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Abstract
Temporal aspects are among the most important quality criteria for executing business processes. It is mandatory to check process 
definitions at design time for temporal properties to avoid that structural properties of process models cause time failures at run-time. 
Here, we propose to check process models for conditional controllability and to compute conditional schedules for their execution 
without time failures. Schedules have to be conditional, since it is a characteristics of business processes, that control flow decisions 
are based on conditions, which can only be evaluated in the course of process execution at run-time and not before the process 
starts. We present a procedure for checking the conditional controllability of processes with temporal constraints, which is both 
sound and complete and effectively and efficiently computes conditional schedules for temporally constrained business processes.

Keywords Process scheduling · Contingent durations · Controllability · Temporal constraints · Process modelling

Introduction

Processes have been successfully introduced for modeling the 
dynamics in many areas like trade, production, health care, 
etc. in various forms like workflows [23], extended transac-
tions [29], business processes [13], web-service orchestra-
tions [11], distributed workflows [22], etc. In many of these 
application areas, temporal aspects are crucial for the correct 
and admissible execution of processes. This observation led 
to a substantial body of research to master the plenitude of 
temporal aspects of process engineering: expressing tempo-
ral aspects in process models, formulating different notions 
of correctness of process models with temporal constraints, 
checking the temporal correctness of process definitions, 
computing execution schedules for processes, recognizing 
and handling temporal exceptions, and supporting process 
controllers to adhere to temporal constraints at run-time with 
proactive time management (see [5, 20, 25] for overviews).

What is the right correctness criterion for temporally 
constrained processes? Satisfiability, or conformance [10, 
17] turned out to be not sufficient, respectively, not strong 

enough, because satisfiability only checks, whether there 
exists an execution of the process without time failures. 
However, the execution might depend on factors, which can-
not be influenced by the process controller. Hence the pro-
cess controller cannot guarantee that the execution will be 
free of time failures. Therefore, the notion of controllability 
of process definitions [10, 36] gained support. In a nutshell: 
the concept of controllability regards a process definition as 
correct, if it is possible to state a schedule such that all tem-
poral constraints are obeyed, if all process steps are executed 
within the intervals defined in the schedule [9]. Controllabil-
ity guarantees a correct execution for all foreseeable circum-
stances. Nevertheless, strict controllability is quite restric-
tive, such that more relaxed notions were developed, which 
still hold the guarantee. Conditional controllability (also 
called history dependent controllability [10, 14]) allows that 
the execution interval for a step in a conditional schedule 
depends on the observations of flow decisions, if these flow 
decisions happen before the activation of this step. Dynamic 
controllability relaxes this notion even further and requires 
that there is an execution strategy for a process controller to 
make decisions based on all observations (flow decisions 
and observed duration of activities) temporally prior to the 
enactment of an activity such that no temporal constraint is 
violated. Similar problems where studied in the area of AI 
and in the area of constraint satisfaction in form of temporal 
constraint networks of different flavors as described in [8].

Several algorithms for checking controllability resp. 
dynamic controllability of process definitions with several 
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sets of temporal constraints have been proposed for differ-
ent flavors of process models, e.g., [2, 3, 6, 8, 15, 26, 27, 30, 
37]. Nevertheless, an algorithm which is computationally 
feasible, both sound and complete and effectively computes 
a conditional schedule was still missing. It is the ambition of 
this paper to contribute to closing this gap. We build on our 
earlier approaches for checking the correctness of tempo-
ral process specifications and the computation of execution 
plans (schedules) [17–19, 21]. This paper is based on [14] 
and extends it with several optimizations of the algorithms 
reducing the average case complexity, increasing practical 
scalability and improving the performance of computing 
conditional schedules.

We present our methods with a seemingly rather sim-
ple model for defining processes with temporal constraints: 
we only consider contingent nodes and upper-bound con-
straints on end-events of activities. This is, however, without 
loss of generality, as it does not cause any restriction of the 
expressiveness. We can show, that our lean process model is 
expressive enough to also express non-contingency of activi-
ties, lower-bound constraints, constraints on the start-events 
of activities, and contingent and non-contingent constraints 
on links between activities [16].

The particular contributions of this paper are:

– We provide a formalization of conditional controllability.
– We propose a procedure for checking the conditional con-

trollability of temporally constrained process definitions 
and proof that it is both sound and complete.

– This algorithm also computes a conditional schedule.
– We proof that the problem of computing a conditional 

schedule for a temporally constrained process has expo-
nential complexity in the worst case.

– We provide optimizations for computing conditional 
schedules where the complexity corresponds to the intri-
cacy of mutually influencing temporal constraints and 
structural characteristics.

The rest of this paper is organized as follows: first, we define 
our process modelling notation. Given that, we introduce 
schedules and controllability, and in the next section, we pre-
sent an algorithm for computing schedules. In the following 
section, we introduce conditional schedules and conditional 
controllability and the notion of an unfolded graph, and we 
show the relationship between conditional controllability 
and the controllability of an unfolded process. After that, we 
analyse the complexity of conditional schedules. In the fol-
lowing section, we show an improved algorithm for checking 
conditional controllability with a partially unfolded process 
graph. Later we present an implementation and report on a 
series of experiments with the proposed algorithms. In the 

last sections, we contrast our approach to related work and 
draw some conclusions.

Process Model with Temporal Constraints

We consider here a minimal but quite expressive process 
model: we focus on the standard minimum workflow con-
trol patterns [35]: acyclic workflow nets composed of 
nodes and edges. Some of the nodes are XOR-splits and 
-joins. All other nodes contain implicitly AND-splits and 
-joins. XOR-splits have exactly 2 outgoing and XOR-joins 
1 or 2 incoming nodes. XOR-joins have the semantics of 
simple merge, i.e., it is not possible that more than pre-
decessors of an XOR-join node will be executed in a sin-
gle process instance. For all nodes with the exception of 
XOR-splits: if there are several successor nodes, then the 
semantics is that of an (implicit) AND-split. For all nodes 
with the exception of XOR-joins: if there are several pre-
decessors the semantics is that of an AND-join.

This definition of a process graph is a relaxation of the 
usual workflow net definitions [34] and it is easy to see 
that all traditional workflow nets can easily be expressed 
in this formalism. Nevertheless, we introduce the model 
below, as it makes the transformations we propose in the 
following sections for checking controllability a lot easier 
and more comprehensive and does not require to introduce 
an additional model for the result of unfolding operations.

In addition, we consider the following temporal infor-
mation and constraints: minimum and maximum duration 
of nodes, and upper-bound constraints. See Fig.1 as an 
example for such a process with labels, discussed below. 
Activities are represented as rectangles with their activ-
ity name (e.g., G, their minimum and maximum duration 
(e.g., 5..8) and their labels (e.g.,{p,¬p} . XOR-split nodes 
are represented as diamonds, XOR-join nodes as shaded 
diamonds. Upper-bound constraints are represented as 
dashed arrows from destination to source.

Temporal aspects are represented by durations and time 
points in form of real numbers, where all durations have 
to be greater or equal 0. Time points are represented as 
distance to a time origin (here usually the time point of the 
start of a process). Activity instances start at a certain time 
point (time point for the start event of an activity instance) 
and end at a certain time point (end event); their distance 
is the duration of an activity instance.

In the following we only consider contingent activities. 
The duration of contingent activities can only be observed 
by the process controller, but not influenced. The pro-
cess controller can only rely on the actual duration being 
between the minimum and maximum duration specified.

