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Abstract
Biodiversity is being lost at an unprecedented rate on Earth. As a first step to more effectively combat this process we need 
efficient methods to monitor biodiversity changes. Recent technological advance can provide powerful tools (e.g. camera 
traps, digital acoustic recorders, satellite imagery, social media records) that can speed up the collection of biological data. 
Nevertheless, the processing steps of the raw data served by these tools are still painstakingly slow. A new computer tech-
nology, deep learning based artificial intelligence, might, however, help. In this short and subjective review I oversee recent 
technological advances used in conservation biology, highlight problems of processing their data, shortly describe deep 
learning technology and show case studies of its use in conservation biology. Some of the limitations of the technology are 
also highlighted.
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Introduction

It is widely accepted that Earth entered a new geological 
epoch, the Anthropocene (Lewis and Maslin 2015). This 
era started as the “great acceleration”—an unprecedented 
increase of human influence on the environment (Steffen 
et al. 2015). One part of this new extreme dynamism is that 
more and more natural habitats are converted to agricul-
tural land and cities because of the continuously growing 
human population. Another consequences is the global dis-
tribution network driven by human commerce; the level of 
connectedness turned the planet into a “small world” (John-
son et al. 2017), with the subsequent increases in biological 
invasions (Chapman et al. 2017). Biological invasion is also 
driven by another human-triggered effect, the dynamically 
changing climatic conditions that endanger the existence of 
the current local biota and create footholds for new, poten-
tially invasive organisms. And last but not least, the above 
processes (change of land use, connectedness and climatic 
changes) also make existing habitats become fragmented 

(Fahrig 2003). As a result of these changes natural habitats 
on Earth are seriously endangered, biodiversity decreases 
at an unparalleled rate (Lewis and Maslin 2015; Hallmann 
et al. 2017) possibly turning into the sixth mass extinction 
(Turvey and Crees 2019). If we are to reverse these adverse 
processes, or at least dampen them, we have to act now.

One of the factors hampering our ability to fight against 
these devastating processes is the lack of up-to-date infor-
mation about biodiversity at a large spatial scale (Tuia et al. 
2022). Traditional ecological surveys can provide us with 
rather accurate information on the state of biota, but these 
studies usually concentrate on relatively small areas and they 
are very labour intensive, demanding a considerable work-
force of highly trained individuals (taxonomists, ecologists). 
Consequently, they are considered as unsuitable to provide 
frequent, large scale updates on biodiversity. To cope with 
these limitations, biodiversity researchers have turned 
towards new technological advances (van Klink et al. 2022).

Emerging technologies in biodiversity research

Camera traps are remotely operated devices equipped with 
motion detectors. This setup allows to automatically trigger 
the camera and take photos or videos when something has 
moved in the vicinity of the device. Digitalisation has sig-
nificantly contributed to the widespread use of camera traps 
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by simplifying the camera structure itself (e.g. fewer moving 
parts) as well as the management of images (more efficient 
storage on the device, no film processing). Hence the camera 
trap became an effective tool for wildlife observation allow-
ing non-invasive monitoring even at remote places. They are 
mainly used to monitor large bodied mammals, wildlife and 
their predators. Nowadays, millions of pictures and videos 
are taken by camera traps every day all over the world from 
polar areas to the Equator.

Animals cannot only be seen but can also be heard as 
they actively produce sound when they communicate or hunt 
(echolocation). Consequently, sound recordings can also be 
used to survey animal populations. The appearance of cheap, 
digital sound recording systems make this approach (passive 
sound monitoring, PAM) even more feasible than camera 
traps. These devices are small with long battery lives and 
hence allow convenient recording of animal sounds even in 
remote locations. Their programmable interface allows to set 
either continuous or periodic (e.g. for one minute in every 
15 min) recording of environmental sounds. PAM is, at the 
first sight, comparable to camera traps as both are based on 
autonomously operated remote devices. As a data collecting 
method, PAM can, however, have several advantages over 
camera traps, including longer detection distance, fully cir-
cular detection angle and a more diverse set of target species, 
including birds, bats, amphibians or insects.

