
Vol.:(0123456789)

SN Computer Science (2020) 1:49
https://doi.org/10.1007/s42979-019-0050-8

SN Computer Science

REVIEW ARTICLE

Mitigating Metaphors: A Comprehensible Guide to Recent
Nature‑Inspired Algorithms

Michael A. Lones1

Received: 11 April 2019 / Accepted: 9 November 2019 / Published online: 29 November 2019
© The Author(s) 2019

Abstract
In recent years, a plethora of new metaheuristic algorithms have explored different sources of inspiration within the biologi-
cal and natural worlds. This nature-inspired approach to algorithm design has been widely criticised. A notable issue is the
tendency for authors to use terminology that is derived from the domain of inspiration, rather than the broader domains of
metaheuristics and optimisation. This makes it difficult to both comprehend how these algorithms work and understand their
relationships to other metaheuristics. This paper attempts to address this issue, at least to some extent, by providing acces-
sible descriptions of the most cited nature-inspired algorithms published in the last 20 years. It also discusses commonalities
between these algorithms and more classical nature-inspired metaheuristics such as evolutionary algorithms and particle
swarm optimisation, and finishes with a discussion of future directions for the field.

Keywords Metaheuristics · Optimisation algorithms · Nature-inspired algorithms · Swarm computing

Introduction

This paper is intended to be an objective guide to the most
popular nature-inspired optimisation algorithms published
since the year 2000, measured by citation count. It is not the
first paper to review this area [15, 65, 67], but it is arguably
the first to present these algorithms in terms that will be
familiar to the broader optimisation, metaheuristics, evolu-
tionary computation, and swarm computing communities.
Unlike some previous reviews, it does not aim to advocate
for this area of research or provide support for the idea of
designing algorithms based on observations of natural sys-
tems. It only aims to report and summarise what already
exists in more accessible terms.

The aim of this paper is not to explicitly criticise these
approaches; other authors have already done this for nature-
inspired metaheuristics in general [55] and for specific
nature-inspired algorithms [8, 62]. However, it is important
to be aware of one point of criticism that was raised by [55].
This is the tendency for authors to present their algorithm
from the perspective of, and using the terminology of, the

domain of inspiration. Often nature-inspired algorithm
papers begin with an initial review of a natural domain, then
abstract this into a model of the domain, and this leads to an
algorithmic description that contains terms from the domain.
In many cases, this includes the introduction of new terms to
describe well-established concepts from metaheuristics and
optimisation. The consequence of this is that it can take con-
siderable time and effort to understand how these algorithms
work, even if the reader has a background in metaheuristics.

Well over a hundred nature-inspired algorithms have
been published since 2000. For instance, the review book by
Xing and Gao [65] names 134 of these, and the Evolution-
ary Computation Bestiary [2] currently lists over 200. The
premise for developing new algorithms is often based solely
on the desire to capture a behaviour observed in nature, with
the assumption (rightly or wrongly) that it will also be rel-
evant within an optimisation context. In more recent papers,
it has become common to mention the No Free Lunch theo-
rem [22, 64] as a motivation. This theorem states that no
optimiser is better than any other when considered across
all possible optimisation problems, which can be interpreted
as suggesting a need for diverse optimisers to solve diverse
problems. Whether this is a valid assumption for the range of
real-world problems that optimisers are applied to in practice
is unclear. Nevertheless, different optimisers are known to

 * Michael A. Lones
 m.lones@hw.ac.uk

1 School of Mathematical and Computer Sciences, Heriot-
Watt University, Edinburgh, UK

http://orcid.org/0000-0002-2745-9896
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-019-0050-8&domain=pdf

 SN Computer Science (2020) 1:4949 Page 2 of 12

SN Computer Science

perform well on different problems, so there is some value
to this argument.

These algorithms have gained a significant uptake. This
can be seen in their citation counts: the 32 algorithms
reviewed in this paper each have more than 200 citations;
a third of them have more than 1000 citations. Given that
most computer science papers achieve only a handful of cita-
tions per year, this is quite an achievement for a group of
papers with an average age of around 9 years. However, this
combination of high uptake and opaque descriptions has led
to fragmentation between the nature-inspired optimisation
community and the wider metaheuristics community. To
raise an observation that should be familiar to these com-
munities: a certain amount of diversification is generally a
good thing, but diversification without intensification tends
to be ineffective. Applying this observation to the design of
optimisation algorithms suggests that focusing on variants
of a single nature-inspired algorithm (and most algorithms
discussed in this paper do have a significant number of vari-
ants) is likely to be a sub-optimal approach and a potential
waste of time and effort. This, in turn, suggests a need to tie
back together these different threads of search. This paper
aims to contribute towards this goal.

The section “Descriptions and Terminology” presents
the approach used to describe algorithms in this paper. The
section “Algorithms from A to Z” then uses this approach to
describe the most widely cited recent nature-inspired algo-
rithms; the intent is for this to be used as a resource where
someone can look up a particular algorithm and quickly
gain an understanding of its main characteristics. The sec-
tion “Commonalities” then discusses the novelty of these
algorithms in terms of both metaheuristic frameworks and
broader metaheuristic concepts. The section “Common-
alities with PSO” delves further into the specific overlaps
between these algorithms and particle swarm optimisation
and its variants. The section “Discussion” discusses some
of the broader issues, and offers guidance on how research
carried out in this area could be improved. Conclusions are
drawn in the section “Conclusions”.

Descriptions and Terminology

This paper attempts to describe algorithms using standard
terms. However, this is not as straightforward as it may
seem, since different parts of the metaheuristics community
use different terminology. For example, those who work with
local search algorithms refer to the transition between two
points in the search space as a move, and the result of evalu-
ating a point is known as its objective value. In the EA com-
munity, where much of the terminology derives from bio-
logical roots, these would be called mutation and fitness. In
practice, both sets of terms are widely used. However, since

the aim of this guide is to divorce nature-inspired algorithms
from the terminology of their domain, generic terms will
be used wherever possible, i.e., move rather than mutation.

When describing population-based algorithms, a fur-
ther difficulty is that some algorithms are more naturally
described using process-centric terms and others using
population-centric terms. Particle swarm optimisation
(PSO), for example, is essentially a distributed algorithm,
and is easiest to present in terms of interactions between
search processes. Genetic algorithms (GA), on the other
hand, involve population-level operations such as selection;
although these could be described as interactions between
search processes, this would be convoluted and would make
the algorithm harder to understand. Hence, in this paper, a
mixture of process-centric and population-centric terminol-
ogy is used, depending on whether the algorithm is most
appropriately described as the former or the latter.