In analogy to [8], we use propositional labels for nodes 
to indicate through which path(s) a node can be reached, 
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i.e., which decisions were taken to reach a node. In con-
trast to [8], we define a label as a set of different possible 
decisions which can lead to the considered node. We for-
mally define the basis for representing these paths and for 
comparing these paths below.

Definition 1 (Propositional Terms) Let L be a set of prop-
ositional letters. Let p ∈ L : then p and ¬p are literals, L 
is the set of all literals over L. Let l1,… ln be literals, then 
l1 ∧⋯ ∧ ln are conjunctive terms.

We call t a minterm over a set of letters L, if t is a con-
junctive term over the set of literals L and for each p ∈ L 
either p or ¬p appears in t. M(L) is the set of all minterms 
over L.

Two terms t1, t2 are compatible ( t1 ≃ t2 ), if there exist a 
minterm t ∈ M(L) such that t → t1 ∧ t → t2.

Two sets of conjunctive terms T1 and T2 are compat-
ible, ( T1 ≃ T2 ), iff ∀t1 ∈ T1 ∃t2 ∈ T2 with ( t1 ≃ t2 ), and 
∀t2 ∈ T2 ∃t1 ∈ T1 with ( t1 ≃ t2).

Let T = T1,…Tn be sets of conjunctive terms 
over L . We define the cross conjunction of T as ⨂

T = {t1 ∧⋯ ∧ tn�ti ∈ Ti, 1 ≤ i ≤ n}.

We assign a unique propositional letter p to each XOR-
split and adorn one outgoing edge of the split node with p, 
the other with ¬p . The labels, we assign to the nodes, are 
sets of conjunctive terms over the propositional letters of 
predecessors of these nodes. Each term in the label of a 
node represents a different path to reach this node. In other 
terms it represents all possible combinations of decisions at 
XOR-split nodes leading to this node. In the following we 
define the representation of the model in form of a process 
graph formally.

Definition 2 (Process Graph) Let N be a set of nodes, 
E ⊆ N × N a set of edges, B ⊆ N × N ×ℝ a set of temporal 

constraints, and L a set of propositional letters. P(N, E, B, L) 
is a temporally constrained process graph, iff (N, E) forms a 
connected directed acyclic graph.

A node n has the following properties:
Type: n.type ∈ {node, xs, xj} , where xs represents Xor-

split and xj Xor-join.
Label: n.L ∈ P(L)

Duration: n.dmin (minimum duration) and n.dmax (maxi-
mum duration).

A n  e d g e  e ∈ E  h a s  t h e  p r o p e r t y 
e.l ∈ {True} ∪ L ∪ {¬l|l ∈ L}.

Constraints: B consist of upper-bound constraints, (s, d, �) 
representing the constraint d ≤ s + � , where s ∈ N is called 
the source and d ∈ N  is called the destination node, and 
� ≥ 0 is some real.

The function x.l assigns a unique propositional letter 
p ∈ L to each Xor-split node x ∈ N . For each Xor-split node 
x there are two outgoing edges e1 and e2 in E with e1.l = x.l 
and e2.l = ¬x.l . All other edges have the label True.

A process graph has 1 start node, which has no predeces-
sor and at least 1 stop node which has no successor. There is 
a path from the start node to every stop node. Every node is 
on a path from the start node to a stop node. A node of type 
xs has exactly 2 successor nodes, a node of type xj can have 
one or two predecessor nodes.

E+ denotes the transitive closure of E. For a node n, 
n.Pred denotes the set of all direct predecessors of n: 
n.Pred ∶= {m|∃(m, n) ∈ E} , and n.Succ the set of all direct 
successors of n: n.Succ ∶= {m|∃(n,m) ∈ E} . n.Pred+ 
denotes the set of all (direct or indirect) predecessors of n: 
n.Pred+ ∶= {m|∃(m, n) ∈ E+} , and n.Succ+ is the set of all 
successor of n: n.Succ+ ∶= {m|∃(n,m) ∈ E+}.

The label of a node n is defined as (1) n.L = {True} , if n 
is a start node; (2) n.L =

⋃
m∈n.Pred m.L , if n.type = xj ; (3) 

n.L =
⨂

{m.L�m ∈ n.Pred} for any other node.   ◻

Fig. 1  Process graph with labels
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It is easy to see that every well formed workflow net [34] 
can be represented as process graph according to the defini-
tion above. Figure 1 shows an example for a process graph 
with labels. The activities are represented as rectangles with 
their names, minimum and maximum duration, and labels. 
White diamonds represent XOR-split nodes and black dia-
monds XOR-join nodes. Upper-bound constraints ubc(s, d, �) 
are shown as dotted arcs from destination d to source node 
s with the label �.

To avoid questionable process definitions with impossi-
ble paths, ill defined joins and void constraints we define 
requirements for well-formed process graphs: for simple-
merge XOR-joins it must not happen that both of its prede-
cessor are executed in a single instance, i.e. the predeces-
sors of an XOR-join node must have disjoint labels. If a 
node has several predecessors (implicit And-join) all these 
predecessors have equivalent labels. For all nodes except 
(except XOR-join nodes) we require that their predecessors 
are not mutually exclusive, i.e., False must not appear in 
labels of nodes. The stop nodes are mutually exclusive. And 
finally, for source and destination nodes of an upper bound 
constraint there has to be the possibility for an instance of 
the process in which both are activated - requiring that their 
labels are compatible.

Definition 3 (Well-Formed Process Graph) A process graph 
P(N, E, B, L) is well-formed, iff 

(1) ∀n, n1, n2 ∈ N ∶ n.type = xj, n1 ≠ n2, (n1, n), (n2, n) ∈

E ⇒ n1.L ∧ n2.L → False , and
(2) ∀n ∈ N ∀p ∈ n.L ∶ p ≠ False , and
(3) ∀s, s� ∈ N ∶ ∄(s, n) ∈ E ∶ ∀t ∈ M⇐L⇒ ∶ t → s.L ⇒

¬(t → s
�.L) , and

(4) ∀(s, d, �) ∈ B ∶ ∃t ∈ M(L) ∶ t → s.L, t → d.L

In the following, we assume that all process graphs are 
well-formed. Below we formalize some properties of well 
formed process graphs which we will need later. The first 
observation is that the terms in the label of a node are pair-
wise disjoint.

Lemma 1 For a well-formed process graph P(N, E, B, L), 
∀n ∈ N,∀p1 ≠ p2 ∈ n.L ∶ ¬(p1 ∧ p2).

Proof Follows from Definitions 2 and 4.   ◻

The next lemma states that for all nodes except XOR-join 
nodes, the label implies the label of the predecessor nodes.

Lemma 2 For a well-formed process graph P(N, E, B, L), 
∀n ∈ N, n.type ≠ xj ∀p ∈ n.L ∀m ∈ n.Pred ∶ p → m.L.

Proof Follows from Definition 4(2): if the labels of the pre-
decessor of a node are incompatible, then the cross product 
of their labels would contain False, which is a contradiction 
to P being well-formed.   ◻

We define 2 nodes as parallel if they can be both in one 
run, but neither is successor of the other.

Definition 4 (Parallel) Two nodes n,m ∈ N  a well-
formed process graph P(N, E, B, L) are parallel (n||m), iff 
n ∉ m.Succ+ , m ∉ n.Succ+ , ∃t ∈ M⇐L⇒ ∶ (t → n.L) ∧ (t → m.L).

