
Vol.:(0123456789)

Cereal Research Communications 
https://doi.org/10.1007/s42976-024-00502-w

ORIGINAL PAPER

Molecular identification and management of mycotoxigenic fungi 
in stored corn Grains

Wafaa M. Haggag1 · Mohamed M. Diab1 · Noran A. Al‑Ansary1  · Mohamed I. M. Ibrahim2 · 
Abd El‑Nasser A. Khattab3 · Mosaad A. Abdel‑Wahhab2 · Medhat K. Ali4

Received: 8 August 2023 / Accepted: 11 February 2024 
© The Author(s) 2024

Abstract
Mycotoxin-producing molds which considered as common maize grains contaminants are the genera Fusarium, Aspergillus 
and Penicillium. There are natural and safe ways to protect grains from mold contamination as the use of essential oils and 
chemical treatments. A total number of 25 samples were used to study the natural frequency in five governorates in Egypt, 
Molecular identification indicated that the most frequent fungi were Fusarium verticillioides, Aspergillus niger, Talaromyces 
verruculosus, Aspergillus flavus and Aspergillus terreus. The in vitro studies have been done to determine mycelial growth 
and spore germination inhibition of the two A. flavus; isolated and reference isolates. Thyme and acetic acid were tested 
in direct contact assay to study their effects on mycelial growth. Treatments showed significant impact on mycelial growth 
and spore germination inhibition of both A. flavus isolates. In the postharvest application treatments: as vapour and carrier 
contact assay, Thyme and Acetic acid were tested to determine their influence on growth and aflatoxin production in A. flavus 
isolates by liquid chromatography–electrospray ionization–tandem mass spectrometry (LC–ESI–MS/MS). Results indicated 
that both treatments were effective in inhibition of aflatoxin production in both vapour and carrier assays as they succeeded in 
reducing  AFB1 while they inhibited completely the production of  AFB2. The extent of the inhibition of aflatoxin production 
was dependent on the concentration and storage duration of treatments applied.
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Introduction

Fungi rank second among pathogens that cause diseases in 
maize as the reason for the loss in maize crop (Moham-
madi et al. 2011). In order to increase maize production, it 
is crucial to prevent maize diseases (Lanubile et al. 2015). 
When conditions are ideal, fungi are responsible for 50 to 80 
percent of the damage to stored maize grains.

Aspergillus spp., Fusarium spp., Penicillium spp., Alter-
naria spp., Pythium spp., Rhizoctonia spp., and Rhizopus 
spp., which are soil- and seed-borne fungal pathogens, are 
responsible for many of the common seed diseases in maize 
(Ashiq 2015; Benkerroum 2020; Rózewicz et al. 2021).

These fungi are able to produce mycotoxins, which 
are toxicologically dangerous to both human and animals' 
health. Aflatoxin, ochratoxin, patulin, trichothecenes, and 
fumonisin are the primary mycotoxins (Ashiq 2015; Mahato 
et al. 2019; Jallow et al. 2021).

The use of pesticides to control fungi has expanded as 
their infestation has increased (Christensen et al. 2014). 
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The excessive use of chemicals had a negative impact 
on the environment and human health (Al-Ansary et al. 
2022).

Mycotoxins, according to Leslie et al. (2008), affect the 
quality of harvested crops and have an adverse effect on 
the health of individuals as well as animals. Mycotoxins 
have a wide range of structural variations, which causes 
a wide range of effects (Ismaiel and Papenbrock 2015).

A number of mycotoxins produced by Aspergillus 
species, including aflatoxins, were described by Hussain 
et al. (2013). Mycotoxins known as aflatoxins, which 
are hazardous to people and animals, are produced by A. 
flavus and A. parasiticus (Somda et al. 2008).

The prevention of mold contamination and growth 
and the detoxification of contaminated items are two 
types of strategies that can be used to manage aflatoxins 
(Lavkor and Var 2017; Benkerroum 2020). Similarly, 
pre- and post-harvest controls are two general types of 
techniques that can be used to prevent aflatoxins (AFS) 
contamination (Kabak et al. 2006; Lavkor and Var 2017). 
AF-resistant crop varieties, use of fungal and bacterial 
inhibitors, application of natural and chemical agents 
and appropriate field management techniques (such as 
crop rotation, irrigation, and soil cultivation) are the 
main control strategies used prior to harvest. Following 
harvest, control tactics focus on enhancing storage and 
drying conditions using biological, chemical, and natural 
irradiation (Varga et al. 2010; Agriopoulou et al. 2020).

