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Abstract
Patients with cancer have been disproportionately affected by the novel coronavirus disease 2019 (COVID-19) pandemic 
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Knowledge collected during the last three dec-
ades of cancer research has helped the medical research community worldwide to respond to many of the challenges raised 
by COVID-19, during the pandemic. The review, briefly summarizes the underlying biology and risk factors of COVID-19 
and cancer, and aims to present recent evidence on cellular and molecular relationship between the two diseases, with a 
focus on those that are related to the hallmarks of cancer and uncovered in the first less than three years of the pandemic 
(2020–2022). This may not only help answer the question “Why cancer patients are considered to be at a particularly high 
risk of developing severe COVID-19 illness?”, but also helped treatments of patients during the COVID-19 pandemic. The 
last session highlights the pioneering mRNA studies and the breakthrough discovery on nucleoside-modifications of mRNA 
by Katalin Karikó, which led to the innovation and development of the mRNA-based SARSCoV-2 vaccines saving lives of 
millions and also opened the door for a new era of vaccines and a new class of therapeutics.
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Introduction

Cancer is a leading cause of death worldwide, and this dis-
ease accounted for nearly 10 million deaths in 2020 (Global 
Cancer Observatory: Cancer Today. Lyon: International 
Agency for Research on Cancer 2021). Since the outbreak 
of the Coronavirus Disease 2019 (COVID-19) pandemic, 
it caused more than 6.45 million deaths and more than 596 
million cases worldwide (World Health Organization, WHO 
2020). It is well known that patients with cancer are espe-
cially vulnerable to this newly emerging disease (e.g., Dai 
et al. 2020; Yang et al. 2020). Consequently, the COVID-19 
pandemic has affected virtually all aspects of cancer medical 
care and research (Vrdoljak et al. 2020; American Associa-
tion for Cancer Research 2022).

On the contrary, major breakthroughs of cancer research 
against cancer that are generated over decades, among oth-
ers, in biology/genetics, immunology, vaccinology, and drug 
development have uniquely positioned cancer researchers 

and physicians to respond to the many challenges posed by 
COVID-19. They could extensively assist the development 
of COVID-19 diagnostics, treatments, and vaccines, from 
early phase of the pandemic (Bakouny et al. 2020; Elkrief 
et al. 2022; American Association for Cancer Research 
2022).

The main area that merits special attention, where 
researchers have gained knowledge from the biology 
of cancer, is the immune response to COVID-19 (e.g., 
Bakouny et al. 2020; American Association for Cancer 
Research 2022). For example, the vast amount of knowl-
edge on human papilloma viruses, HPVs and vaccines (zur 
Hausen 2008) and adaptation of the tests routinely used 
to monitor T-cell responses to proteins of HPVs could be 
well utilized for determining the effectivity of COVID-19 
vaccines in eliciting immune responses with special regard 
to cancer patients undergoing treatment.

In a broader sense, cancer immunology is a key area 
of cancer research and medicine that have contributed 
very important elements to the understanding of COVID-
19. In 2013, Science nominated cancer immunotherapy 
as the Breakthrough of the Year (Couzin-Frankel 2013). 
In the past decade, advanced cancer immunotherapies—
chimeric antigen receptor (CAR)-modified T cell therapy 
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and inhibitors of immune regulatory checkpoints—have 
revolutionized the treatment of an increasingly broad array 
of cancer types (Schuster et al. 2017; Ribas and Wolchok 
2018). Knowledge drawn from CAR T-cell therapy has 
largely contributed to our understanding of “cytokine 
storm” in severe COVID-19 (discussed in later sessions).

Beyond scientific discoveries, state-of-the-art tech-
nologies, for instance, next-generation sequencing (NGS) 
(Mardis 2008), which is routinely used worldwide to detect 
a broad range of cancer-related pathogenic genetic altera-
tions, were effectively applied to identify the genomic 
sequence and novel variants of SARS-CoV-2, in early 
phase of the pandemic.

This review provides a brief summary of the underly-
ing molecular biology of COVID-19 and cancer, presents 
recent evidence on cellular and molecular relationship 
between the two diseases, covering common risk fac-
tors, shared molecular markers and overlapping signal-
ing pathways/cancer hallmarks and illustrates how have 
the insights from cancer by research community may 
be applied to mitigate this new disease. To this end, the 
review examines the mRNA research conducted over dec-
ades that have led to the tremendous success of develop-
ment of the mRNA-based SARSCoV-2 vaccines and novel 
mRNA-based cancer therapies.

SARS‑CoV‑2 and COVID‑19

The novel coronavirus disease 2019 (COVID-19) caused 
by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) was first reported in December 2019 in 
Wuhan, China. World Health Organization, WHO declared 
the COVID-19 outbreak to be a pandemic in March 2020. 
SARS-CoV-2 belongs to a large family of coronaviruses 
(CoVs) that exist widely in nature (Hartenian et al. 2020). 
Three out of the seven coronaviruses that are capable 
of infecting humans have caused the deadly global out-
breaks of severe acute respiratory syndrome (SARS) in 
2002–2004, Middle East respiratory syndrome (MERS) in 
2012, and COVID-19 (Hartenian et al. 2020).

The genetic material of SARS-CoV-2 is RNA that 
encodes four major structural proteins: envelope proteins, 
nucleocapsid, membrane, and the spike. However, CoVs, 
SARS-CoV-2 possesses higher infectivity and pathogenic-
ity than other CoVs, what is largely due to its special key 
sites within the receptor binding domain of spike protein 
which are different from other types of CoVs (Yi et al. 
2020).