Lemma 3 For a well-formed process graph P(N, E, B, L), 
∀n,m ∈ N with n||m the following holds: 

(1) ∃a ∈ N, a.type ≠ xs, n,m ∈ a.Succ+,
(2) ∀p ∈ n.L∃q ∈ m.L ∶ p ≃ q,
(3) ∀r ∈ a.L,∀p ∈ n.Lp → r,∀q ∈ m.L ∶ p → r ∧ q → r ⇒ p ≃ q.

Proof 

(1) If n and m are not successors in one way or the other, 
and they are not mutually exclusive, they they must 
have a common ancestor, which is not an XOR-split 
node, since all nodes are successors of the start node.

(2) Definition 4(3) requires that both have a common suc-
cessor, which is not an XOR-join, and then, the lemma 
follows from Lemma 2.

(3) The immediate successors of a node which is not an 
XOR-split-node have the same labels. Parallel succes-
sors of a node can only have those propositional letters 
in their labels in common, which are already in the 
letter of their common predecessor (there cannot be 
the same XOR-split node between n resp. m and their 
closest common predecessor node. Hence, (3) follows 
from Lemmas 1 and 2.   ◻

The lemma above states that if 2 nodes are not successors 
or mutually exclusive then they can both appear in a run 
independent of the path by which they are reached.

Schedules and Controllability

Now, we can define the semantics of the temporal constraints 
by defining which possible execution scenarios (traces with 
time stamps) are considered as correct. Then we define 
schedules as a definition of admissible intervals for the start 
and end events of the nodes in a process graph. Based on 
these definitions, we can define the properties of control-
lability and dynamic controllability as notions of the cor-
rectness of a process definition with temporal constraints.
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Definition 5 (Scenario) A scenario S̄ for a process 
P(N, E, B, L) associates each n ∈ N : with 2 timestamps ts 
and te , the time points of the start and end events of a process 
instance.

Definition 6 (Valid Scenario) A scenario S̄ for a process 
P(N, E, B, L) is valid, iff the following constraints hold: 
∀n,m ∈ N

(1) n.ts + n.dmin ≤ n.te ≤ n.ts + n.dmax,
(2) n ∈ m.Pred+ ⇒ n.te ≤ m.ts , and
(3) (n,m, �) ∈ B ⇒ m.te ≤ n.te + �.

A schedule defines execution intervals for activities.

Definition 7 (Schedule) A schedule S for a process 
P(N, E, B, L) associates each n ∈ N with (Fs, Ts) and (Fe, Te) , 
execution intervals for start and end events. We write 
(n, (Fs, Ts), (Fe, Te) ∈ S for a schedule entry.

In this definition Fs (From start) represents the earliest 
time point for starting node n, Ts (To start) the latest time 
point for starting n, and Fe (From end) the earliest time point 
for finishing n, and finally Te (To end) the latest time point 
for finishing n.

The property of controllability of a process requires that 
there is a schedule for the process, such that all scenarios 
are valid, for which the time-stamps of the scenarios are 
taken from the respective intervals of this schedule. In the 
following, we will call a schedule with such a property con-
trollability schedule.

Definition 8 (Controllability) A process P(N,  E,  B,  L) 
is controllable, iff it has a schedule S (controllabil-
ity schedule), such that each scenario S̄ for P is valid, if 
∀n n.Fs ≤ n.ts ≤ n.Ts and n.Fe ≤ n.te ≤ n.Te.

This definition of controllability leads to rather rigid 
schedules as controllability schedules, in which the start of 
each activity is fixed to a single point in time instead of a 
time interval. In practice, for some activities, an interval is 
expected. Nevertheless, we follow here the usual definitions, 
which are sufficient for theoretical considerations on con-
trollability and conditional controllability. This more rigid 
definition is also easier and does not cause a loss of general-
ity. However, we consider that the definition of controllabil-
ity can be relaxed to allow more flexible schedules without 
sacrificing the notion and the check-ability of controllability, 
and our definition of schedule already cares for these less 
rigid definitions.

Lemma 4 In each controllability schedule n.Fs = n.Ts has 
to hold for all nodes n.

Proof If n starts at Ts then it has to finish before 
Ts + n.dmax ; if it starts at Fs , then it could finish at Fs + d 
or later. Hence, n.d ≤ Fe − Ts ≤ Te − Fs ≤ n.dmax , or 
n.Ts + n.dmax ≤ n.Te ≤ n.Fs + n.dmax can only be satisfied if 
n.Ts = n.Fs and n.Te = n.Fs + n.dmax has to hold, which is 
only possible, if Ts = Fs   ◻

Next, we define, when we regard a schedule as correct. 
As might be expected, we are able to proof, that correct 
schedules imply controllability.

Definition 9 (Correct Schedule) A schedule S of 
a process P(N,  E,  B,  L) is correct, iff ∀n,m ∈ N  , 
∀(n, (Fs, Ts), (Fe, Te)) ∈ S , ∀(m, (F�

s
, T �

s
), (F�

e
, T �

e
)) ∈ S : 

(1) Fe = Ts + n.dmin,
(2) Te = Fs + n.dmax,
(3) Fe + n.dmax − n.dmin ≤ Te,
(4) n ∈ m.Pred ⇒ Te ≤ F�

s
,

(5) (n,m, �) ∈ B, n.L ≃ m.L ⇒ T �
e
≤ Fe + �.

In this definition, the last item requires that the end event 
of the destination node m is at most � time units after the 
end event of the source node n, if there is an instance type 
which contains both n and m. This is the case, if the labels 
of n and m are not contradictory ( n.L ≃ m.L ). If no instance 
type contains both source and destination node (their labels 
are contradictory), then the upper-bound constraint is trivi-
ally satisfied.

Lemma 5 (Controllability Schedule) A process is control-
lable, iff it has a correct schedule.

Proof That a correct schedule fulfills all requirements of a 
controllability schedule follows immediately from the defini-
tions. In the other direction: it is easy to see that each con-
trollability schedule is correct.   ◻

All time points and durations in the definition of a tem-
porally constrained process are always relative to the pro-
cess start. If a schedule exists for a process, we can shift 
the schedule as long as we maintain the relative position of 
each event, i.e. we can add an integer to all start- and end-
times. Therefore, if a schedule exists, actually a manifold 
of schedules exist, in particular one, where the start time of 
the process is 0.

Lemma 6 (0-Schedule) If there is a correct schedule S for 
P(N, E, B, L), then for each n ∈ N there is a correct condi-
tional schedule S0

n
 with n.Fs = n.Ts = 0.
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Proof Let S be a correct schedule, let n ∈ N  , let 
(n, (�s, �s), (�

�, ���)) ∈ S . Then, S0
n
 is derived from S by adding 

−�s to all From and To values in S. S0
n
 is a correct schedule, 

because adding a scalar � is an equivalence transformation 
for the inequalities of Definition 9 and n.Fs = n.Ts = 0 . □

With this lemma, we know that it is sufficient to check 
whether a schedule exists in which the start node of the pro-
cess starts at time point 0.

Computation of Schedules

In this section we combine the checking, whether a pro-
cess is controllable, with the actual computation of a correct 
schedule for a process. For the rest of this section we assume 
that a process has a deadline ( � ), i.e., an upper-bound con-
straint from the start node to all end nodes of the process. 
In [14] we presented an algorithm without this assumption, 
which splits up a process graph into cliques (strong con-
nected components), computes a schedule for each clique 
and then stitches together a complete schedule from these 
component schedules. In this paper, we essentially assume 
the whole process graph is one clique by assuming a dead-
line. However, with reference to [14], we claim that this is 
without loss of generality.