The current study aimed to develop strategies for 
management of fungal seed-borne pathogens and reduce 
their aflatoxin production depending on the alternatives 
of conventional fungicides or fumigants as post-harvest 
treatments.

Materials and methods

Plant material

Twenty five samples (1 kg each) of white maize grains 
were collected randomly from different locations in 
Cairo, Giza, Qalyubia, Fayoum and Sharqia governorates, 
Egypt. Each sample was placed in dry sterile containers. 
Collected samples were labeled and kept separately in 
sealed paper bags and transported to the laboratory of 
biopesticides production, Plant Pathology Department, 
Research of Agricultural and Biological Institute, 
National Research Center, where they were stored at 4 °C 
refrigerator for further analysis.

Isolation of seed‑borne fungi associated with maize 
grains

One hundred maize grains were taken from each of the 
25 samples, surface sterilized by dipping in 1 % aqueous 
sodium hypochloride solution for 3 min, followed by three 
successive rinses in sterile distilled water Then grains 
were dried with sterilized filter papers in a laminar flow 
hood. From each sample, 100 grains were selected then 
plated on each of Potato Dextrose Agar (PDA) and Malt 
salted agar (MSA) media, 50 grains/medium in 5 replicates 
for 7 day at 25±2 °C (Dhingra and Sinclair 1985). The 
isolated fungi were single-spored and the cultures were 
transferred onto PDA slants at 4 °C for further studies 
(Cumagun 2012).

Frequency of fungal isolates associated with grains

The frequency of occurrence of each fungus species 
isolated from maize grains was calculated by the following 
formula (Tsedaley and Adugna (2016)):

Fungal isolate Frequency (%) = Number of occurrence 
of fungus species/total number of isolated fungi × 100.

Biological identification of more frequent maize 
associated seed‑borne fungi

The biological identification of the fungal isolates had 
been done and published in previous work (Al-Ansary 
et al. 2022).

Molecular identification of more frequent maize 
associated seed‑borne fungi

The molecular identification of the fungal isolates had 
been done by Sigma Scientific Services co.

Extraction of fungal DNA

The fungal genomic DNA was extracted from single 
spored cultures of five fungal isolates recovered from 
maize grains collected from different governments in 
Egypt and grown on PD broth medium with the Quick-
DNA Fungal Kit (Zymo Research, USA) according to the 
manufacturer's instructions.

Determination of the genomic DNA quantity 
and purity

The extracted DNA was estimated according to Sambrook 
et al. (1989) through reading the UV-absorbance at 260 
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and 280 nm using spectrophotometer to estimate the DNA 
quantity and purity.

PCR partial amplification and sequencing of internal 
transcribed spacer (ITS)

The fungal isolates were identified using molecular genetic 
analysis and internal transcribed spacer (ITS). A technique 
based on Boekhout et al. (1994) was used to get partial 
sequences of the isolate 18S rDNA. The gene’s divergent 
domain was amplified using two separate primers: the first 
primer (ITS1) sequence is 5' TCC GTA GGT GAA CCT GCG 
G-3', while the second primer (ITS4) sequence is 5' TCC 
TCC GCT TAT TGA TAT GC-3'. Utilized primer (12 ng) 
and 40 ng of the purified DNA sample were added to each 
polymerase chain reaction (PCR) bead. The amplified DNA 
products were electrophoresed on 1.0% agarose gel and 1X 
TBE (Tris-borate-EDTA) buffer at a constant 100 V for about 
2 hours. The different band sizes were determined against 
Gene Ruler 100 bp DNA Ladder (Thermo SM0243) and 
the separated bands were stained with 0.5 µg/ml ethidium 
bromide and photographed using the Gel Documentation 
System with UV Transilluminator.

Fungal DNA purification

The PCR products were cleaned up using GeneJET™ PCR 
Purification Kit (Thermo K0701).

Isolate identification

The DNA sequencing of the purified PCR products were 
done with ABI 3730xl DNA sequencer (GATC Company, 
Germany) by using forward primer.

Evolutionary relationships of taxa

The DNA sequences of the fungal isolates were compared 
with the sequences available by the Basic Local Alignment 
Search Tool (BLAST) in the National Center for 
Biotechnology Information (NCBI), GenBank database 
(http:// www. ncbi. nlm. nih. gov). The sequences were aligned 
together with those of reference taxa retrieved from public 
databases and the evolutionary distance was generated based 
on NCBI Neighbor Joining (Saitou and Nei 1987).

