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Abstract
Purpose Research findings are typically reported at the group level but applied to individuals. However, an emerging issue 
in sports science concerns nonergodicity—whereby group-level data cannot be generalized to individuals. The purpose of 
this study was to determine if the relationship between daily carbohydrate intake and perceived recovery status displays 
nonergodicity.
Methods Fifty-five endurance athletes recorded daily measures of self-selected dietary intake, training, sleep, and subjective 
wellbeing for 12 weeks. We constructed linear models to measure the influence of daily carbohydrate intake on perceived 
recovery status while accounting for training load, sleep duration, sleep quality, and muscle soreness. Using linear model 
coefficients for carbohydrate intake we tested whether the distributions (mean and SD) differed at the group and individual 
levels (indicating nonergodicity). Additionally, a decision tree was created to explore factors that could provide an indication 
of an individual athlete’s relationship between carbohydrate intake and perceived recovery status.
Results Mean values were not different between group- and individual-level analyses, but SDs at the individual level were 
~2.4 times larger than at the group level, indicating nonergodicity. Model coefficients for carbohydrate intake were negative 
for three participants, positive for four participants, and non-significant for 37 participants. The κ value measuring accuracy 
of the decision tree was 0.52, indicating moderate prediction accuracy.
Conclusion For most individuals, carbohydrate intake did not influence recovery status. However, the influence of dietary 
carbohydrate intake on daily recovery differs at the group and individual level. Therefore, practical recommendations should 
be based on individual-level analysis.

Keywords Intraindividual variability · Monitoring · Carbohydrate · Training load · Decision tree · Machine learning

Abbreviations
ARIMA  Autoregressive integrated moving average
CHO  Carbohydrate
CI  Confidence intervals
PRS  Perceived recovery status
SD  Standard deviation

Introduction

Studies in sports science are typically conducted and 
reported at the group level yet applied at the individual 
level. However, it has been increasingly questioned whether 
group-level results can generalize to individuals [9, 13, 20, 
33], as group-level findings could conceal relevant inter-
individual variability in response to a training stimulus or 
intervention [17]. This could lead to sub-optimal training or 
nutrition prescriptions for an individual athlete. When the 
group-level variability of data does not resemble the indi-
vidual-level variability, or when individual-level variability 
exhibits changing variance over time, the data is non-ergodic 
[29, 32]. Nonergodicity could lead studies to overestimate 
the accuracy of aggregated statistical estimates and in turn, 
the generalizability of conclusions between the group and 
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individual. In light of this, nonergodicity has been suggested 
as a threat to human subjects research [13].

Sports nutrition guidelines recommend carbohydrate 
intake be modulated according to changes in exercise vol-
ume [44], with the intention of optimizing training adapta-
tion while ensuring adequate recovery. Under-fueling can 
cause low energy availability and impaired recovery [30], 
while over-fueling can cause weight gain and potentially 
attenuate desired training adaptations [6]. It is commonly 
reported that perceived ratings of wellness and recovery are 
sensitive to fluctuations in training load [16, 45], and sleep 
duration [39]. However, the influence of dietary intake on 
daily recovery during endurance training is less understood. 
During short-term periods of intensified endurance train-
ing, increasing energy and carbohydrate intake may attenu-
ate symptoms of overreaching [1, 19, 24, 42], although it 
is unclear if this relationship between carbohydrate intake 
and daily recovery extends over longer time periods and/
or across a range of training volumes in a practical setting.

To determine ergodicity of a given data set, a Cattell data 
box can be used as previously described by Molenaar and 
Campbell [32] and Neumann et al. [33]. This can be visual-
ized as a 3-dimensional box with time, measured variables, 
and individual subjects as the dimensions. For group-level 
analysis of a variable of interest, a single time point is pooled 
across all subjects (e.g., all subjects on day 1), repeated for 
each additional time point, and summarized [e.g., mean, 
standard deviation (SD), confidence intervals (CI), etc.]. For 
individual-level analysis the variable is analyzed across all 
time points separately for each subject and then summarized. 
If the structure of the group- and individual-level data dif-
fer (e.g., statistics of central tendencies, variations, and/or 
correlations of time series data), the process is considered 
non-ergodic and results obtained from standard analysis at 
the group level cannot be applied to the individual [32].

