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Abstract
In recent years, a plethora of new metaheuristic algorithms have explored different sources of inspiration within the biologi-
cal and natural worlds. This nature-inspired approach to algorithm design has been widely criticised. A notable issue is the 
tendency for authors to use terminology that is derived from the domain of inspiration, rather than the broader domains of 
metaheuristics and optimisation. This makes it difficult to both comprehend how these algorithms work and understand their 
relationships to other metaheuristics. This paper attempts to address this issue, at least to some extent, by providing acces-
sible descriptions of the most cited nature-inspired algorithms published in the last 20 years. It also discusses commonalities 
between these algorithms and more classical nature-inspired metaheuristics such as evolutionary algorithms and particle 
swarm optimisation, and finishes with a discussion of future directions for the field.
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Introduction

This paper is intended to be an objective guide to the most 
popular nature-inspired optimisation algorithms published 
since the year 2000, measured by citation count. It is not the 
first paper to review this area [15, 65, 67], but it is arguably 
the first to present these algorithms in terms that will be 
familiar to the broader optimisation, metaheuristics, evolu-
tionary computation, and swarm computing communities. 
Unlike some previous reviews, it does not aim to advocate 
for this area of research or provide support for the idea of 
designing algorithms based on observations of natural sys-
tems. It only aims to report and summarise what already 
exists in more accessible terms.

The aim of this paper is not to explicitly criticise these 
approaches; other authors have already done this for nature-
inspired metaheuristics in general [55] and for specific 
nature-inspired algorithms [8, 62]. However, it is important 
to be aware of one point of criticism that was raised by [55]. 
This is the tendency for authors to present their algorithm 
from the perspective of, and using the terminology of, the 

domain of inspiration. Often nature-inspired algorithm 
papers begin with an initial review of a natural domain, then 
abstract this into a model of the domain, and this leads to an 
algorithmic description that contains terms from the domain. 
In many cases, this includes the introduction of new terms to 
describe well-established concepts from metaheuristics and 
optimisation. The consequence of this is that it can take con-
siderable time and effort to understand how these algorithms 
work, even if the reader has a background in metaheuristics.

Well over a hundred nature-inspired algorithms have 
been published since 2000. For instance, the review book by 
Xing and Gao [65] names 134 of these, and the Evolution-
ary Computation Bestiary [2] currently lists over 200. The 
premise for developing new algorithms is often based solely 
on the desire to capture a behaviour observed in nature, with 
the assumption (rightly or wrongly) that it will also be rel-
evant within an optimisation context. In more recent papers, 
it has become common to mention the No Free Lunch theo-
rem [22, 64] as a motivation. This theorem states that no 
optimiser is better than any other when considered across 
all possible optimisation problems, which can be interpreted 
as suggesting a need for diverse optimisers to solve diverse 
problems. Whether this is a valid assumption for the range of 
real-world problems that optimisers are applied to in practice 
is unclear. Nevertheless, different optimisers are known to 
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perform well on different problems, so there is some value 
to this argument.

These algorithms have gained a significant uptake. This 
can be seen in their citation counts: the 32 algorithms 
reviewed in this paper each have more than 200 citations; 
a third of them have more than 1000 citations. Given that 
most computer science papers achieve only a handful of cita-
tions per year, this is quite an achievement for a group of 
papers with an average age of around 9 years. However, this 
combination of high uptake and opaque descriptions has led 
to fragmentation between the nature-inspired optimisation 
community and the wider metaheuristics community. To 
raise an observation that should be familiar to these com-
munities: a certain amount of diversification is generally a 
good thing, but diversification without intensification tends 
to be ineffective. Applying this observation to the design of 
optimisation algorithms suggests that focusing on variants 
of a single nature-inspired algorithm (and most algorithms 
discussed in this paper do have a significant number of vari-
ants) is likely to be a sub-optimal approach and a potential 
waste of time and effort. This, in turn, suggests a need to tie 
back together these different threads of search. This paper 
aims to contribute towards this goal.

The section “Descriptions and Terminology” presents 
the approach used to describe algorithms in this paper. The 
section “Algorithms from A to Z” then uses this approach to 
describe the most widely cited recent nature-inspired algo-
rithms; the intent is for this to be used as a resource where 
someone can look up a particular algorithm and quickly 
gain an understanding of its main characteristics. The sec-
tion “Commonalities” then discusses the novelty of these 
algorithms in terms of both metaheuristic frameworks and 
broader metaheuristic concepts. The section “Common-
alities with PSO” delves further into the specific overlaps 
between these algorithms and particle swarm optimisation 
and its variants. The section “Discussion” discusses some 
of the broader issues, and offers guidance on how research 
carried out in this area could be improved. Conclusions are 
drawn in the section “Conclusions”.

Descriptions and Terminology

This paper attempts to describe algorithms using standard 
terms. However, this is not as straightforward as it may 
seem, since different parts of the metaheuristics community 
use different terminology. For example, those who work with 
local search algorithms refer to the transition between two 
points in the search space as a move, and the result of evalu-
ating a point is known as its objective value. In the EA com-
munity, where much of the terminology derives from bio-
logical roots, these would be called mutation and fitness. In 
practice, both sets of terms are widely used. However, since 

the aim of this guide is to divorce nature-inspired algorithms 
from the terminology of their domain, generic terms will 
be used wherever possible, i.e., move rather than mutation.