Source of standard Fungal isolate

An isolate of A. flavus isolates was kindly provided by 
Toxins and Food Pollutants Department, Food Industries 
and Nutrition Research Division, National Research Center. 
This isolate was known to induce aflatoxin and used as a 
standard isolate.

Essential oil

The ready-to-use Thyme essential oil was obtained from 
the Pressing and Extraction of Natural Oils Unit, National 
Research Center.

Direct contact assay

Antifungal activity was studied by using an in vitro direct 
contact assay. (Cakir et al. 2004; Gong et al. 2009).

Mycelial growth inhibition

Mycelial radial growth inhibition assay was conducted 
according to (Quiroga et al. 2001; Cakir et al. 2004; Song 
et al. 2004; Gong et al. 2009).

The percentage (%) of mycelial growth inhibition was 
determined as [(Mc – Mt)/Mc] ×100, where Mc average 
of five replicates of fungal mycelial growth measured 
on control agar medium, and Mt is an average of five 
replicates of fungal mycelial growth measured on treated 
agar medium with the treatments.

Inhibitory activity on spore germination

Spore germination inhibition assay was conducted 
according to (Liu et al. 2009; Wang et al. 2010).

The percentage (%) of the spore germination inhibition 
was determined as [(Gc – Gt)/Gc] ×100, where Gc is 
an average of five replicates of germinated spore in 
the control, and Gt is an average of five replicates of 
germinated spores in the treated ones.

Application methods

Two application methods i.e., Volatile and Carrier contact 
assays were tested with the acetic acid and thyme at 
different concentrations and evaluated for their capability 
to suppress aflatoxin production from A. flavus isolates; 
the one isolated throughout this study and the standard 
isolate, on maize grains during storage.

Volatile contact assay

The method of Paster et al. (1995), Abdallah (2005) and 
Bill et al., (2015) was modified as follow: The effect of 
volatile components on the treated maize grains with 
different concentrations of acetic acid and essential oils 
was tested in plastic containers. Maize grains treated 

http://www.ncbi.nlm.nih.gov
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without acetic acid or oils was used as the control. Three 
replicates were used for each treatment.

Carrier contact assay

Method by Wang et al. (2019) was modified as follow: Wheat 
bran as carrier was autoclaved at 120 °C for 60 min. Each of 
the tested acetic acid or oil added individually to the sterilized 
wheat bran with different concentrations, and then mixed 
thoroughly to ensure equal distribution of mixed carriers. The 
prepared mixture was added to sterilized maize grains. Three 
replicates were used for each treatment.

Aflatoxin production

Detection and analysis of aflatoxin was performed using 
liquid chromatography–electrospray ionization–tandem mass 
spectrometry (LC-ESI-MS/MS) with an ExionLC AC system 
for separation and SCIEX Triple Quad 5500+ MS/MS system 
equipped with an electrospray ionization (ESI) for detection. 
The instrument data were collected and processed using the 
SCIEX OS 1.6.10.40973 software (Hu et al. 2017).

To determine the in vitro antifungal efficacy of three 
different concentrations (1/2  EC90,  EC90 and  2EC90) of acetic 
acid and thyme essential oil, maize grains were divided into 
two methods, i.e.,, Volatile assay and Carrier contact assay, 1.0 
Kg for each concentration of each treatment in both methods. 
Maize grains were primarily sterilized in Erlenmeyer flask for 
20 min at 121 °C using autoclave.

Maize grains in both volatile and carrier contact methods 
were divided into two groups, each group inoculated with 
20 mL/kg  (106 spores/ml) of conidial suspension of one of 
the two A. flavus fungal isolates, then treatments with different 
concentrations were added and then maize was stored for 30 
days. Untreated and inoculated maize grains were used as 
control treatments. Samples were taken from each method 
after 15 and 30 days of storage and  AFB1 was extracted from 
maize grains.

Statistical analysis

The median effective concentrations  (EC50 and  EC90) against 
tested fungi were calculated using coefficient equation 
between probit of means of inhibition (%) and logarithm of 
concentrations used according to (Ramadan et al. 2007).