Nonergodicity is relevant in the context of nutrition and 
training, as evidence-based practitioners and athletes often 
apply group-level research findings to the individual [15, 
44]. Therefore, the purpose of this study was to examine 
the relationship between daily carbohydrate intake and per-
ceived recovery status and determine if group-level statistics 
can generalize to individual athletes. To do so, 55 endurance 
athletes recorded daily measures of self-selected nutrition 
intake, exercise training, sleep habits, and subjective well-
being for 12 weeks. We constructed linear models to meas-
ure the influence of daily carbohydrate intake on perceived 
recovery status the following morning while accounting for 
other factors such as training load, sleep, and muscle sore-
ness. Using the model coefficient for carbohydrate intake we 
tested whether the distributions (mean and SD) differed at 
the group and individual levels. As an exploratory analysis, 
we also created a decision tree model to understand general 
traits of athletes that would predict a positive, negative, or 

non-significant model coefficient for carbohydrate intake. 
This could serve as the next step in understanding individual 
level-differences, and provide a direction for coaches and 
practitioners to make better decisions to support the indi-
vidual athlete’s needs.

Methods

Study Design

Self-selected nutrition intake, exercise training, sleep habits, 
and subjective wellbeing of endurance athletes were moni-
tored daily over a 12-week period. Throughout the study 
period, participants were free to perform any type of exer-
cise and consume any type of diet. Results presented herein 
are from a wider study of endurance training and recovery. 
Data related to carbohydrate periodization [37] and machine 
learning predictions [38] have been reported elsewhere. The 
study was open to male and females aged 18 or older who 
train at least 7 h per week, were using a smartphone app to 
track their dietary intake at least 5 days per week, captured 
HRV daily, and tracked sleep using a wearable device. All 
study protocols and materials were approved by the Auck-
land University of Technology Ethics Committee (22/7), and 
all participants provided informed consent prior to starting 
the study.

Participants

Fifty-five endurance athletes (61.8% male, aged 
42.6 ± 9.1 years, training 11.6 ± 3.9 h per week) took part 
in the study. The primary sports represented were triath-
lon (n = 37, 67.3%), running (n = 11, 20.0%), cycling (n = 6, 
10.9%), and rowing (n = 1, 1.8%). The self-reported com-
petitive level included professional (2.6%), elite non-pro-
fessional (qualify and compete at the international level as 
an age-group athlete, 34.6%), high-level amateur (qualify 
and compete at National Championship-level events as an 
age-group athlete, 25.6%), and amateur (enter races but don’t 
expect to win, or train but do not compete, 37.2%) athletes.

Assessment of Self‑Reported Exercise

All exercise was recorded in Training Peaks software (Train-
ingPeaks, Louisville, CO, USA). Each session was noted for 
modality (e.g., bike, run, swim), duration, and session rating 
of perceived exertion (sRPE [14]) using the Borg  CR100® 
scale, which offers additional precision compared with the 
CR10 scale [10]. Participants were instructed to rate their 
perceived effort for the whole training session within 1-h of 
exercise, although sRPE scores are temporally robust from 
minutes to days following a bout of exercise [14].
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Assessment of Self‑Reported Dietary Intake

Participants were instructed to maintain their typical die-
tary habits and record all calorie-containing food and drink 
consumed for the duration of the 12-week study. Weighing 
of food was encouraged, but not mandated, and common 
issues such as underreporting were discussed before start-
ing the study. Participants were not required to record non-
caloric fluid ingestion, micronutrient content, or timing of 
meals. Dietary intake was self-reported using the MyFit-
nessPal application (www. myfit nessp al. com). Compliance 
with dietary tracking was monitored by connecting to par-
ticipant food logs via MyFitnessPal, and enquiring about 
any unexpected values (determined both visually and using 
anomaly detection software [11]). Incomplete days of track-
ing (2.2% ± 4.6% of days per participant) were removed from 
the data. To aid compliance, participants were recruited who 
were already regularly tracking their diet (in several cases 
daily for 4+ years), and so all participants displayed strong 
intrinsic motivation for habitual diet tracking.