In general, an attempt has been made to keep descrip-
tions succinct and generic whilst avoiding the definition of
new terms. Little or no reference is made to an algorithm’s
source of inspiration from nature, unless this is required
to understand the algorithm. Descriptions are intended to
be sufficient to indicate the general characteristics of the
algorithm, and to allow the reader to draw out similarities
with other algorithms. They are not intended to be exhaus-
tive, and hence, some of the less important, or less specific,
details are omitted. For example, consider the following
description of PSO:

Particle Swarm Optimisation (PSO) Eberhart and Ken-
nedy, 1995, [11] > 50,000 citations

Each search process has a velocity within the search space
and carries out moves by adding this to its current position at
each iteration. The velocity is initially random. Then, at each
iteration, each search process modifies its velocity by adding
weighted terms based on the vector difference between its
current point of search and the best points seen by both itself
and by a subset of other search processes. This causes inten-
sification of search by moving towards regions of the search
space known to contain points of relatively high objective
value. Diversification is provided by moving through the
region between the current point and these target regions,
and by overshooting these regions due to the momentum
gained by maintaining a proportion of the existing velocity
at each update.

Unlike other presentations of this algorithm, this descrip-
tion does not use the terms particle or informant, since both
of these can be described using generic terms. It does not go
into detail about the exact form of each term in the velocity
update equation, or how informants are allocated, since these
details are not required to understand how the algorithm
works, or how it relates to other algorithms. They are also
subjected to wide variation between implementations. The
term velocity, however, is used, since it is a well-defined

SN Computer Science (2020) 1:49 Page 3 of 12 49

SN Computer Science

concept within a vector space, and helps to understand the
behaviour of the algorithm. The description also highlights
algorithmic features which are expected to promote intensi-
fication and diversification of search.

A GA can be described as follows:
Genetic Algorithm (GA) Holland, 1975, [21] > 60,000

citations
At each iteration, search points with relatively high objec-

tive value are selected from the existing population. These
are organised into pairs, and new search points are then cre-
ated by exchanging solution components within pairs. This
tends to sample the search space between existing search
points, thereby both intensifying and diversifying search.
Further diversification is provided by carrying out a random
move away from the resulting points. Search points with
relatively low objective value are removed from the popula-
tion at each iteration, further intensifying search.

This description is intentionally generic, since the exact
details of how selection, recombination, mutation, and
solution replacement are implemented vary considerably.
Domain-derived terms like crossover and mutation are not
used, though select is, since this has a clear non-domain
meaning.

Algorithms from A to Z

Given the opaque nature of a lot of these papers, it would
be a challenging task to read through and understand all
the nature-inspired optimisation algorithms that have been
published in recent years. Perhaps in reflection of this, previ-
ous reviews have generally described these algorithms using
their original authors’ words, or have focused on the sources
of inspiration rather than trying to understand and present
their underlying metaheuristic mechanisms. By comparison,
the presentation in this paper aims to be comprehensible
rather than comprehensive. Consequently, it focuses on the
more popular of these algorithms. Popularity is measured in
terms of citation count; this is not, of course, a robust meas-
ure of uptake, but it gives some indication of whether the
algorithm has been used in practice. To bring the list of algo-
rithms down to a manageable level, this review only cov-
ers those which have at least 200 citations, as measured by
Google Scholar.1 By comparison, the seminal genetic algo-
rithm (GA) work has ∼ 60,000 citations, particle swarm opti-
mization (PSO) has ∼ 50,000 citations, ant colony optimiza-
tion (ACO) has ∼ 10,000 citations, and evolution strategies
(ES) have ∼ 5000. It is notable that a number of algorithms
in the list have citation counts approaching that of ES and
collectively they have ∼ 30,000 citations, roughly halfway

between the citation counts of ACO and PSO. Therefore,
even taking into account the limitations of citation counts,
they are clearly having an impact within the scientific record,
and this alone should justify efforts to document and under-
stand them. Figure 1 plots the approximate number of cita-
tions against the year that an algorithm’s seminal paper was
published. It can be seen from the trend line that the average
citation count per year is ∼ 100.

The glossary below gives an overview of these 32 algo-
rithms. Unless indicated otherwise, it is assumed that each
algorithm is a population-based optimiser which updates the
population synchronously over a period of iterations and
begins with a population that is uniformly sampled from
the search space.

Ant Lion Optimizer (ALO) Mirjalili, 2015, [38] > 300
citations

At each iteration, search points with relatively high objec-
tive value are selected from the existing population. Search
processes with relatively low fitness are then restarted within
hyper-spherical regions centred around the selected points.
Over time, the radius of the hyper-spheres is reduced, further
intensifying search. The restarted search processes carry out
random walks within their hyper-spherical regions; this is
the main source of diversification within the algorithm.

Artificial Bee Colony Algorithm (ABC) Karaboga,
2005, [23] > 4500 citations

Each search process generates local moves in the direc-
tion of the current position of another, randomly selected,
search process. Only improving moves are accepted. The
number of local moves generated by a particular search

Fig. 1 Citation counts of seminal papers, labelled with each algo-
rithm’s acronym. See the section “Algorithms from A to Z” for full
names and descriptions

1 Citations counts were collected in October 2019.

 SN Computer Science (2020) 1:4949 Page 4 of 12

SN Computer Science

process is determined by the relative objective value of their
current search point. Move sizes are probabilistic and are
progressively reduced over time, leading to increased inten-
sification. Diversification is promoted by restarting search
processes which have not made progress within a certain
number of moves at a randomly sampled location.

Bacterial Foraging Optimization (BFO) Passino, 2002,
[42] > 2500 citations

Each search process carries out sequential moves in the
same direction until this no longer leads to improvement.
When the current direction of search is no longer productive,
a random change in direction occurs. After each iteration,
the search processes with relatively low fitness are restarted
at the current positions of search processes with relatively
high fitness, intensifying search. The objective values of
search points are adjusted by a crowding term, whose effect
is to draw the search processes towards one another, further
intensifying search.

Bat Algorithm (BA) Yang and Gandomi, 2012, [70]
> 600 citations

Search processes move towards the best solution within
the population at different velocities, the magnitude of which
is varied randomly at each iteration. There is also a prob-
ability of intensifying search by changing each search pro-
cess’s current position to a random point near the best solu-
tion within the population, with the likelihood of doing this
decreasing each time a search process makes an improve-
ment. The new search point is then accepted probabilisti-
cally, with a likelihood that increases each time a search
process makes an improvement.

Bees Algorithm (BeA) Pham et al., 2006, [44] > 1000
citations

At each iteration, solutions are randomly sampled within
a fixed radius of the best solutions within the existing popu-
lation. This radius reduces progressively over time and only
improved solutions are accepted. Random restarts are used
to maintain diversity. This is similar to an ES with a time-
dependent mutation strategy.

