Skip to main content

Advertisement

Log in

Finite Element Analysis of Femoral Strains in Older Adults During Stair Ascent and Descent

  • Original Article
  • Published:
Journal of Science in Sport and Exercise Aims and scope Submit manuscript

Abstract

Purpose

Understanding the femur load environment during daily activity is necessary for the understanding of risk of femoral pain, pain related falls, and femoral fractures, which could help the design of osteogenic exercises or the preventative methods for older adults.

Methods

Using the finite element femur analysis, this study was to estimate the femoral strains at 9 cross-sections along the long axis of femur for stair ascent and descent (n = 17; age: 50–65 years). Motion analysis and inverse dynamics were combined with musculoskeletal modelling and optimization, then were used as input to a 3-D femur model to estimate femoral strains. Strains at the hip contact force peaks were calculated.

Results

The compressive and tensile strains during stair descent were greater than ascent for all or most cross-sections, especially for the proximal cross-sections of the femur: stair ascent produced − 324.0 ± 103.8 to − 483.7 ± 191.0 µε compressive strains and descent produced − 608.8 ± 288.4 to 1016.0 ± 444.1 µε; stair ascent produced 336.2 ± 105.4 to 391.8 ± 136.9 µε tensile strains and descent produced 546.9 ± 252.8 to 741.7 ± 333.6 µε.

Conclusion

Strains represent the material deformation effect on the bone due to the sum of all the bone external loads. Using bone strains could help future studies analyze load conditions in a more comprehensive way for other physical activities, which predicts the risk of stress fractures and tests if alternative methods (gait type change) could reduce stress and strain effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Aamodt A, Lund-Larsen J, Eine J, Benum P, Husby OS. In vivo measurements show tensile axial strain in the proximal lateral aspect of the human femur. J Orthop Res. 1997;15(6):927–31.

    Article  CAS  PubMed  Google Scholar 

  2. Adler R. Bisphosphonates and atypical femoral fractures. Curr Opin Endocrinol Diabetes Obes. 2016;23(6):430–4.

    Article  CAS  PubMed  Google Scholar 

  3. Anderson DE, Madigan ML. Effects of age-related differences in femoral loading and bone mineral density on strains in the proximal femur during controlled walking. J Appl Biomech. 2013;29:505–16.

    Article  PubMed  Google Scholar 

  4. Arnold EM, Ward SR, Lieber RL, Delp SL. A model of the lower limb for analysis of human movement. Ann Biomed Eng. 2010;38(2):269–79.

    Article  PubMed  Google Scholar 

  5. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN. Hip contact forces and gait patterns from routine activities. J Biomech. 2001;34:859–71.

    Article  CAS  PubMed  Google Scholar 

  6. Blanchard R, Dejaco A, Bongaers E, Hellmich C. Intravoxel bone micromechanics for microCT-based finite element simulations. J Biomech. 2013;46(15):2710–21.

    Article  PubMed  Google Scholar 

  7. Burstein AH, Reilly DT, Martens M. Aging of bone tissue: mechanical properties. J Bone Jt Surg. 1976;58(1):82–6.

    Article  CAS  Google Scholar 

  8. Chang MW, Liu HT, Huang CY, Chien P-C, Hsieh H-Y, Hsieh C-H. Location of femoral fractures in patients with different weight classes in fall and motorcycle accidents: a retrospective cross-sectional analysis. Int J Environ Res Public Health. 2018;15(6):1082–90.

    Article  PubMed Central  Google Scholar 

  9. Cristofolini L. Influence of thigh muscles on the axial strains in a proximal femur during early stance in gait. J Biomech. 1995;28(5):617.

    Article  CAS  PubMed  Google Scholar 

  10. Deng C, Gillette JC, Derrick TR. Femoral neck stress in older adults during stair ascent and descent. J Appl Biomech. 2018;34(3):191–8.

    Article  PubMed  Google Scholar 

  11. Duda GN, Heller M, Albinger J, Schulz O, Schneider E, Claes L. Influence of muscle forces on femoral strain distribution. J Biomech. 1998;31(9):841–6.

    Article  CAS  PubMed  Google Scholar 

  12. Dunlop DG, Brenkel IJ. The supracondylar intramedullary nail in elderly patients with distal femoral fractures. Injury. 1999;30(7):475–84.

    Article  CAS  PubMed  Google Scholar 

  13. Edwards B, Miller R, Derrick T. Femoral strain during walking predicted with muscle forces from static and dynamic optimization. J Biomech. 2016;49(7):1206–13.