Assessment of Sleep and Subjective Wellbeing

Nightly sleep duration was recorded using wearable devices, 
which included Oura ring, Whoop strap, Applewatch, Fit-
bit, and Garmin models as previously described [38]. These 
consumer-grade devices offer adequate accuracy in detecting 
sleep–wake times, but not sleep staging [7, 8, 31, 34, 46]. 
Each morning participants answered four questions related 
to subjective wellbeing based on the recommendations of 
Hooper and Mackinnon [21]. The perceived recovery status 
(PRS) scale [28] was used to measure overall recovery with 
athletes manually typing a number into Training Peaks soft-
ware. The 100-point version of the scale was used, which has 
been shown to provide more accurate measures of recovery 
than the 10-point scale [10]. In addition, ratings of life stress 
(1–7), sleep quality (1–7), and muscle soreness (1–10) were 
also recorded into the software each morning. Participants 
were familiarized with all scales prior to starting the study.

Data Preparation

Training load was calculated for each workout as the product 
of sRPE and duration of exercise in minutes [18], divided 
by 10 to account for the 100-point scale, and summed into 
daily totals. External load metrics such as heart rate, power 
or pace were not collected because many athletes undertake 
activities that can’t be quantified on a common scale such as 
strength training, yoga or swimming without a HR monitor, 
and also because the sRPE is considered to be a valid and 
reliable method for calculating training load across modali-
ties [18]. Seven-day rolling measures for training monotony 
(a measure of day-to-day variability in the weekly training 

load, calculated as average daily load divided by the stand-
ard deviation) and training strain (product of total weekly 
training load and training monotony) were calculated [18]. 
A sleep index score was calculated as the product of sleep 
duration and sleep quality [40]. Dietary macronutrient intake 
was converted to a relative intake (g per kg body mass) to 
allow appropriate comparison between athletes.

Participants were excluded from the analysis if they were 
training on average less than 6 h per week (n = 8) or did not 
log at least 85% of the required data points (n = 3). Partici-
pants who did not complete the full 12 weeks due to illness, 
injury, or drop-out but completed at least 6 weeks of tracking 
were included in the analysis (n = 11). Among participants 
included in the analysis (n = 44), 2.4% ± 1.7% of data points 
were missing. Missing values were imputed at the individual 
level using multiple linear regression and nearest neighbor 
algorithms for diet and training measures and using median 
values for other variables [25].

Analysis

Following the recommendations of previous studies [13, 33], 
we extracted a subset of data that was symmetrical (i.e., an 
equal number of participants and observations per partici-
pant) to equalize statistical power for analysis at the group 
and individual levels. Because we had 44 participants in 
the final analysis, 44 consecutive days were chosen begin-
ning with day 8 to allow for an accurate calculation of 
training strain (which reflects the previous 7 days of train-
ing). Repeated measures correlation [4] was used at the 
group level to examine the bivariate relationship between 
the morning (AM) PRS score and prior day carbohydrate 
intake. Pearson or Spearman correlations, depending on nor-
mality of the data as determined by the Shapiro–Wilk test, 
were used to examine the bivariate relationship between the 
AM PRS score and prior day carbohydrate intake for each 
individual.

Previous studies of ergodicity have focused on com-
parisons of univariate distributions and bivariate correla-
tions [13, 33]. However, the relationship between diet and 
recovery is likely also dependent on other factors relating 
to training and sleep. To account for this, linear regression 
models were constructed with AM PRS score specified as 
the dependent variable, and prior day carbohydrate intake (g/
kg), prior day training load, training strain (encompassing 
the previous 7 days), muscle soreness, and sleep index speci-
fied as independent variables. These variables were chosen 
because they had the highest importance scores in our pre-
dictive modeling study [38]. The model coefficient for car-
bohydrate intake was the primary variable of interest. For 
group level analysis, models were made for all 44 athletes 
together on day 1 and repeated for each of the 44 days with 
the results summarized across days (as mean, SD, and 95% 