Big Bang-Big Crunch (BB-BC) Erol and Eksin, 2006,
[13] > 600 citations

At the start of each iteration, a point representing the
objective value-weighted average of the previous popula-
tion is calculated and a new population is created by sam-
pling from a normal distribution centred around this point.
The width of the distribution is reduced at each iteration,
intensifying search. This can be seen as an estimation of dis-
tribution algorithm (EDA) with a simple generative model.

Biogeography-Based Optimizer (BBO) Simon, 2008,
[54] ∼ 2000 citations

At each iteration, for each solution in the population,
components are replaced by copying them from other solu-
tions; the likelihood of this is proportional to the solution’s
objective value, and the likelihood of choosing another

solution as a source is proportional to its objective value.
To promote diversity, a local move is carried out away from
each resulting solution, with the probability of doing so
inversely proportional to its objective value. This has simi-
larities to a multi-parent GA.

Brain Storm Optimization (BSO) Shi, 2011, [52] > 300
citations

At each iteration, the population is clustered using
k-means clustering, and the best solution in each cluster is
identified. Each solution in the population is then considered
for replacement by comparing its objective value against
that of a new search point and then keeping the best. Most
of the time, this new search point is generated by either a
local move from an existing solution, or by recombining two
existing solutions in a GA-like manner. In either case, selec-
tion of the existing solution(s) is biased towards the cluster
bests. To diversify the population, there is also a mechanism
to sample random solutions during this process.

Cat Swarm Optimization (CSO) Chu et al., 2006, [7]
∼ 300 citations

At each iteration, each search process either carries out a
local search, or moves in the direction of the best solution in
the population. When carrying out a local search, a specified
number of points are sampled in the vicinity of the current
position and the best one is kept.

Charged System Search (CSS) Kaveh and Talatahari,
2010, [25] ∼ 600 citations

All search processes carry out moves towards the cur-
rent positions of other search processes. Search processes
have velocities, and the speed with which a search process
moves towards a given search process is calculated using
an inverse-square law weighted by the objective value of
that process’s current point of search. Adaptive parameter
changes allow the degree of attraction to vary over time,
and the best solutions within the population are always pre-
served. Note that this algorithm is similar to FA and GSA.

Chemical Reaction Optimization (CRO) Lam and Li,
2010, [30] > 300 citations

Search processes carry out either local search or a more
disruptive global search using disruptive operators (such
as the GA recombination operator). The balance between
local and global search, and the likelihood of accepting
non-improving solutions are both based on the history of
the population member: if no improvement has been made
for a while, global search replaces local search; if solutions
with lower objective values were previously accepted, then
they are less likely to be accepted in the future. This algo-
rithm has similarities to memetic algorithms and simulated
annealing.

Cuckoo Optimization Algorithm (COA) Rajabioun,
2011, [46] ∼ 500 citations

At each iteration, new search points are sampled within
a radius of each existing search point, and only the best

SN Computer Science (2020) 1:49 Page 5 of 12 49

SN Computer Science

points are kept. The resulting population is then clustered
using k-means clustering, and the cluster with the highest
mean objective value is identified. Search points in the
other clusters are then moved towards the fittest cluster.

Cuckoo Search (CS) Yang and Deb, 2009, [69] ∼ 3000
citations

Uses a small population of solutions. At each iteration,
a search process with a relatively low objective value is
restarted, either at a randomly sampled location, or by
applying a ‘Lévy flight’ to another, randomly selected,
solution. Lévy flights are a kind of random walk with
step sizes generated from a heavy-tailed probability
distribution.

Firefly Algorithm (FA) Yang, 2009, [66] > 2000
citations

At each iteration, all search processes carry out moves
towards the current positions of other search processes.
The degree of movement towards each point is calculated
using an inverse-square law weighted by its objective value,
causing intensification of search towards points with higher
objective values. Note that this algorithm is similar to CSS
and GSA.

Firework Algorithm (FWA) Tan and Zhu, 2010, [61]
> 300 citations

At each iteration, solutions are sampled in a neighbour-
hood around the best solutions in the population. Only
improving moves are accepted. Neighbourhoods are sam-
pled using a Gaussian distribution centred around the current
point. The width of the distribution is inversely proportional
to the objective value of the best solution, causing increased
intensification as search progresses.

Flower Pollination Algorithm (FPA) Yang, 2012, [68]
> 500 citations

At each iteration, search processes carry out moves either
towards the best solution in the population or the current
position of a randomly selected search process. In the for-
mer case, the step size is determined by sampling a Lévy
distribution (see CS).

Fruit Fly Optimization Algorithm (FOA) Pan, 2012,
[41] > 600 citations

All search processes carry out moves towards the best
solution in the population. However, how this is achieved is
unclear from the description.

Glowworm Swarm Optimization (GwSO) Krishnanand
and Ghose, [28] > 600 citations

Each search process maintains a numerical value that
summarises its recent search progress, increasing this when
it finds an improving search point and decreasing gradually
when it makes no progress. At each iteration, each search
process carries out moves towards another search process
located within a hyper-spherical region centred around its
current point; a search process with a high search progress
value is more likely to be chosen as a target, and the radius

of this region shrinks when there are many search processes
nearby. Citation count includes [29].

Gravitational Search Algorithm (GSA) Rashedi et al.,
2009, [48] > 2500 citations

All search processes carry out moves towards the cur-
rent positions of other search processes. Search processes
have velocities, and the speed with which a search process
moves towards a given search process is calculated using an
inverse-square law weighted by the objective value of that
process’s current point of search. Note that this algorithm is
similar to CSS and GSA.

Grey Wolf Optimizer (GWO) Mirjalili et al., 2014, [40]
> 1000 citations

At each iteration, each search process carried out moves
around the edges of a hypercube centred around a target
search point. The target point is selected from a region
bounded by the three current best search points within the
population. Hypercubes become gradually smaller at each
iteration to intensify search, and there is a random compo-
nent in the update equation to inject diversity.

Group Search Optimizer (GSO) He et al., 2009, [20]
> 500 citations

The search processes with the current best solutions carry
out local moves, using a mathematical model of animal
vision to delimit the region which they explore at a particular
time. The majority of the other search processes carry out
moves towards the search processes with the current best
solutions. The remaining search processes generate diversity
within the population by carrying out random walks.

Harmony Search (HS) Geem et al., 2001, [19] ∼ 4000
citations

At each iteration, a single new solution is created from a
randomly selected existing solution. For each of its decision
variables, a new value is chosen either at random or by copy-
ing and slightly modifying the value from another randomly
selected solution. If the new solution has a higher objective
value than the worst solution in the population, it replaces
it. Note that this algorithm has been proven equivalent to a
certain form of ES [62].

