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Abstract
Over the past few decades, the amount of ultraviolet-B radiation (UV-B) reaching the earth’s surface has been altered due to 
climate change and stratospheric ozone dynamics. This narrow but highly biologically active spectrum of light (280–320 nm) 
can affect plant growth and development. Depletion of ozone and climate change are interlinked in a very complicated 
manner, i.e., significantly contributing to each other. The interaction of climate change, ozone depletion, and changes in 
UV-B radiation negatively affects the growth, development, and yield of plants. Furthermore, this interaction will become 
more complex in the coming years. The ozone layer reduction is paving a path for UV-B radiation to impact the surface 
of the earth and interfere with the plant's normal life by negatively affecting the plant's morphology and physiology. The 
nature and degree of the future response of the agricultural ecosystem to the decreasing or increasing UV-B radiation in the 
background of climate change and ozone dynamics are still unclear. In this regard, this review aims to elucidate the effects 
of enhanced UV-B radiation reaching the earth's surface due to the depletion of the ozone layer on plants’ physiology and 
the performance of major cereals.
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Introduction

Presently, the world's major problem is feeding the masses 
with limited resources. Reducing the yield gap is a key 
approach in the crop production system to provide adequate 
food for 9 billion people worldwide by 2050 (Novotny et al. 
2023). The world population is continuously increasing, 
while global climate change degrades our ability to increase 
food production on a global scale (Godfray et al. 2010). 
Global food security greatly depends on cereal production, 
which yearly accounts for almost 26 million tonnes, which 
clearly indicates the importance of cereals and cereal prod-
ucts (FAO 2022). Cereals and their products are the principal 
component in most human foods (McKevith 2004; Ahmad 
et al. 2023), both in developing and developed countries, 
offering a huge amount of nutrients and dietary energy. 
Cereals are comprised of almost 75% carbohydrates and 
6–15% protein and thus, supply more than 50% of energy 
globally (Laskowski et al. 2019). The staple cereals are the 
basis for global food security and with the estimated rise in 
population, the demand for cereals will also increase to fulfil 
the caloric needs of the globe (Godfray et al. 2010). The 
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ozone sheet in the stratosphere reduces the amount of incom-
ing ultraviolet B radiation (UV-B) reaching the earth's sur-
face (Bernhard et al. 2020; Dawood et al. 2022). However, 
its depletion is leading to a rise in the amount of solar radia-
tion, particularly UV-B, which is undoubtedly harmful to life 
on earth (Bernhard et al. 2020). One of the major causes of 
ozone depletion is the anthropogenic release of compounds 
containing bromine and chlorine into the environment (Hos-
sain 2023). Chlorofluorocarbon (CFC) has the highest poten-
tial to diminish the ozone layer; refrigerators, burning tyres, 
and automobile exhausts are the primary sources of this gas 
in the open environment (Zhang et al. 2023).

The reduction in the stratospheric ozone because of cli-
mate change over the last several years has diverted the 
attention of agricultural scientists towards its effects on 
plants. The ozone dynamics over the southern hemisphere 
are shown in Fig. 1. It is a serious threat to agricultural pro-
duction. Besides photosynthetically active radiations (PAR) 
with a detectable range of 400–700 nm, plants are also 
subjected to ultraviolet radiations, i.e., UV-A, UV-B, and 
UV-C with 320–390 nm, 280–320 nm, and below 280 nm 
wavelength, respectively. The relative percentages of the 
PAR and UV portions of the incoming solar energy under 
natural conditions with a clear sky range from 42.7 to 71% 
and 2.8 to 7%, respectively (Escobedo et al. 2011). While 
UV has a further subdivision, i.e., UV-A has a 95%, and 

UV-B has a 5% share. UV-A radiation is not very harmful 
to plants (Nawkar et al. 2013). However, UV-B radiation has 
detrimental effects on the growth and development of plants 
because it induces certain morphological and physiologi-
cal changes in plants (Robson et al. 2015). The detrimental 
impacts of UV-B radiation on DNA are evident, indicating 
that it affects all living organisms' normal living processes 
(Rastogi et al. 2010), including plants. Higher UV-B levels 
can damage living cells (Nawkar et al. 2013). The changes 
monitored in the ozone layer in the past decades have 
affected the amount of UV-B impacting the earth's surface, 
with subsequent influence on human health, biogeochemical 
cycles, terrestrial, and marine ecosystems (Bais et al. 2015).