http://www.myfitnesspal.com
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CIs). For individual-level analysis, a separate model was cre-
ated for each athlete, and the results were then summarized. 
However, data at the individual level are a time series, which 
refers to a sequence of data points at equally spaced points 
in time and ordered chronologically [41]. Time series data 
cannot be analyzed with common techniques such as linear 
modeling if the day-to-day observations are correlated with 
observations at previous time points (i.e., auto-correlated) 
and are not independent of each other, as key assumptions of 
linear regression are violated [23]. Autoregressive Integrated 
Moving Average (ARIMA) models are commonly used in 
time series analysis to account for these issues [41]. There-
fore, for individual-level analyses we obtained the model 
coefficient for carbohydrate intake by constructing ARIMA 
models using the Hyndman-Khandakar algorithm for auto-
matic ARIMA modelling [22]. Ergodicity can be confirmed 
if the mean and SD at the group and individual levels were 
not significantly different [32]. R-squared (R2) was also cal-
culated as an overall measure of model fit.

To explore characteristics which might inform the indi-
vidual responses to carbohydrate intake, a decision tree 
model was created to predict the classification of statistical 
significance for the model coefficient of prior day carbohy-
drate intake from the individual ARIMA models (non-sig-
nificant, significantly positive, or significantly negative). To 
determine statistical significance, 95% CIs for the unstand-
ardized regression coefficients were calculated, and values 
were considered significant if the CIs did not cross zero. The 
coefficients were organized into these three categories with 
practical application in mind. That is, coaches or nutrition-
ists might benefit more from knowing if/how an individual 
responds to carbohydrate in this context, rather than getting 
a predicted model coefficient for the individual athlete.

Variables used in the decision tree model were age, 
training age, competitive level, primary sport, sex, BMI, 
percentage of training days performing fasted-state train-
ing, and average values of daily kcal intake (kcal/kg), daily 
carbohydrate, fat, and protein intake (g/kg), carbohydrate 
monotony (mean daily intake/SD), weekly training volume 
(h), training monotony, and training strain. All available 
data points were used for the decision tree models (n = 3588, 
81.5 ± 10.4 days per participant), rather than the 44-day sub-
set used to compare group vs. individual responses to obtain 
the most accurate picture of each individual’s characteristics. 
Modeling was performed in R using the Tidymodels eco-
system [26]. Hyperparameters were tuned using 100 boot-
strap resamples and model accuracy was established using 
500 bootstrap resamples. Class imbalances were handled by 
up-sampling prior to tuning. Cohen’s Kappa (κ) was used 
as the primary accuracy measure due to the imbalanced, 
multi-class nature of the outcome variable. κ accounts for 
the accuracy that would be generated simply by chance, pro-
ducing values between −1 and 1. We interpret these values 

using the guidelines of Landis and Koch [27], with values 
of 0–0.20 considered slight, 0.21–0.40 fair, 0.41–0.60 mod-
erate, 0.61–0.80 substantial, and 0.81–1 as almost perfect. 
In addition, we report positive predictive value and nega-
tive predictive value [2]. All analyses were carried out with 
R version 4.0.3 (The R foundation for Statistical Comput-
ing, Vienna, Austria). Descriptive statistics are provided as 
mean ± SD.

Results

During the 44-day period selected for the primary analy-
sis, average participant training volume was 11.9 ± 3.4 h 
per week. Mean daily dietary intake was 39.4 ± 9.0 kcal/
kg, 4.0 ± 1.6 g/kg carbohydrate, 1.9 ± 0.4 g/kg protein, and 
1.7 ± 0.6 g/kg fat. Average sleep duration was 7.5 ± 0.7 h 
per night. Bivariate repeated-measures correlation at the 
group level revealed a significant negative relationship 
between AM PRS and carbohydrate ingestion the prior day 
(r = −0.09, 95% CI −0.14 to −0.05, P < 0.001), but this rela-
tionship varied considerably among individuals (Fig. 1).