When describing population-based algorithms, a fur-
ther difficulty is that some algorithms are more naturally 
described using process-centric terms and others using 
population-centric terms. Particle swarm optimisation 
(PSO), for example, is essentially a distributed algorithm, 
and is easiest to present in terms of interactions between 
search processes. Genetic algorithms (GA), on the other 
hand, involve population-level operations such as selection; 
although these could be described as interactions between 
search processes, this would be convoluted and would make 
the algorithm harder to understand. Hence, in this paper, a 
mixture of process-centric and population-centric terminol-
ogy is used, depending on whether the algorithm is most 
appropriately described as the former or the latter.

In general, an attempt has been made to keep descrip-
tions succinct and generic whilst avoiding the definition of 
new terms. Little or no reference is made to an algorithm’s 
source of inspiration from nature, unless this is required 
to understand the algorithm. Descriptions are intended to 
be sufficient to indicate the general characteristics of the 
algorithm, and to allow the reader to draw out similarities 
with other algorithms. They are not intended to be exhaus-
tive, and hence, some of the less important, or less specific, 
details are omitted. For example, consider the following 
description of PSO:

Particle Swarm Optimisation (PSO) Eberhart and Ken-
nedy, 1995, [11] > 50,000 citations

Each search process has a velocity within the search space 
and carries out moves by adding this to its current position at 
each iteration. The velocity is initially random. Then, at each 
iteration, each search process modifies its velocity by adding 
weighted terms based on the vector difference between its 
current point of search and the best points seen by both itself 
and by a subset of other search processes. This causes inten-
sification of search by moving towards regions of the search 
space known to contain points of relatively high objective 
value. Diversification is provided by moving through the 
region between the current point and these target regions, 
and by overshooting these regions due to the momentum 
gained by maintaining a proportion of the existing velocity 
at each update.

Unlike other presentations of this algorithm, this descrip-
tion does not use the terms particle or informant, since both 
of these can be described using generic terms. It does not go 
into detail about the exact form of each term in the velocity 
update equation, or how informants are allocated, since these 
details are not required to understand how the algorithm 
works, or how it relates to other algorithms. They are also 
subjected to wide variation between implementations. The 
term velocity, however, is used, since it is a well-defined 
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concept within a vector space, and helps to understand the 
behaviour of the algorithm. The description also highlights 
algorithmic features which are expected to promote intensi-
fication and diversification of search.

A GA can be described as follows:
Genetic Algorithm (GA) Holland, 1975, [21] > 60,000 

citations
At each iteration, search points with relatively high objec-

tive value are selected from the existing population. These 
are organised into pairs, and new search points are then cre-
ated by exchanging solution components within pairs. This 
tends to sample the search space between existing search 
points, thereby both intensifying and diversifying search. 
Further diversification is provided by carrying out a random 
move away from the resulting points. Search points with 
relatively low objective value are removed from the popula-
tion at each iteration, further intensifying search.

This description is intentionally generic, since the exact 
details of how selection, recombination, mutation, and 
solution replacement are implemented vary considerably. 
Domain-derived terms like crossover and mutation are not 
used, though select is, since this has a clear non-domain 
meaning.

Algorithms from A to Z

Given the opaque nature of a lot of these papers, it would 
be a challenging task to read through and understand all 
the nature-inspired optimisation algorithms that have been 
published in recent years. Perhaps in reflection of this, previ-
ous reviews have generally described these algorithms using 
their original authors’ words, or have focused on the sources 
of inspiration rather than trying to understand and present 
their underlying metaheuristic mechanisms. By comparison, 
the presentation in this paper aims to be comprehensible 
rather than comprehensive. Consequently, it focuses on the 
more popular of these algorithms. Popularity is measured in 
terms of citation count; this is not, of course, a robust meas-
ure of uptake, but it gives some indication of whether the 
algorithm has been used in practice. To bring the list of algo-
rithms down to a manageable level, this review only cov-
ers those which have at least 200 citations, as measured by 
Google Scholar.1 By comparison, the seminal genetic algo-
rithm (GA) work has ∼ 60,000 citations, particle swarm opti-
mization (PSO) has ∼ 50,000 citations, ant colony optimiza-
tion (ACO) has ∼ 10,000 citations, and evolution strategies 
(ES) have ∼ 5000. It is notable that a number of algorithms 
in the list have citation counts approaching that of ES and 
collectively they have ∼ 30,000 citations, roughly halfway 

between the citation counts of ACO and PSO. Therefore, 
even taking into account the limitations of citation counts, 
they are clearly having an impact within the scientific record, 
and this alone should justify efforts to document and under-
stand them. Figure 1 plots the approximate number of cita-
tions against the year that an algorithm’s seminal paper was 
published. It can be seen from the trend line that the average 
citation count per year is ∼ 100.

The glossary below gives an overview of these 32 algo-
rithms. Unless indicated otherwise, it is assumed that each 
algorithm is a population-based optimiser which updates the 
population synchronously over a period of iterations and 
begins with a population that is uniformly sampled from 
the search space.

