Temporal Constraints
	Schedules and Controllability
	Computation of Schedules
	Conditional Schedules and Conditional Controllability
	Problem Complexity
	Efficient Computation of Conditional Schedules
	Implementation and Evaluation
	Related Work
	Conclusions
	Acknowledgements
	References