After accounting for prior day training load, 7-day train-
ing strain, muscle soreness, and sleep index via linear mod-
eling, model coefficients for carbohydrate intake were nega-
tive for three participants (7%), positive for four participants 
(9%), and non-significant for 37 participants (87%, Fig. 2). 
Mean values for model coefficients were similar between 
the group and individual (evidenced by overlapping CIs), 
whereas SDs were different, (i.e., non-overlapping CIs) 
indicating nonergodicity (Fig. 3). Non-ergodicity was also 
observed in the overall model accuracy. Mean R-squared 
values were 0.32 (95% CI 0.29–0.35), and 0.40 (95% CI 
0.35–0.45), for the group and individual models, respec-
tively, and SD values were 0.11 (95% CI 0.09–0.13) and 0.18 
(95% CI 0.14–0.22) for the group and individual models, 
respectively.

A decision tree was created to explore potential factors 
that could provide coaches or practitioners with an indica-
tion of an athlete’s relationship between carbohydrate intake 
and perceived recovery status (Fig. 4). The κ value was 0.52, 
indicating a moderate level of agreement. Positive predictive 
value was 0.44, and negative predictive value was 0.87. A 
confusion matrix of actual and predicted classes is shown 
in Fig. 5.

Discussion

The aim of this study was to examine the relationship 
between daily carbohydrate intake and perceived recovery 
status and determine if group-level statistics can be gen-
eralized to individual athletes. The main outcomes are (1) 
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the data are non-ergodic, meaning group-level findings can-
not be generalized to the individual, (2) daily carbohydrate 
intake does not influence perceived recovery status the fol-
lowing morning for most athletes, after accounting for other 
influential variables such as training load, muscle soreness, 
and sleep, (3) for those that are affected the influence can be 
positive or negative, and (4) we build upon previous work 
using bivariate correlations to include linear model coef-
ficients and offer a method for understanding the individual 
responses through a decision tree algorithm.

We observed a large discrepancy between inter- and intra-
individual variation (i.e., nonergodicity), as SDs at the indi-
vidual level were ~2.4 times larger than at the group level. 
This means there would be a difference when computing sta-
tistics by first averaging the data before the calculations ver-
sus first calculating the statistics for each individual before 
averaging these results [20]. Furthermore, mean values may 
be misleading when determining the influence of carbohy-
drate intake on AM PRS. At the group level, a traditional 
interpretation would suggest carbohydrate has minimal 

influence on AM PRS after accounting for the other vari-
ables. Although this would be true for most athletes (~87% 
of our participants), model coefficients were positive for 9% 
and negative for 7% of our participants (Fig. 2). This means 
the individual, rather than the group, should be placed at the 
level of analysis to avoid wrong conclusions [20].

Previous studies have used bivariate correlations to 
explore ergodicity [13, 33]. In this context, bivariate corre-
lations could be misleading because athletes often increase 
carbohydrate intake on days with higher training loads [37]. 
Because of the multifactorial nature of day-to-day recovery, 
we created linear models to account for these additional fac-
tors while focusing the analysis on daily carbohydrate intake. 
Subjective muscle soreness and sleep index were included 
because they are two of the most important factors predict-
ing AM PRS scores, as reported by us [38] and others [16, 
40, 45]. Training strain was included in the model to account 
for potential residual fatigue from the previous seven days 
of training. Training strain (the product of training load and 
training monotony) is high when high training loads are 

r = -0.09, 95% CI -0.14 to -0.05
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Fig. 1  Bivariate correlations between AM perceived recovery status 
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combined with low variability of load, and low when ath-
letes complete either low training loads or have regular vari-
ation in training [18]. Together, these variables account for a 
substantial amount of the variance in PRS scores and allow 
a more focused look at the influence of carbohydrate intake.

The beliefs and practices surrounding nutrition and train-
ing vary widely among athletes [35, 36]. Although it could 
be tempting to try and find unifying answers to some of 
the contrasting beliefs held by athletes (e.g., the positive 
or negative influence of fasted-state training or increasing 
carbohydrate intake), the current study underscores the idea 
that what’s best for one athlete may not be best for another. 

It is also noteworthy that athletes in this study were under-
taking self-selected training programs, and results cannot 
be generalized to short-term periods of intensified training, 
where increasing energy and/or carbohydrate intake has 
been shown to attenuate symptoms of overreaching [1, 19, 
24, 42]. Future research can examine the influence of car-
bohydrate intake on daily recovery during periods of pre-
scribed training, as well as exploring if/how the influence 
of carbohydrate changes based on how closely an athlete 
matches their daily intake based on their training volume 
and/or intensity, a practice recommended and followed 
across a diverse range of sports [3, 12, 43]. It would also be 
of interest to study whether the influence of carbohydrate on 
training adaptations has any relationship with the influence 
of carbohydrate on daily recovery.