In the early phase of the pandemic, great attention was 
paid to understand the mechanisms by which SARS-CoV-2 
enters the host cell—another area where researchers have 
relied on knowledge from cancer biology (Hoffmann et al. 
2020). The first known entry factor is a receptor called 

angiotensin-converting enzyme 2 (ACE2) located on 
the surface of certain human cells in the nasal passages, 
lungs, and gastrointestinal tract, among others (Hoffmann 
et al. 2020). To infect a human host, the spike protein of 
SARS-CoV-2 attaches to the ACE2 receptor, which is abun-
dantly expressed in the lung, heart, kidney, and intestine 
and induces an unwarranted immune response (Kuba et al. 
2005). This could be an explanation for the vast array of 
symptoms that is manifested in patients with COVID-19. 
The other entry factor of SARS-CoV-2 internalization, on 
the surface of the host cell is a protein, called transmem-
brane serine protease 2 (TMPRSS2). The enzyme is needed 
to cleave SARS-CoV-2 spike protein and facilitate viral 
entry in human cells (Hoffmann et al 2020).

COVID-19 has been referred to as a disease of the 
lungs, the main target of severe COVID-19. However, it 
has turned out that not only the lung but an increasing 
number of other organs may suffer from COVID-19. These 
extrapulmonary manifestations frequently affect major 
organs as the heart, brain, kidneys, liver, but intestines, 
blood vessels, blood, and immune system may also be 
affected (Gupta et al. 2020). Many effects of COVID-19 
could be potentially long-lasting, leading to development 
of Post COVID-19 or Long COVID-19 syndrome, which 
represents an emerging global crisis and consequently it 
is a hot area of contemporary research efforts (Gupta et al. 
2020; Soriano et al. 2022).

Risk factors of COVID‑19 susceptibility and severity

SARS-CoV-2 infections show a significant inter-individual 
variability, ranging from life-threatening disease to asympto-
matic infections (Buitrago-Garcia et al. 2020). Environmen-
tal, clinical and social risk factors, host factors (e.g., increas-
ing age, being a man and higher body-mass index) together 
with the genetic make-up of an individual may explain the 
variability in disease severity observed across individuals 
(Zhou et al. 2020).

Researchers are extensively investigating the role of 
genetic risk factors that are associated with a person’s sus-
ceptibility to COVID-19 (Callaway 2021). From early period 
of the COVID-19 pandemic, several large concerted efforts 
have been launched to identify the genetic determinants of 
COVID-19 susceptibility and severity. These studies have 
uncovered several genetic alterations associated with severe 
COVID-19 (Severe Covid-19 GWAS Group 2020; Tangye 
et al. 2021). There are many genes that are able to boost our 
defense against various viral infections, for example mem-
bers of the interferon pathway. It is shown that inborn errors 
of, and autoantibodies directed against, type I interferons 
(IFNs) are responsible for about 20% of severe COVID-19 
cases among SARS-CoV-2-infected individuals (Zhang et al 
2020a).
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Most recently, the OAS1/2/3 cluster (a subgroup of inter-
feron-stimulated genes) has been identified as an important 
risk factor locus for severe COVID-19 among individuals of 
European ancestry (Pairo-Castineira et al. 2021. Moreover, 
Zeberg and Pääbo recently reported that both a major genetic 
risk factor for severe COVID-19 and a genomic region asso-
ciated with protection against severe COVID-19 are inher-
ited from Neandertals (Zeberg and Pääbo 2020, 2021).

Describing the role of a missing transposable element in 
SARS-CoV-2 infected cells, a most recent study provides 
further evidence on the significance of IFN-related genes in 
COVID-19, giving also a possible functional explanation for 
SARS-CoV-2 success in the combat against the host immune 
system (Sorek et al. 2022).

Increasing evidence support that SARS-CoV-2 entry fac-
tors (e.g., ACE2) influence COVID-19 risk and yields risk 
scores associated with severe disease (Hou et al. 2020). In 
addition, several novel genes of currently unknown sig-
nificance were identified. Using whole-genome sequencing 
(WGS), the GenOMICC (Genetics of Mortality in Critical 
Care) project has discovered and replicated 23 independent 
variants that significantly predispose to severe COVID-19 
(Kousathanas et al. 2022).

More recently, a large global effort has also launched to 
exploit genetic determinants of protective effects against 
SARS-CoV-2 infection. This was achieved by genetically 
analyzing individuals who show natural resistance to SARS-
CoV-2 infection (Andreakos et al. 2022). Notably, early in 
the pandemic, several studies have provided convincing data 
that individuals with certain blood types were less suscepti-
ble to COVID-19 compared to those with other blood types 
(Barnkob et al. 2020; Severe Covid-19 GWAS Group 2020). 
However, according to a more recent research, blood type is 
not associated with disease susceptibility or severity (Ander-
son et al. 2021).

Genome-Wide Association Study (GWAS) have identi-
fied dozens of genomic regions associated with suscepti-
bility and severity of COVID-19 (e.g., Severe COVID-19 
GWAS Group 2020; Pairo-Castineira et al. 2021). However, 
the causal variants in these genomic regions have not been 
identified yet, which is hindering our ability to understand 
the pathophysiology of COVID-19.

Biology of cancer development

There is compelling evidence that cancer is, in essence, a 
genetic disease caused by the accumulation of a series of 
genetic and/or epigenetic changes that lead to changes in 
gene expression, and eventually to cancer. In a long-term 
microevolution process, a cell population develops that can 
ignore the normal controls of proliferation, differentiation 
and death and has the ability to transform to cancer (e.g., 

Nowell 1974; Fearon and Vogelstein 1990; Baylin et al. 
2000).

Cancer is a multifactorial disease: beyond host factors 
(for example, age, comorbidities) several other factors can 
enhance development of the disease. The genetic events on 
the cancer pathway are arising during normal cell multipli-
cation, and by endogenous mutagens or because of environ-
mental exposures, or lifestyle factors (International Agency 
for Research on Cancer: http://​monog​raphs.​iarc.​fr).

