Skip to main content
Log in

Does Normobaric Hypoxic Resistance Training Confer Benefit over Normoxic Training in Athletes? A Narrative Review

  • Review Article
  • Published:
Journal of Science in Sport and Exercise Aims and scope Submit manuscript

Abstract

Purpose

The aim of the present review was to focus on normobaric hypoxic resistance training and to discuss to what extent this method can be efficient for athletes to potentiate classical adaptations to resistance training and thereby performance.

Methods

Search terms related to the topic of the present review such as normobar*, hypox*, resistance exercise, resistance training and performance were inserted in Pubmed and Scopus. In total, 16 articles made the core of this narrative review.

Results

Based on the available literature, 2–3 sessions a week performed in hypoxic conditions for 4–6 weeks with a FiO2 of 0.14–0.15 should recommended to athletes looking at potentiating the effects of resistance training. A large range of loads has been found to be efficient at inducing physiological effects in hypoxic vs normoxic conditions, from 20% to 90% of the 1-RM. Ideally, at least the last set should be performed to failure, if not all. Also, inter-set rest periods should be around 30 s for low-load exercise (30%–40% 1-RM), around 60 s for moderate-load exercise (60%–70% 1-RM) and 2 min for high-load exercise (85%–90% 1-RM).

Conclusion

While there is no one size fits all and certainly no guarantee of added value over normoxic training, each athlete looking at potentiating the effects of resistance training should try to implement some sessions in hypoxic conditions. Based on the individual response, subtle improvements may be expected on muscle strength and mass, velocity and power, as well as hormonal responses to resistance training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

As the present manuscript is a narrative review, no data have been generated.

Code Availability

Not applicable.

References

  1. Bandy WD, Lovelace-Chandler V, McKitrick-Bandy B. Adaptation of skeletal muscle to resistance training. J Orthop Sports Phys Ther. 1990;12(6):248–55. https://doi.org/10.2519/jospt.1990.12.6.248.

    Article  CAS  PubMed  Google Scholar 

  2. Chapman RF, Stray-Gundersen J, Levine BD. Individual variation in response to altitude training. J Appl Physiol. 1998;85(4):1448–56. https://doi.org/10.1152/jappl.1998.85.4.1448.

    Article  CAS  PubMed  Google Scholar 

  3. Chycki J, Czuba M, Golas A, Zajac A, Fidos-Czuba O, Mlynarz A, Smolka W. Neuroendocrine responses and body composition changes following resistance training under normobaric hypoxia. J Hum Kinet. 2016;53:91–8. https://doi.org/10.1515/hukin-2016-0013.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Clancy RB, Herring MP, MacIntyre TE, Campbell MJ. A review of competitive sport motivation research. Psychol Sport Exerc. 2016;27:232–42. https://doi.org/10.1016/j.psychsport.2016.09.003.

    Article  Google Scholar 

  5. D’Hulst G, Deldicque L. Human skeletal muscle wasting in hypoxia: a matter of hypoxic dose? J Appl Physiol. 2017;122(2):406–8. https://doi.org/10.1152/japplphysiol.00264.2016.

    Article  CAS  PubMed  Google Scholar 

  6. D’Hulst G, Jamart C, Van Thienen R, Hespel P, Francaux M, Deldicque L. Effect of acute environmental hypoxia on protein metabolism in human skeletal muscle. Acta Physiol. 2013;208(3):251–64. https://doi.org/10.1111/apha.12086.

    Article  CAS  Google Scholar 

  7. van Doorslaer de Ten Ryen S, Warnier G, Gnimassou O, Belhaj MR, Benoit N, Naslain D, Brook MS, Smith K, Wilkinson DJ, Nielens H, Atherton PJ, Francaux M, Deldicque L. Higher strength gain after hypoxic vs normoxic resistance training despite no changes in muscle thickness and fractional protein synthetic rate. FASEB J. 2021;35(8):e21773. https://doi.org/10.1096/fj.202100654RR.