Aerial photography has been used for decades to survey 
wildlife in open habitats, like African savannas or Eurasian 
steppes. In the early days of these surveys, manned aero-
planes were used incurring substantial cost in resources and 
sometimes human lives (Tuia et al. 2022). The appearance 
of commercially available drones (unmanned aerial vehi-
cles) changed the situation considerably. These drones are 
cheaper than manned aeroplanes both in terms of acquisition 
and operation and equipped with high resolution camera(s). 
These characteristics make them well suited for frequent 
small scale aerial surveys. Their high resolution cameras 
can be used for monitoring animal populations or mapping 
invasive plant species (e.g. Papp et al. 2021).

Regular spaceborne Earth observation started in the 
early 70s by the launch of the Landsat-1 satellite. After-
wards more and more satellites joined the network providing 
more and more detailed images. A significant step forward 
was achieved when many satellite images become openly 
available (Crowley and Cardille 2020). Satellite remote 
sensing has several advantages even over in situ observa-
tions (Kissling et al. 2018). They provide a reliable and 
consistent periodic sampling at a large (global) scale. They 
are not affected by wind conditions which might be a seri-
ous problems for alternative remote sensing methods, such 
as unmanned aircraft (Müllerová et al. 2017). Moreover, 
sampling is not limited by national borders or other politi-
cal barriers (Kissling et al. 2018). They have a rather fine 

spatial resolution (10–60 m, Crowley and Cardille 2020) 
useful if one considers the mapping of habitat patches or 
ecosystem structures. Furthermore, this resolution allows 
an efficient integration of the dense information obtainable 
by multispectral recording (Ball et al. 2017; Young et al. 
2017). Remote sensing data are successfully used in land-
scape ecology (for a recent review, see Crowley and Cardille 
2020), surveying biodiversity (e.g. Madonsela et al. 2017) or 
analysing ecosystem time series (e.g. Wang and Zhao 2019).

Citizen science, the participation of volunteers in scien-
tific projects has a long history; a famous example is the 
unpaid naturalist on HMS Beagle, Charles Darwin (Silver-
town 2009). The recent technological advances, like the 
spread of smart phones and purposeful mobile applica-
tions make the involvement of volunteers even easier and 
more valuable. Platforms, like iNaturalist.org, eBird.org or 
izeltlabuak.hu led to huge collections of documented (pho-
tographed) and georeferenced occurrence data (Van Horn 
et al. 2018; La Sorte and Somveille 2020). As a result of the 
Open Science Movement (e.g. Powers and Hampton 2019), 
even more, well curated, open datasets have become avail-
able (Kissling et al. 2018). These datasets, by utilising the 
advanced Web 2.0 technology, are collected and organised in 
internet-accessible data repositories, like the Global Biodi-
versity Information Facility (https://​www.​gbif.​org, Edwards 
2004) or the OpenBioMaps (https://​openb​iomaps.​org, Bán 
et al. 2022). As a result, the amount of georeferenced pub-
licly available location data have skyrocketed. For instance, 
gbif.org hosts more than 1.5 billion(!) occurrence records in 
more than 56,000 datasets. The Hungarian initiative, Open-
BioMaps brings data transparency closer to the user and 
provides a number of opportunities for interaction between 
researchers and practical conservationists.

Humanity has entered the Zettabyte Era around mid 
2010s when the amount of data produced and processed 
exceeded one zettabyte (1021 bytes) per year (Bottles, Begoli, 
and Worley 2014). Since then the amount of data has been 
exponentially increasing due to the wide spread use of smart 
image-registering tools, ranging from smartphones to digital 
cameras. These devices produce an incredible number of 
pictures and videos, a large part of which is accessible to the 
wider public through content providers (e.g. blogs), photo 
repositories (e.g. Flicker), video streamers (e.g. Youtube) 
and social media (e.g. Facebook or Instragram). Importantly, 
many of these images contain relevant metadata, like the 
time and location of their production. A large proportion 
of these recording were made in nature creating a treasure 
houses for biodiversity research. The newly emerged scien-
tific field of iEcology (internet ecology) studies ecological 
processes using such Internet-based data sources (Jarić et al. 
2020a, b). iEcology studies range from mapping species dis-
tributions, through establishing interactions between popu-
lations to explore behavioural repertoires. Another, related 
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field of science, conservation culturomics investigates the 
relation between humans and nature using internet data, 
mainly concentrating on social media (Jarić et al. 2020a, b).