In the past fifteen years the availability of the human 
genome sequence (International Human Genome Sequenc-
ing Consortium 2004), then the construction of HapMap 
containing single nucleotide polymorphisms (SNPs) (Inter-
national HapMap Consortium 2005), together with the huge 
progress in next-generation sequencing (NGS) (Mardis 
2008) and other novel genomic technologies now offer an 
unprecedented opportunity for the identification of all the 
genetic changes associated with a human cancer. Large-scale 
sequencing analyses have identified "cancer genes" (Fut-
real et al. 2004). These are mutated genes that are causally 
implicated in tumorigenesis. Cancer genes that are broadly 
grouped into oncogenes and (inactivated) tumorsuppressor 
genes arised from normal cells by intragenic mutations that 
can drive oncogenesis via genetically determined molecular 
pathways (e.g., Kuenzi and Ideker 2020).

It is well established that each tumor contains a collec-
tion of various cancer cell populations with a wide range of 
genetic variations. So, when we think about genetics and 
genomics of cancer, it is really complex, inborn/inherited 
(germline) and somatic mutations act together. In the can-
cer pathway, there are mostly (about 90%) somatic genetic 
mutations of oncogenes and tumor suppressor genes which 
acquired somatically during an individual’s lifetime, but in 
the hereditary cancer syndromes, one of the mutations is 
inherited. The cardinal feature of the syndromic hereditary 
cancers is a germline mutation associated with an increased 
risk for certain cancers and transmission to offspring through 
the maternal or paternal side. Most importantly, they often 
have an early age at onset and exhibit positive family history 
due to an autosomal dominant inheritance pattern (Ponder 
1990). In 2022, we know over 125 hereditary cancer syn-
dromes where pathogenic germline mutations of suscepti-
bility genes put very high risk of cancer (Online Mendelian 
Inheritance in Man®, OMIM® 2022). With few exceptions, 
hereditary cancers of the inherited cancer syndromes are 
due to predisposing genetic variations (mutations) of the 
tumor suppressor genes. BRCA1 gene, the first’breast cancer 
susceptibility gene’ (BRCA1 gene with pathogenic germline 
mutation) was discovered by Mary-Claire King, American 
geneticist in 1990 (Hall et al. 1990). Identification of sev-
eral dozens of genetic susceptibility genes to cancer fol-
lowed in the next decades, including that of the EPCAM 
(also known as TACSTD1) gene with a new class of mutation 

http://monographs.iarc.fr
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predisposing to Lynch-syndrome (a hereditary non-polypo-
sis colorectal cancer syndrome) that is discovered by our 
Lab (Kovács et al. 2009).

Elucidation of the genetic risk factors (inherited predispo-
sition) to cancer has been one of the most successful areas 
of biomedical research (Oláh 2021). Studying germline sus-
ceptibility to cancer we not only gained new insights into 
cancer biology, but could also make risk assessment, and 
translate the new knowledge to clinical oncology practice. 
Genetic testing for inherited mutations in strongly predis-
posing genes of breast, ovarian, colorectal and other types 
of cancer is now part of the standard of clinical care for 
families suspected to have a strongly predisposing germline 
mutation. (Singer et al. 2019).

Over the past two decades, an expanding new knowledge 
has been generated on the complex nature of cancer genome 
(including also germline genome). Large international col-
laborative studies on genomics and epidemiology of cancer, 
for example by The Breast Cancer Association Consortium 
(2021) and The Consortium of Investigators of Modifiers of 
BRCA1/2, CIMBA (Chenevix-Trench et al. 2007) have made 
a great progress in uncovering the complex architecture of 
cancer susceptibility and cancer risk that involves germline 
pathogenic variants in high and moderate risk genes and 
polygenetic factors (Zhang et al. 2020b). It is now widely 
accepted view that genetic susceptibility to cancer—particu-
larly in genetically unexplained families—is linked to vari-
ant patterns rather than single alternative variants (Mavaddat 
et al. 2015; Lakeman et al. 2019). For example, the rare, 
but strongly predisposing germline mutations of BRCA1/2 
genes confer very high (around 70%) lifetime risk for breast 
or ovarian cancer (Kuchenbaecker et al. 2017), and the com-
bined contribution to overall breast cancer incidence of these 
mutations is less than 10%. By contrast, a set of weakly 
predisposing, but common alleles could account for up to 
40% of breast cancer incidence (Michailidou et al 2017).

It is widely demonstrated that the tumor(s) of every 
cancer patient have a unique combination of genetic varia-
tions (mutations). The identification of the critical somatic 
genetic differences is particularly important in determining 
the appropriate treatment strategies for each patient. The 
expanding new knowledge on both germline and somatic 
genome is rapidly improving our understanding of cancer 
biology and has the ability to transform the practice of 
oncology at a rapid pace not seen before (Meric-Bernstam 
et al. 2013).

Hallmark features of cancer

Hanahan and Weinberg in their prominent "Hallmarks of 
Cancer" position paper have laid down the framework of 
knowledge on cancer as a disease (Hanahan and Weinberg 
2000). In this review, they identified six hallmark features 

(capabilities) of the cancer cells that are essential to be 
acquired during development and progression of human 
tumors. These include: “sustaining proliferative signaling, 
evading growth suppressors, resisting cell death, enabling 
replicative immortality, inducing angiogenesis, and acti-
vating invasion and metastasis.” They also suggested that 
genome instability and inflammation are underlying these 
hallmarks (Hanahan and Weinberg 2000). Genome instabil-
ity generates genetic diversity, due to acquired or inherited 
defects in DNA repair or in cell-cycle checkpoints, thus 
expediting the acquisition of hallmark capabilities. Inflam-
mation is a known intrinsic defense mechanism activated by 
the immune system against infection or injury that fosters 
multiple hallmark functions (Hanahan and Weinberg 2000).