Ant Lion Optimizer (ALO) Mirjalili, 2015, [38] > 300 
citations

At each iteration, search points with relatively high objec-
tive value are selected from the existing population. Search 
processes with relatively low fitness are then restarted within 
hyper-spherical regions centred around the selected points. 
Over time, the radius of the hyper-spheres is reduced, further 
intensifying search. The restarted search processes carry out 
random walks within their hyper-spherical regions; this is 
the main source of diversification within the algorithm.

Artificial Bee Colony Algorithm (ABC) Karaboga, 
2005, [23] > 4500 citations

Each search process generates local moves in the direc-
tion of the current position of another, randomly selected, 
search process. Only improving moves are accepted. The 
number of local moves generated by a particular search 

Fig. 1   Citation counts of seminal papers, labelled with each algo-
rithm’s acronym. See the section “Algorithms from A to Z” for full 
names and descriptions

1  Citations counts were collected in October 2019.
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process is determined by the relative objective value of their 
current search point. Move sizes are probabilistic and are 
progressively reduced over time, leading to increased inten-
sification. Diversification is promoted by restarting search 
processes which have not made progress within a certain 
number of moves at a randomly sampled location.

Bacterial Foraging Optimization (BFO) Passino, 2002, 
[42] > 2500 citations

Each search process carries out sequential moves in the 
same direction until this no longer leads to improvement. 
When the current direction of search is no longer productive, 
a random change in direction occurs. After each iteration, 
the search processes with relatively low fitness are restarted 
at the current positions of search processes with relatively 
high fitness, intensifying search. The objective values of 
search points are adjusted by a crowding term, whose effect 
is to draw the search processes towards one another, further 
intensifying search.

Bat Algorithm (BA) Yang and Gandomi, 2012, [70] 
> 600 citations

Search processes move towards the best solution within 
the population at different velocities, the magnitude of which 
is varied randomly at each iteration. There is also a prob-
ability of intensifying search by changing each search pro-
cess’s current position to a random point near the best solu-
tion within the population, with the likelihood of doing this 
decreasing each time a search process makes an improve-
ment. The new search point is then accepted probabilisti-
cally, with a likelihood that increases each time a search 
process makes an improvement.

Bees Algorithm (BeA) Pham et al., 2006, [44] > 1000 
citations

At each iteration, solutions are randomly sampled within 
a fixed radius of the best solutions within the existing popu-
lation. This radius reduces progressively over time and only 
improved solutions are accepted. Random restarts are used 
to maintain diversity. This is similar to an ES with a time-
dependent mutation strategy.

Big Bang-Big Crunch (BB-BC) Erol and Eksin, 2006, 
[13] > 600 citations

At the start of each iteration, a point representing the 
objective value-weighted average of the previous popula-
tion is calculated and a new population is created by sam-
pling from a normal distribution centred around this point. 
The width of the distribution is reduced at each iteration, 
intensifying search. This can be seen as an estimation of dis-
tribution algorithm (EDA) with a simple generative model.

Biogeography-Based Optimizer (BBO) Simon, 2008, 
[54] ∼ 2000 citations

At each iteration, for each solution in the population, 
components are replaced by copying them from other solu-
tions; the likelihood of this is proportional to the solution’s 
objective value, and the likelihood of choosing another 

solution as a source is proportional to its objective value. 
To promote diversity, a local move is carried out away from 
each resulting solution, with the probability of doing so 
inversely proportional to its objective value. This has simi-
larities to a multi-parent GA.

Brain Storm Optimization (BSO) Shi, 2011, [52] > 300 
citations

At each iteration, the population is clustered using 
k-means clustering, and the best solution in each cluster is 
identified. Each solution in the population is then considered 
for replacement by comparing its objective value against 
that of a new search point and then keeping the best. Most 
of the time, this new search point is generated by either a 
local move from an existing solution, or by recombining two 
existing solutions in a GA-like manner. In either case, selec-
tion of the existing solution(s) is biased towards the cluster 
bests. To diversify the population, there is also a mechanism 
to sample random solutions during this process.

Cat Swarm Optimization (CSO) Chu et al., 2006, [7] 
∼ 300 citations

At each iteration, each search process either carries out a 
local search, or moves in the direction of the best solution in 
the population. When carrying out a local search, a specified 
number of points are sampled in the vicinity of the current 
position and the best one is kept.

Charged System Search (CSS) Kaveh and Talatahari, 
2010, [25] ∼ 600 citations

All search processes carry out moves towards the cur-
rent positions of other search processes. Search processes 
have velocities, and the speed with which a search process 
moves towards a given search process is calculated using 
an inverse-square law weighted by the objective value of 
that process’s current point of search. Adaptive parameter 
changes allow the degree of attraction to vary over time, 
and the best solutions within the population are always pre-
served. Note that this algorithm is similar to FA and GSA.

Chemical Reaction Optimization (CRO) Lam and Li, 
2010, [30] > 300 citations

Search processes carry out either local search or a more 
disruptive global search using disruptive operators (such 
as the GA recombination operator). The balance between 
local and global search, and the likelihood of accepting 
non-improving solutions are both based on the history of 
the population member: if no improvement has been made 
for a while, global search replaces local search; if solutions 
with lower objective values were previously accepted, then 
they are less likely to be accepted in the future. This algo-
rithm has similarities to memetic algorithms and simulated 
annealing.