Results

Isolation of seed‑borne fungi associated with maize 
grains

From the twenty five samples of maize grain collected 
from different governorates, the results showed that the 
most dominant genera isolated on PDA were Aspergillus 
(three species) followed by Penicillium sp. and Fusarium 
spp with average frequency of 62.5, 22.5 and 13.3%, 
respectively, while on MSA average frequency was 58.9, 
29.4 and 8.3%, respectively. The other fungal genera such 
as Alternaria sp. (1.1–0.0 %) and other (0.9 & 0.5%) were 
also isolated with low frequency of occurrence (Fig.1).

A. flavus was the most frequent species among the 
Aspergilli group -in both PDA and MSA media- with 
frequency of occurrence 30.8 and 35.6 %, respectively, 
followed by A. niger with frequency of occurrence 26.0 
and 19.9 %, respectively, while A. terrus was the least 
frequent isolate among the Aspergilli with frequency of 
occurrence 5.7 and 3.5 %, respectively.

Fig. 1  Mean frequency of isolated fungi of Maize seeds from differ-
ent Governorates in Egypt on: a PDA and b MSA
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Molecular Identification of more frequent maize 
associated seed‑borne fungi

Following DNA extraction from pure fungal strains and 
concentration measurement by spectrophotometer, the 
ITS1 and ITS4 primers were used to amplify the area of 
the rDNA repeat unit that includes the ITS from the fun-
gal strain's genomic DNA. (Fig. 2) demonstrate that after 
amplification, roughly 632 bp were produced.

After the DNA sequencing of the purified PCR 
products with ABI 3730xl DNA sequencer (GATC 
Company, Germany), the obtained DNA sequence 
with the identified fungal strains from NA01 to NA05 
(Table 1) were conserved in the GenBank.

Evolutionary relationships of the identified strains

See Fig. 3

Determination of antimycotoxigenic activity

The antifungal effect of thyme and acetic acid was examined 
in vitro by the food poison (bi culture) technique. The  EC50 
and  EC90 values of the thyme and acetic acid against myce-
lial growth and spore germination of isolated A. flavus and 
reference isolate of A. flavus are shown in Table 2.

Both thyme and acetic acid had an obvious significant 
inhibitory activity against isolated A. flavus mycelial growth, 
where there  EC50 is 0.8704, 0.0016 mg/mL, respectively and 
 EC90 is 1.6074, 0.0075 mg/mL, respectively with regression 
equations y = 3.7538x−6.0351 and y =1.4905x + 4.6916, 
respectively and coefficient of determination  R2 = 0.872, 
 R2 = 0.9701, respectively according to Table 2 and Fig. 4a. 
While, mycelial growth of reference isolate of A. flavus was 
significantly affected by thyme and acetic acid, as their  EC50 
is 0.8054, 0.0018 mg/mL, respectively and  EC90 is 2.0808, 
0.0088 mg/mL, respectively with regression equations y 
= 2.425x−2.0467 and y =1.4522x + 4.6249, respectively 
and coefficient of determination R2 = 0.9288, R2 = 0.9954, 
respectively according to Table 2 Fig. 4b.

Both thyme and acetic acid had an obvious significant 
inhibitory activity of spore germination against isolated 
A. f lavus, where there  EC50 is 0.7309, 0.0036 mg/
mL, respectively and  EC90 is 1.2616, 0.0129 mg/mL, 
respectively with regression equations y = 4.2188x−7.0821 
and y = 1.8219x + 3.9773, respectively and coefficient 
of determination R2 = 0.75, R2 = 0.9757, respectively 
according to Table 2 Fig. 4c. While spore germination of 
reference isolate of A. flavus was significantly affected 
by thyme and acetic acid, as there  EC50 is 1.1303, 0.0042 
mg/mL, respectively and  EC90 is 1.8781, 0.0215 mg/mL, 
respectively with regression equations y = 4.5344x−8.8444 
and y =1.4129x + 4.116, respectively and coefficient 
of determination R2 = 0.9547, R2 = 0.9394, respectively 
according to Table 2 Fig. 4d.

Detection and determination of aflatoxin 
production

The effect of thyme essential oil and acetic acid on two types 
of aflatoxins, i.e.,  AFB1 and  AFB2 production by two A. 