    Article  PubMed  Google Scholar 

  14. Edwards B, Schnitzer J, Troy L. Bone mineral loss at the proximal femur in acute spinal cord injury. Osteoporos Int. 2013;24(9):2461–9.

    Article  CAS  PubMed  Google Scholar 

  15. Edwards B, Schnitzer J, Troy L. Torsional stiffness and strength of the proximal tibia are better predicted by finite element models than DXA or QCT. J Biomech. 2013;46(10):1655–62.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Glitsch U, Baumann W. The three-dimensional determination of internal loads in the lower extremity. J Biomech. 1997;30(11–12):1123–31.

    Article  CAS  PubMed  Google Scholar 

  17. Haider IT, Schneider P, Michalski A. Influence of geometry on proximal femoral shaft strains: implications for atypical femoral fracture. Bone. 2018;110:295–303.

    Article  PubMed  Google Scholar 

  18. Hall M, Stevermer CA, Gillette JC. Muscle activity amplitudes and co-contraction during stair ambulation following anterior cruciate ligament reconstruction. J Electromyogr Kinesiol. 2015;25(2):298–304.

    Article  PubMed  Google Scholar 

  19. Hong YNG, Shin CS. Gender differences of sagittal knee and ankle biomechanics during stair to ground descent transition. Clin Biomech. 2015;30(10):1210–7.

    Article  Google Scholar 

  20. Jacobs JV. A review of stairway falls and stair negotiation: lessons learned and future needs to reduce injury. Gait Posture. 2016;49:159–67.

    Article  PubMed  Google Scholar 

  21. Kersh ME, Martelli S, Zebaze R, Seeman E, Pandy MG. Mechanical loading of the femoral neck in human locomotion. J Bone Miner Res. 2018;33(11):1999–2006.

    Article  PubMed  Google Scholar 

  22. Keyak JH, Skinner H, Fleming J. Effect of force direction on femoral fracture load for two types of loading conditions. J Orthop Res. 2001;19(4):539–44.

    Article  CAS  PubMed  Google Scholar 

  23. Khow KSF, Paterson F, Shibu P. Outcomes between older adults with atypical and typical femoral fractures are comparable. Injury. 2017;48(2):394–8.

    Article  PubMed  Google Scholar 

  24. Lawson E, Madougou S, Chigblo P. Ipsilateral proximal and shaft femoral fractures. Chin J Traumatol. 2017;20(3):155–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Malandrino A, Fritsch A, Lahayne O, Kropik K, Redl H, Noailly J, Lacroix D, Hellmich C. Anisotropic tissue elasticity in human lumbar vertebra, by means of a coupled ultrasound-micromechanics approach. Mater Lett. 2012;78:154–8.

    Article  CAS  Google Scholar 

  26. Maravic M, Ostertag A, Cohen-Solal M. Subtrochanteric/femoral shaft versus hip fractures: incidences and identification of risk factors. J Bone Miner Res. 2012;27:130–7.

    Article  PubMed  Google Scholar 

  27. Martelli S, Pivonka P, Ebeling PR. Femoral shaft strains during daily activities: implications for atypical femoral fractures. Clin Biomech. 2014;29(8):869–76.

    Article  Google Scholar 

  28. McMahon T. Size and shape in biology. Science. 1973;179:1201–4.

    Article  CAS  PubMed  Google Scholar 

  29. Melton LJ, Crowson CS, O’Fallon WM. Fracture incidence in Olmsted County, Minnesota: comparison of urban with rural rates and changes in urban rates over time. Osteoporos Int. 1999;9(1):29–37.

    Article  PubMed  Google Scholar 

  30. Miura T, Kijima H, Ishikawa N, Ebina T, Tani T, Chida S, Suzuki T, Yumto S, Tazawa H, Miyakoshi N, Shimada Y. Comparison of atypical and osteoporotic femoral shaft fractures in the elderly: a multicenter study. Adv Orthop. 2018;2018:1–5.

    Article  Google Scholar 

  31. Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone modulus-density relationships depend on anatomic site. J Biomech. 2003;36(7):897–904.

    Article  PubMed  Google Scholar 

  32. Munih M, Kralj A, Bajd T. Bending moments in lower extremity bones for two standing postures. J Biomed Eng. 1992;14(4):293–302.