Cuckoo Optimization Algorithm (COA) Rajabioun, 
2011, [46] ∼ 500 citations

At each iteration, new search points are sampled within 
a radius of each existing search point, and only the best 
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points are kept. The resulting population is then clustered 
using k-means clustering, and the cluster with the highest 
mean objective value is identified. Search points in the 
other clusters are then moved towards the fittest cluster.

Cuckoo Search (CS) Yang and Deb, 2009, [69] ∼ 3000 
citations

Uses a small population of solutions. At each iteration, 
a search process with a relatively low objective value is 
restarted, either at a randomly sampled location, or by 
applying a ‘Lévy flight’ to another, randomly selected, 
solution. Lévy flights are a kind of random walk with 
step sizes generated from a heavy-tailed probability 
distribution.

Firefly Algorithm (FA) Yang, 2009, [66] >  2000 
citations

At each iteration, all search processes carry out moves 
towards the current positions of other search processes. 
The degree of movement towards each point is calculated 
using an inverse-square law weighted by its objective value, 
causing intensification of search towards points with higher 
objective values. Note that this algorithm is similar to CSS 
and GSA.

Firework Algorithm (FWA) Tan and Zhu, 2010, [61] 
> 300 citations

At each iteration, solutions are sampled in a neighbour-
hood around the best solutions in the population. Only 
improving moves are accepted. Neighbourhoods are sam-
pled using a Gaussian distribution centred around the current 
point. The width of the distribution is inversely proportional 
to the objective value of the best solution, causing increased 
intensification as search progresses.

Flower Pollination Algorithm (FPA) Yang, 2012, [68] 
> 500 citations

At each iteration, search processes carry out moves either 
towards the best solution in the population or the current 
position of a randomly selected search process. In the for-
mer case, the step size is determined by sampling a Lévy 
distribution (see CS).

Fruit Fly Optimization Algorithm (FOA) Pan, 2012, 
[41] > 600 citations

All search processes carry out moves towards the best 
solution in the population. However, how this is achieved is 
unclear from the description.

Glowworm Swarm Optimization (GwSO) Krishnanand 
and Ghose, [28] > 600 citations

Each search process maintains a numerical value that 
summarises its recent search progress, increasing this when 
it finds an improving search point and decreasing gradually 
when it makes no progress. At each iteration, each search 
process carries out moves towards another search process 
located within a hyper-spherical region centred around its 
current point; a search process with a high search progress 
value is more likely to be chosen as a target, and the radius 

of this region shrinks when there are many search processes 
nearby. Citation count includes [29].

Gravitational Search Algorithm (GSA) Rashedi et al., 
2009, [48] > 2500 citations

All search processes carry out moves towards the cur-
rent positions of other search processes. Search processes 
have velocities, and the speed with which a search process 
moves towards a given search process is calculated using an 
inverse-square law weighted by the objective value of that 
process’s current point of search. Note that this algorithm is 
similar to CSS and GSA.

Grey Wolf Optimizer (GWO) Mirjalili et al., 2014, [40] 
> 1000 citations

At each iteration, each search process carried out moves 
around the edges of a hypercube centred around a target 
search point. The target point is selected from a region 
bounded by the three current best search points within the 
population. Hypercubes become gradually smaller at each 
iteration to intensify search, and there is a random compo-
nent in the update equation to inject diversity.

Group Search Optimizer (GSO) He et al., 2009, [20] 
> 500 citations

The search processes with the current best solutions carry 
out local moves, using a mathematical model of animal 
vision to delimit the region which they explore at a particular 
time. The majority of the other search processes carry out 
moves towards the search processes with the current best 
solutions. The remaining search processes generate diversity 
within the population by carrying out random walks.

Harmony Search (HS) Geem et al., 2001, [19] ∼ 4000 
citations

At each iteration, a single new solution is created from a 
randomly selected existing solution. For each of its decision 
variables, a new value is chosen either at random or by copy-
ing and slightly modifying the value from another randomly 
selected solution. If the new solution has a higher objective 
value than the worst solution in the population, it replaces 
it. Note that this algorithm has been proven equivalent to a 
certain form of ES [62].

Imperialist Competitive Algorithm (ICA) Atashpaz-
Gargari and Lucas, 2007, [3] ∼ 1500 citations

A population is randomly initialised and the best solutions 
are selected. For each of these solutions, a sub-population 
is created with size proportional to its objective value and 
is filled randomly using the remaining search points within 
the population. At each iteration, the solutions in the sub-
population are moved towards the best solution within the 
sub-population, with some noise added to inject diversity. 
Then, each sub-population is given a value based mainly 
on the objective value of its best solution, and solutions in 
sub-populations with low values are re-allocated to sub-pop-
ulations with high values. The algorithm terminates when 
there is a single non-empty sub-population.
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Invasive Weed Optimization (IWO) Mehrabian and 
Lucas, 2006, [35] > 750 citations

At each iteration, search processes sample a number of 
local moves from their current position. The number of 
moves is proportional to the relative objective value of their 
current position, and the size of moves decreases non-lin-
early over time. Once the population size reaches an upper 
bound, search processes with relatively poor solutions are 
ended, and the solutions which they generated are removed 
from the population.