Problems with new technologies

 A common feature of the above new technologies penetrat-
ing ecology and biodiversity research is that they generate 
an incredible amount of data in a short time. This, on the 
one hand, is a very useful attributes as it allows large scale 
survey of biodiversity. On the other hand, handling huge 
piles of data is not trivial. Fortunately, current computer 
science is well prepared to manage large amount of data and 
the developed “big data” algorithms can help the handling of 
data produced by technologies mentioned above.

Second, most of the data primarily produced by these 
emerging technologies have to be processed before they can 
be used for inference. Camera traps usually produce many 
empty recordings because they were triggered by irrelevant 
environmental movements like wind. These recordings must 
be filtered out before any inference. Furthermore, animals 
must be identified in the remaining recordings.

Processing drone videos suffers from similar inconven-
ience; the large area surveyed makes it difficult to spot, 
identify and count objects (usually animals) of interest. The 
analysis of satellite imageries is a two-fold challenge. In 
many times it is not entirely clear what kind of information 
should be extracted from the images and then how to obtain 
the relevant information.

The data produced by PAM devices are also difficult to 
analyse. First, sound recordings are usually not triggered by 
environmental events, but devices operate either continu-
ously or on a preset schedule; both produce a large volume 
of data. Second, sound identification is more difficult than 
the identification of those couple of large bodied mam-
mals which can usually be found on camera trap record-
ings. Therefore, analysis and sample labelling require highly 
trained experts. Finally, environmental noise (like wind or 
heavy rain) is a bigger problem for PAM.

Analysing social media posts is also problematic because 
of their sheer volume and semantics. Currently, these pre-
processing steps are mainly being done by humans; armies 
of well trained and enthusiastic students, researchers and 
citizen scientists spend long hours to classify camera trap 
images, recognise calls, extract features from satellite images 
or interpret tweets. This high demand for human work limits 
the wide applicability of these emerging technologies (Tuia 
et al. 2022).

The third problem with emerging technologies is infer-
ence. Data collected in this way are usually unsuitable for 
analysing by traditional statistical methods. For instance, 
the analysis of camera trap data is not trivial because it is 
unclear how these data fulfil the assumptions of current 

population biology methods. Another main difficulty is 
data dimensionality as several of these methods (e.g. sat-
ellite imageries, social media) can deliver many variables 
simultaneously.

As we have seen above, these promising, new biodiver-
sity data collection methods still cannot deliver their full 
potential because of the difficulties mainly appearing during 
the pre-processing of these data. Fortunately, another newly 
emerging technology, deep learning, may show a way out.

Deep learning

The invention of the term “artificial intelligence” (AI) in 
1956 marked the birth of a new academic field which aimed 
to create machines able to automate intellectual tasks (Roitb-
lat 2020). The history of AI can be divided into three phases. 
In the first phase, AI was approached by formal manipulation 
of symbols—symbolic AI. These efforts culminated in the 
development of expert systems aiding, for instance, medi-
cal diagnoses. During the second phase machine learning 
became the determinative paradigm in AI research. Machine 
learning is related to mathematical statistics and it is based 
on the idea that instead of hard coding rules in computers 
(as symbolic AI did) one should develop algorithms which 
themselves are able to discover rules in the data. The third 
phase of AI is the development of deep learning. Interest-
ingly, these three phases were separated by two long peri-
ods—the AI winters—when interest in and funding for AI 
diminished (Roitblat 2020).