Imperialist Competitive Algorithm (ICA) Atashpaz-
Gargari and Lucas, 2007, [3] ∼ 1500 citations

A population is randomly initialised and the best solutions
are selected. For each of these solutions, a sub-population
is created with size proportional to its objective value and
is filled randomly using the remaining search points within
the population. At each iteration, the solutions in the sub-
population are moved towards the best solution within the
sub-population, with some noise added to inject diversity.
Then, each sub-population is given a value based mainly
on the objective value of its best solution, and solutions in
sub-populations with low values are re-allocated to sub-pop-
ulations with high values. The algorithm terminates when
there is a single non-empty sub-population.

 SN Computer Science (2020) 1:4949 Page 6 of 12

SN Computer Science

Invasive Weed Optimization (IWO) Mehrabian and
Lucas, 2006, [35] > 750 citations

At each iteration, search processes sample a number of
local moves from their current position. The number of
moves is proportional to the relative objective value of their
current position, and the size of moves decreases non-lin-
early over time. Once the population size reaches an upper
bound, search processes with relatively poor solutions are
ended, and the solutions which they generated are removed
from the population.

Krill Herd (KH) Gandomi and Alavi, 2012, [17] > 600
citations

Search processes carry out moves towards the popula-
tion best, their historical best, and the objective value-
weighted average of the population. They also carry out
moves towards or away from search processes within a given
radius, based upon their objective value. Search processes
also have a component of random movement. The weighting
of components is time-dependent, with less random motion
and more movement towards the population best as time
proceeds. On top of this, GA-like operations are carried out
within the population.

Marriage in Honey Bees Optimization (MBO) Abbass,
2001, [1] ∼ 400 citations

At each iteration, a number of random walks are carried
out, starting from the locations of the best solutions in the
population. New solutions are created using an operator
that recombines the existing (start of walk) solution with
solutions encountered during the walk. The likelihood of
this occurring at each step of the walk is based on objective
value, and also reduces over the course of the walk. Move
sizes progressively decrease during the walk. Local search is
used to improve solutions at each iteration of the algorithm;
the operator used for this is chosen probabilistically based
on its past success rate.

Moth-Flame Optimization (MFO) Mirjalili, 2015, [37]
∼ 250 citations

Search processes carry out moves in a spiral path towards
a target point. The target points are the historical best solu-
tions of other search processes. Initially, all historical bests
are used as targets, with the particle that has the highest cur-
rent objective value moving towards the highest historical
best, and the search process with the least current objective
value moving towards the lowest historical best. Over time,
fewer targets are followed.

Shuffled Frog Leaping Algorithm (SFLA) Eusuff and
Lansey, 2003, [14] > 1000 citations

At each iteration, the population is divided into sub-
populations, each with a broad objective value spread. Each
sub-population is then repeatedly sub-sampled by objective
value, and the worst solution in each sub-sample is moved
towards the best solution in the sub-sample (or alternatively
the population). In each case, if this does not lead to an

improvement in objective value, the solution is replaced by
a random search point. After each sub-population has been
processed, the sub-populations are merged, and the proce-
dure is repeated.

Society and Civilisation Algorithm (SCA) Ray and
Liew, 2003, [50] > 300 citations

At each iteration, the population is clustered. In each
cluster, the best solutions are selected. The remaining solu-
tions in the cluster are then moved towards the selected solu-
tions. A similar procedure is then carried out for the selected
solutions from all clusters, with the worst solutions amongst
these moved towards the best solutions. The algorithm also
takes into account constraint satisfaction.

Teacher-Learning Based Optimization (TLBO) Rao
et al., 2011, [47] > 1000 citations

At each iteration, the mean position of the population is
calculated and subtracted from the population’s best search
point. Moves are then carried out by adding a fraction of the
resulting vector to each population member (this is similar to
differential evolution). Only improving moves are accepted.
Each population member is then compared to another ran-
domly selected population member; if the target has a higher
objective value, it is moved towards it; otherwise, it is moved
away. Again, only improving moves are accepted.

Water Cycle Algorithm (WCA) Shah-Hosseini, 2009,
[51] ∼ 250 citations

At each iteration, population members with relatively
high objective value (but not the population best) are moved
closer to the population best by a random amount. The
remaining population members are each moved closer to
one of these relatively high objective value solutions by a
random amount, with proportionally more of them moving
towards the best solutions. Random local moves are also
applied to maintain diversity.

Whale Optimization Algorithm (WOA) Mirjalili and
Lewis, 2016, [39] ∼ 250 citations

Each search process carries out moves in a hypercube
around a target search point and iteratively moves towards
this target either by shrinking the hypercube or through a
spiral motion. Target choice is affected by a time-dependent
parameter; initially, this causes random members of the
population to be followed; later, all search points follow the
population best.

Commonalities

Recent nature-inspired metaheuristics have sometimes
been criticised for a lack of novelty. Before discussing
this in more detail, it is first useful to consider the mean-
ing of the term metaheuristic. Many authors who develop
nature-inspired algorithms use this term as a synonym for

SN Computer Science (2020) 1:49 Page 7 of 12 49

SN Computer Science

“optimisation algorithm”, but this is not the original mean-
ing of the term, which is more akin to a generative model
that can be used to guide the development of a particular
algorithm. Sörensen et al. [56] address this disparity by dis-
tinguishing metaheuristic algorithms (i.e. particular imple-
mentations of a metaheuristic idea) from metaheuristic
frameworks (i.e. the more general models from which these
algorithms are derived). This distinction is important when
talking about novelty, because whilst there is considerable
scope for designing a novel metaheuristic algorithm, there is
much less scope for developing a novel metaheuristic frame-
work. For instance, you can create a novel metaheuristic
algorithm by modifying the mutation operator used by a GA,
or by hybridising a GA with an operator from PSO, but in
both cases, there is no novel metaheuristic framework being
created. It is worth noting that hybridisation, in particular,
introduces combinatorial scope for generating algorithms
that are technically novel, yet which introduce no novel algo-
rithmic features.

Whilst metaheuristic frameworks are a useful concept
for narrowing the definition of novelty, it can also be use-
ful to talk about recurring ideas that appear within multiple
frameworks. For instance, EAs and PSO are probably good
candidates for being called metaheuristic frameworks, but
there are clearly common concepts that occur within both of
these; for example, the way in which both techniques have
mechanisms for exploring search points that are intermedi-
ate to the existing ones. In a previous paper [34], an attempt
was made to identify and describe some of these more gen-
eral metaheuristic approaches; an abridged listing of these
is reproduced in Table 1.