Krill Herd (KH) Gandomi and Alavi, 2012, [17] > 600 
citations

Search processes carry out moves towards the popula-
tion best, their historical best, and the objective value-
weighted average of the population. They also carry out 
moves towards or away from search processes within a given 
radius, based upon their objective value. Search processes 
also have a component of random movement. The weighting 
of components is time-dependent, with less random motion 
and more movement towards the population best as time 
proceeds. On top of this, GA-like operations are carried out 
within the population.

Marriage in Honey Bees Optimization (MBO) Abbass, 
2001, [1] ∼ 400 citations

At each iteration, a number of random walks are carried 
out, starting from the locations of the best solutions in the 
population. New solutions are created using an operator 
that recombines the existing (start of walk) solution with 
solutions encountered during the walk. The likelihood of 
this occurring at each step of the walk is based on objective 
value, and also reduces over the course of the walk. Move 
sizes progressively decrease during the walk. Local search is 
used to improve solutions at each iteration of the algorithm; 
the operator used for this is chosen probabilistically based 
on its past success rate.

Moth-Flame Optimization (MFO) Mirjalili, 2015, [37] 
∼ 250 citations

Search processes carry out moves in a spiral path towards 
a target point. The target points are the historical best solu-
tions of other search processes. Initially, all historical bests 
are used as targets, with the particle that has the highest cur-
rent objective value moving towards the highest historical 
best, and the search process with the least current objective 
value moving towards the lowest historical best. Over time, 
fewer targets are followed.

Shuffled Frog Leaping Algorithm (SFLA) Eusuff and 
Lansey, 2003, [14] > 1000 citations

At each iteration, the population is divided into sub-
populations, each with a broad objective value spread. Each 
sub-population is then repeatedly sub-sampled by objective 
value, and the worst solution in each sub-sample is moved 
towards the best solution in the sub-sample (or alternatively 
the population). In each case, if this does not lead to an 

improvement in objective value, the solution is replaced by 
a random search point. After each sub-population has been 
processed, the sub-populations are merged, and the proce-
dure is repeated.

Society and Civilisation Algorithm (SCA) Ray and 
Liew, 2003, [50] > 300 citations

At each iteration, the population is clustered. In each 
cluster, the best solutions are selected. The remaining solu-
tions in the cluster are then moved towards the selected solu-
tions. A similar procedure is then carried out for the selected 
solutions from all clusters, with the worst solutions amongst 
these moved towards the best solutions. The algorithm also 
takes into account constraint satisfaction.

Teacher-Learning Based Optimization (TLBO) Rao 
et al., 2011, [47] > 1000 citations

At each iteration, the mean position of the population is 
calculated and subtracted from the population’s best search 
point. Moves are then carried out by adding a fraction of the 
resulting vector to each population member (this is similar to 
differential evolution). Only improving moves are accepted. 
Each population member is then compared to another ran-
domly selected population member; if the target has a higher 
objective value, it is moved towards it; otherwise, it is moved 
away. Again, only improving moves are accepted.

Water Cycle Algorithm (WCA) Shah-Hosseini, 2009, 
[51] ∼ 250 citations

At each iteration, population members with relatively 
high objective value (but not the population best) are moved 
closer to the population best by a random amount. The 
remaining population members are each moved closer to 
one of these relatively high objective value solutions by a 
random amount, with proportionally more of them moving 
towards the best solutions. Random local moves are also 
applied to maintain diversity.

Whale Optimization Algorithm (WOA) Mirjalili and 
Lewis, 2016, [39] ∼ 250 citations

Each search process carries out moves in a hypercube 
around a target search point and iteratively moves towards 
this target either by shrinking the hypercube or through a 
spiral motion. Target choice is affected by a time-dependent 
parameter; initially, this causes random members of the 
population to be followed; later, all search points follow the 
population best.

Commonalities

Recent nature-inspired metaheuristics have sometimes 
been criticised for a lack of novelty. Before discussing 
this in more detail, it is first useful to consider the mean-
ing of the term metaheuristic. Many authors who develop 
nature-inspired algorithms use this term as a synonym for 
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“optimisation algorithm”, but this is not the original mean-
ing of the term, which is more akin to a generative model 
that can be used to guide the development of a particular 
algorithm. Sörensen et al. [56] address this disparity by dis-
tinguishing metaheuristic algorithms (i.e. particular imple-
mentations of a metaheuristic idea) from metaheuristic 
frameworks (i.e. the more general models from which these 
algorithms are derived). This distinction is important when 
talking about novelty, because whilst there is considerable 
scope for designing a novel metaheuristic algorithm, there is 
much less scope for developing a novel metaheuristic frame-
work. For instance, you can create a novel metaheuristic 
algorithm by modifying the mutation operator used by a GA, 
or by hybridising a GA with an operator from PSO, but in 
both cases, there is no novel metaheuristic framework being 
created. It is worth noting that hybridisation, in particular, 
introduces combinatorial scope for generating algorithms 
that are technically novel, yet which introduce no novel algo-
rithmic features.