    Article  CAS  PubMed  Google Scholar 

  33. Nieves JW, Bilezikian JP, Lane JM, Einhorn TA, Wang Y, Steinbuch M, Cosman F. Fragility fractures of the hip and femur: incidence and patient characteristics. Osteoporos Int. 2010;21(3):399–408.

    Article  CAS  PubMed  Google Scholar 

  34. Polgar K, Gill HS, Viceconti M, Murray DW, O'Connor JJ. Strain distribution within the human femur due to physiological and simplified loading: finite element analysis using the muscle standardized femur model. Proc Inst Mech Eng C J Eng Med. 2003;217(3):173–89.

    Article  CAS  Google Scholar 

  35. Rowbotham SK, Blau S, Hislop-Jambrich J, Francis V. Fatal falls involving stairs: an anthropological analysis of skeletal trauma. Forensic Sci Med Pathol. 2018;14(2):152–62.

    Article  PubMed  Google Scholar 

  36. Schileo E, Taddei F, Malandrino A, Cristofolini L, Viceconti M. Subject-specific finite element models can accurately predict strain levels in long bones. J Biomech. 2007;40(13):2982–9.

    Article  PubMed  Google Scholar 

  37. Sivananthan S, Sherry E. Mercer's textbook of orthopaedics and trauma. 10th ed. New York City: Oxford Univ Press; 2012.

    Book  Google Scholar 

  38. Smektala R, Endres HG, Dasch B, Maier C, Trampisch HJ, Bonnaire F, Pientka L. The effect of time-to-surgery on outcome in elderly patients with proximal femoral fractures. BMC Musculoskelet Disord. 2008;9(1):171.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Speirs AD, Heller MO, Duda GN, Taylor WR. Physiologically based boundary conditions in finite element modelling. J Biomech. 2007;40(10):2318–23.

    Article  PubMed  Google Scholar 

  40. Streubel PN, Ricci WM, Wong A, Gardner MJ. Mortality after distal femur fractures in elderly patients. Clin Orthop Relat Res. 2011;469(10):1188.

    Article  PubMed  Google Scholar 

  41. Taylor ME, Tanner KE, Freeman MA, Yettram AL. Stress and strain distribution within the intact femur: compression or bending? Med Eng Phys. 1996;18(2):122–31.

    Article  CAS  PubMed  Google Scholar 

  42. Van Sint JS. The VAKHUM project: virtual animation of the kinematics of the human. Theor Issues Ergon Sci. 2005;6(3–4):277–9.

    Google Scholar 

  43. Vaughan C, Davis B, O’Connor J. Dynamics of human gait. Champaign: Human Kinetics; 1992.

    Google Scholar 

  44. Viceconti M, Taddei F, Cristofolini L, Martelli S, Falcinelli C, Schileo E. Are spontaneous fractures possible? An example of clinical application for personalised, multiscale neuro-musculo-skeletal modelling. J Biomech. 2012;45(3):421–6.

    Article  PubMed  Google Scholar 

  45. Yu B, Gabriel D, Noble L, An KN. Estimate of the optimum cutoff frequency for the Butterworth low-pass digital filter. J Appl Biomech. 1999;15(3):318–29.

    Article  Google Scholar 

Download references

Funding

The Funding was provided by Chinese Universities Scientific Fund (Grant No. 2020063).

Author information

Authors and Affiliations

Authors

Contributions

Three authors were involved with the study and the preparation of the manuscripts: Chen Deng  was fully involved in research design, data collection/analysis, manuscript writing and reviewing; Jason Gillette  was involved in research design and manuscript reviewing/editing; Timothy Derrick  was involved in research design, data collection and manuscript reviewing/editing. All authors have read and concurred with the content in the final manuscript and agreed to submit this manuscript to Journal of Science in Sport and Exercise. The material within the manuscript has not been and will not be submitted for publication elsewhere except as an abstract.

Corresponding author

Correspondence to Chen Deng.

Ethics declarations

Conflict of interest

Author Timothy Derrick was not involved in the journal’s review of, or decisions related to, this manuscript.

Ethics approval

ISU IRB # 17-296; approved by Iowa State University Human Subjects Review Board.

Consent to participate

All participants signed written informed consent that had been approved by the Iowa State University Human Subjects Review Board.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, C., Gillette, J.C. & Derrick, T.R. Finite Element Analysis of Femoral Strains in Older Adults During Stair Ascent and Descent. J. of SCI. IN SPORT AND EXERCISE 4, 168–179 (2022). https://doi.org/10.1007/s42978-021-00141-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42978-021-00141-1

Keywords

Navigation