For computing a schedule for a temporally constrained 
process we use an intermediary structure called schedule 
frame (formerly also known as (unfolded) timed graph [14, 
18, 19]). The schedule frame of a process P has the same 
structure as P, but has additional attributes for each node.

Figure 2 shows the schedule frame for the process of 
Fig. 1. Activities are represented as rectangles with their 
activity name (e.g., G, their minimum and maximum dura-
tion (e.g. 5..8) and their labels (e.g., {p,¬p} . XOR-split 
nodes are represented as diamonds, XOR-join nodes as 

shaded diamonds. Upper-bound constraints are repre-
sented as dashed arrows from destination to source. Each 
node shows the name of the activity, and the minimum and 
maximum duration in the top line. Below the values for 
Eb, Lb,Ew, andLw are given.

In a schedule frame we consider intervals for the end 
event of each node x for each term in x.L. We will show later 
that all entries of a 0-schedule have to be within these inter-
vals. The intervals are defined in terms of E- and L-values. A 
node n of the schedule frame cannot finish before n.Eb (Earli-
est time point best case), if all contingent activities up to n 
finish at their minimum duration. It cannot finish before n.Ew 
(Earliest time point worst case), if they take their maximum 
duration. The L-values represent time points when a node 
has to finish at the latest, to satisfy all temporal constraints: 
if n finishes before n.Lb all constraints are satisfied, if all 
succeeding contingent activities only take their minimum 
duration; if n finishes before n.Lw all constraints are satisfied, 
even if all succeeding activities use their maximum duration.

Definition 10 (Schedule Frame) U(N, E, L, B) is a schedule 
frame for a process P(N, E, L, B) with each n ∈ N associated 
with intervals for end events of activities: Eb,Ew, Lw, Lb . A 
schedule frame is correct , iff ∀n ∈ N,∀m ∈ n.Pred : 

(1) n.Ew ≤ n.Lw,
(2) m.Ew + n.dmax ≤ n.Ew,
(3) m.Eb + n.dmin ≤ n.Eb,
(4) m.Lw + n.dmax ≤ n.Lw,
(5) m.Lb + n.dmin ≤ n.Lb,
(6) ∀(s, d, �) ∈ B, s.Eb + � ≤ d.Ew,
(7) ∀(s, d, �) ∈ B, s.Lw + d ≤ d.Lb

We now analyze the relationship between a schedule 
frame and a schedule. It is easy to see that a schedule 
frame is more general than a schedule. However, as we 

Fig. 2  Correct schedule frame
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describe precisely in the next Lemma, processes either 
have both or none.

Lemma 7 A temporally constrained process graph has a cor-
rect schedule, iff it has correct schedule frame.

Proof Algorithm 1 (CompS) computes a schedule from 
a correct schedule frame. We can show that this sched-
ule frame is correct by checking all conditions of Defini-
tion 9 assuming the conditions of Definition 10 to hold. 
On the other hand, the values of a correct schedule can be 
immediately used for a correct schedule frame by setting 
n.Eb = n.Ew = n.Fe and n.Lb = n.Lw = n.Fs for each n.  ◻

Algorithm 1 CompS(U) Compute schedule from a correct schedule frame
1: {Input: U(N,E,L,B) correct schedule frame}
2: {Output: correct schedule S}
3: s :=start node in U
4: {Schedule entries for start nodes}
5: s.Fs := s.Eb − s.dmin; s.Ts := s.Fs

6: s.Fe := s.Eb; s.Te := s.Fe + s.dmax − s.dmin

7: for all n ∈ N − {s} in a topological order do
8: n.Fs := max({n.Eb − n.dmin} ∪ {m.Te|m ∈ n.Pred})
9: n.Ts := n.Fs

10: n.Fe := n.Fs + n.dmin

11: n.Te := n.Ts + n.dmax

12: end for
13: return

The procedure of computing a correct schedule frame 
(Algorithm 2) consists of the following steps. First, we ini-
tialize the temporal values of the schedule frame: the E val-
ues of all nodes are set to 0, and the L values of all nodes 
are set to the deadline � (for ubc(start, end,�) ). Then we 
compute the schedule frame according to the structural con-
straints defined by the topology of the graph by forward 
calculation of E values and backward calculation of L val-
ues. Then we check all upper-bound constraints. If an upper-
bound constraint is violated, we incorporate it by increas-
ing the E values of the source node and/or the L values of 
the destination node. This procedure is repeated, until all 
constraints are satisfied, or there is a node n, for which the 
invariant n.E < n.L is violated and hence no solution exists. 
This algorithm is an adaption of the algorithms presented in 
[19] to also deal with contingent activities.

Algorithm 2 CompTG(U,Ω ) returns: Boolean – Compute correct schedule
frame U with deadline Ω
1: {Input: U(N,E,L,B) is a schedule frame}
2: {Output: return True and correct schedule frame or return False}
3: ok := False
4: for all n inN do
5: n.Eb, Ew := 0;Lb, Lw := Ω
6: end for
7: while not ok do
8: ok:= true
9: for all n ∈ N in a topological order do

10: {forward calculation}
11: n.Eb := max({n.Eb} ∪ {p.Eb + n.dmin|p ∈ n.Pred})
12: n.Ew := max({n.Ew, n.Eb + n.dmax − n.dmin} ∪ {p.Ew + n.dmax|p ∈

n.Pred})
13: if n.Lw < n.Ew then
14: return False
15: end if
16: end for
17: for all n ∈ N in a reverse topological order do
18: {backward calculation}
19: n.Lw := min({n.Lw} ∪ {s.Lw − s.dmax|s ∈ n.Succ})
20: n.Lb := min({n.Lb} ∪ {s.Lb − s.dmin|s ∈ n.Succ})
21: if n.Lw < n.Ew then
22: return False
23: end if
24: end for
25: for all (s, d, δ) ∈ B do
26: {incorporation of upper-bound constraints}
27: if δ < (d.Ew − s.Eb) then
28: ok:= false
29: s.Eb := max(s.Eb, d.Ew − δ)
30: s.Ew := max(s.Ew, s.Eb)
31: end if
32: if δ < (d.Lb − s.Lw) then
33: ok:= false
34: d.Lb := min(d.Lb, s.Lw + δ)
35: d.Lw := min(d.Lw, d.Lb)
36: end if
37: end for
38: end while
39: return True

Figure 2 shows the schedule frame for the our exam-
ple in Fig. 1 with the E and L values of each node after 
CompTG finished successfully.

The next theorem states that the CompTG procedure is 
sound and complete, which means that if there is a cor-
rect schedule for a temporally constrained process then 
the procedure will compute a correct schedule and return 
TRUE, and if there is no correct schedule for the process 
it will return FALSE.

Theorem 1 CompTG (Algorithm 2) is sound and complete 
in the sense that (a) if it returns TRUE then the computed 
schedule frame is correct, and (b) if it returns FALSE then 
there is no correct schedule frame.
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Proof Soundness can be easily shown as in CompTG all 
conditions for a correct schedule frame are either checked 
explicitly in the algorithm or are ensured by the assignments 
in the forward and backward calculations.   ◻

For showing completeness we refer to Lemma 6 and the 
overall deadline � such that no correct schedule entry can 
have a value outside the interval [0,�] can be valid. Hence 
the schedule frame is correctly initialized. Furthermore, we 
observe that for every node every execution interval of a 
correct conditional 0-schedule has to be within the interval 
of E and L values with which the schedule frame is initial-
ized. In addition, it is easy to show that the requirements of 
correctness for a conditional schedule are more strict than 
for a correct schedule frame. The forward resp. backward 
calculations set the E values resp. L values to the lowest 
resp. greatest values that satisfy the conditions (1) to (5) of 
Definition 10. The algorithm iteratively checks all temporal 
constraints. If an inequality in the definition of a constraint 
is violated the algorithm sets the E values to the smallest 
and L values to the greatest values such that this inequal-
ity is satisfied and thus computes the largest interval which 
avoids this violation. So if the algorithm cannot compute a 
correct schedule frame, there is no correct schedule frame 
(and hence also no correct conditional schedule).   ◻

With this theorem, we can conclude that applying the 
CompTG procedure to a temporally constrained process with 
a deadline is a sound and complete algorithm for checking 
its controllability.

