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Abstract
A thorough knowledge of statistical properties of the coronary artery tree is very important in cardiology. We present gen-
eralised form of Murray’s law—the first law that described the relationship between vessel diameters in bifurcation. We 
show that other frequently used laws: Huo-Kassab and Finet’s rules are the special cases of its generalised form. We show 
theoretically that the Finet’s law is met with an apparently paradoxical relationship between the lengths and diameters of the 
vessels. Based on the analysis of CT 3D scans, we show that in the left coronary artery the diameters and lengths of vessels 
are inversely proportional which explains the applicability of the Finet’s law. We justify theoretically the value of coefficient 
defining Finet’s law.
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Introduction

Diseases of the cardiovascular system are leading cause of 
death in developed countries. The main problems remain 
atherosclerosis and heart failure. Atherosclerosis may affect 
coronary, cerebral or peripheral arteries. It increases the vas-
cular resistance and consequently increases heart energy 
consumption. Heart failure reduces cardiac output (the vol-
ume of blood being pumped by the heart per unit of time) 
or reduces energy conversion efficiency of the heart, hence 
reducing the vascular resistance is crucial during treatment 
of the cardiovascular diseases. For this reason, especially in 
the bypass surgery or placing vascular stents, the key is to 
understand the properties of optimal vascular geometry. In 
this publication, we focused on understanding the character-
istics of the coronary circulation.

Optimal geometry of the arterial tree should have both 
minimal vascular resistance and the lowest possible vol-
ume of the tree. This ensures simultaneous minimisation 
of the energy needed to deliver oxygen to the tissues and 
the necessary blood volume. Increased blood volume is also 
associated with an increased amount of energy necessary to 
produce blood or blood vessels.

The first solution to the problem was proposed by Cecil 
Murray [1]. Let us consider a vessel with a diameter d0 , 
which splits into two branches with diameters d1 and d2 
(Fig. 1), then according to Murray’s law

Experimental studies have shown that Murray’s law is 
also true for tubules of some leaves [2], but more accurate 
measurements showed deviations from Murray’s law in the 
vascular system [3–7]. These tests were performed using CT 
(computed tomography), IVUS (intravascular ultrasound), 
direct post mortem measurements, etc.

Numerous authors have proposed modifications of Mur-
ray’s law [8–12]. Depending on whether we consider a lam-
inar, steady or pulsating flow, the resistance is described 
by the Poiseuille or Womersley law. Similarly, it can be 
assumed that the flow is transient or turbulent, and the liquid 
is Newtonian or not. The dependence of vessel lengths on 
their diameter is also unclear—Murray assumed that these 
quantities are directly proportional.
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Depending on the assumptions about the flow and the 
length of the vessels, a slightly different form of the scal-
ing law is obtained. A thorough knowledge of this law is 
important in cardiology for several reasons. First of all, it is 
sometimes necessary to place a stent in a vascular branching. 
For the success of the procedure, it is critical that all three 
stent diameters match the geometry of a particular patient. It 
is therefore important to know what diameters often occur. 
Secondly, currently non-invasive imaging of small vessels 
is not possible. Consequently, in order to carry out computer 
simulations of blood flow in small vessels, it is necessary to 
know the statistical properties of branching.

In interventional cardiology, two laws based on Murray’s 
law are commonly used: the Huo–Kassab law (HK) [9]

and the area preserving branching (APB)

However, the law proposed by Gérard Finet et al. [3] is most 
often used clinically [12]. This law is:

Finet’s law seems to have surprising mathematical prop-
erties, because for a very small one of the distal vessels 
(d2 ≈ 0) there is: d0 ≈ 0.678 d1 , while we expect that the 
departure of a small vessel will not cause a significant 
change in the diameter of the main vessel. So for d2 ≈ 0 , 
one would expect d0 ≈ d1 . Nevertheless, Finet’s law is the 
best when the needs of interventional cardiologists are 
considered.

Derivation of the Generalised Murray’s Law

In order to show weaknesses of Murray’s law, the deriva-
tion of its generalised form is briefly described below. For 
the sake of simplicity, the single bifurcation, which consists 
of three vessels (the mother vessel and the two daughter 
vessels), is considered here for optimisation (Fig. 1). Let 
us assume that ith vessel is a cylinder with diameter di and 
length li , where i = 0 denotes the mother vessel and i = 1 , 
i = 2 denote the daughter vessels. Murray assumed that 
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(4)d0 = 0.678(d1 + d2).

length of vessel segments is directly proportional to their 
diameters. We use more general formula

where A is some constant. The volume of the considered 
chunk of the vessel tree is given by

Our goal is to find relation between diameters of the three 
vessels which minimises vessel resistance of the whole con-
sidered tree chunk for a fixed total volume of the tree chunk. 
The lowest vessel resistance results in the lowest energy 
expense. Vascular resistance Z is defined as the quotient of 
pressure drop Δp and volume of blood flowing per unit of 
time Q:

The considered three-vessel chunk of the tree is in fact a 
simple series-parallel connection. It seems to be justified 
to write

We still need to calculate the resistance of the single cylin-
drical vessel. Murray utilised the classic Hagen–Poiseuille 
law

where � is viscosity of blood (dynamic viscosity). The 
above-mentioned formula is valid provided following con-
ditions are satisfied:

– the considered fluid is Newtonian and incompressible,
– the flow is laminar and steady,
– the vessel is a cylindrical pipe of constant cross-section,
– the length of the pipe is much larger than its diameter.