    Article  PubMed  Google Scholar 

  8. Feriche B, Garcia-Ramos A, Morales-Artacho AJ, Padial P. Resistance training using different hypoxic training strategies: a basis for hypertrophy and muscle power development. Sports Med Open. 2017;3(1):12. https://doi.org/10.1186/s40798-017-0078-z.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Friedmann B, Kinscherf R, Borisch S, Richter G, Bartsch P, Billeter R. Effects of low-resistance/high-repetition strength training in hypoxia on muscle structure and gene expression. Pflugers Arch. 2003;446(6):742–51. https://doi.org/10.1007/s00424-003-1133-9.

    Article  CAS  PubMed  Google Scholar 

  10. Garvican-Lewis LA, Sharpe K, Gore CJ. Time for a new metric for hypoxic dose? J Appl Physiol. 2016;121(1):352–5. https://doi.org/10.1152/japplphysiol.00579.2015.

    Article  PubMed  Google Scholar 

  11. Gharahdaghi N, Phillips BE, Szewczyk NJ, Smith K, Wilkinson DJ, Atherton PJ. Links between testosterone, oestrogen, and the growth hormone/insulin-like growth factor axis and resistance exercise muscle adaptations. Front Physiol. 2020;11:621226. https://doi.org/10.3389/fphys.2020.621226.

    Article  PubMed  Google Scholar 

  12. Girard O, Brocherie F, Goods PSR, Millet GP. An updated panorama of “living low-training high” altitude/hypoxic methods. Front Sports Act Living. 2020;2:26. https://doi.org/10.3389/fspor.2020.00026.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gnimassou O, Fernandez-Verdejo R, Brook M, Naslain D, Balan E, Sayda M, Cegielski J, Nielens H, Decottignies A, Demoulin JB, Smith K, Atherton PJ, Francaux M, Deldicque L. Environmental hypoxia favors myoblast differentiation and fast phenotype but blunts activation of protein synthesis after resistance exercise in human skeletal muscle. FASEB J. 2018;32(10):5272–84. https://doi.org/10.1096/fj.201800049RR.

    Article  CAS  PubMed  Google Scholar 

  14. Gordon SE, Kraemer WJ, Vos NH, Lynch JM, Knuttgen HG. Effect of acid-base balance on the growth hormone response to acute high-intensity cycle exercise. J Appl Physiol. 1994;76(2):821–9. https://doi.org/10.1152/jappl.1994.76.2.821.

    Article  CAS  PubMed  Google Scholar 

  15. Ho JY, Kuo TY, Liu KL, Dong XY, Tung K. Combining normobaric hypoxia with short-term resistance training has no additive beneficial effect on muscular performance and body composition. J Strength Cond Res. 2014;28(4):935–41. https://doi.org/10.1519/JSC.0000000000000289.

    Article  PubMed  Google Scholar 

  16. Hubal MJ, Gordish-Dressman H, Thompson PD, Price TB, Hoffman EP, Angelopoulos TJ, Gordon PM, Moyna NM, Pescatello LS, Visich PS, Zoeller RF, Seip RL, Clarkson PM. Variability in muscle size and strength gain after unilateral resistance training. Med Sci Sports Exerc. 2005;37(6):964–72.

    PubMed  Google Scholar 

  17. Inness MW, Billaut F, Walker EJ, Petersen AC, Sweeting AJ, Aughey RJ. Heavy resistance training in hypoxia enhances 1RM squat performance. Front Physiol. 2016;7:502. https://doi.org/10.3389/fphys.2016.00502.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jung WS, Kim SW, Kim JW, Park HY. Resistance training in hypoxia as a new therapeutic modality for sarcopenia—a narrative review. Life. 2021;11(2):106. https://doi.org/10.3390/life11020106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kon M, Ohiwa N, Honda A, Matsubayashi T, Ikeda T, Akimoto T, Suzuki Y, Hirano Y, Russell AP. Effects of systemic hypoxia on human muscular adaptations to resistance exercise training. Physiol Rep. 2014;2(6):e12033. https://doi.org/10.14814/phy2.12033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kurobe K, Huang Z, Nishiwaki M, Yamamoto M, Kanehisa H, Ogita F. Effects of resistance training under hypoxic conditions on muscle hypertrophy and strength. Clin Physiol Funct Imaging. 2015;35(3):197–202. https://doi.org/10.1111/cpf.12147.