Deep learning algorithms are the extensions of “classi-
cal” artificial neural networks (ANN, Chollet 2021). These 
networks are built of interconnected artificial neurons or 
nodes. A node summarises several input values into an out-
put value which can then be the input value of other nodes. 
Nodes are organised into layers where the first layer, layer 1, 
supplies the original input values, while the last one, layer 
N, represents the final output, the prediction. Intermediate 
layers are called hidden layers. Nodes in layer i receive their 
inputs from layer i − 1 and send their outputs to nodes in 
layer i + 1. Nodes in the same layer do not usually com-
municate with each other. The strength of the connections 
(i.e. how strongly a node influences the state of the other, 
connected node) is controlled by their weights, high weight 
means strong influence while low ones implicate weak ones 
(Goodfellow, Bengio, and Courville 2016). Weights are rep-
resented within the algorithms as tables of numerical val-
ues (matrices). The training of a network basically means 
to find the combination of weights which maps the original 
input to the final output. During training the hidden layers 
“learn” a representation of the data supplied by previous 
layers. Training consists of iterations of alternated forward 
and backward passes (Chollet 2021). In the forward pass the 
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network calculates the final representation of the input, the 
prediction, and calculate the difference between the predic-
tion and the true value. In the backward pass the weights 
are adjusted to decrease the difference between the predic-
tion and the true value. After training, the network’s weights 
represent what the network had learned from the data. We 
call a network deep if the number of hidden layers are large, 
usually more than ten. Another characteristic showing the 
size of the network is the number of trainable parameters. 
Advanced deep learning applications have millions or even 
billions of parameters (e.g. ChatGTP, currently considered 
as the most advanced language model, has more than seven 
billions parameters).

Layers form the building blocks of neural network archi-
tectures (Chollet 2021). Different network architectures are 
suitable for different tasks. Linearly arranged layers are 
amongst the simplest architectures (deep neural net, DNN) 
where a node of a given layer is connected to every node 
of the previous layer. Networks like this perform well in 
analysing numerical (tabular) data. A frequently used net-
work architecture is convolutional neural network (CNN) 
which excels in computer vision tasks. In CNNs nodes in 
the convolutional layers are connected only to a subset of 
nodes in the previous layer. A node’s subset corresponds to a 
geometrically well-defined region of the input layer, usually 
an image. These subsets can overlap each other but cover 
all of the input layer. In this way CNNs somehow imitate 
the work of vertebrate visual systems (LeCun et al. 2015). 
Another interesting ANN architecture is recurrent neural 
network (RNN, Chollet 2021). Neither DNNs, nor CNNs 
have memory, they view each input sample independently 
to others. Nevertheless, many natural (and human) data have 
an autocorrelated structure. These include speech, songs and 
any time series data in general. In these data the current sam-
ple is not independent from previous samples—what word 
comes in a sentence is largely influenced by what was spo-
ken before. More generally, the current state of the system is 
predetermined by its previous state(s), a very valuable obser-
vation which are not utilised by DNNs or CNNs because of 
their lack of memory. To remedy this deficiency RNNs were 
invented. In this architecture the output of one sample is fed 
back to the network to modify its internal state, which, in 
turn, used to process the next sample. RNNs were promis-
ing candidates for successful natural language models, but it 
soon turned out that (i) they had short memories and hence 
were unable to process long texts and (ii) their architecture 
prevented efficient parallelisation of computations. To over-
come these problems a new deep learning architecture was 
invented, the Transformer (Vaswani et al. 2017). Instead of 
sequentially processing sequences, the Transformer pro-
cesses elements of the input sequences in parallel but “pays 
attention” to other input elements simultaneously. This “self-
attention” conserves sequential information but allows heavy 

parallelisation resulting in massive improvement in training 
speed and the amount of text processed.

Currently, deep learning is mainly used for visual tasks, 
like object identification in images or face recognition 
(mainly CNNs) and for natural language processing, like in 
digital assistances (Apple’s Siri, Amazons’ Alexa or Google 
Assistant) and chatbots (OpenAI’s ChatGTP, Google’s 
BERT).