Whilst metaheuristic frameworks are a useful concept 
for narrowing the definition of novelty, it can also be use-
ful to talk about recurring ideas that appear within multiple 
frameworks. For instance, EAs and PSO are probably good 
candidates for being called metaheuristic frameworks, but 
there are clearly common concepts that occur within both of 
these; for example, the way in which both techniques have 
mechanisms for exploring search points that are intermedi-
ate to the existing ones. In a previous paper [34], an attempt 
was made to identify and describe some of these more gen-
eral metaheuristic approaches; an abridged listing of these 
is reproduced in Table 1.

Technically, almost all the algorithms described in the 
previous section meet the definition of a novel metaheuristic 

algorithm, since they differ from standard metaheuristic 
algorithms such as ESs, GAs, and standard PSO. However, it 
is difficult to argue that any of them are novel metaheuristic 
frameworks, since most of them clearly borrow (or perhaps 
re-discover) concepts that are also central to conventional 
metaheuristic frameworks. Referring to the metaheuristic 
concepts listed in Table 1, all of the algorithms described in 
the previous section implement a combination of hill climb-
ing, adaptive memory programming, and population-based 
search, and this is also true of EAs and PSO. The majority 
also implements some form of intermediate search, most 
commonly using either a PSO-like operator that picks a 
point geometrically between two existing points or an EA-
like crossover operator that recombines solution compo-
nents. Those which use PSO-like operators also carry out 
directional search in a similar manner to PSO. Many of the 
algorithms use restarts (ABC, BFO, BeA, CS, and SFLA), 
which are also commonly used in local search algorithms. 
Many also have strategies for accepting negative moves: 
some of these resemble simulated annealing (BA, CRO); 
however, the most common approach involves random walks 
(ALO, BFO, CS, GSO, KH, and MBO), which might be 
considered a degenerate form of threshold acceptance, but 
is, otherwise, a relatively novel idea. Several algorithms use 
search trajectories that follow a spiral-like path around local 
optima (GWO, MFO, and WOA), and this could be consid-
ered a form of variable neighbourhood search.

In terms of resemblance to existing metaheuristic frame-
works, a large proportion of the algorithms have a clear 
resemblance to PSO in that a population of search pro-
cesses move towards each other using vector-based opera-
tions (ABC, BeA, BA, COA, CSO, CSS, FA, FOA, FPA, 
GSA, GSO, GWO, GwSO, KH, MFO, TLBO, WCA, and 

Table 1   A list of recurring metaheuristic concepts (adapted from Lones [34])

Concept Description Examples

Hill climbing Follow a sequence of local improvements to reach a 
locally optimal solution.

Steepest ascent, stochastic hill climbing

Accepting negative moves Allow moves to worse solutions Threshold accepting, simulated annealing
Restarts Restart the search process in a different region once it has 

converged at a local optimum
Random-restart hill climbing, iterated local search

Adaptive memory programming Use memory of past search experience to guide future 
search.

Tabu search, EAs, PSO

Population-based search Multiple cooperating search processes that run in parallel EAs, PSO, scatter search
Intermediate search Explore the region between two or more previously visited 

search points
Crossover, PSO, path relinking

Directional search Identify productive directions within the search space, and 
carry out moves accordingly

Gradient ascent, CMA-ES, PSO

Variable neighbourhood search Search different neighbourhoods around the location of a 
known local optimum

PSO, variable neighbourhood search

Search space mapping Construct a map to guide search processes that are travers-
ing the search space

ACO, guided local search, DIRECT
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WOA). A few algorithms might be considered variants 
of ES (BeA, HS, and IWO), and a number of algorithms 
are broadly EA-like (BBO, BSO, COA, ICA, SFLA, and 
SCA), with a number of these hybridising PSO-like opera-
tors (COA, ICA, SFLA, and SCA). Some algorithms have 
notable degrees of self-similarity: for instance, CSS, FA, and 
GSA all use inverse-square laws to calculate the attraction 
between search processes.

Commonalities with PSO

PSO has clearly been an influence to many of the nature-
inspired algorithms reviewed in the section “Algorithms 
from A to Z”, and consequently, it is important to dig down 
further to understand how ideas explored within this group 
of algorithms intersect with those explored in the PSO 
literature.

The majority of PSO-style algorithms listed in the sec-
tion “Algorithms from A to Z” have similar basic mechanics 
to PSO, in that search processes move towards other search 
processes using vector operations. A major difference is that 
the majority of these algorithms (all except KH and MFO) 
do not use historical bests, i.e., the best point of search seen 
by a particular search process. This means that search pro-
cesses are influenced only by the current locations of both 
themselves and other search processes. The metaheuristic 
motivation for this is unclear, since it appears to reduce the 
amount of information available to guide search. Neverthe-
less, it should be noted that the idea of “social only” inter-
actions (i.e., ignoring a search process’s own search experi-
ence) has been explored in PSO and in both [26] and [43] 
was found to have no significant effect upon the algorithm’s 
performance when applied to certain problems; however, 
this is not the same as not recording historical bests, since 
search processes are still influenced by the historical bests 
of other search processes.