Technically, almost all the algorithms described in the
previous section meet the definition of a novel metaheuristic

algorithm, since they differ from standard metaheuristic
algorithms such as ESs, GAs, and standard PSO. However, it
is difficult to argue that any of them are novel metaheuristic
frameworks, since most of them clearly borrow (or perhaps
re-discover) concepts that are also central to conventional
metaheuristic frameworks. Referring to the metaheuristic
concepts listed in Table 1, all of the algorithms described in
the previous section implement a combination of hill climb-
ing, adaptive memory programming, and population-based
search, and this is also true of EAs and PSO. The majority
also implements some form of intermediate search, most
commonly using either a PSO-like operator that picks a
point geometrically between two existing points or an EA-
like crossover operator that recombines solution compo-
nents. Those which use PSO-like operators also carry out
directional search in a similar manner to PSO. Many of the
algorithms use restarts (ABC, BFO, BeA, CS, and SFLA),
which are also commonly used in local search algorithms.
Many also have strategies for accepting negative moves:
some of these resemble simulated annealing (BA, CRO);
however, the most common approach involves random walks
(ALO, BFO, CS, GSO, KH, and MBO), which might be
considered a degenerate form of threshold acceptance, but
is, otherwise, a relatively novel idea. Several algorithms use
search trajectories that follow a spiral-like path around local
optima (GWO, MFO, and WOA), and this could be consid-
ered a form of variable neighbourhood search.

In terms of resemblance to existing metaheuristic frame-
works, a large proportion of the algorithms have a clear
resemblance to PSO in that a population of search pro-
cesses move towards each other using vector-based opera-
tions (ABC, BeA, BA, COA, CSO, CSS, FA, FOA, FPA,
GSA, GSO, GWO, GwSO, KH, MFO, TLBO, WCA, and

Table 1 A list of recurring metaheuristic concepts (adapted from Lones [34])

Concept Description Examples

Hill climbing Follow a sequence of local improvements to reach a
locally optimal solution.

Steepest ascent, stochastic hill climbing

Accepting negative moves Allow moves to worse solutions Threshold accepting, simulated annealing
Restarts Restart the search process in a different region once it has

converged at a local optimum
Random-restart hill climbing, iterated local search

Adaptive memory programming Use memory of past search experience to guide future
search.

Tabu search, EAs, PSO

Population-based search Multiple cooperating search processes that run in parallel EAs, PSO, scatter search
Intermediate search Explore the region between two or more previously visited

search points
Crossover, PSO, path relinking

Directional search Identify productive directions within the search space, and
carry out moves accordingly

Gradient ascent, CMA-ES, PSO

Variable neighbourhood search Search different neighbourhoods around the location of a
known local optimum

PSO, variable neighbourhood search

Search space mapping Construct a map to guide search processes that are travers-
ing the search space

ACO, guided local search, DIRECT

 SN Computer Science (2020) 1:4949 Page 8 of 12

SN Computer Science

WOA). A few algorithms might be considered variants
of ES (BeA, HS, and IWO), and a number of algorithms
are broadly EA-like (BBO, BSO, COA, ICA, SFLA, and
SCA), with a number of these hybridising PSO-like opera-
tors (COA, ICA, SFLA, and SCA). Some algorithms have
notable degrees of self-similarity: for instance, CSS, FA, and
GSA all use inverse-square laws to calculate the attraction
between search processes.

Commonalities with PSO

PSO has clearly been an influence to many of the nature-
inspired algorithms reviewed in the section “Algorithms
from A to Z”, and consequently, it is important to dig down
further to understand how ideas explored within this group
of algorithms intersect with those explored in the PSO
literature.

The majority of PSO-style algorithms listed in the sec-
tion “Algorithms from A to Z” have similar basic mechanics
to PSO, in that search processes move towards other search
processes using vector operations. A major difference is that
the majority of these algorithms (all except KH and MFO)
do not use historical bests, i.e., the best point of search seen
by a particular search process. This means that search pro-
cesses are influenced only by the current locations of both
themselves and other search processes. The metaheuristic
motivation for this is unclear, since it appears to reduce the
amount of information available to guide search. Neverthe-
less, it should be noted that the idea of “social only” inter-
actions (i.e., ignoring a search process’s own search experi-
ence) has been explored in PSO and in both [26] and [43]
was found to have no significant effect upon the algorithm’s
performance when applied to certain problems; however,
this is not the same as not recording historical bests, since
search processes are still influenced by the historical bests
of other search processes.

Another major difference from standard PSO is that
most of the algorithms have no direct analogue of veloc-
ity or momentum; rather, move sizes are determined using
simpler rules, including time-dependent move sizes (ABC,
ALO, BB-BC, CSS, IWO, MBO), distance-dependent
move sizes (CSS, FA, GSA) and region-based sampling
(ALO, BA, BeA, BB-BC, FWA, GWO, and WOA). Time-
dependent move sizes have also been explored in variants
of PSO [49, 53]. Region-based sampling involves directly
sampling from a region of search space that is shaped or
bounded by one or more search points, rather than apply-
ing vector-based operations. This approach has earlier been
used in Bare Bones PSO [27], where it was introduced as
a means of simplifying the dynamics of PSO and making
it more tractable for analysis. Distance-dependent move
sizes are notable: usually in PSO, search processes move

faster towards informants that are further away, meaning that
move size increases with distance. In CSS, FA, and GSA,
on the other hand, the search processes are less influenced
by distant search processes, so move size reduces with dis-
tance. This causes interactions between search processes to
become geographically localised, which could be useful for
multi-modal landscapes; however, it is unclear whether the
resulting behaviour is more effective than other mechanisms
introduced to PSO to handle these kinds of landscapes, such
as multi-swarm approaches [4].

A consequence of using simpler update rules is that the
dynamics of many of these algorithms are much simpler
than in standard PSO. A benefit of this is that it potentially
makes their behaviour easier to understand. However, by
removing exploratory dynamics like overshooting and
oscillation, there is a danger that they will only explore the
regions between existing search points and suffer premature
convergence as a result. To address this, most include one or
more mechanisms to promote diversification. These include
hybridisation with local search (CSO, CRO, COA, FWA,
IWO, MBO, WCA), random restarts (ABC, BFO, BeA, CS,
SFLA), random walks (ALO, BFO, CS, GSO, KH, MBO),
and spiral-like movements (GWO, MFO, WOA). The latter,
in particular, may lead to search trajectories that resemble
those seen in PSO (and it should be noted that a similar
approach is used in spiral optimisation [60]). Hybridisation
with local search is also fairly common in PSO, e.g., [6],
where restarts have also been used [24]. Random walks are
arguably one of the more interesting mechanisms explored
in recent nature-inspired optimisation algorithms, particu-
larly those that build upon biological knowledge in this area,
e.g., CS and BFO, and there is no real analogue in the PSO
literature.