Conditional Schedules and Conditional 
Controllability

As discussed above, a process is controllable if it admits a 
schedule. This notion is known to be too restrictive [17, 27] 
and therefore, the notion of a history-dependent or condi-
tional schedule was introduced [10, 14, 17], which offers 
the possibility to define the execution intervals for a node 
depending on past decisions or observations. In the defini-
tion of conditional controllability, we use here, the execution 
interval of a node might depend on the observed outcomes of 
XOR-splits preceding this node. There are other more gen-
eral definitions of dynamic controllability [3, 8, 27], which 
allow all information (in particular start and end time of 
contingent activities), which temporally precedes the node, 
can be used by a node to define its allowed time interval.

Now, we can define the semantics of the temporal con-
straints by defining, which possible execution scenarios 
(traces with time stamps) are considered as correct. A con-
ditional scenario takes into account that not every node of 
the process appears in every process instance due to XOR-
splits. The possible combinations of nodes are determined 
by any possible combination of decisions which are in turn 
represented by all minterms over the propositional letters of 
the process definition. In such a conditional scenario a node 
n can have different time points for different minterms. A 
conditional scenario is valid, if each of its scenario projec-
tions (defined by a particular minterm) is a valid scenario.

Definition 11 (Conditional Scenario) A conditional scenario 
S̄ for P(N, E, L, B) associates for each t ∈ M(L) each n ∈ N 
with t → n.L with 2 timestamps ts and te , the time points 
of the start and end events of a process instance. We call 
(t, n, ts, te) ∈ S̄ a scenario entry.

S̄ is valid, iff ∀t ∈ M⇐L⇒ ∀(t, n, nt
s
, nt

e
), (t,m,mt

s
,mt

e
) ∈ S̄

(1) nts + n.dmin ≤ nte ≤ nts + n.dmax,
(2) n ∈ m.Pred+ ⇒ nte ≤ mts , and
(3) ∀(n,m, �) ∈ B ∶ mte ≤ nte + �.

In a conditional schedule, the execution interval for a 
node n in the process graph may depend only on the deci-
sions taken before the execution of n. The decisions are 
observed by monitoring which outgoing edge of XOR split 
nodes preceding n were taken, resp. which successors of an 
XOR-split were enabled. Therefore, different paths to a node 
n might lead to different execution intervals for n. The label 
of a node n in a process graph P exactly contains the differ-
ent possibilities for reaching this node. So in a conditional 
schedule we assign (possibly different) execution intervals 
to each node for each of the terms in its label. As it is pos-
sible to assign the same execution interval for different paths 
leading to a node, we use a more compact representation and 
allow the disjunction of label elements in the definition of 
schedule entries.

Definition 12 (Conditional Schedule) A conditional sched-
ule S for a process graph P(N, E, L, B) is a set of sched-
ule entries {(n, q, (Fs, Ts), (Fe, Te))} which associate each 
n ∈ N and a propositional term q with intervals for the start 
and end events of n, such that for each n ∈ N and for each 
p ∈ n.L ∃(n, q, (Fs, Ts), (Fe, Te)) ∈ S with p → q and for each 
(n, q, (Fs, Ts), (Fe, Te)) ∈ S there is a set {p1,… , pi} ⊆ n.L 
with q ≡ p1 ∨⋯ ∨ pi.
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Fs (say From start) represents the earliest time point for 
starting node n, Ts (To start) the latest time point for starting 
n, and Fe (From end) the earliest time point for finishing n, 
and finally Te (To end) the latest time point for finishing n. 
The definition of conditional controllability requires that a 
conditional schedule exists such that each scenario is valid, 
if its time points are within the limits of the execution inter-
vals defined in the conditional schedule.

Definition 13 (Conditional Controllability) A process 
graph P(N, E, L, B) is conditionally controllable, iff it has a 
conditional schedule S such that each conditional scenario 
S̄ is valid, if for each minterm t for each scenario entry 
(t, n, ts, te) ∈ S̄ for (n, p, (Fs, Ts), (Fe, Te)) ∈ S with t → p : 
Fs ≤ ts ≤ Ts and Fe ≤ te ≤ Te.

This definition is well formed since each minterm t 
implies at most one term in the label of a node, as all terms 
in a label are pairwise disjoint (Lemma 1).

Definition 14 (Correct Conditional Schedule) A conditional 
schedule S of a process P(N, E, L, B) is correct, iff ∀n,m ∈ N , 
∀(n, p, (Fs, Ts), (Fe, Te)) ∈ S , ∀(m, q, (F�

s
, T �

s
), (F�

e
, T �

e
)) ∈ S 

with p ≃ q

(1) Fe = Ts + n.dmin,
(2) Te = Fs + n.dmax,
(3) Fe + n.dmax − n.dmin ≤ Te,
(4) n ∈ m.Pred+ ⇒ Te ≤ F�

s
,

(5) (n,m, �) ∈ B, p ≃ q ⇒ T �
e
≤ Fe + �.

Lemma 8 A process is conditionally controllable, iff it has 
a correct conditional schedule.

Proof From Definitions 12, 13, and 14 we can easily see, 
that a correct conditional schedule fulfills all requirements 
of a controllability conditional schedule. In the other direc-
tion: each controllability conditional schedule is correct as 
it satisfies all conditions of Definition 14.   ◻

If a process admits a correct conditional schedule, then 
for all nodes n it also admits a correct schedule where the 
node n starts at time point 0.

Lemma 9 (Conditional 0-Schedule) If there is a correct 
conditional schedule S for P(N, E, L, B), then for each 
n ∈ N  there is a correct conditional schedule S0

n
 with 

n.Fs = n.Ts = 0.

Proof Let S be a correct conditional schedule for a process 
P(N, E, L, B), let n ∈ N , let (n, p, (�s, �s), (��, ���)) ∈ S . Then 
, S0

n
 is derived from S by adding −�s to all From and To values 

in S. S0
n
 is a correct conditional schedule since addition of 

scalars is an equivalence transformation for the inequalities 
of Definition 14 and n.Fs = n.Ts = 0 .   ◻

The major difference between a schedule and a condi-
tional schedule is that a conditional schedule can assign dif-
ferent start times to a node in the process graph, depending 
on the different paths by which this node can be reached.

We now define an unfolded process graph (shown in 
Fig. 3) which separates all these paths by duplicating a node, 
if it can be reached by several paths. The unfolded process 
graph is equivalent to the original process graph in that it 
admits exactly the same set of traces as the original graph 
but separates the possible traces.

In an unfolded process each node of the source process 
has a copy for each term in its label and the edges are wired 
accordingly, if the predecessor has a compatible label. 

Fig. 3  Unfolded process graph 
with correct schedule
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In an unfolded graph each XOR-join node has exactly 1 
predecessor.