    Article  PubMed  Google Scholar 

  21. Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020;21(5):268–83. https://doi.org/10.1038/s41580-020-0227-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lockhart C, Scott BR, Thoseby B, Dascombe BJ. Acute effects of interset rest duration on physiological and perceptual responses to resistance exercise in hypoxia. J Strength Cond Res. 2020;34(8):2241–9. https://doi.org/10.1519/JSC.0000000000002755.

    Article  PubMed  Google Scholar 

  23. Manimmanakorn A, Manimmanakorn N, Taylor R, Draper N, Billaut F, Shearman JP, Hamlin MJ. Effects of resistance training combined with vascular occlusion or hypoxia on neuromuscular function in athletes. Eur J Appl Physiol. 2013;113(7):1767–74. https://doi.org/10.1007/s00421-013-2605-z.

    Article  PubMed  Google Scholar 

  24. Martinez-Guardado I, Ramos-Campo DJ, Olcina GJ, Rubio-Arias JA, Chung LH, Marin-Cascales E, Alcaraz PE, Timon R. Effects of high-intensity resistance circuit-based training in hypoxia on body composition and strength performance. Eur J Sport Sci. 2019;19(7):941–51. https://doi.org/10.1080/17461391.2018.1564796.

    Article  PubMed  Google Scholar 

  25. Martinez-Guardado IM, Urena BS, Cardenosa AC, Cardenosa MC, Camacho GO, Andrada RT. Effects of strength training under hypoxic conditions on muscle performance, body composition and haematological variables. Biol Sport. 2020;37(2):121–9. https://doi.org/10.5114/biolsport.2020.93037.

    Article  Google Scholar 

  26. Mayo B, Miles C, Sims S, Driller M. The effect of resistance training in a hypoxic chamber on physical performance in elite rugby athletes. High Alt Med Biol. 2018;19(1):28–34. https://doi.org/10.1089/ham.2017.0099.

    Article  PubMed  Google Scholar 

  27. Millet GP, Faiss R, Pialoux V. Evidence for differences between hypobaric and normobaric hypoxia is conclusive. Exerc Sport Sci Rev. 2013;41(2):133. https://doi.org/10.1097/JES.0b013e318271a5e1.

    Article  PubMed  Google Scholar 

  28. Millet GP, Roels B, Schmitt L, Woorons X, Richalet JP. Combining hypoxic methods for peak performance. Sports Med. 2010;40(1):1–25. https://doi.org/10.2165/11317920-000000000-00000.

    Article  PubMed  Google Scholar 

  29. Namboonlue C, Hamlin MJ, Patpiya S, Manimmanakorn N, Wonnabussapawich P, Thuwakum W, Sumethanurakkhakun W, Manimmanakorn A. Optimal degree of hypoxia combined with low-load resistance training for muscle strength and thickness in athletes. J Phys Educ Sport. 2020;20(2):828–38. https://doi.org/10.7752/jpes.2020.02119.

    Article  Google Scholar 

  30. Nishimura A, Sugita M, Kato K, Fukuda A, Sudo A, Uchida A. Hypoxia increases muscle hypertrophy induced by resistance training. Int J Sports Physiol Perform. 2010;5(4):497–508. https://doi.org/10.1123/ijspp.5.4.497.

    Article  PubMed  Google Scholar 

  31. Patterson SD, Hughes L, Warmington S, Burr J, Scott BR, Owens J, Abe T, Nielsen JL, Libardi CA, Laurentino G, Neto GR, Brandner C, Martin-Hernandez J, Loenneke J. Blood flow restriction exercise: considerations of methodology, application, and safety. Front Physiol. 2019;10:533. https://doi.org/10.3389/fphys.2019.00533.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ramos-Campo DJ, Martinez-Guardado I, Olcina G, Marin-Pagan C, Martinez-Noguera FJ, Carlos-Vivas J, Alcaraz PE, Rubio JA. Effect of high-intensity resistance circuit-based training in hypoxia on aerobic performance and repeat sprint ability. Scand J Med Sci Sports. 2018;28(10):2135–43. https://doi.org/10.1111/sms.13223.