When carrying out moves towards other search processes,
the manner of choosing target search points varies widely
amongst the algorithms in the list. Some (BA, CSO, and
FOA) only use the population best, relying on other mech-
anisms (e.g., restarts) to maintain diversity. Several algo-
rithms (GwSO, WCA, GWO, and COA) choose targets in a
fitness-informed manner, either probabilistically, by select-
ing the top n solutions in the population, or in the case of
COA, by clustering and picking the cluster with the highest
mean fitness. These approaches are somewhat related to var-
iants of PSO that use dynamic allocation of informants, e.g.,
[10]. A number of algorithms have mechanisms that cause
particles to be more influenced by nearby search processes.
This includes those that relate move size to distance (see
above). It also includes SCA, which dynamically clusters the
population based on distance. Distance-based selection of
informants has also been used in PSO, e.g., [31]. A number
of algorithms use all other search processes as targets, either
directly (CSS, FA, and GAO), or indirectly by summarising
information about them (KH, BB-BC). Similar ideas have

SN Computer Science (2020) 1:49 Page 9 of 12 49

SN Computer Science

been investigated in variants of PSO, such as fully informed
PSO [36] and quantum PSO [58]. Some algorithms use
time-varying rules for choosing targets, notably those that
move from randomly chosen targets towards the population
best over time (MFO and WOA). The idea of dynamically
varying the number of informants over time has also been
explored in the PSO literature [57].

Discussion

Are recent nature-inspired algorithms novel? Yes and no.
On one hand, most (but certainly not all) of the algorithms
reviewed in this paper are distinct from existing optimisa-
tion algorithms, and given a particular search space, they
would likely follow different trajectories to existing algo-
rithms. On the other hand, many of these algorithms use
variants of well-established metaheuristic concepts that are
also found in existing metaheuristic frameworks such as
PSO, EAs, and local search. Furthermore, the analysis of
PSO-style algorithms shows that many of their underlying
ideas have also been explored by the more mainstream PSO
community. However, chronologically, this has not always
been in one direction. Sometimes, the PSO community has
explored these ideas earlier, sometimes later, and sometimes
in parallel to recent nature-inspired algorithms. Either way, it
shows how the fragmentation of the nature-inspired comput-
ing community has led to duplicated effort.

Are recent nature-inspired algorithms competitive? This
is less clear. Most of the cited papers include a performance
evaluation. The results are not reported here, because almost
all show the algorithm to perform better than the algorithms
which they were compared against. Even without taking No
Free Lunch theorems [64] into account, it is implausible to
believe that this is true for all of them. This is not to say that
the results are incorrect, but it does reflect the difficulty of
designing fair comparative studies [9, 16, 18, 45]. We can
speculate that all of these algorithms will sometimes per-
form better on some problems when compared against other
algorithms, since problem landscapes are diverse, and small
differences in the topography of a landscape can favour dif-
ferent approaches.

However, given a specific problem, it is difficult to know
which algorithm will work well. The field of meta-learning
[32] has been studying this issue for some time, but pro-
gress on understanding how problems can be characterised,
categorised, and mapped to specific optimisers has so far
been limited. This means that performance on one prob-
lem currently tells us little about potential performance on
another problem, and consequently that practitioners usu-
ally have to try out a range of different optimisers to deter-
mine which one works well on their problem. In a sense,
the recent developments in nature-inspired algorithms have

increased the number of optimisers available to try out. This
may sometimes be beneficial, but it also makes it harder for
a practitioner to identify a suitable optimiser that is well
understood and has community support. Given the vast
scope for creating variants and hybrids of existing algo-
rithms, this situation is only likely to get worse.

An alternative, and arguably more promising, direction of
travel can be seen in the hyperheuristics [5, 12] and broader
machine learning communities [33, 63]. Both address the
problem of choosing an optimiser as an optimisation prob-
lem, using a machine learning algorithm to identify an opti-
miser that is good at solving a specific task. In the case of
hyperheuristics, the optimiser, which is usually an evolution-
ary algorithm, can be used to construct new optimisation
algorithms. This can be done either by specialising an exist-
ing algorithm (for example, evolving a new mutation opera-
tor for an EA) or by assembling the existing metaheuristic
components in a novel way. In effect, the latter is an auto-
mated version of the many manual attempts to hybridise
metaheuristics that can be found in the literature. However,
this automated approach is currently limited by a lack of
standardised interfaces [59], and this arguably is limited by
the tendency of the community to think of metaheuristics
in terms of algorithms rather than re-usable components.

This focus on algorithms rather than components is a
particular issue for the nature-inspired algorithm commu-
nity, where the objective of domain modelling is almost
always the generation of a single algorithm that captures all
pertinent behaviours present within the domain of inspira-
tion. As a consequence, any interesting, novel, components
extracted from the domain tend to become conflated with
other, less interesting, and sometimes arbitrary, components.
This makes it hard to understand the relevance and con-
tribution of individual components within the optimisation
setting. Arguably, a better approach would be to identify
any component of the domain that is particularly interesting,
and integrate this individually within one or more existing
metaheuristic frameworks. Even better would be to make the
code available in re-usable form: it could then be used by
other algorithm developers, or even used as a new building-
block within hyperheuristic frameworks.

An important barrier that stands in the way of this kind
of integration is the success of previous authors who have
not followed this path. This can be seen in the large citation
counts amongst recent nature-inspired optimisation papers,
and the initial career boost that this may provide to their
authors. It is, perhaps, less apparent that association with a
part of the field that is seen as less rigorous may result in a
career penalty in the long run. Many of the citations to these
papers come from researchers who work in applied optimisa-
tion. This brings up another important factor in the success
of nature-inspired optimisers, the false assumption that new
means better, which leads to inexperienced practitioners

 SN Computer Science (2020) 1:4949 Page 10 of 12

SN Computer Science

using the most recent, rather than the most appropriate,
metaheuristic to solve a particular optimisation problem.
This is a difficult problem to address, because it is arguably
caused by sociological rather than technological factors, and
(due to the wide reach of optimisation) spans a broad range
of academic communities. Nevertheless, maybe efforts, such
as this, to tie together the loose ends of the community may
contribute towards a solution.

Conclusions

Numerous papers describing new nature-inspired optimisa-
tion algorithms have been written over the past 20 years.
Unfortunately, it has become common practice for these
papers to describe algorithms using non-standard terminol-
ogy derived from their domain of inspiration, resulting in
papers that are often very difficult to read and understand.
In this paper, an attempt has been made to describe the most
widely cited of these algorithms using standard metaheuris-
tic terminology. It is hoped that the resulting descriptions
will make it easier for readers to gain a quick understand-
ing of how these algorithms work, without having to read
the original papers. As a result, this should make it more
straightforward for metaheuristics practitioners to read,
review, and understand work that uses these algorithms.

This paper also makes an attempt to analyse the com-
monalities between algorithms. The existing literature has
raised particular cases where there is a strong similarity
between different nature-inspired optimisation algorithms,
but opaque terminology makes it hard to recognise these
similarities in general. The standardised descriptions
in this paper make this process easier, and this has been
demonstrated by relating each of the algorithms to exist-
ing metaheuristic concepts. The resulting analysis suggests
that few of the algorithms introduced in the last 20 years
introduce fundamentally new concepts; rather, they mostly
reassemble existing concepts in new ways. Since many of
the algorithms are swarm-like, a closer look was taken at
their commonalities with particle swarm optimisation and its
variants. This revealed few points of absolute novelty, sug-
gesting that the two communities have largely been follow-
ing the same tracks. Perhaps surprisingly, it was noted that
particle swarm optimisation did not always get there first.