However, these assumptions are not met in the human cir-
culatory system. Hence, one often assumes that resistance 
is inversely proportional not to fourth power but to some 
different power of the vessel diameter

where B is a constant dependent, among other factors, on the 
viscosity and density of the fluid. In the special case � = 4 
we get the Hagen–Poiseuille flow.
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Fig. 1  The schematic of a single 
bifurcation, which consists of 
the mother vessel and the two 
daughter vessels
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The pulsating flow is characterised by different velocity 
profile in cross-section and that is why there is different imped-
ance dependence on the vessel diameter (due to the negligi-
ble effect of the phase difference between pressure and flow 
changes and the relatively low frequency of blood pulsing, 
we use the term resistance instead of impedance). It can be 
described by Womersley’s law. Exponent � lies between 2 and 
4 depending on the oscillation frequency. The turbulent flow 
in turn depends even stronger on the vessel diameter because 
the diameter change influences the Reynolds number, i.e. for 
a fixed flow the Reynolds number drops with increasing diam-
eter due to the drop of the average velocity. Hence, one usually 
assumes that exponent � lies within interval 4 − 5 . Similarly, 
assuming non-Newtonian fluid results in change of velocity 
profile. Consequently, the non-Newtonian fluid assumption 
changes exponent � . The exponent values for various types of 
flow and corresponding characteristics of physiological set-
tings are listed in Table 1.

In various parts of the vessel tree the fluid flow is charac-
terised by distinct values of exponent � . It is therefore sensible 
to use more general formula (10) rather than just Hagen–Poi-
seuille law (9) in order to derive the generalised Murray’s law. 
The formula describing three-vessel chunk of the tree is then 
following

When we substitute relation (5) between vessel length li and 
vessel diameter di into the above formula, we obtain

In the vessel system there are both symmetrical ramifica-
tions, i.e. with d1 = d2 , and strongly asymmetrical where a 
small vessel departs from a large one and d0 ≈ d1 ≫ d2 . We 
introduce asymmetry coefficient
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For the sake of clarity, let us assume that � ≤ 1 . Using asym-
metry coefficient � we obtain following formulas describing 
the volume and resistance of the considered three-vessel tree 
chunk:

and

Next, d1 may be expressed as a function of V, d0 , � , � and A 
using formula (14). The formula describing d1 is then sub-
stituted into formula (15) and we obtain

We assume that � is fixed, i.e there is some fixed asymmetry. 
We consider also V, � , � and A fixed model parameters. In 
contrast, d0 is considered optimised variable. From a condi-
tion for derivative equal to 0 we obtain

The above equation expresses the generalised Murray law.
In the special case when the Hagen–Poiseuille law (9) is 

satisfied, i.e. � = 4 and additionally � = 1 , the generalised 
Murray’s law (17) reduces to Murray’s law (1).

On the other hand, if � =
8

3
 and � =

1

3
 , the generalised 

Murray’s law reduces to the Huo–Kassab law (2). The value 
� of 8

3
 corresponds to Womersley’s flow, which seems to be 

the type of the flow occurring in the coronary arteries.
The discrepancy between values of � in Murray’s law and 

the Huo–Kassab law is somewhat problematic. Moreover, 
for � = −1 the generalised Murray’s law reduces approxi-
mately to Finet’s law (4). After substitution of � = −1 into 
(17), we obtain

which can be expressed as

where
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Table 1  Exponent � for various types of flow given with characteris-
tics of physiological settings

� Flow Human circulatory system

2 < 𝛼 < 4 Womersley Large and medium arteries
� = 4 Hagen–Poiseuille Small arteries and veins
4 < 𝛼 < 5 Turbulent Ascending aorta
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For 𝛾 > 0.5 factor X weakly depends on � and � . The 
dependence is shown in Fig. 2. Factor X lies in interval 
0.6–0.76 provided 𝛾 > 0.5 and value of � is sensible, i.e it 
is between 2 and 5. It is consistent with coefficient 0.678 
defining Finet’s law.

We showed that the general form of Murray’s law is 
reduced to Finet’s law in the case of an inversely pro-
portional relationship between the vessels length and 
diameter and relatively small asymmetry of daughters’ 
vessels ( 𝛾 > 0.5 ). It means that Finet’s law can be consid-
ered a special case of the generalised Murray’s law with 
� = −1 . However, � = −1 signifies a surprising relation-
ship (inversely proportional) between the vessel length 
and diameter, which needs to be verified experimentally. 
Moreover, we need to check if asymmetry coefficient � is 
high enough.