Developing deep learning models is surprisingly demo-
cratic in the sense that anyone with moderately advanced 
computer literacy can have access to cutting edge deep learn-
ing technology (Chollet 2021). Two main factors have con-
tributed to the widespread possibility to use deep learning. 
One is the availability of non-expensive hardware: current 
commercial video cards which are very efficient at paral-
lel matrix multiplications—the essence of deep learning 
algorithms—have computing power comparable to that of 
the supercomputers of the 1990s (Chollet 2021). The other 
factor is the availability of open source and hence free devel-
opment platforms. Two main open-source frameworks dom-
inate the field: PyTorch (https://​pytor​ch.​org, Paszke et al. 
2017) and TensorFlow (https://​www.​tenso​rflow.​org, Abadi 
et al. 2016). As a consequence, huge number of projects 
deploying deep learning in different areas are initiated. 
Github (a popular code sharing repository, https://​github.​
com), for instance (as of 16 February 2023), houses more 
than  100,000 PyTorch and more than 130,000 TensorFlow 
based projects, and many of them are related to nature 
conservation.

Applications of deep learning 
in conservation

Probably, one of the most important contributions of deep 
learning to nature conservation is providing tools for highly 
effective image processing.

Satellite imageries can allow efficient large scale surveys 
of huge areas especially if their effective handling is solved. 
At the moment, CNNs are the main workhorses for satellite 
imagery processing. Their success seems to crucially depend 
on their ability to consider high level spatial features (Rezaee 
et al. 2018).

A major threat for global biodiversity is the accelerated 
deforestation in the Amazonian Basin where the Earth’s 
largest and most diverse tropical forest can be found. To 
readily protect this vast area, conservation agencies need 
an accurate picture about forest loss and, more impor-
tantly, a precise forecast of possible clearance in the near 
future which knowledge might then be used to design pre-
ventive actions, e.g. by anticipatory protection of identi-
fied endangered areas. Ball et al. (2021) developed a CNN 
based algorithm which was able to learn from short time 
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series formed from freely available databases and satel-
lite imageries to predict possible locations of deforestation 
a year ahead with rather high accuracy. High resolution 
satellite images can even be used to identify large bod-
ied mammals in open areas. A CNN counted elephants in 
heterogeneous landscapes with an accuracy comparable 
to humans’ (Duporge et al. 2021) for a fraction of human 
effort. A novel and innovative application of CNNs is to 
survey genetic diversity by using high resolution satellite 
images. Kittlein et al. (2022) mapped microsatellite geno-
types of a South American rodent, Ctenomys australis, 
living underground. Subsequently, they trained a CNN on 
high resolution satellite imagery to predict this genetic 
diversity. Currently, a variety of tools are developed to 
facilitate efficient satellite image processing like land use 
classification or object detection. For a comprehensive list 
of these projects see, for instance, Cole (2023).

The quick spreading of camera traps also provides a del-
uge of pictures to process (Tuia et al. 2022). CNNs were 
applied early to these data (Norouzzadeh et al. 2018) and 
nowadays several applications and ready-to-use pipelines 
help their processing. The web based service, WildlifeIn-
sights (https://​wildl​ifein​sights.​org), provides a centralised 
platform where camera trap photos can be uploaded and 
analysed by state-of-the-art computer vision technologies 
(based on TensorFlow). The processed images and data are 
openly shared amongst members of the WildlifeInsights 
community. Another, decentralised approach is provided 
by the MegaDetector pipeline (Beery, Morris, and Yang 
2019). This project consists of several tools for camera trap 
image processing, and each of them can be installed and 
operated locally. Amongst the tools is a pretrained CNN—
also called MegaDetector—capable to recognise objects of 
interest like animals, humans and vehicles against a wide 
variety of different backgrounds (i.e. in pictures taken at dif-
ferent locations/environments). This pretrained CNN is not 
able to determine the species identity, but it still can save a 
lot of time and human effort by identifying and eliminating 
empty images—about 70% of camera trap pictures are usu-
ally empty (Beery, Morris, and Yang 2019). Furthermore, 
after reducing the image pool to pictures of interest, the 
training for species identification becomes more effective 
(Beery, Morris, and Yang 2019). Current CNN technology 
is able to achieve more than 90% of human accuracy of spe-
cies identification in camera trap images if many labelled 
images (images with animals already identified by humans) 
are available for training (Norouzzadeh et al. 2018).