Another major difference from standard PSO is that 
most of the algorithms have no direct analogue of veloc-
ity or momentum; rather, move sizes are determined using 
simpler rules, including time-dependent move sizes (ABC, 
ALO, BB-BC, CSS, IWO, MBO), distance-dependent 
move sizes (CSS, FA, GSA) and region-based sampling 
(ALO, BA, BeA, BB-BC, FWA, GWO, and WOA). Time-
dependent move sizes have also been explored in variants 
of PSO [49, 53]. Region-based sampling involves directly 
sampling from a region of search space that is shaped or 
bounded by one or more search points, rather than apply-
ing vector-based operations. This approach has earlier been 
used in Bare Bones PSO [27], where it was introduced as 
a means of simplifying the dynamics of PSO and making 
it more tractable for analysis. Distance-dependent move 
sizes are notable: usually in PSO, search processes move 

faster towards informants that are further away, meaning that 
move size increases with distance. In CSS, FA, and GSA, 
on the other hand, the search processes are less influenced 
by distant search processes, so move size reduces with dis-
tance. This causes interactions between search processes to 
become geographically localised, which could be useful for 
multi-modal landscapes; however, it is unclear whether the 
resulting behaviour is more effective than other mechanisms 
introduced to PSO to handle these kinds of landscapes, such 
as multi-swarm approaches [4].

A consequence of using simpler update rules is that the 
dynamics of many of these algorithms are much simpler 
than in standard PSO. A benefit of this is that it potentially 
makes their behaviour easier to understand. However, by 
removing exploratory dynamics like overshooting and 
oscillation, there is a danger that they will only explore the 
regions between existing search points and suffer premature 
convergence as a result. To address this, most include one or 
more mechanisms to promote diversification. These include 
hybridisation with local search (CSO, CRO, COA, FWA, 
IWO, MBO, WCA), random restarts (ABC, BFO, BeA, CS, 
SFLA), random walks (ALO, BFO, CS, GSO, KH, MBO), 
and spiral-like movements (GWO, MFO, WOA). The latter, 
in particular, may lead to search trajectories that resemble 
those seen in PSO (and it should be noted that a similar 
approach is used in spiral optimisation [60]). Hybridisation 
with local search is also fairly common in PSO, e.g., [6], 
where restarts have also been used [24]. Random walks are 
arguably one of the more interesting mechanisms explored 
in recent nature-inspired optimisation algorithms, particu-
larly those that build upon biological knowledge in this area, 
e.g., CS and BFO, and there is no real analogue in the PSO 
literature.

When carrying out moves towards other search processes, 
the manner of choosing target search points varies widely 
amongst the algorithms in the list. Some (BA, CSO, and 
FOA) only use the population best, relying on other mech-
anisms (e.g., restarts) to maintain diversity. Several algo-
rithms (GwSO, WCA, GWO, and COA) choose targets in a 
fitness-informed manner, either probabilistically, by select-
ing the top n solutions in the population, or in the case of 
COA, by clustering and picking the cluster with the highest 
mean fitness. These approaches are somewhat related to var-
iants of PSO that use dynamic allocation of informants, e.g., 
[10]. A number of algorithms have mechanisms that cause 
particles to be more influenced by nearby search processes. 
This includes those that relate move size to distance (see 
above). It also includes SCA, which dynamically clusters the 
population based on distance. Distance-based selection of 
informants has also been used in PSO, e.g., [31]. A number 
of algorithms use all other search processes as targets, either 
directly (CSS, FA, and GAO), or indirectly by summarising 
information about them (KH, BB-BC). Similar ideas have 
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been investigated in variants of PSO, such as fully informed 
PSO [36] and quantum PSO [58]. Some algorithms use 
time-varying rules for choosing targets, notably those that 
move from randomly chosen targets towards the population 
best over time (MFO and WOA). The idea of dynamically 
varying the number of informants over time has also been 
explored in the PSO literature [57].

Discussion

Are recent nature-inspired algorithms novel? Yes and no. 
On one hand, most (but certainly not all) of the algorithms 
reviewed in this paper are distinct from existing optimisa-
tion algorithms, and given a particular search space, they 
would likely follow different trajectories to existing algo-
rithms. On the other hand, many of these algorithms use 
variants of well-established metaheuristic concepts that are 
also found in existing metaheuristic frameworks such as 
PSO, EAs, and local search. Furthermore, the analysis of 
PSO-style algorithms shows that many of their underlying 
ideas have also been explored by the more mainstream PSO 
community. However, chronologically, this has not always 
been in one direction. Sometimes, the PSO community has 
explored these ideas earlier, sometimes later, and sometimes 
in parallel to recent nature-inspired algorithms. Either way, it 
shows how the fragmentation of the nature-inspired comput-
ing community has led to duplicated effort.

Are recent nature-inspired algorithms competitive? This 
is less clear. Most of the cited papers include a performance 
evaluation. The results are not reported here, because almost 
all show the algorithm to perform better than the algorithms 
which they were compared against. Even without taking No 
Free Lunch theorems [64] into account, it is implausible to 
believe that this is true for all of them. This is not to say that 
the results are incorrect, but it does reflect the difficulty of 
designing fair comparative studies [9, 16, 18, 45]. We can 
speculate that all of these algorithms will sometimes per-
form better on some problems when compared against other 
algorithms, since problem landscapes are diverse, and small 
differences in the topography of a landscape can favour dif-
ferent approaches.