This paper also emphasises the need to bring together the
different threads of the metaheuristic community, with the
aim of reducing redundancy, making research results more
accessible, and developing new approaches that integrate the
diverse work that is being done. Some important work has
already started in this area, including, for example, efforts
to standardise interfaces between metaheuristic components.
However, arguably, a lot more effort is required if we are
to reduce the fragmentation of the field and leverage the

diverse talents of the metaheuristics community in useful
ways.

Compliance with Ethical Standards

Conflict of Interest The author states that there is no conflict of inter-
est.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

 1. Abbass HA. MBO: marriage in honey bees optimization—a hap-
lometrosis polygynous swarming approach. In: Proceedings of the
2001 congress on evolutionary computation (CEC 2001), vol 1.
IEEE; 2001. , p. 207–14.

 2. Aranha C, Campelo F. Evolutionary computation bestiary; 2019.
https ://githu b.com/fcamp elo/EC-Besti ary (online accessed 9 Oct
2019).

 3. Atashpaz-Gargari E, Lucas C. Imperialist competitive algorithm:
an algorithm for optimization inspired by imperialistic competi-
tion. In: Proceedings of the 2007 congress on evolutionary com-
putation (CEC 2007). IEEE; 2007. p. 4661–7.

 4. Blackwell T, Branke J. Multi-swarm optimization in dynamic
environments. In: Workshops on applications of evolutionary
computation. Springer; 2004. p. 489–500.

 5. Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Özcan E,
Rong Q. Hyper-heuristics: a survey of the state of the art. J Oper
Res Soc. 2013;64(12):1695–724.

 6. Chen J, Qin Z, Liu Y, Lu J. Particle swarm optimization with local
search. In: International conference on neural networks and brain
(ICNN&B’05), vol. 1. IEEE; 2005. p. 481–4.

 7. Chu S-C, Tsai P-W, Pan J-S. Cat swarm optimization. In: Pacific
rim international conference on artificial intelligence. Springer;
2006. p. 854–8.

 8. Črepinšek M, Liu S-H, Mernik L. A note on teaching-learning-
based optimization algorithm. Inf Sci. 2012;212:79–93.

 9. Črepinšek M, Liu S-H, Mernik L, Mernik M. Is a comparison of
results meaningful from the inexact replications of computational
experiments? Soft Comput. 2016;20(1):223–35.

 10. Du W, Gao Y, Liu C, Zheng Z, Wang Z. Adequate is better: par-
ticle swarm optimization with limited-information. Appl Math
Comput. 2015;268:832–8.

 11. Eberhart R, Kennedy J. Particle swarm optimization. Proc IEEE
Int Conf Neural Netw. 1995;4:1942–8.

 12. Epitropakis MG, Burke EK. Hyper-heuristics. Handbook of Heu-
ristics; 2018. p. 1–57.

 13. Erol OK, Eksin I. A new optimization method: big bang-big
crunch. Adv Eng Softw. 2006;37(2):106–11.

 14. Eusuff MM, Lansey KE. Optimization of water distribution net-
work design using the shuffled frog leaping algorithm. J Water
Resour Plan Manag. 2003;129(3):210–25.

 15. Fister I Jr, Yang X-S, Fister I, Brest J, Fister D. A brief review
of nature-inspired algorithms for optimization. Elektrotehniški
vestnik. 2013;80(3):116–22.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/fcampelo/EC-Bestiary

SN Computer Science (2020) 1:49 Page 11 of 12 49

SN Computer Science

 16. Fong S, Wang X, Qiwen X, Wong R, Fiaidhi J, Mohammed S.
Recent advances in metaheuristic algorithms: does the Makara
dragon exist? J Supercomput. 2016;72(10):3764–86.

 17. Gandomi AH, Alavi AH. Krill herd: a new bio-inspired opti-
mization algorithm. Commun Nonlinear Sci Numer Simul.
2012;17(12):4831–45.

 18. García-Martínez C, Gutiérrez PD, Molina D, Lozano M, Herrera
F. Since CEC 2005 competition on real-parameter optimisation:
a decade of research, progress and comparative analysis’s weak-
ness. Soft Comput. 2017;21(19):5573–83.

 19. Geem ZW, Kim JH, Loganathan GV. A new heuristic optimiza-
tion. Simulation. 2001;76(2):60–8.

 20. He S, Wu QH, Saunders JR. Group search optimizer: an optimi-
zation algorithm inspired by animal searching behavior. IEEE
Trans Evol Comput. 2009;13(5):973–90.

 21. Holland JH. Adaptation in natural and artificial systems. Ann
Arbor: University of Michigan Press; 1975.

 22. Joyce T, Herrmann JM. A review of no free lunch theorems, and
their implications for metaheuristic optimisation. In: Nature-
inspired algorithms and applied optimization. Springer; 2018.
p. 27–51.

 23. Karaboga D. An idea based on honey bee swarm for numerical
optimization. Technical report, Technical report-tr06, Erciyes
University, Engineering Faculty, Computer Engineering Depart-
ment; 2005.

 24. Kaucic M. A multi-start opposition-based particle swarm opti-
mization algorithm with adaptive velocity for bound constrained
global optimization. J Glob Optim. 2013;55(1):165–88.

 25. Kaveh A, Talatahari S. A novel heuristic optimization method:
charged system search. Acta Mech. 2010;213(3–4):267–89.

 26. Kennedy J. The particle swarm: social adaptation of knowledge.
In: IEEE international conference on evolutionary computation.
IEEE; 1997. p. 303–8.

 27. Kennedy J. Bare bones particle swarms. In: Proceedings of the
2003 IEEE swarm intelligence symposium (SIS’03). IEEE;
2003. p. 80–7.

 28. Krishnanand KN, Ghose D. Detection of multiple source loca-
tions using a glowworm metaphor with applications to collec-
tive robotics. In: Proceedings 2005 IEEE swarm intelligence
symposium (SIS 2005). IEEE; 2005. p. 84–91.

 29. Krishnanand KN, Ghose D. Glowworm swarm optimization for
simultaneous capture of multiple local optima of multimodal
functions. Swarm Intell. 2009;3(2):87–124.

 30. Lam AYS, Li VOK. Chemical-reaction-inspired metaheuristic
for optimization. IEEE Trans Evol Comput. 2010;14(3):381–99.