Fig. 2  Agarose gel (1.2%) stained with ethiudium bromide shows the 
PCR products of ITS regions of the five fungal isolates obtained from 
maize grains using ITS1 and ITS4 primers. M: 100 bp DNA Ladder

Table 1  Accession number, closest phylogenetic relative, and identity percent of five fungal isolates (NA01 to NA05) obtained from Maize 
grains

Isolate Name Accession number Closest phylogenetic relative and accession number Identity%

NA01 A. flavus OQ135182.1 Aspergillus flavus IF6, MH056516.1 97.70
NA02 A. niger OQ135183.1 Aspergillus niger PKA16, KY907172.1 99.65
NA03 A. terreus OQ135184.1 Aspergillus terreus T10, MN198144.1 98.93
NA04 F. verticillioides OQ135185.1 Fusarium verticillioides ANF212, KX344070.1 99.46
NA05 T. verruculosus OQ135186.1 Talaromyces verruculosus EF3, MN077562.1 99.48
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flavus isolates (isolated and reference) in sterilized maize 
grains, at two different assays (volatile and carrier) and two 
incubation periods was studied after 15 and 30 days using 
LC-ESI-MS/MS. Both of them had a significant impact on 
 AFB1 and  AFB2 accumulation.

In the untreated controls, the major levels of only  AFB1 
and  AFB2 were observed after 15 days of storage in both 
volatile and carrier contact assays then they began to 
decrease till it reached the lowest level after 30 days of 
storage.

Fig. 3  Phylogenetic trees of the taxonomic position of the iso-
lated fungal strain: a (NA01), b (NA02), c (NA03), d (NA04) and e 
(NA05) isolated from maize grains was created using the Neighbor-

Joining method, based on the ITS sequences and other closely related 
species in database
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After 15 days of storage

Determination of aflatoxin B1

Volatile contact assay indicated that thyme and acetic 
acid treatments after 15 days of incubation were able 
to reveal important reduction of  AFB1 accumulation 
produced from isolated A. flavus, where there  EC50 is 
1.0304, 0.1008 mg/mL, respectively and  EC90 is 1.8415, 

1.6853 mg/mL, respectively with regression equations Y 
= 5.0763x−10.295 and Y =1.0464x + 4.9036, respectively 
and coefficient of determination R2 = 0.8977, R2 = 0.9067, 
respectively (Table 3 and Fig. 5a). In carrier contact assay, 
the thyme and acetic acid treatments after 15 days of stor-
age also had an obvious significant inhibitory activity 
against  AFB1, where there  EC50 is 5.9729, 0.1588 mg/mL, 
respectively and  EC90 is 16.6064, 0.2724 mg/mL, respec-
tively with regression equations Y = 2.8823x−5.8841 and 
Y = 5.4646x−7.0274, respectively and coefficient of deter-
mination R2 = 0.7905, R2 = 0.9454, respectively according 
to Table 3 Fig. 5b.

Also, volatile contact assay showed that thyme and acetic 
acid treatments after 15 days of incubation had significant 
inhibitory effect on  AFB1 levels produced from reference A. 
flavus, where there  EC50 is 0.0045, 0.0013 mg/mL, respec-
tively and  EC90 is 0.0744, 0.0134 mg/mL, respectively with 
regression equations Y = 1.0542x + 4.3072 and Y =1.2623x 
+ 4.8554, respectively and coefficient of determination R2 
= 0.9976, R2 = 0.9918, respectively (Table 3 Fig. 5c). In 
carrier contact assay, the thyme and acetic acid treatments 
after 15 days of storage also were effective in the inhibi-
tion of  AFB1 accumulation, where there  EC50 is 4.3877, 
0.002 mg/mL, respectively and  EC90 is 45.7908, 4.3841 mg/
mL, respectively with regression equations Y = 1.2567x + 

Table 2  Heatmap showing  EC50 and  EC90 (ppm) of thyme and acetic 
acid on mycelial growth and spore germination of isolated and refer-
ence A. flavus isolates
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Fig. 4  Correlation coefficient between the logarithm of the treatments concentrations and the probit of means of a isolated A. flavus mycelial 
growth b reference A. flavus mycelial growth c isolated A. flavus spore germination inhibition (d reference A. flavus spore germination inhibition
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0.4228 and Y = 0.382x + 4.8888, respectively and coefficient 
of determination  R2 = 0.9142, R2 = 0.9845, respectively 
(Table 3 Fig. 5d).