A few years after the publication of this position paper, it 
has also become increasingly evident that mutated cells on 
their way leading to a tumor manifestation have to acquire 
further capabilities such as, how to thrive in a chronically 
inflamed microenvironment, evade immune recognition, 
and suppress immune reactivity (Cavallo et al. 2011). The 
recognition of these capabilities have verified that evad-
ing immune destruction is an essential hallmark of cancer 
(Hanahan and Weinberg 2011). Reprogramming of cellular 
metabolism, has also been added, a decade later (Hanahan 
and Weinberg 2011). Importantly, it is shown that most of 
the hallmarks of cancer are interconnected with an altered 
cancer cell-intrinsic metabolism (Kroemer and Pouysse-
gur 2008). As knowledge of cancer mechanisms has pro-
gressed due to applying more advanced computational tools, 
genomic technologies and "big data" approaches, other 
potential hallmark features of cancer have been identified 
(Hanahan 2022). Out of these both disrupted differentia-
tion and unlocking phenotypic plasticity have recently been 
added as a “discrete hallmark capability”, while both non-
mutational epigenetic reprogramming (Baylin et al. 2000; 
Hanahan 2022) and polymorphic microbiomes (Senga and 
Grose 2021; Hanahan 2022) have been added as “distinc-
tive enabling characteristics” that enhance the procurement 
of hallmark capabilities (Hanahan 2022). Altered neuronal 
signaling has also been proposed for considering as distinc-
tive enabling characteristics (Senga and Grose 2021). Recent 
studies have also demonstrated that splicing regulatory fac-
tors play an important role in nearly all hallmarks of can-
cer (Koedoot et al. 2019). Notably, the role of alternative 
splicing in breast tumorigenesis was proposed for BRCA1 
gene even in the absence of deleterious inherited mutations 
(Orbán and Oláh 2003).

In addition, it is now increasingly clear that tumor micro-
environment—which is made up of heterogeneous and inter-
active populations of cancer cells, cancer stem cells and 
various stromal cells—plays an integral role in tumorigen-
esis and malignant progression (Beck and Blanpain 2013; 
Hanahan 2022).
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The lucid conceptualization of complex cancer biology by 
Hanahan and Weinberg (2000, 2011) is widely accepted and 
has also inspired development of advanced cancer therapeu-
tics and therapies by targeting the various hallmarks.

In summary, Fig. 1 shows major hallmarks of cancer.

COVID‑19 and cancer

Numerous studies have shown that older adults and indi-
viduals with certain preexisting health conditions, such as 
patients with cancer, are at a higher risk of SARS-CoV-2 
infection (e.g., Liang et al. 2020) and are more likely to expe-
rience severe disease, including mortality, from COVID-
19 (Bakouny et al. 2020). Several studies have reported a 
poor prognosis for the patients with cancer and COVID-19, 
especially those who if they are affected those with hema-
tological malignancies, and male patients who have lung 
cancer have a higher risk of death (e.g., Yang et al. 2020). 
Furthermore, therapeutic interventions, including surgery, 
chemotherapy, radiotherapy, and immunotherapy, have been 
associated with worse COVID-19 outcomes among cancer 
patients (Lee et al. 2020a; Derosa et al. 2020).

The interplay between COVID‑19 and cancer biology

Early in the pandemic, it became clear that there were sev-
eral risk factors shared by COVID-19 and cancer, which 
increase the risk for both diseases. These include comor-
bidities (such as cardiovascular and respiratory diseases), 
advanced age and smoking, obesity, or cancer type and stag-
ing (e.g., Lee et al. 2020; Pinato et al. 2020). These risk 
factors may significantly weaken the host immune system, 
making cancer patients more vulnerable to infectious agents, 
including SARS-CoV-2 (e.g., Swann and Smyth 2007; van 
Dam et al. 2020).

Recent studies on genetic risk factors for severe COVID-
19, such as the OAS gene family, have also shown potential 
overlap with cancer research (Pairo-Castineira et al. 2021).

A recent study by Zhang and Yu (2020) shed new light 
on the prognostic roles of OAS in breast cancer. The study 
found that high mRNA expression of OAS1 and OAS3 
was associated with a worse prognosis for all breast cancer 
patients, while OAS2 was linked to a favorable prognosis. 
Furthermore, a subgroup of interferon-stimulated genes, 
including the OAS family, STAT1, IRF7, and BST2, col-
lectively known as the interferon-related DNA damage 
resistant signature (IRDS), were found to be upregulated 
in various cancer types. The upregulation of these genes 

Fig. 1   Hallmark flower of 
cancer, 2022. Other emerg-
ing hallmarks and "enabling 
characteristics" that facilitate 
the acquisition of hallmark 
capabilities are described in the 
session of "Biology of cancer 
development." After: Hanahan 
and Weinberg (2000), Hanahan 
and Weinberg (2011), Senga 
and Grose (2021), Hanahan 
(2022). Asterisk denotes those 
hallmarks where interplay is 
demonstrated between cancer 
and COVID-19
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promotes resistance to DNA damaging chemotherapy and 
radiotherapy (Padariya et al. 2021). Targeting the IRDS 
genes has been suggested as a potentially effective strategy 
to resensitize tumor cells and improve the outcome of anti-
cancer treatment (Padariya et al. 2021).

While cancer and COVID-19 have different origins, 
development, and effects on the body, there are some shared 
manifestations between the two diseases. Although much 
remains to be learned about the interplay between cancer and 
COVID-19, researchers have already leveraged knowledge 
from cancer biology in the first two years of the pandemic 
to gain insight into the effects of COVID-19. Multiple lines 
of evidence have emerged, revealing clinical and molecular 
similarities between cancer and COVID-19 (e.g., Bakouny 
et al. 2020; Zong et al. 2021; American Association for Can-
cer Research 2022).

Entry factors of SARS‑CoV‑2 internalization

The first biological link between COVID-19 and cancer 
was reported on entry factors of SARS-CoV-2 internaliza-
tion (Hoffmann et al. 2020). Based on the correlations seen 
between age-related elevation of ACE2 protein in human 
lung tissue and the most common incidence of cancer in 
the same age group (65 and older), it is suggested that the 
abundance of lung ACE2 may contribute to severe COVID-
19 among elder patients with lung cancer (Sinha et al. 2021). 
Moreover, it has also reported that the highly elevated ACE2 
levels seen in the lungs of individuals who are regular smok-
ers may explain why smokers, or patients with smoking-
related chronic obstructive pulmonary disease (COPD) or 
lung cancer, are especially sensitive to adverse outcomes 
from COVID-19 (e.g., Bakouny et al. 2020; Sinha et al. 
2021).