As a way of translating the interindividual variability 
from a statistical concept to practical application, a decision 
tree model was created. Variables such as age, sex, BMI, 
competitive level, training volume, and habitual dietary pat-
terns were included to better understand what traits or quali-
ties might be related to a certain response to carbohydrate 
intake. Although interpretation of the decision tree is chal-
lenged by the small number of athletes presenting significant 
model coefficients for carbohydrate intake and the inabil-
ity of the model to accurately predict positive coefficients 
(Fig. 5), it can serve as a starting point for understanding 
how an athlete might be expected to respond to carbohy-
drate intake. The most important variables were carbohy-
drate monotony, followed by average daily protein intake. 
Among athletes with low carbohydrate monotony scores 
(i.e., larger daily variations in carbohydrate intake), those 
with a lower average daily protein intake were likely to have 
a negative response to carbohydrate intake whereas those 
with a higher daily protein intake were more likely to have 
a non-significant effect of carbohydrate intake on AM PRS 
score (Fig. 4). Athletes with a higher daily fat intake and 
those training less than 12 h per week were also less likely 
to be influenced by changes in daily carbohydrate intake 
(Fig. 4). The model displayed moderate accuracy (κ value 
of 0.52), although the ability of the model to learn from the 
data was challenged by the small and imbalanced data set. 
As shown in Fig. 5, negative and non-significant outcomes 
were able to be predicted very well, but the model did not 
accurately predict any positive responders. Nevertheless, we 
feel this approach can be adopted by others who wish to bet-
ter understand individual responses to a given intervention 
or stimulus.

There are several limitations to this study, primarily 
related to the use of self-report measures. Data integrity 
was checked based on the number of missing values, and 
by looking for unexpected values. However, it is possible 
that participants did not always enter data as accurately as 
possible. There is also the risk of bias in reporting if an 
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Fig. 2  Individual participant model coefficients with 95% confidence 
intervals for the effect of prior day carbohydrate (CHO) intake (g/kg) 
on AM perceived recovery status (PRS) score after accounting for 
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Fig. 3  Density plots of the 
model coefficients for the 
effect of prior day carbohydrate 
(CHO) intake (g/kg) on AM 
perceived recovery status (PRS) 
score after accounting for prior 
day training load, 7-day training 
strain, muscle soreness, and 
sleep index (product of sleep 
duration and sleep quality). 
Inset table shows mean, SD, and 
95% confidence intervals for 
model coefficients for carbo-
hydrate intake from group and 
individual level modeling
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Fig. 4  Decision tree predicting the response to prior day carbohydrate 
(CHO) intake on AM perceived recovery status. Each node indicates 
the predicted class (negative, non-significant, or positive model coef-

ficients). At each level, following the node to the left corresponds to 
yes, and following the node to the right corresponds to no
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athlete is aware that a coach or a researcher will be seeing 
their data, answering based on what they think is desirable. 
Imputation of missing values could influence the findings, 
although this impacted a relatively small amount of the data 
(2.4% ± 1.7% of data points per participant). In addition, 
the limited number of data points, particularly with unbal-
anced classes, made training and interpreting the decision 
tree model challenging. Finally, alcohol is known to influ-
ence recovery [5], but was not recorded by participants in 
this study.

Conclusion

Our findings suggest the influence of dietary carbohydrate 
intake on daily recovery differs at the group and individual 
level. Therefore, inferences may not be generalized from 
the group to the individual, and practical recommendations 
should be based on individual analysis. Furthermore, at the 
group level, the previous day’s carbohydrate intake did not 
influence the perceived recovery status of athlete training 
~12 h per week. This research also adds to the literature 
around ergodicity in sports science, an emerging concept 
that should be routinely considered as part of the statistical 
analysis process. Future research in athletes should focus on 
individual responses to better understand the relationship 
between nutrition, training, and recovery for each athlete.
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