Determination of aflatoxin B2

In volatile contact assay, acetic acid had the ability to com-
pletely inhibit the accumulation of  AFB2 produced by iso-
lated A. flavus after 15 days of storage in compare to the 
control. However thyme was able to reduce  AFB2 accumula-
tion produced from isolated A. flavus, where there  EC50 is 
0.8482 mg/mL and  EC90 is 1.4336 mg/mL with regression 
equation Y = 55.6165x−11.448 and coefficient of determi-
nation R2 = 0.7527 (Table 4 and Fig. 6a). In carrier contact 
assay, the thyme and acetic acid treatments after 15 days of 
storage also had an obvious significant inhibitory activity 
against  AFB2, where there  EC50 is 7.007, 0.0894 mg/mL, 
respectively and  EC90 is 11.5019, 0.1431 mg/mL, respec-
tively with regression equations Y = 5.9469x−17.869 and 
Y = 6.2618x−7.2177, respectively and coefficient of deter-
mination R2 = 0.7872, R2 = 0.75, respectively (Table 4 and 
Fig. 6b).

In volatile contact assay, both thyme and acetic acid 
had the ability to completely inhibit  AFB2 accumulation 

Table 3  Heatmap showing  EC50 and  EC90 (ppm) of thyme and acetic 
acid on aflatoxin B1 produced by isolated and reference A. flavus iso-
lates after 15 days of storage
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Fig. 5  Correlation coefficient between the logarithm of the thyme and 
acetic acid concentrations and the probit of means of  AFB1 content 
produced by a isolated A. flavus and b reference A. flavus under vola-

tile contact assay and  AFB1 content produced by c isolated A. flavus 
and d reference A. flavus under carrier contact assay
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produced by reference A. flavus after 15 days of storage in 
compare to the control. On the other hand, in carrier contact 
assay, the thyme and acetic acid treatments after 15 days 
of storage also were effective in the inhibition of  AFB2 
accumulation, where there  EC50 is 1.6428, 0.0024 mg/mL, 
respectively and  EC90 is 4.6534, 0.0166 mg/mL, respec-
tively with regression equations Y = 2.8306x−4.102 and Y 

= 1.4949x + 4.4433, respectively and coefficient of deter-
mination R2 = 00.9627, R2 = 0.75, respectively (Table 4 
and Fig. 5c).

After 30 days of storage

After 30 days of incubation, thyme and acetic acid treat-
ments had the ability to reduce  AFB1 content produced 
by isolated A. flavus, where there  EC50 is 0.5163, 0.0096 
mg/mL, respectively and  EC90 is 20.2622, 1.1595 mg/mL, 
respectively with regression equations Y = 0.8031x + 2.8213 
and Y =0.6146x + 4.3967, respectively and coefficient of 
determination R2 = 0.9902, R2 = 0.9882, respectively under 
the condition of volatile contact assay (Table 5 and Fig. 7a). 
On the other hand and under carrier contact assay, thyme 
and acetic acid treatments also had an obvious signifi-
cant inhibitory activity against  AFB1, where there  EC50 is 
10.0956 0.0759 mg/mL, respectively and  EC90 is 44.5858, 
7.1775 mg/mL, respectively with regression equations Y = 
1.9843x−2.9454 and Y = 0.6478x + 3.7821 (Table 5 and 
Fig. 7b).

Table 4  Heatmap showing  EC50 and  EC90 (ppm) of thyme and acetic 
acid on aflatoxin B2 produced by isolated and reference A. flavus iso-
lates after 15 days of storage
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Fig. 6  Correlation coefficient 
between the logarithm of the 
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ferent concentrations of thyme 
on  AFB2 content produced by 
isolated A. flavus under volatile 
contact assay. Correlation coef-
ficient between the logarithm 
of the thyme and acetic acid 
concentrations and the probit 
of means of  AFB2 content 
produced by b isolated A. flavus 
and c reference A. flavus under 
carrier contact assay
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While in volatile contact assay, both treatments of thyme 
and acetic acid possessed significant inhibitory effect on 
 AFB1 levels produced from reference A. flavus, where there 

 EC50 is 0.0159, 0.0209 mg/mL, respectively and  EC90 is 
0.1617, 0.0551 mg/mL, respectively with regression equa-
tions Y = 1.2707x + 3.4733 and Y =1.2623x + 4.8554, 
respectively and coefficient of determination R2 = 0. 9137, 
R2 = 0.9239, respectively (Table 5 and Fig. 7c). Although, 
treatments with thyme and acetic acid also had great effect 
in  AFB1 accumulation inhibition under carrier contact assay, 
where there  EC50 is 0.2608, 0.002 mg/mL respectively and 
 EC90 is 5.992, 4.3841 mg/mL, respectively with regression 
equations Y = 0.3808x + 4.0799 and Y = 0.382x + 4.8888, 
respectively and coefficient of determination R2 = 0. 9051, 
R2 = 0.9845, respectively (Table 5 and Fig. 7d).