Another potential point of connection between cancer and 
COVID-19 involves TMPRSS2 protein, the other entry fac-
tor of SARS-CoV-2 internalization (Hoffmann et al. 2020). 
Insights into this link have been derived from research in 
prostate cancer, where TMPRSS2 protein is present in high 
levels. Research has revealed that TMPRSS2 is not only 
highly altered in prostate cancer cells, as demonstrated by 
Stopsack et al. (2020), but it is also regulated by androgen—
a hormone that signals the cell to grow and develop male 
characteristics. As androgen-targeting therapies are already 
in use for treating prostate cancer, TMPRSS2 has become 
an attractive target for potential COVID-19 therapies (Mon-
topoli et al. 2020). Therefore, there are ongoing clinical 
studies to assess whether therapeutics that lower TMPRSS2 
levels or inhibit its function could alleviate COVID-19 
symptoms (Zong et al. 2021).

Moreover, researchers have gained critical insights into 
the interplay between the biology of cancer and COVID-
19 from other active research areas, including immune 

interactions, arterial and venous thrombotic events, and 
reprogrammed metabolism, which are all associated with 
the currently accepted hallmarks of cancer (discussed in the 
next sessions and see Fig. 1).

Immune interactions between cancer and COVID‑19

Important research discoveries in cancer immunology, such 
as the immune system's response to cancer cells and the 
mechanisms used by tumors to evade the immune system, 
have provided crucial insights into the immune response to 
COVID-19 (Costello et al. 1999; Seliger 2005; Derosa et al. 
2020). These findings have uncovered significant dysregu-
lation in multiple components of the immune system and 
provided further data supporting the biological link between 
COVID-19 and cancer, as recently reviewed (e.g., Bakouny 
et al. 2020; Zong et al. 2021; American Association for Can-
cer Research 2022).

As mentioned earlier, evading immune destruction is a 
crucial hallmark of cancer (Hanahan and Weinberg 2011). 
Unfortunately, both cancer cells and SARS-CoV-2 can avoid 
the immune system by suppressing the host's defense mecha-
nisms. The immune system can be suppressed by lowering 
levels of major histocompatibility complex (MHC) proteins, 
which are required to flag virus-infected cells or cancer cells 
for recognition and elimination by immune cells, among 
other factors (Derosa et al. 2020). Another mechanism that is 
also able to suppress the immune system is known as “T-cell 
exhaustion,” which results in reduced numbers of T-cells. 
This can occur when T cells are persistently stimulated due 
to chronic inflammation, which is often associated with 
cancer or long-term infection (Coussens and Werb 2002). 
These exhausted T-cells are also seen in patients with severe 
COVID-19. Furthermore, overlapping hyper-inflammatory 
reactions and arterial and venous thrombotic events have 
been linked to immune system dysfunction, as outlined 
below.

Overlapping hyperinflammatory reactions in severe 
COVID-19 and in cancer patients treated with CAR T-cell 
therapy:

Cytokine release syndrome (CRS) is an immune system 
dysfunction with uncontrolled production of pro-inflamma-
tory cytokines and chemokines and manifest as “cytokine 
storm.” This serious life-threating condition is frequently 
seen in patients with severe COVID-19. CRS is similar to the 
known adverse event seen for certain cancer patients treated 
with CAR T-cell therapy (Turnquist et al. 2020; Moore and 
June 2020). Recently, shared inflammatory pathways (Iovino 
et al. 2021) and common biomarkers have been identified 
that are characteristic for both COVID-19 and CAR T-cell 
therapy-induced CRS, such as IL-6 (e.g., Turnquist et al. 
2020; Zong et al. 2021). These similarities between the 
mechanisms of CRS in cancer patients treated with CAR 
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T-cell therapy and severe COVID-19 led to repurposing of 
“immunotherapy-inspired” agents to reduce the cytokine 
release in COVID-19 (e.g., Agarwal and June 2020).

Arterial and venous thrombotic events in the interplay 
between SARS-CoV-2 and cancer biology:

It is demonstrated that development of thrombotic events, 
at least in part, may be related to inflammation and the acti-
vation of the innate immune system, which can activate 
systemic coagulation pathways (Engelmann and Massberg 
2013; Connors and Levy 2020; Bakouny et al. 2020). Under-
standing the effects of COVID-19 on blood vessels, blood, 
and immune system is another important area of research 
because an overactive inflammatory response and abnormal 
blood clotting (a prominent coagulation disorder) are impor-
tant factors in severe COVID-19. Moreover, these coagu-
lation disorders are associated with the formation of new 
blood vessels in the patient’s lungs. Discussed before that 
abnormal vasculature known as pathological neoangiogen-
esis is another hallmark of solid tumors (Hanahan and Wein-
berg 2011). It is well documented that patients with cancer 
are at somewhat elevated risk of thrombotic complications, 
particularly those patients who are complicated with both 
cancer and COVID-19 (Lee and Levine 2003). Recently, 
it has been shown that several proteins that are related to 
tumor angiogenesis, such as VEGF, HIF and others are also 
elevated in the plasma or lungs of patients with COVID-
19. These data are suggested to be considered in utilization 
of antiangiogenic cancer therapeutics for the treatment of 
COVID-19 (Smadja et al. 2021).

Parallels and intersections in cancer cell metabolism 
with COVID‑19

Complexity of malignant phenotype includes metabolic 
reprogramming of cancer cells,—either as a consequence 
or as a cause what is an essential hallmark feature of cancer 
(Kroemer and Pouyssegur 2008; Hanahan and Weinberg 
2011). It is demonstrated that multiple alterations in signal 
transduction pathways and/or enzymatic machineries are 
responsible for metabolic reprogramming of cancer cells that 
serve to the advantage of these transformed cells (Kroemer 
and Pouyssegur 2008). Recently, evidence was provided 
for the direct link of SARS‑CoV-2 infection with Warburg 
effect/elevated glucose levels in association with inflamma-
tory response, exploring that SARS‑CoV‑2 infection can 
elicit metabolic reprogramming in tumor cells and perhaps 
also tumor progression (Icard et al. 2021; Codo et al. 2020).