    Article  CAS  PubMed  Google Scholar 

  33. Richardson RS, Newcomer SC, Noyszewski EA. Skeletal muscle intracellular PO(2) assessed by myoglobin desaturation: response to graded exercise. J Appl Physiol. 2001;91(6):2679–85. https://doi.org/10.1152/jappl.2001.91.6.2679.

    Article  CAS  PubMed  Google Scholar 

  34. Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 2013;43(3):179–94. https://doi.org/10.1007/s40279-013-0017-1.

    Article  PubMed  Google Scholar 

  35. Schoenfeld BJ, Grgic J, Van Every DW, Plotkin DL. Loading recommendations for muscle strength, hypertrophy, and local endurance: a re-examination of the repetition continuum. Sports. 2021;9(2):32. https://doi.org/10.3390/sports9020032.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Scott BR, Loenneke JP, Slattery KM, Dascombe BJ. Blood flow restricted exercise for athletes: a review of available evidence. J Sci Med Sport. 2016;19(5):360–7. https://doi.org/10.1016/j.jsams.2015.04.014.

    Article  PubMed  Google Scholar 

  37. Scott BR, Slattery KM, Dascombe BJ. Intermittent hypoxic resistance training: does it provide added benefit? Front Physiol. 2014;5:397. https://doi.org/10.3389/fphys.2014.00397.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Scott BR, Slattery KM, Dascombe BJ. Intermittent hypoxic resistance training: is metabolic stress the key moderator? Med Hypotheses. 2015;84(2):145–9. https://doi.org/10.1016/j.mehy.2014.12.001.

    Article  CAS  PubMed  Google Scholar 

  39. Scott BR, Slattery KM, Sculley DV, Hodson JA, Dascombe BJ. Physical performance during high-intensity resistance exercise in normoxic and hypoxic conditions. J Strength Cond Res. 2015;29(3):807–15. https://doi.org/10.1519/JSC.0000000000000680.

    Article  PubMed  Google Scholar 

  40. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–32. https://doi.org/10.1038/nrc1187.

    Article  CAS  PubMed  Google Scholar 

  41. Soo J, Girard O, Ihsan M, Fairchild T. The use of the SpO2 to FiO2 ratio to individualize the hypoxic dose in sport science, exercise, and health settings. Front Physiol. 2020;11: 570472. https://doi.org/10.3389/fphys.2020.570472.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Törpel A, Peter B, Schega L. Effect of resistance training under normobaric hypoxia on physical performance, hematological parameters, and body composition in young and older people. Front Physiol. 2020;11:335. https://doi.org/10.3389/fphys.2020.00335.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Vincent KR, Vincent HK, Seto CK. Basic principles of exercise training and conditioning. Philadelphia (PA): Wolters Kluwer; 2013. pp. 60–62.

  44. Wilber RL, Stray-Gundersen J, Levine BD. Effect of hypoxic “dose” on physiological responses and sea-level performance. Med Sci Sports Exerc. 2007;39(9):1590–9. https://doi.org/10.1249/mss.0b013e3180de49bd.

    Article  PubMed  Google Scholar 

  45. Yan B, Lai X, Yi L, Wang Y, Hu Y. Effects of five-week resistance training in hypoxia on hormones and muscle strength. J Strength Cond Res. 2016;30(1):184–93. https://doi.org/10.1519/JSC.0000000000001056.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was partially funded by a Grant (J.0048.21) from the Fonds National de la Recherche Scientifique (Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise Deldicque.

Ethics declarations

Conflict of interest

The author(s) declared no potential conficts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deldicque, L. Does Normobaric Hypoxic Resistance Training Confer Benefit over Normoxic Training in Athletes? A Narrative Review. J. of SCI. IN SPORT AND EXERCISE 4, 306–314 (2022). https://doi.org/10.1007/s42978-021-00159-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42978-021-00159-5

Keywords

Navigation