Definition 15 (Unfolded Graph) U(N ,   E ,   L ,   B) 
is an unfolded processes graph for a process 
P(N�,E�, L,B�)  ,  i f f  N = {(n, l)|n ∈ N�, l ∈ n.L}, 
E = {((n, l), (m, k))|(n,m) ∈ E�, l ≃ k}, B = {((n, l), (m, k), �)|
(n,m, �) ∈ B

�, l ≃ k}.

Essentially, an unfolded process graph can be constructed 
by duplicating all XOR-join nodes, which have more than 
one predecessor, and all their successors.

Lemma 1 If P(N�,E�, L,B�) is a well-formed process, then 
its unfolded process U(N, E, L, B) is a well formed process.

Proof Let a process graph P(N�,E�, L,B�) be well formed. 
Its unfolded process graph is well formed (Definition 4) as 

(1) in U each xj-node has only 1 predecessor
(2) ∀(n, p) ∈ N, (n, p).L = {p}andp ≠ False , since P is well 

formed.
(3) ∀((s, p), (d, q), �) ∈ B ∶ ∃t ∈ M(L) ∶ t → s.L, t → d.L 

holds since p ≃ q according to Definition 15. ◻

Now we can show the relationship between unfolding, 
schedules and conditional schedules:

Theorem 2 A process graph is conditionally controllable, iff 
its unfolded graph is controllable.

Proof Let P(N�,E�, L,B�) be process,and U(N,  E,  L,  B) 
its unfolded process. If P is conditionally controlla-
ble, it has a conditional schedule S′ . It is easy to see that 
S = {((n, p), (Fs, Ts), (Fe, Te))|(n, p, (Fs, Ts), (Fe, Te)) ∈ S} is 
a correct schedule for U, hence U is controllable. The other 
direction follows in analogy.   ◻

Figure 3 shows the schedule frame for the unfolded pro-
cess graph of Fig. 1. There are three different occurrences 
of node H, as there are 4 different ways how node H can be 
reached. Each occurrence is described by a different term 
in the label of node H. The E and L values of the differ-
ent occurrences of node H are different which leads to a 
conditional schedule, where the start of an activity depends 
on the path by which this node is reached. However, not all 

occurrences of H have different values are different, a prop-
erty, we will exploit below.

Problem Complexity

In this section, we study the complexity of the problem of 
computing conditional schedules by analyzing the possible 
size of a conditional schedule for a given process model. We 
formalize and show below that in the worst case the size of a 
schedule is exponential in the number of XOR-splits.

Theorem  3 (Problem Complexity) Let P(N,  E,  L,  B) 
and let x be the number of XOR-split nodes in N 
( x = |{n ∈ N|n.type = xs} ). The minimum size of a condi-
tional schedule for P is |N| and the maximum necessary size 
is |N| ∗ 2x.

Proof For the minimum size: Any conditional schedule con-
tains at least one schedule entry for each activity. Actually, 
if a process is controllable, then one schedule entry for each 
node is also sufficient, making the number of nodes the mini-
mum size of a conditional schedule.   ◻

For the maximum necessary size: The number of different 
possible propositional terms in the labels of the nodes is 2x 
for x = |{n ∈ N|n.type = xs} , a conditional schedule cannot 
be larger than |N|x . We show that the size can be exponen-
tial in the number of XOR-splits by constructing a process 
(proof-process) with x XOR-splits with a set of temporal 
constraints and show that in its only schedule there is an 
activity which has 2x different disjoint scheduling intervals.

Figure  4 shows the pattern for this process. It con-
sist of an activity A followed by n XOR-blocks numbered 
from n to 1 followed by activity D. Each XOR-block 
Xi, 1 ≤ i ≤ n consists of two alternate activities Bi and Ci . 
The min- and max-durations of the nodes are as follows: 
Bi.d = Bi.x = 1 and Ci.d = Ci.x = 2i−1 + 1 for all i from 1 to 
n, D.d = D.x = 1 . All other nodes have duration 0. We define 
the following upper-bound constraints: {(Bi+1,Bi,Ci.d), 
(Ci+1,Bi, 1), (Bi + 1,Ci, 1), (Ci+1,Ci, Ci+1.d)|1 ≤ n − 1} , 
(A,Bn, 1) , (A,Cn,Cn.dmin), (B1,D, 1), (C1,D, 1) . After some 
calculations it is easy to see that there is only one possi-
ble conditional schedule and in this conditional sched-
ule there are 2n non-overlapping intervals for activity D: 
[n + 1, n + 1]… [2n + n] . Figure 5 shows the schedule for 
n = 3 .   ◻
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Efficient Computation of Conditional 
Schedules

In a straightforward way we can exploit Theorem 2 to real-
ize a procedure to check the conditional controllability of a 
process and to compute a conditional schedule: unfold the 
process graph and then compute a schedule for the unfolded 
process with the presented algorithm. It is easy to see that 

this is a sound, complete, and effective procedure. The disad-
vantage of this procedure is, that the complexity of this algo-
rithm is always exponential. In the last section we showed 
that indeed such as a procedure has to be exponential in 
the number of XOR-split nodes in the worst case. However, 
there are more efficient procedures for average cases. In the 
best case, i.e., if the process is even strictly controllable, 
the size of a conditional schedule is linear in the number of 
nodes. Therefore, we aim at more efficient ways for comput-
ing a conditional schedule than by computing a schedule for 
the original rather than the unfolded process.

Essentially, our strategy to improve the algorithm aims at 
reducing the unfolding of the process graph, thus reducing 
the size of the schedule frame for the computation using 
partially unfolded graphs. We apply the following strategies:

The size of the schedule frame can be reduced, if not all 
nodes are unfolded, but only those relevant for incorporation 
of upper-bound constraints.

The goal of unfolding is to separate those paths of a 
process graph which are affected by the incorporation of 
an upper-bound constraint from those which are not. When 
we incorporate an upper-bound constraint, we change E- 
and L-values of nodes, which affect the values of other 
nodes. We unfold to separate those nodes that have to be 
affected by the change of values from those which need 
not be changed.

In a partially unfolded process graph a node combines 
potentially several nodes of the unfolded processes graph. 
So there is not a copy of a node for each term in the label 
of the node, but the labels are partitioned into disjoint 
subsets of terms and there is a copy for each partition.

Definition 16 (Partially Unfolded Graph) U(N, E, L, B) 
= � (P,N) is called a partially unfolded process graph for a 
process P(N�,E�,B�, L) , iff

– N = {(n, p)|n ∈ N�, p ⊆ n.L} ,  
∀(n, p), (n, q) ∈ N ∶ p = q ∨¬(p ≃ q) 

– E = {((n, p), (m, q))|(n,m) ∈ E�, p ≃ q},
– B = {((n, p), (m, q), �)|(n,m, �) ∈ B�, p ≃ q}.

For defining a partially unfolded process graph, it is suf-
ficient to define a partition of the label of each node. The 
edges and the constraints are then determined accordingly.