The elevated activity of guanylate synthetic path-
ways of cancer cells is largely due to increased activity of 
inositide-5’-monophosphate dehydrogenase (EC 1.1.1.205) 
(IMPDH), the rate-limiting enzyme of GTP biosynthesis. 
It was suggested and was proven by Weber that IMPDH is 
a sensitive and selective target for enzyme-pattern-targeted 

chemotherapy (Weber 1983). Here, we briefly present the 
impact of three clinically significant inhibitors of IMPDH 
(Tiazofurin, Ribavirin and Mycophenolic acid), on meta-
bolic reprogramming and its links with other capabilities 
(later nominated as hallmarks) of cancer. It is demonstrated 
that targeting of the deregulated de novo purine biosynthesis 
leads to a strong anti-proliferative effect with restoring of 
normal cell differentiation and apoptosis program through 
inhibiting of IMPDH activity/depleting GTP production, 
and down-regulation of gene expression programs important 
for proliferation and adaptive survival of cancer cells (Oláh 
et al. 1988, 2006). Early studies with Tiazofurin provided 
the first evidence that the proliferative arrest, the differen-
tiation toward the erythroid pathway and the apoptosis of 
BCR-ABL positive, K562 human leukemia cells, induced by 
strong inhibition of IMPDH, are mediated, at least in parts, 
by the down-regulation of the K-RAS and by the profound 
down-regulation of c-MYC oncogenes (Oláh et al. 1990). 
Tiazofurin also exhibited remarkable anti-metastatic activ-
ity (a hallmark of cancer progression) in different human 
and experimental tumors (Timar et al. 1996). Moreover, it 
has demonstrable anti-leukemia effects, when used to treat 
patients with BCR-ABL positive acute myelogenous leuke-
mias, which are resistant to standard anti-leukemia chemo-
therapy (Tricot et al. 1990). Ribavirin, a potent anti-viral 
drug with a wide anti-viral spectrum (Sidwell et al. 1972) 
that is clinically used for hepatitis C-related liver diseases, 
such as hepatocellular carcinoma. Some data on its anti-can-
cer activity, were also reported, in human cancer cell lines 
(Kökény et al. 2009). It was demonstrated, that treatment 
with Ribavirin—similarly to Tiazofurin, caused a significant 
growth inhibition via activating the differentiation and more 
profoundly, the apoptosis pathway, in response to sub-toxic 
and toxic doses of the drug, respectively. Mycophenolic 
acid, by inhibiting de novo purine biosynthesis, functions 
as an antifungal, antibacterial, antiviral, and immunosup-
pressive agent and used to prevent rejection following organ 
transplantation and to treat autoimmune conditions (Bentley 
2000). Interestingly, but not surprisingly, HL-60 promyelo-
cytic leukemia cells treated with sub-toxic and toxic doses 
of mycophenolic acid, respectively, also undergo terminal 
differentiation and apoptosis (Görtz et al. 1997).

Quite early in the pandemic, IMPDH inhibitors—among 
many other anticancer/antiviral agents—were repurposed 
to assess their impact against SARS-CoV-2. Preliminary 
data showed that Ribavirin can suppress the replication of 
SARS‑CoV‑2 at a low molar concentration (Elfiky 2020). 
However, the efficacy of various agents, including ribavi-
rin, hydroxychloroquine, lopinavir/ritonavir that were ini-
tially proclaimed to be effective against SARS-CoV-2, was 
later disproved (Drożdżal et al. 2021). Also, there are data 
for the activity of mycophenolic acid against SARS-CoV-2 
(Kato et al. 2020; Han et al. 2021), however, further in-depth 
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studies would be needed to assess the real impact of the 
inhibitors of IMPDH against SARS-CoV-2.

It is demonstrated above, that targeting deregulated cellu-
lar metabolism of cancer with clinically significant selective 
inhibitors offers an efficient strategy to uncover all cancer 
hallmarks that are intertwined with altered cancer cell-
intrinsic metabolism.

Recent studies also demonstrate that cancer cell metabo-
lism links epigenetic modifications to transcriptional reg-
ulation through modulation of gene expression programs 
important for proliferation and adaptive survival of cancer 
cells (Morrison et al. 2022). The close link of metabolic 
and epigenetic pathways in cancer cells may provide further 
opportunities to therapeutically target malignant growth via 
the hallmark features of cancer (Morrison et al. 2022).

Transposable elements in cancer and COVID‑19

Transposable elements (TEs) are mobile DNA sequences 
that constitute about 45% of the human genome. TEs are 
important for genome plasticity and evolution as they can 
create new genes and functions. However, TE activation can 
contribute to cancer and other human diseases (Solyom and 
Kazazian 2012; Grundy et al. 2022). TE insertion in human 
genomes may cause genetic dysfunction and alteration of 
gene expression, contributing to plasticity, a hallmark of 
cancer (Grundy et al. 2022). A recent report suggests that 
TEs (transposases) may play a role in SARS-CoV-2’s ability 
to evade the host immune system, indicating that TEs could 
be potential drug targets for COVID-19 in gene therapies 
(Sorek et al. 2022). These findings suggest that TEs, the 
understudied residents of our genome, could uncover fur-
ther interactions between COVID-19 and cancer, serving as 
potential drug targets for both diseases.

Messenger RNA (mRNA): from a highly 
immunogenic molecule to mRNA‑based vaccines 
and therapies

mRNA was first discovered in 1961 (Brenner et al 1961). A 
further 60 years passed until finally the first mRNA became 
a FDA-approved product in the form of COVID-19 mRNA 
vaccine (Food and Drug Administration FDA 2021). Dur-
ing those years, however, particularly during the past more 
than three decades, a lot of progress has been made toward 
mRNA-based therapies and vaccination by hundreds of sci-
entists, including cancer researchers. Due to the extensive 
literature, the last part of this review briefly summarizes the 
key discoveries and breakthrough events that contributed 
to the rise of mRNA technology in vaccinology and cancer 
therapy, giving the milestones in Table 1.