Determination of aflatoxin B2

Both thyme and acetic acid treatments using volatile and 
carrier contact assay had the ability to completely inhibit 

Table 5  Heatmap showing  EC50 and  EC90 (ppm) of thyme and acetic 
acid on aflatoxin B1 produced by isolated and reference A. flavus iso-
lates after 30 days of storage
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Fig. 7  Correlation coefficient between the logarithm of the thyme and 
acetic acid concentrations and the probit of means of  AFB1 content 
produced by a isolated A. flavus under volatile contact assay and b 

reference A. flavus under carrier contact assay c isolated A. flavus 
under volatile contact assay and d reference A. flavus under carrier 
contact assay
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 AFB2 accumulation produced by both isolated and reference 
A. flavus isolates after 30 days of storage in compare to the 
control.

Discussion

Grains are considered as one of the most economic important 
crops worldwide as well as in Egypt (Al-Ansary 2023). It’s 
found to be suitable for infection with a number of fungi, 
i.e.,, Aspergillus spp., Penicillium spp. and Fusarium spp. 
(Mansfield et al. 2008; Hussain et al. 2013).

In this study, corn grain samples were collected from 
different governorates in Egypt for detection of the presence 
of fungi-producing aflatoxin.

The experimental results showed that three genera of 
fungi (Aspergillus spp., Penicillium sp. and Fusarium spp.) 
were noted to be the most frequently fungi isolated from the 
corn grains. Out of them, three species of Aspergillus (A. 
flavus, A. niger and A. terreus) were isolated. The findings 
of this study could be suppoted by the work of Amadi and 
Adeniyi (2009); Goko et al. (2010); Krinjaja et al. (2013); 
Baka et al. (2014); Madbouly et al. (2014); Tsedaley and 
Adugna (2016); Shabana et al. (2022); Oldenburg et al. 
(2017) and Gromadzka et al. (2019) who also found that 
Aspergelli, Fusaria, and Penicilli were the three most 
prevalent post-harvest pathogenic fungi.

Results of isolation frequency in this study mentioned 
that Aspergillus spp. had the frequent presence and high 
level genera. These findings agree with the literature as 
Goko et al. (2010). On the other hand, Elwakil et al. (2020) 
stated that the most prevalent species were F. verticillioides 
(100%), Penicillium spp. (96.7%), A. flavus (80%), and A. 
niger (83.3%).

The five fungal isolates were biologically and molecularly 
identified using ITS region among using two primers 
flanking a PCR product of 632 nts. Results of molecular 
identification confirmed the biological identification as they 
were documented in GenBank under the accession numbers 
of OQ135182.1, OQ135183.1, OQ135184.1, OQ135185.1 
and OQ135186.1 representing the strains of A. flavus, A. 
niger, A. terreus, F. verticillioides and T. verruculosus 
respectively. Results of molecular identification agreed 
with some investigations (Galletti et al. 2019; Gaige et al. 
2020; Rahm et al. 2020; Tran et al. 2021) that revealed 
that maize grains were accompanied by several fungal 
pathogens, including A. flavus, A. niger, Penicillium spp., 
F. verticillioides and others, which causes various diseases 
in the majority of the world maize-growing areas.

At the level of inducing aflatoxin, the strain of A. flavus 
(OQ135182.1) was tested for aflatoxin production in fungal-
infected grains compared to the standard strain.

Management of aflatoxigenic fungi was conducted using 
the selected strain as well as the standard. This was done by 
using two materials (thyme essential oil and acetic acid).