 31. Lane J, Engelbrecht A, Gain J. Particle swarm optimization with
spatially meaningful neighbours. In: Proceedings 2008 IEEE
swarm intelligence symposium (SIS 2008). IEEE; 2008. p. 1–8.

 32. Lemke C, Budka M, Gabrys B. Metalearning: a survey of trends
and technologies. Artif Intell Rev. 2015;44(1):117–30.

 33. Li K, Malik J. Learning to optimize. In: 5th International con-
ference on learning representations; 2017.

 34. Lones MA. Metaheuristics in nature-inspired algorithms. In:
Proceedings of the companion publication of the 2014 annual
conference on genetic and evolutionary computation. ACM;
2014. p. 1419–22.

 35. Mehrabian AR, Lucas C. A novel numerical optimiza-
tion algorithm inspired from weed colonization. Ecol Inf.
2006;1(4):355–66.

 36. Mendes R, Kennedy J, Neves J. The fully informed particle
swarm: simpler, maybe better. IEEE Trans Evol Comput.
2004;8(3):204–10.

 37. Mirjalili S. Moth-flame optimization algorithm: a novel
nature-inspired heuristic paradigm. Knowl Based Syst.
2015a;89:228–49.

 38. Mirjalili S. The ant lion optimizer. Adv Eng Softw.
2015b;83:80–98.

 39. Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng
Softw. 2016;95:51–67.

 40. Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng
Softw. 2014;69:46–61.

 41. Pan W-T. A new fruit fly optimization algorithm: taking the
financial distress model as an example. Knowl Based Syst.
2012;26:69–74.

 42. Passino KM. Biomimicry of bacterial foraging for distributed
optimization and control. IEEE Control Syst. 2002;22(3):52–67.

 43. Pedersen MEH, Chipperfield AJ. Simplifying particle swarm
optimization. Appl Soft Comput. 2010;10(2):618–28.

 44. Pham DT, Ghanbarzadeh A, Koç E, Otri S, Rahim S, Zaidi
M. The bees algorithm—a novel tool for complex optimisa-
tion problems. In: Intelligent production machines and systems.
Elsevier; 2006. p. 454–459.

 45. Piotrowski AP. Regarding the rankings of optimization heuris-
tics based on artificially-constructed benchmark functions. Inf
Sci. 2015;297:191–201.

 46. Rajabioun R. Cuckoo optimization algorithm. Appl Soft Com-
put. 2011;11(8):5508–18.

 47. Rao RV, Savsani VJ, Vakharia DP. Teaching–learning-based
optimization: a novel method for constrained mechani-
cal design optimization problems. Comput Aided Design.
2011;43(3):303–15.

 48. Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: a gravita-
tional search algorithm. Inf Sci. 2009;179(13):2232–48.

 49. Ratnaweera A, Halgamuge SK, Watson HC. Self-organizing
hierarchical particle swarm optimizer with time-varying acceler-
ation coefficients. IEEE Trans Evol Comput. 2004;8(3):240–55.

 50. Ray T, Liew KM. Society and civilization: an optimization algo-
rithm based on the simulation of social behavior. IEEE Trans
Evol Comput. 2003;7(4):386–96.

 51. Shah-Hosseini H. The intelligent water drops algorithm: a
nature-inspired swarm-based optimization algorithm. Int J Bio-
Inspired Comput. 2009;1(1–2):71–9.

 52. Shi Y. Brain storm optimization algorithm. In: International
conference in swarm intelligence. Springer; 2011. p. 303–9.

 53. Shi Y, Eberhart RC. Empirical study of particle swarm optimi-
zation. In: Proceedings of the 1999 congress on evolutionary
computation (CEC 99), vol. 3. IEEE; 1999. p. 1945–50.

 54. Simon D. Biogeography-based optimization. IEEE Trans Evol
Comput. 2008;12(6):702–13.

 55. Sörensen K. Metaheuristics—the metaphor exposed. Int Trans
Oper Res. 2015;22(1):3–18.

 56. Sörensen K, Sevaux M, Glover F. A history of metaheuristics.
Handbook of heuristics; 2018. p. 1–18.

 57. Suganthan PN. Particle swarm optimiser with neighbourhood
operator. In: Proceedings of the 1999 congress on evolutionary
computation (CEC 99), vol. 3. IEEE; 1999. p. 1958–62.

 58. Sun J, Xu W, Feng B. A global search strategy of quantum-
behaved particle swarm optimization. In: IEEE conference on
cybernetics and intelligent systems, 2004, vol. 1. IEEE; 2004.
p. 111–6.

 59. Swann J, Hammond K. Towards ‘metaheuristics in the large’.
In: Proceedings of 11th metaheuristics international conference
(MIC 2015); 2015.

 60. Tamura K, Yasuda K. Primary study of spiral dynam-
ics inspired optimization. IEEJ Trans Electr Electron Eng.
2011;6(S1):1116–22.

 61. Tan Y, Zhu Y. Fireworks algorithm for optimization. In: Inter-
national conference in swarm intelligence. Springer; 2010. p.
355–64.

 SN Computer Science (2020) 1:4949 Page 12 of 12

SN Computer Science

 62. Weyland D. A critical analysis of the harmony search algo-
rithm—how not to solve sudoku. Oper Res Perspect.
2015;2:97–105.

 63. Wichrowska O, Maheswaranathan N, Hoffman MW, Denil M,
Colmenarejo SG, Freitas N, Sohl-Dickstein J. Learned optimizers
that scale and generalize. In: Proceedings of the 34th international
conference on machine learning, vol. 70; 2017.

 64. Wolpert DH, Macready WG. No free lunch theorems for optimiza-
tion. IEEE Trans Evol Comput. 1997;1(1):67–82.

 65. Xing B, Gao W-J. Innovative computational intelligence: a rough
guide to 134 clever algorithms. New York: Springer; 2016.

 66. Yang X-S. Firefly algorithms for multimodal optimization. In:
International symposium on stochastic algorithms. Springer;
2009. p. 169–78.

 67. Yang X-S. Nature-inspired metaheuristic algorithms. Cambridge:
Luniver Press; 2010.

 68. Yang X-S. Flower pollination algorithm for global optimization.
In: International conference on unconventional computing and
natural computation. Springer; 2012. p. 240–9.

 69. Yang X-S, Deb S. Cuckoo search via lévy flights. In: World con-
gress on nature and biologically inspired computing (NaBIC
2009). IEEE; 2009. p. 210–4.

 70. Yang X-S, Gandomi AH. Bat algorithm: a novel approach
for global engineer ing optimization. Eng Comput.
2012;29(5):464–83.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Mitigating Metaphors: A Comprehensible Guide to Recent Nature-Inspired Algorithms
	Abstract
	Introduction
	Descriptions and Terminology
	Algorithms from A to Z
	Commonalities
	Commonalities with PSO
	Discussion
	Conclusions
	References