Somehow surprisingly, PAM data are usually analysed 
as pictures, i.e. the sound recordings are converted to spec-
trograms, a visual representation of sound, and then the 
standard computer vision toolset (like CNNs) is used to 
identify them (Sugai et al. 2019). New developments, based 
on the Transformer architecture, however, try to exploit the 

inherent time series structure of sound to improve accuracy 
(Stowell 2021).

Citizen scientists can substantially contribute to nature 
conservation efforts by providing a huge amount of observa-
tions on the occurrence of many species, from mushrooms 
through plants and butterflies to birds. The quality of these 
observations was, however, a concern for professional 
ecologists and conservation scientists (Brown and Williams 
2019). This situation has considerably improved when citi-
zen science projects started to request digital photographs 
to be submitted along the observations because this made 
verification possible (Wäldchen and Mäder 2018). This 
modification is also resulted in the building up of massive 
databases of labelled images, that can be used to train deep 
learning (usually CNN) algorithms (Van Horn et al. 2018; 
Wäldchen and Mäder 2018). Based on these treasure chests, 
citizen science projects can offer automated species identi-
fication services. One of the most popular of these services 
is iNaturalist (https://​www.​inatu​ralist.​org) with more than 
5 millions records. The iNaturalist dataset (Van Horn et al. 
2018) clearly illustrates the difficulties that the training of 
deep learning algorithms faces: the images are of varying 
quality and the dataset contains a few species with many 
images and many species with only a few pictures. Despite 
of these obstacles the species identification algorithm of 
iNaturalist achives > 80% accuracy at the genus level iden-
tification and close to 80% at the species level (Wäldchen 
and Mäder 2018). Merlin Photo-ID (https://​merlin.​allab​outbi​
rds.​org/​photo-​id/) is another popular tool to identify birds. It 
is based on the huge image database collected and labelled 
by the citizen scientist community behind eBird (https://​
ebird.​org). The tools available to citizen scientists are not 
restricted to pictures. The highly successful Merlin Sound 
ID smartphone application performs exceptionally well for 
bird songs (https://​merlin.​allab​outbi​rds.​org/​sound-​id/). As 
a result of high accuracy of species identification offered 
by deep learning algorithms citizen science occurrence data 
become comparable to experts’ data (e.g. Mahecha et al. 
2021). Studies also indicate that even custom built CNNs are 
capable for reliable species identification in specific areas. 
For instance, Łysko et al. (2022) developed a CNN based 
algorithm to identify Elatine plants (a small genus consist-
ing of difficult-to-identify, ephemeral aquatic species). Their 
method, based on photographs of Elatine seeds consistently 
outperformed traditional machine learning methods.

Digital images of animals, however, cannot only be 
used for species identification alone, but—especially in the 
case of animals with variable patterns on their integument 
(e.g. skin, plumage or fur)—also to recognise individuals 
(Vidal et al. 2021). Individual identification is crucial for 
many ecological analyses. For instance, it makes possible 
to estimate survival rates, home ranges and migration rates, 
and to map movement patterns and social interactions. 

https://wildlifeinsights.org
https://www.inaturalist.org
https://merlin.allaboutbirds.org/photo-id/
https://merlin.allaboutbirds.org/photo-id/
https://ebird.org
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Individual identification on the basis of photographs is, 
however, a complex process (Vidal et al. 2021). Neverthe-
less, several projects provide useful solutions, mainly for 
species with conspicuous patterns (Vidal et al. 2021). A 
highly successful attempt is Wild Me (https://​www.​wildme.​
org) which provides two open source platforms, the original 
Wildbook and the newly released Codex, that help to handle 
large volume animal images and eases the deployment of 
state-of-the-art deep learning algorithms in order to facili-
tate individual identifications and population assessments 
(Berger-Wolf et al. 2017). A permanent problem for machine 
learning aided individual identification is to obtain enough 
images of individuals (Vidal et al. 2021). Wild Me intro-
duced a novel solution and automatically harvests pictures 
from social media platforms (Araujo et al. 2020). Sound 
recordings may also be a promising tool for individual iden-
tification (Stowell 2021).