In 1984, the first successful in vitro synthesis of mRNA 
and its subsequent translation into functional proteins were 
accomplished, enabling the production of large amounts of 
protein from any cDNA clone (Melton et al. 1984; Krieg 
and Melton 1984). Initially, in the early 1990s, in vitro-
transcribed (IVT) mRNA was mainly used for vaccines by 
ex vivo pulsing of dendritic cells. In 1990, reporter gene 
mRNAs were injected into mice, and protein production 
was successfully detected, marking the first successful use 
of IVT mRNA to produce protein in animals (Wolff et al. 
1990). RNA technology was initially motivated by the fight 
against cancer, and the first RNA cancer vaccines were pub-
lished more than 25 years ago (Conry et al. 1995; Zhou et al. 
1995; Boczkowski et al. 1996).

IVT mRNA encoding therapeutic proteins or viral anti-
gens had great potential for treating or preventing various 
diseases, but for years the innate immunogenicity and insta-
bility of mRNA hampered its medical use.

Table 1   Milestones of mRNA-development for therapy. (After: Karikó 2022; Hou et al 2021; Dolgin 2021)

a mRNA vaccine research in cancer

1961 Discovering mRNA Brenner et al. (1961)
1984 First in vitro synthesis of mRNA and its in vitro translation into a functional protein Melton et al. (1984)

Krieg and Melton (1984)
1990 First use of mRNA to accomplish a protein production in vivo Wolff et al. (1990)
1995 mRNA tested as a polynucleotid cancer vaccine in mice

Antitumor T cell response induced by mRNA melanoma vaccine
Conry et al. (1995)a

Zhou et al (1995)a

1996 Human dendritic cells (DC) pulsed with RNA: demonstration the efficacy of mRNA DC vaccines Boczkowski et al (1996)a

2005 Discovery of nucleoside modified mRNA Karikó et al (2005)
2008 Direct injection of mRNA tested for melanoma treatment Weide et al. (2008)a

2010 Preclinical study with intranodally injected DC-targeted mRNA Kreiter et al. (2010)a

2012 Nonviral delivery of self-amplifying RNA vaccines by lipid nanoparticles, LNPs Geall et al. (2012)
2013 CRISPR–Cas9 mRNA for gene editing Hwang et al. (2013)
2017 Lipid nanoparticle (LNP) systems for enabling gene therapies

First mRNA vaccine for clinical trials
Cullis and Hope (2017)
Alberer et al. (2017)

2021 FDA approval of COVID-19 LNP-mRNA vaccine
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Development of non‑inflammatory, 
nucleoside‑modified mRNA for therapy and vaccine

Katalin Karikó Hungarian biochemist began her pioneering 
work with mRNA in the mid-1980s, and generated func-
tional, highly processed proteins from IVT mRNA trans-
fected into cultured cells, with the goal of developing mRNA 
encoding therapeutic proteins that has the potential for treat-
ing various diseases (Karikó et al. 1998, 1999).

In the late 1990s, Karikó continued studying IVT mRNA 
and began uncovering the mechanisms of its inflammatory 
activity with Drew Weissman, American immunologist at 
the Perelman School of Medicine, University of Pennsylva-
nia. Over the following years, they identified innate immune 
receptors, including TLR3, TLR7 and TLR8 that responded 
to the transfected mRNA (Karikó et al. 2004).

Based on their interesting findings that tRNAs (known 
to contain many modified nucleosides) were non-immuno-
genic, Karikó and Weissman developed and tested a hypoth-
esis that nucleoside modification of mRNA avoids activation 
of RNA sensors and inflammation. They achieved a monu-
mental breakthrough when they successfully warded off the 
inherent immunogenic response of mRNA and improved 
translational efficiency, by incorporating naturally-occur-
ring modified nucleosides, including pseudouridine into 
the mRNA, so thus preventing activation of RNA sensors 
(TLR7 and TLR8) (Karikó et al. 2005). In parallel studies, 
Karikó and colleagues demonstrated that uridine in mRNA 
was responsible for triggering the immune reaction and most 
importantly, also demonstrated that exchanging the uridine 
to pseudouridine in the mRNA resulted in an optimal tran-
script that is non-inflammatory, more stable and translates 
very efficiently, thus making pseudouridine-containing 
mRNA an ideal platform for delivering therapeutic proteins 
(Karikó et al. 2008). They also invented a purification pro-
cedure to remove contaminating double-stranded byproducts 
from the IVT mRNA that further increased the translational 
capacity of the mRNA and eliminated its remaining immu-
nogenicity by avoiding activation of TLR3, showing that 
the nucleoside-modified mRNA encoded proteins were func-
tional, thus enabling the use of mRNA for therapy (Karikó 
et al. 2011). Moreover, utilizing the discovery, that lipid 
nanoparticles (LNPs) are appropriate carriers for mRNA as 
RNA vaccines (Geall et al. 2012), they formulated a poten-
tial mRNA vaccine with LNP (Pardi et al. 2015).

Anti‑SARS‑CoV‑2 mRNA vaccines

Patent coinvented by Katalin Karikó and Drew Weissman 
on nucleoside-modified mRNA (Karikó K and Weiss-
man D Issued patents 2012–2019) were used to create the 
anti-SARS-CoV-2 mRNA vaccines, BNT162b2 by BioN-
Tech/Pfizer and mRNA-1273 by Moderna/NIH. When the 

SARS-CoV-2 pandemic emerged, biotechnology companies 
BioNTech and Moderna immediately jumped to action, test-
ing nucleoside-modified mRNA vaccine against the virus 
in mice (Laczko et al. 2020) and soon after in clinical trials 
(Sahin et al. 2020).