As stated above, Finet’s law cannot be applied to a 
strong asymmetry ( � ≈ 0 ). The generalised Murray’s law 
suffers from a similar drawback despite its generality. It 
arises from an implicit assumption underpinning formula 
describing resistance of the series-parallel connection (8). 
In order to consider daughter vessels connected in parallel 
and to utilise formula (8) one needs to assume that pres-
sure on the ends of both daughter vessels (vessel 1 and 
vessel 2) is the same. Such an assumption is not satisfied 
if coefficient � is close to 0. In the case of small � , i.e. 
d1 ≫ d2 , the daughter vessel 2 is in fact the vessel with 
micro-circulation and one should not expect it to have the 
same pressure as the large daughter vessel 1. The formula 
(17) should be regarded unsuitable when coefficient � is 

(20)X =

(
1 + ��+1

) 1

2+�

(1 + �)
�+1

2+�

.

close to 0. The same limitation also applies to original 
Murray’s law.

Statistical Analysis of Vessel Lengths 
and Diameters Based on CT Angiography

In order to experimentally verify the relationship between 
the length and diameter of coronary arteries and asym-
metry coefficient CT studies of 19 subjects were ana-
lysed. The used data was a result of the “Novel Method 
for Functional Assessment of Coronary Artery Stenosis 
with In-Silico Flow Modelling based on Multirow Com-
puted Tomography Imaging (TRAFIC)” project, co-funded 
by The National Centre for Research and Development 
(Poland) within PBS programme (PBS1/A9/18/2013).

Vessel lengths and diameters were derived from com-
puted tomography (CT) angiography. The length of a given 
coronary vessel is understood in this paper to be the length 
between two consecutive bifurcations. Strictly speaking, 
the diameter varies even along a single vessel and there-
fore we use the average diameter weighted with point-
to-point distance. The analysis was performed separately 
for the left coronary artery (LCA) and the right coronary 
artery (RCA).

In the case of the left coronary artery the mean value 
of asymmetry coefficient � equals 0.73 and its standard 
deviation is 0.15. Moreover, condition 𝛾 > 0.5 is satisfied 
for 91.5% bifurcations. When the right coronary artery 
is concerned, the mean value of asymmetry coefficient � 
equals 0.67 and its standard deviation is 0.20. Condition 
𝛾 > 0.5 is satisfied for 74.7% bifurcations. This means that 
the low asymmetry condition ( 𝛾 > 0.5 ) is well satisfied in 
the left coronary artery (LCA) and is not met in the right 
coronary artery (RCA).

Fig. 2  Dependence of factor 
X on exponent � from vessel 
resistance formula (10) and 
asymmetry coefficient �
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To investigate the dependence of length on the diam-
eter of coronary vessels, we will transform Eq. (5). After 
applying logarithm to both sides this equation we get

Hence, parameter � may be determined with a simple 
linear regression, which results in � = −1.02 ± 0.11 for 
LCA and � = −0.69 ± 0.14 for RCA. Data points and the 
fitted linear function for LCA are shown in Fig. 3. It worth 
noticing that both values of � obtained with the regression 
are negative. In the case of RCA, the result is not statisti-
cally significant, whereas in the case of LCA the value −1 
is within a 95% confidence interval. In the case of LCA 
the experimentally obtained value of � is close to −1 and 
it justifies the reduction of the generalised Murray’s law to 
Finet’s law.

The obtained negative value of � is neither a numerical 
artefact nor a statistical fluctuation. It stems from two rea-
sons. Firstly, the left coronary artery starts with the short 
and thick vessel named left main coronary artery, which 
bifurcates into two large arteries, i.e. left circumflex artery 
and left anterior descending artery. One can see in Fig. 4 that 
there are other large vessels (left marginal artery and diago-
nal branch) departing from these two arteries (left circum-
flex artery and left anterior descending artery). That is why 
thick vessels forming LCA are relatively short. Secondly, 
one may see in Fig. 4 that distal narrower vessels are longer. 
It is due to imaging method of the CT angiography—in real-
ity there are numerous tiny vessels, invisible in the CT scan, 
departing from the visible larger vessels.

(21)ln(li) = ln(A) + � ln(di).

Conclusions

Analysis of coronary vessel trees based on CT angiography 
indicates that vessel length is inversely proportional to its 
diameter in the case of the left coronary artery (LCA). It 
translates to � = −1 in the generalised Murray’s law. In such 
a case the generalised Murray’s law is in turn reduced to 
Finet’s law, which is preferred by cardiologists.

Moreover, we have showed that if vessel length is 
inversely proportional to its diameter ( � = −1 ) and 

Fig. 3  Relation between length 
and diameter for vessels belong-
ing to the left coronary artery

Fig. 4  Left coronary vessel artery reconstructed from CT angiogra-
phy
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asymmetry of distal vessels is relatively small ( 𝛾 > 0.5 ), the 
coefficient 0.678 occurring in the Finet’s formula should be 
in the range 0.6–0.76. This coefficient is very insensitive 
to flow model assumptions. Until now, to the authors’ best 
knowledge, it was only experimentally determined. This 
work is therefore the theoretical justification for the Finet’s 
formula.
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