However, given a specific problem, it is difficult to know 
which algorithm will work well. The field of meta-learning 
[32] has been studying this issue for some time, but pro-
gress on understanding how problems can be characterised, 
categorised, and mapped to specific optimisers has so far 
been limited. This means that performance on one prob-
lem currently tells us little about potential performance on 
another problem, and consequently that practitioners usu-
ally have to try out a range of different optimisers to deter-
mine which one works well on their problem. In a sense, 
the recent developments in nature-inspired algorithms have 

increased the number of optimisers available to try out. This 
may sometimes be beneficial, but it also makes it harder for 
a practitioner to identify a suitable optimiser that is well 
understood and has community support. Given the vast 
scope for creating variants and hybrids of existing algo-
rithms, this situation is only likely to get worse.

An alternative, and arguably more promising, direction of 
travel can be seen in the hyperheuristics [5, 12] and broader 
machine learning communities [33, 63]. Both address the 
problem of choosing an optimiser as an optimisation prob-
lem, using a machine learning algorithm to identify an opti-
miser that is good at solving a specific task. In the case of 
hyperheuristics, the optimiser, which is usually an evolution-
ary algorithm, can be used to construct new optimisation 
algorithms. This can be done either by specialising an exist-
ing algorithm (for example, evolving a new mutation opera-
tor for an EA) or by assembling the existing metaheuristic 
components in a novel way. In effect, the latter is an auto-
mated version of the many manual attempts to hybridise 
metaheuristics that can be found in the literature. However, 
this automated approach is currently limited by a lack of 
standardised interfaces [59], and this arguably is limited by 
the tendency of the community to think of metaheuristics 
in terms of algorithms rather than re-usable components.

This focus on algorithms rather than components is a 
particular issue for the nature-inspired algorithm commu-
nity, where the objective of domain modelling is almost 
always the generation of a single algorithm that captures all 
pertinent behaviours present within the domain of inspira-
tion. As a consequence, any interesting, novel, components 
extracted from the domain tend to become conflated with 
other, less interesting, and sometimes arbitrary, components. 
This makes it hard to understand the relevance and con-
tribution of individual components within the optimisation 
setting. Arguably, a better approach would be to identify 
any component of the domain that is particularly interesting, 
and integrate this individually within one or more existing 
metaheuristic frameworks. Even better would be to make the 
code available in re-usable form: it could then be used by 
other algorithm developers, or even used as a new building-
block within hyperheuristic frameworks.

An important barrier that stands in the way of this kind 
of integration is the success of previous authors who have 
not followed this path. This can be seen in the large citation 
counts amongst recent nature-inspired optimisation papers, 
and the initial career boost that this may provide to their 
authors. It is, perhaps, less apparent that association with a 
part of the field that is seen as less rigorous may result in a 
career penalty in the long run. Many of the citations to these 
papers come from researchers who work in applied optimisa-
tion. This brings up another important factor in the success 
of nature-inspired optimisers, the false assumption that new 
means better, which leads to inexperienced practitioners 
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using the most recent, rather than the most appropriate, 
metaheuristic to solve a particular optimisation problem. 
This is a difficult problem to address, because it is arguably 
caused by sociological rather than technological factors, and 
(due to the wide reach of optimisation) spans a broad range 
of academic communities. Nevertheless, maybe efforts, such 
as this, to tie together the loose ends of the community may 
contribute towards a solution.

Conclusions

Numerous papers describing new nature-inspired optimisa-
tion algorithms have been written over the past 20 years. 
Unfortunately, it has become common practice for these 
papers to describe algorithms using non-standard terminol-
ogy derived from their domain of inspiration, resulting in 
papers that are often very difficult to read and understand. 
In this paper, an attempt has been made to describe the most 
widely cited of these algorithms using standard metaheuris-
tic terminology. It is hoped that the resulting descriptions 
will make it easier for readers to gain a quick understand-
ing of how these algorithms work, without having to read 
the original papers. As a result, this should make it more 
straightforward for metaheuristics practitioners to read, 
review, and understand work that uses these algorithms.

This paper also makes an attempt to analyse the com-
monalities between algorithms. The existing literature has 
raised particular cases where there is a strong similarity 
between different nature-inspired optimisation algorithms, 
but opaque terminology makes it hard to recognise these 
similarities in general. The standardised descriptions 
in this paper make this process easier, and this has been 
demonstrated by relating each of the algorithms to exist-
ing metaheuristic concepts. The resulting analysis suggests 
that few of the algorithms introduced in the last 20 years 
introduce fundamentally new concepts; rather, they mostly 
reassemble existing concepts in new ways. Since many of 
the algorithms are swarm-like, a closer look was taken at 
their commonalities with particle swarm optimisation and its 
variants. This revealed few points of absolute novelty, sug-
gesting that the two communities have largely been follow-
ing the same tracks. Perhaps surprisingly, it was noted that 
particle swarm optimisation did not always get there first.

This paper also emphasises the need to bring together the 
different threads of the metaheuristic community, with the 
aim of reducing redundancy, making research results more 
accessible, and developing new approaches that integrate the 
diverse work that is being done. Some important work has 
already started in this area, including, for example, efforts 
to standardise interfaces between metaheuristic components. 
However, arguably, a lot more effort is required if we are 
to reduce the fragmentation of the field and leverage the 

diverse talents of the metaheuristics community in useful 
ways.
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