While the COVID mRNA vaccines have rolled out in 
an unprecedentedly short time: researchers have gone from 
identification of SARSCoV-2, the causative agent of disease 
to mass production of multiple vaccines, in less than 1 calen-
dar year, but the achievements began decades earlier, in the 
devoted work of hundreds of scientists—including that of 
cancer researchers on mRNA (e.g., Weissman 2015; Kwok 
et al. 2021), (Table 1). mRNA experts now consider pseu-
douridine an essential component of the mRNA technology, 
as the chemical modification of selected nucleotides was the 
groundwork that solved the two most concerning issues in 
mRNA, immunogenicity and stability (Sahin et al. 2014; 
Weissman 2015).

Many different vaccine platforms against SARS- CoV-2 
have been developed, but the mRNA vaccines developed 
with the nucleoside-modified mRNA technology of Karikó 
and Weissman (Karikó et al. 2005) formulated with LNPs 
rivals the best available conventional vaccine manufacture 
methods, as it is more safety, more efficient and much more 
reproducible vaccine as compared to the use of other (subu-
nit, killed and live attenuated virus, as well as DNA-based) 
vaccines (Pardi et al. 2018). Priority COVID-19 vaccina-
tion began in patients with cancer, the largest risk popula-
tion, during the pandemic (Ribas et al. 2021), confirming 
the results of the early studies that COVID-19 vaccines are 
effective in most patients with cancer, with few to no side 
effects (Sahin et al. 2020).

Applications of mRNA technology

The rapid success of mRNA-based COVID-19 vaccines has 
highlighted the vast potential of mRNA technology (Polack 
et al. 2020; Baden et al. 2021). Accumulated knowledge and 
technical advancements have led to the emergence of various 
mRNA-based applications in many branches of medicine, 
including cancer, infectious diseases, autoimmune diseases, 
and regenerative medicine. These applications encompass 
viral vaccines, protein replacement and supplementation 
therapies, cancer immunotherapies, cell-based therapies, 
and reprogramming strategies (e.g., Weissman 2015; Cha-
banovska et al. 2021). Protein replacement and supplementa-
tion therapies and vaccination approaches have been devel-
oped primarily for cancer and infectious diseases.
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mRNA cancer vaccines and other cancer 
immunotherapies

Vaccination is a highly effective therapeutic modality that 
has saved countless lives every year, with preventive vac-
cines being particularly successful (World Health Organiza-
tion 2022). Most cancer vaccines are therapeutic and aim 
to stimulate cell-mediated responses capable of clearing or 
reducing tumor burden (Coulie et al. 2014). The goals of 
cancer and antiviral vaccines are similar, as they aim to elicit 
potent antigen-specific immunity. However, while antiviral 
vaccines generate neutralizing antibodies against exposed 
virion proteins, antitumor immunity depends on T-cell reac-
tivity against HLA-restricted tumor antigens, making their 
identification critical (Coulie et al. 2014; Kwok et al. 2021). 
Earlier research on RNA vaccines was primarily focused 
on cancer treatment, and the response to the COVID-19 
pandemic has leveraged data from years of preclinical and 
clinical trials exploring mRNA vaccines for cancer treatment 
(Dolgin 2021; see Table 1).

Despite the formidable barriers presented by the genomic 
and phenotypic heterogeneity of cancer, as well as the 
immune-dampening effects of cancer cells, significant pro-
gress has been made in the development of cancer vaccines, 
including mRNA-based cancer vaccines, over the past few 
years (e.g., Pardi et al. 2018; Kwok et al. 2021).

Advanced immunotherapies, such as immune checkpoint 
inhibitors and CAR T-cell therapy, have led to remarkable 
treatments for previously untreatable or refractory cancers 
(Ribas and Wolchok 2018; Schuster et al. 2017). The suc-
cess of mRNA-based COVID-19 vaccines has reignited 
interest in mRNA-based cancer immunotherapies. Recent 
advancements in next-generation sequencing (NGS), such 
as whole-exome and transcriptome sequencing, have facili-
tated the precise identification of immunogenic epitopes for 
each tumor by integrating mutational and gene expression 
data obtained from NGS (Wells et al. 2020). This has sig-
nificantly improved the rational design of neoepitope can-
cer vaccines in a patient-specific manner. Enhancing cell-
mediated immunity through the use of cancer vaccines is 
considered one of the most promising options for modern 
cancer immunotherapy, nevertheless, several challenges in 
mRNA vaccine immunogenicity and efficacy still need to be 
addressed (Bidram et al. 2021).

In recent years, mRNA-based drug discovery in can-
cer immunotherapy has advanced significantly (Di Trani 
et al. 2022), leading to the enrollment of patients in various 
clinical trials exploring the efficacy of mRNA-based cancer 
vaccine therapies. Early results from these trials, both as 
monotherapy and in combination with checkpoint inhibitors, 
have been encouraging (Lorentzen et al. 2022; ClinicalTri-
als.gov). Importantly, these mRNA-based immunothera-
pies have shown promise in treating previously untreatable 

diseases, including stage IV non-small cell lung cancer 
(Papachristofilou et al. 2019), unresectable/advanced solid 
tumors (Haanen et al. 2022), and glioblastomas (Meister 
et al. 2022). Promising results have also been seen with 
advanced melanoma (De Keersmaecker et al. 2020), high-
lighting the potential of mRNA-based cancer vaccines in 
treating various types of cancer.

Concluding remarks

Karikó’s and Weissman’s discovery in the field of mRNA 
vaccines and therapeutics was a groundbreaking achieve-
ment that has revolutionized the delivery of effective and 
safe vaccines, therapeutics, and gene therapies across the 
spectrum of medicine. Katalin Karikó has already received 
numerous prestigious prizes, including the Breakthrough 
Prizes and the Lasker award, for her seminal contributions 
in mRNA field. The limitless opportunities of the mRNA 
platform and the immense interest in it from both academic 
communities and mRNA companies, together predict that 
the novel mRNA-based therapeutics, including vaccines, are 
poised to become a key strategy in cancer treatment in the 
near future.
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