Fig. 4  Pattern for the proof-process
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Algorithm 3 P-UNFOLD(U) Partial Unfolding of a schedule frame U
1: {U(N, E,L, B) is a partially unfolded schedule frame}
2: for all x ∈ {(n ∈ N |n.type = xj,∃ubc(s, d, δ) ∈ B : n ∈ s.Succ+,∃m ∈

n.Pred,m /∈ s.Succ+} in a reverse topological order do
3: {x is an XOR-join node with 2 predecessors x.Pred1 (s or successor of

s) and x.Pred2 not successor of s}
4: for all n ∈ N do
5: copy[n] := n {initialize copy table}
6: end for
7: M := {x} ∪ x.Succ+

8: for all m ∈ M do
9: {duplicate all nodes after x including x}

10: m′ := CloneNode(m)
11: copy[m] := m′

12: end for
13: {create edges to/from duplicated nodes}
14: E := E ∪ {(copy[m], copy[n])|(m,n) ∈ E, (m ∈ M ∨ n ∈ M)}
15: {The copies are not successors of s}
16: E := E − {(x.Pred2, x), (x.Pred1, copy[x])}
17: {migrate upper bound constraints}
18: for all (s, d, δ) ∈ B|s ∈ M ∨ d ∈ M do
19: if d ∈ s.Succ+ then
20: if s ∈ M then
21: B := B ∪ {(copy[s], copy[d], δ)}
22: end if
23: else
24: a := ccp(s, d)
25: {a is the closest common predecessor of s and d}
26: if a ∈ M then
27: B := B ∪ {(copy[s], d, δ), (s, copy[d], δ), (copy[s], copy[d], δ)}
28: else
29: B := B ∪ {(copy[s], copy[d], δ)}
30: end if
31: end if
32: end for
33: end for
34: return

Which nodes have to be duplicated for a given upper-
bound constraint ubc(s, d, �) ? If we incorporate this upper-
bound constraint, we change the E values of s and the L 

values of d. This in turn may cause changes in the pre-
decessors of s and the successors of d. We now have to 
check which of these possible affected nodes in a partially 
unfolded graph could be duplicated, such that one copy is 
affected and the other not.

Let us first check the successors of s. Some of these 
nodes might be also reachable by paths which do not 
include s. And exactly these nodes form the unfold set of 
nodes, as they could be unfolded, such that their twin is 
not affected. Therefore, these nodes need to be duplicated 
and the partially unfolded graph has to contain 2 copies of 
these nodes: one which is a successor of s and one which 
does not have s.

If d is a successor of s also d might be included in these 
nodes and might be duplicated. If this is the case, only one 
copy of d is the destination node of the upper-bound con-
straint, the other not.

In the other direction: all predecessors of d are affected 
by a change of d’s L values. It is easy to see, that these nodes 
can only be reached through nodes, which are also predeces-
sors of d in an unfolded graph. Hence, the predecessors of d 
do not need to be considered for unfolding.

We formalize these considerations in the following 
theorem, which states that a process graph is sufficiently 
unfolded, if no successor of a source node s of an upper-
bound constraint ubc(s, d, �) is reachable through a path 
which does not include this source node s. Formally, this 
requires that each successor node of such s have only terms 
in their label which imply a term in the label of s.

Fig. 5  Computed conditional 
schedule for the proof-process 
with the problem size n = 3
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Definition 17 (Sufficient Unfold) Let P(N�,E�,L,B�) be 
a process graph; U(N, E, L, B) = � (P,N) is a partially 
unfolded process graph. U is sufficiently unfolded, iff 

(1) U is well formed.
(2) ∀ubc(s, d, �) ∈ B : ∀p ∈ s.L ∀q ∈ d.L : (s, {p}) ∈ N  , 

(d, {q}) ∈ N.
(3) ∀ubc(s, d, �) ∈ B, 

∀n ∈ s.Succ+ ∀p ∈ n.L ∃q ∈ s.L ∶ p → q.

The definition above requires (1) U to be well formed. 
This means in particular, that if a node is duplicated, also 
its successors are duplicated, as otherwise U would not be 
well formed (see Definition 4). It also requires a proper map-
ping of upper-bound constraints, i.e., an upper-bound con-
straint ubc(s, d, �) is included, if all upper-bound constraints 
are between nodes which can actually appear in the same 
run, technically, if they are both induced by the same mint-
erm over M⇐L⇒ (see Definition 4). Then the definition 
requires, that the source nodes of all upper-bound constraints 
are fully unfolded, i.e., for each term in their labels, there is 
a different node in the graph. The definition also requires (3) 
that each successor n of a source node s can only be part of 
a scenario, if the source node is also part of it. It also means 
that each minterm over L which implies n.L also implies 
s.L. Therefore, this condition requires essentially that if the 
source node of an upper-bound constraint is unfolded, so are 
all its successors.

Theorem  4 Let P(N�,E�, L,B�) be a process graph and 
U(N, E, L, B) = � (P,N) a sufficiently unfolded process 
graph.

P is conditionally controllable, iff U is controllable.

Proof Let P(N”,E”,B”,L) be a process graph, U’(N’,E’,B’,L) 
a sufficiently unfolded graph, and let U(N,E,B,L) be a fully 
unfolded graph.   ◻

With Theorem  2, we have to show that all cop-
ies of node of a sufficiently unfolded graph in 
an unfolded graph have the same values. I.e. 
∀n ∈ N��,∀(n,Q) ∈ N�∀q ∈ Q,∀(n, q) ∈ N ∶ (n,Q).Eb = (n, q).Eb , 
etc.

The proof follows the argumentation above: the only con-
dition for values of a correct schedule frame, in which values 
of a node do not depend on all of their immediate predeces-
sors, their immediate successor, or their own duration are 
the conditions (6) and (7) of Definition 10, i.e. when the 
values are determined by an upper-bound constraint. Dif-
ferences in the values of copies (n, p) and (n, q) of the same 
node n ∈ N in the schedule frame are only possible, if n is 
source or destination of an upper-bound constraint. As the 
algorithm only changes the L values of a destination node, 

and these changes are propagated to the predecessors of a 
node anyhow, their unfolding would not change the values 
of these predecessors. Changes to the E values of a source 
node s of an upper-bound constraint, however propagates to 
all successors, even if they are reachable through different 
paths and therefore for runs which do not include S. Condi-
tion (3) of the definition requires, that all successors of a 
source node can only be reached through this source node, 
which eliminates the possibility above.   ◻

With the theorem above, we now develop an algorithm for 
computing a sufficiently unfolded graph for an upper-bound 
constraint ubc(s, d, �).

We observe that the label of a node is different from the 
label of its predecessor node only if it is (i) an XOR-join 
node (then the labels of its predecessors are disjoint), or (ii) 
the successor of a XOR-split node, where the label of the 
successor implies the label of the predecessor.

Each node, which has to be duplicated, has a predecessor 
XOR-join node, which also has to be duplicated. A node will 
be duplicated, if this preceding XOR-join node is duplicated. 
It is therefore sufficient to check for XOR-join nodes, which 
are successor of s and which have a direct predecessor, which 
is not a successor of s. We therefore define the unfold set for 
s as {(n, p) ∈ N|n.type = xj, (n, p) ∈ s.Succ+,∃(m, q) ∈ (n, p).

Pred, (m, q) ∉ s.Succ+} and unfold the graph at these nodes.
Algorithm 7 shows the procedure for partially unfolding 

a process graph. It unfolds the graph for all XOR-join nodes 
in the unfold set of all upper-bound constraints. Unfolding 
at a particular XOR-join node x duplicates all successors of 
x and adjusts the edges accordingly.