As we have seen above iEcology also collects data from 
the world wide web to answer ecological and conservation 
biology questions. For instance, August et al. (2020) used 
the photo sharing social media site Flickr (https://​flickr.​com) 
and Pl@ntNet (https://​plant​net.​org) CNN service to survey 
the flora in urban and rural areas. The microblog service 
Twitter (https://​twitt​er.​com) is also an almost inexhaustible 
source of information about wildlife. Edwards et al. (2022) 
successfully applied the BERT natural language model 
(Devlin et al. 2019) to extract tweets about wildlife. Con-
servation culturomics (Correia et al. 2021), on the other 
hand, studies human-nature intersection by mining the vast 
resources provided by internet activities (visits, blogs, vid-
eos, social media etc.).

Deep learning is not only used to analyse images and text 
to help nature conservation. Zizka et al. (2020) used a self-
developed deep learning algorithm to identify endangered 
orchid species. The algorithm was trained on data obtained 
from GBIF (https://​www.​gbif.​org) and the International 
Union for Conservation of Nature (IUCN, https://​iucn.​org) 
assessments. They were able to assess the conservation sta-
tus of nearly 14,000 species with a rather high accuracy. This 
is a large step forward given that the IUCN database previ-
ously contained only ca. 900 species. About 30% of these 
automatically assessed species were classified as possibly 
threatened and the authors were also able to identify several 
priority regions for orchids conservation (Zizka et al. 2020).

Limitations

The above examples illustrate the usefulness of deep learn-
ing in conservation biology. Nevertheless, a couple of limita-
tions hinder to realise its full potential. One group of prob-
lems is technical. First, efficient training in deep learning 
requires a huge number of labelled records. For instance, 

Norouzzadeh et al. (2018) trained their networks on millions 
of pictures, previously labelled by experts and volunteers. 
This means that to run a successful deep learning project 
in nature conservation one needs a huge initial investment 
in terms of labeling. A second technical limitation of deep 
learning is the lack of ability of deep learning models to 
generalise (Marcus 2018; Roitblat 2020; Tuia et al. 2022). 
The generalisation issue arises because deep learning 
models are paying attention to the whole picture (i.e. the 
background too), and not just the details of interest (i.e. the 
tracked animal). This inability to generalise prevents deep 
learning algorithms trained under a specific set of circum-
stances to be used under different circumstances (Marcus 
2018). As a consequence, deep learning algorithms must be 
retrained for new projects. A third problem is related to the 
usual structure of natural data, which are very diverse and, 
more importantly, extremely imbalanced (a few species are 
represented by many images, while many species just by a 
few ones, see above, Van Horn et al. 2018). These inherent 
features make the training of deep learning NNs rather dif-
ficult (Tuia et al. 2022).

Fortunately, novel training approaches appear to over-
come these technical problems. An especially promising one 
is active learning for processing camera trap data (Norouz-
zadeh et al. 2021). In this approach, a very generally trained 
object detection NN algorithm is run to separate empty pic-
tures from those that contain animals. Empty pictures are 
excluded from further processing. Following this, humans 
are asked to label a small portion of the remaining, non-
empty images. At the same time, image dimensionality is 
reduced by an embedding algorithm to create a low dimen-
sional feature set for each picture. After labeling, a classifi-
cation NN trained on the labelled feature sets to recognise 
species. Subsequently, the pipeline compares the remaining 
unlabelled images to the classified ones and selects for fur-
ther human labelling those ones whose labeling can most 
improve the classification model. This process is repeated 
until the classification NN becomes accurate enough. As 
only a subset of images is labelled in this algorithm it 
can considerably reduce the labeling effort. For instance, 
Norouzzadeh et al. (2021) obtained the same accuracy as 
Norouzzadeh et al. (2018) on the same dataset, but with 
99.5% less labeling effort. The data hungry characteristic 
of deep learning can also be tamed by either augmenting 
the available images or using deep learning algorithms to 
generate training data (Weinstein et al. 2020).