Tzortzakis and Economakis (2007); Martínez (2012) 
and Daniel et  al. (2015) mentioned that essential oils 
can comprise more than 60 individual components in 
which up to 85% of the EO can be mainly composed of 
major components, while the remaining 15% is simply a 
trace amount (Senatore 1996). Several active compounds, 
including: aldehydes, phenols, and alcohols show significant 
bioactivities against fungi development (Jerković et  al. 
2019). Also acetic acid and other weak organic treatments 
can be successfully replace chemical treatments as they have 
an important role such as: preservatives in the food sector 
(Kang et al. 2003), reduce the development of fungi (Hassan 
et al. 2015), and prevent them from producing mycotoxin 
(Guimaries et al., 2018). These qualities inspired scientists 
to employ it for seed treatment as well as plant protection 
(Szopińska 2013; El-Saidy and El-Hai 2016; Rioux et al. 
2016; Dorna et  al. 2018; Escamilla et  al. 2019). It was 
shown that acetic acid vapors at different concentrations 
inhibited the growth of Alternaria sp., Aspergillus spp., F. 
moniliforne, and Penicillium spp. as well as their ability to 
produce spores (Abdalla 2005; Morsy et al. 2000a, b; Luz 
et al. 2021).

The ability of thyme essential oil and acetic acid to inhibit 
the aflatoxin was detected within detection of their effect on 
mycelial growth, spore germination and aflatoxin production 
among two methods (volatile and carrier contact assay).

Acetic acid and EOs application techniques range from 
fumigation to combining seeds, to soaking seeds in the 
treatment solutions, to loading treatments on carrier in 
order to suppress seed-borne diseases. EOs and acetic acid 
should be applied practically (volatile and carrier contact 
applications) as inhibitors of mold growth because they 
are generally regarded as safe. Acetic acid and EOs have 
strong bioactive effect in the vapour phase, which makes 
them attractive as fumigants for stored product protection 
(Čvek et al. 2010).

Results revealed that the two materials were significantly 
effective on mycelial growth and spore germination inhibi-
tion. The findings of thyme essential oil effect on the tox-
genic fungi could be supported by the work of Sinha et al. 
(1993) and Thanaboripat et al. (2004) who demonstrated 
that A. flavus growth in maize grain was inhibited with 
citronella EO. Simillarly, EOs were reported to affect the 
growth of F. culmorum (Sahab et al. 2014; Perczak et al. 
2019) and Aspergillus flavus, A. parasiticus, A. ochraceus, 
and F. verticilloides (Soliman and Badeaa 2002). On the 
other hand, Nesci et al. (2011) observed that thyme oil 
couldn’t reduce the counts of Aspergillus section Flavi in 
stored peanut. Results presented by El-Aziz et al. (2015) 
indicated that the tested toxigenic fungi were sensitive 
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to the essential oils particularly to thyme and cinnamon. 
These results were confirmed by many researchers, as the 
mycelium treated with thyme oil showed alteration in the 
morphology of the hyphae, which appeared collapsed and 
caused a reduction in mycelial growth. (Rad et al. 2011; 
Eweis et al. 2012). While the experimental result of acetic 
acid treatment was in harmony with earlier results which 
showed that acetic acid as post-harvest treatments directly 
inhibit pathogen growth, spore germination and aflatoxin 
production by affecting the active sites of enzymes and cel-
lular metabolism (Arrebola et al. 2010; Bozik et al. 2017). 
Organic acids according to Kang et al. (2003) and Wang 
et al. (2021), lower the pH of the fungal cell, which requires 
a lot of energy to maintain intracellular pH equilibrium. 
Fungal growth will be constrained as a result of the signifi-
cant energy consumption required for this task. Kang et al. 
(2003) found that when applying acetic acid, fungal respi-
ration was inhibited and suggested that the action of acetic 
acid in its dissociated form would be more potentiated and 
exerted within the cell.

Results of aflatoxin reduction with thyme EO and acetic 
acid proved their significant inhibitory activity against AFB1 
and AFB2 produced by both isolated A. flavus and standard 
A. flavus strains under volatile and carrier assays after 15 
and 30 days of storage. Similarly, Abd El-Aziz et al. (2015) 
proved that A. flavus and A. parasiticus produced less afla-
toxins (B) when exposed to studied essential oils compared 
to the control especially when thyme and cinnamon applied. 
Numerous researchers have backed up this finding (Rad et al. 
2011; Eweis et al. 2012). Additionally, it has been demon-
strated that the thyme oil can effectively stop fungi growth 
and the production of its toxins (Rasooli and Owlia 2005; 
Kumar et al. 2008; Ismaiel and Papenbrock 2015).

Chang et al. (2022) stated that who stated that volatile 
contact assay had stronger antifungal activity as a post-
harvest treatment than carrier contact assay and this work 
agrees with our proved results.

As a conclusion, the natural products as thyme and acetic 
acid can be utilized to suppress fungal seed-borne pathogens 
and their aflatoxin production in stored maize grains.
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