Now, we study the mapping of an upper-bound constraint 
ubc(s, d, �) for the unfolding of one XOR-join node x, which 
duplicates some of the nodes. The nodes s, d, and their clos-
est common predecessor a might each be duplicated, with 
s′, d′, a′ , respectively, as their possible twins with s′ ≠ s , 
d′ ≠ d , a′ ≠ a , or they are not duplicated which means that 
( s� = s , d� = d , a� = a ). The following cases have to be 
distinguished for the inclusion of additional upper-bound 
constraints: 

(1) s ≠ s′ and d ≠ d′ and d ∈ s.Succ+ : ubc(s�, d�, �)
(2) s = s� and d ≠ d′ , d ∈ s.Succ+ , and d� ∈ s.Succ+ : 

ubc(s, d�, �)

(3) d ∉ s.Succ+, a = a�∶ 
ubc(s, d�, �), ubc(s�, d, �), ubc(s�, d�, �)

(4) d ∉ s.Succ+, a ≠ a� : ubc(s�, d�, �)

Figure  6 shows the schedule frame for the partially 
unfolded process of Fig. 1 (for explanations see Fig. 2). 
The partial unfolding of a schedule frame leads to smaller 
graphs and hence to a faster computation of a correct sched-
ule frame in comparison to a fully unfolded graph. Although 
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in this example, the difference to the fully unfolded schedule 
frame in Fig. 3 is not breathtaking, and of course, the reduc-
tion in size depends on the number and position of upper-
bound constraints and XOR-split and XOR-join nodes. In 
the worst case, the partially unfolded graph is identical to 
the fully unfolded graph. In the next section, we empirically 
explore the possible gains.

Implementation and Evaluation

We implemented all the presented algorithms for full unfold, 
partial unfold (Algorithm 7), checking (conditional) control-
lability by computation of correct schedule frames (Algo-
rithm 2) and computation of correct schedules (Algorithm 1) 
in Java. With these implementations, we performed experi-
ments to evaluate the feasibility of the approach and, in 
particular, to explore potential improvements achieved by 
partial unfold versus full unfold.

We ran our experiments on a Windows 10 server with an 
Intel Xeon CPU with 16 cores and 2.2 GHz computation 
power and 132 GB of RAM. For the experiments we ran-
domly generated 1600 processes with around 200 activities 
each and varying numbers of XOR constructs and upper-
bound constraints. Also the placement of the defined number 
of XOR-splits and XOR-joins was generated randomly, as 
well as the defined number of upper-bound constraints.

We structured the test set into subsets according to their 
number of XOR-splits and UBCs. We specified a time-
out after 30 min of computation, considering exceeding 
instances as not feasible. The following graphs summarize 
the figures collected by the experiments.

Figure 7 shows the size of the graphs in number of nodes 
for the full unfolded graph and the partial unfolded graph 
in relation to the number of XOR-splits. The experiments 
showed convincingly that the number of nodes of the par-
tially unfolded graphs is significantly smaller.

Figure  8 shows the size of the graphs for different 
amounts of upper-bound constraints. The size of the fully 
unfolded graph only depends on the number and placement 
of XOR-splits and -joins. The slight variations are due to 
the randomly selected placement of these nodes. Apart from 
this, the size of the graph does not depend on the number of 
upper-bound constraints. In contrast, the number of nodes 
of partially unfolded graphs increases with the number of 
upper-bound constraints. However, even for very large num-
bers of upper-bound constraints (50 in our experiments), the 
size of the partially unfolded graphs is still 40% smaller than 
the size of the fully unfolded graphs.

Figure 9 documents the high performance gains achieved 
by applying the partial unfold algorithm in comparison to 
the full unfold. The performance figures are given for the 
different amounts of XOR constructs. This figure also shows 
that the approach is feasible for realistic sizes of process 
graphs. For 200 activities with 17 XOR constructs, the aver-
age time for computing a correct schedule frame did not 
exceed 40 s.

We can summarize the results of the experiments as fol-
lows: the presented approach for checking the conditional 
controllability of temporally constrained processes proved to 
be feasible for realistic sizes of processes and temporal con-
straints, in particular taking into account, that these are design 
time algorithms. In addition, the experiments show that apply-
ing partial rather than full unfold greatly reduces the size of 
the graphs and significantly improves the performance of the 
computation of conditional schedules.

Related Work

Our approach tries to contribute to the integration of time 
management in workflows, temporal consistency in ser-
vice composition [24] and temporal constraint networks. 
There is already quite some body of research results in 
the area of temporal aspects of workflows and business 
processes. We refer to [5, 20, 25] for an overview. Recently 
the work of Lanz et al. [31, 32] brought some consolida-
tion of expressing temporal constraints and defining the 
semantics of temporal constraints. The upper-bound con-
straints used here are correspond to TP 3 “maximum time 
lag between events”.

Early approaches checking temporal qualities of pro-
cess definitions are [1, 19, 33] with techniques rooted in 
network analysis, scheduling, or constraint networks. These 
techniques stimulated the development of more advanced 
networks, the consideration of inter-organizational processes 
and for supporting temporal service level agreements for 
service compositions [4, 24].

Our approach is based on the algorithms for computing 
schedules for time constrained workflows presented in [17], 
but is extended to capture the uncertainty of the duration of 
contingent activities, and delivers a new formalization and 
proofs for soundness and completeness of the algorithms. 
This paper is an extension of [14] now including partial 
unfold as well as a set of additional experiments in the evalu-
ation. The terminology was changed from history-dependent 
controllability to conditional controllability, as the latter, 
although introduced in the literature earlier (e.g. [10]) lead 
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to frequent misunderstanding with schedules derived from 
process logs (or process histories).

Another stream of research studies temporal constraint 
networks [12], which were applied for workflows in [1], 
and now reached the necessary expressiveness for analyz-
ing business process models: checking the controllability 
[7] and dynamic controllability of temporal networks, as 

discussed in [8]. In particular, [6, 26, 28] present algorithms 
for checking the controllability of conditional simple tem-
poral networks with a sound-and-complete algorithm for 
conditional simple temporal networks with uncertainty 
(CSTNU), the type of network corresponding to the pro-
cess models discussed here. While these approaches check, 
whether an execution strategy avoiding time failures exists, 

Fig. 6  Partially unfolded pro-
cess graph with correct schedule 
(max 15xors)

Fig. 7  Average number of nodes 
per XOR
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our approach actually computes conditional schedules which 
guide the execution at run-time. For dynamic controllability, 
however, computing a schedule is not feasible.

Algorithms for other types of temporal constraint net-
works have been proposed in [2, 37]. Algorithms for com-
puting conditional schedules for these types of networks is 
subject of ongoing research.

Fig. 8  Average number of nodes 
per upper-bound constraint
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Conclusions

Among the most important quality criteria for the definition 
and execution of processes is to fulfill temporal requirements 
and do not violate temporal constraints. Time failures such 
as missed deadlines cause exception handling and might be 
costly. Therefore, we propose to use controllability and in 
particular conditional controllability as important character-
istics for the quality of process definitions.

We presented a sound and complete algorithm for check-
ing conditional controllability of temporally constrained pro-
cess definitions, and for computing conditional schedules 
at design time. This algorithm provides a good basis for 
developing more efficient algorithms for the computation of 
conditional schedules with better average case complexity. 
The worst case complexity was shown to be exponential in 
the number of XOR-splits in a process. However, with the 
strategy to only partially unfold a process graph depend-
ing on the location of upper-bound constraints we achieved 
a significant improvement of both the size of the resulting 
graphs and the time for calculating conditional schedules. 
Our experiments showed that the proposed procedure for 
checking conditional controllability is feasible for realistic 
sized process models.

Our major aim is to compute schedules, and to support 
the time aware execution of processes avoiding temporal 
failures. To improve the qualities of schedules, in particu-
lar less rigid schedules with start time intervals and a good 
distribution of slack time as well as efficient algorithms for 
computing good schedules remain on our research agenda. 
Furthermore, efficient run-time monitoring of adherence to 
schedules and efficient computing of task deadlines when 
tasks are dispatched to actors is subject of ongoing research.
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