Another technical problem of deep learning, however, 
leads to ethical concerns when applying these algorithms 
(Roitblat 2020). This arises from the fact that it is immensely 
difficult to understand how a given deep learning algorithm 
works internally, and how it makes decisions. In this respect, 
it is a black box (Rudin 2019). It is also difficult to know 
what kind of implicit assumptions an algorithm is based 

https://www.wildme.org
https://www.wildme.org
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https://twitter.com
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https://iucn.org


365Biologia Futura (2023) 74:359–367	

on and, consequently, when an algorithm extrapolates out-
side the range of its training data (deep learning algorithms 
are notoriously bad in extrapolating, Rudin 2019; Roitblat 
2020). Consequently, DNN algorithms can produce enor-
mous results in unexpected ways. This is difficult to tolerate 
when human lives or the existence of critically endangered 
species are at stake (Wearn et al. 2019). Therefore, ethical 
issues of using deep learning must be considered and devel-
opment of ethical guidelines must accompany the develop-
ment of deep learning algorithms in conservation biology 
(Wearn et al. 2019).

The future

Deep learning is a quickly developing field as around three 
quarters of papers published in this subject in the world 
appeared just in the last 26 months (Table 1). The adaptation 
of deep learning into conservation biology is also a recent 
phenomenon. Currently, only a small fraction of papers 
related to conservation biology with deep learning. In Hun-
gary, the study of deep learning lags behind the world (68 
vs. 73% of papers are published recently). This is especially 
true for the application of deep learning in conservation biol-
ogy, as no paper has yet been in the intersection of these 
fields (at least according to the Web of Science database). 
Based on these data it is expected that deep learning will 
penetrate conservation biology more deeply in the coming 
years. There are ample spaces for this kind of development 
in Hungary as well. Indeed, a research group has already 
been established at the University of Debrecen to use deep 
learning and satellite imagery to predict species distribution 
maps.

It seems that one of the most important factors hinder-
ing the quick adaptation of deep learning in conservation 
biology is the lack of appropriately trained experts in this 
truly interdisciplinary field. There are positive signs, how-
ever. The team of highly trained computer scientists and 
ecologists behind the Wild Me project, the foundation of 
the Imageomics Institute at the Ohio State University (USA, 
https://​image​omics.​osu.​edu/) or the Summer Workshop on 
Computer Vision Methods for Ecology (https://​cv4ec​ology.​
calte​ch.​edu/) are promising examples. Nevertheless, we need 
more formal training, preferably at the PhD level.
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Table 1   The number of articles resulted from searching Clarivate Web of Science database by using the given search terms on 13th March 2023

The searches were restricted for the period of 2020–2023 (inclusive). Search terms was run either alone or with “deep learning” (e.g. “deep 
learning” AND “wildlife”). The percentages after the article numbers show the proportion of papers published after 1st January 2020 to the 
total number of articles for the given search term. Column “%” gives the percentage of papers with deep learning and the given search term to 
the number of papers without the “deep learning” term. The top table gives the number of papers without any geographical restriction, while the 
bottom one gives the number of papers with at least one author with Hungarian address (search term of “address: Hungary”)

Search terms Alone w/deep learning %

“Deep learning” 132,231 (73%) – –
“Wildlife” 43,037 (19%) 196 (79%) 0.46
“Nature conservation” 3695 (25%) 19 (86%) 0.51
“Invasive plants” 1326 (26%) 16 (100%) 1.21

Search terms Alone w/deep learning %

“Deep learning” 314 (68%) – –
“Wildlife” 303 (37%) 0 0.00
“Nature conservation” 82 (22%) 0 0.00
“Invasive plants” 18 (38%) 0 0.00
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