The future level of surface UV-B radiation and the pro-
spective effects of global climate change on UV levels are 
still unknown (Andrady et al. 2012). Despite the commence-
ment of the ozone recovery, no considerable decrease in 
UV-B radiation has been detected (Bais et al. 2015). Many 
locations are subjected to elevated levels of incoming UV-B 
radiation regardless of the efforts to minimize CFC emission. 
Studies have been carried out to investigate the influence 
of UV-B radiation on plants, mostly in controlled (green-
house or growth chamber) conditions (Caldwell et al. 2007). 
Determining the impact of increased UV-B radiation under 
field conditions is vital to evaluating the influence of this 
stress factor on the performance of plants (Parisi et al. 2003; 

Fig. 1  Extension of the ozone hole over the southern hemisphere (from 1979–2019). The red and yellow color denotes higher ozone columns, 
while blue denotes lower ozone columns (https:// www. eea. europa. eu/ data- and- maps/ figur es/ maxim um- ozone- hole- area- in-7)

https://www.eea.europa.eu/data-and-maps/figures/maximum-ozone-hole-area-in-7
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Abreu et al. 2023). The harmful effects of UV-B radiation on 
plant performance are widely reported, but the effect of an 
increased level of UV-B on the productivity of grain crops is 
under debate (Hidema and Kumagai 2006). It is imperative 
to fully recognize how the plants will react to the increase 
or decrease in UV radiation under open conditions within 
the framework of climate change (Barnes et al. 2019, 2022a, 
b). Furthermore, it is challenging to evaluate the response of 
plants to changing UV-B radiation simultaneously with other 
multiple environmental stresses produced due to climate 
change, but it is of utmost importance in the perspective of 
the future environment (Virjamo et al. 2014). The direct and 
indirect impacts of climate change-related phenomena are 
likely to affect the future level of UV radiation and could 
modify the impacts of the projected ozone recovery on UV 
radiation (Bais et al. 2015). The purpose of this study is to 
review the UV-B radiation against the background of climate 
change and its subsequent effects on crops.

Lockdown due to the coronavirus pandemic 
and ozone layer

CO2 emissions are one of the most significant causes of 
global warming, and a rise in  CO2 subsequently reduces 
the ozone layer. Most countries imposed lockdowns due to 
the COVID-19 pandemic, which ranged from several weeks 
to months, and significantly aided in the reduction of  CO2 
emissions from transportation and other sectors in the short 
term (Table 1). Furthermore, between February and June 
2020, global emissions of ozone-depleting substances like 
nitrogen oxides (NOx) decreased by almost 15% as a result 
of the lockdown (Miyazaki et al. 2021). Other main pollut-
ant gases like CO,  SO2,  O3, and volatile organic compounds 
(VOCs) have been studied in various countries during the 
lockdown. Considerable variations in their amounts before 
and during the lockdown were observed. A reduction of 
21–26%, 16–26%, and 37–57% in the concentrations of CO, 
 SO2, and volatile compounds, respectively, were recorded in 
China during the lockdown (Li et al. 2020).

On the other side, an increase in ozone  (O3) of 20.5% 
was also noticed during the same period (Li et al. 2020). 

Similar results were reported in another Italian study, where 
lockdown was associated with decreases in  SO2, CO, and 
benzene levels of 20–27%, 5–75%, and 48–68%, respec-
tively. However, the concentration of ozone significantly 
increased, rising by almost 50% (Collivignarelli et al. 2020). 
Nakada and Urban (2020) reported a decrease of 36–65% 
and 18–33% in the concentrations of CO and  SO2, respec-
tively, with an increase of around 30% in the ozone during 
the lockdown in Sao Paulo. A study conducted in 22 cities in 
India reported a reduction of 10% in CO concentration with 
no change in the concentration of  SO2. Yet, a 17% increase 
in  O3 concentration was observed (Sharma et al. 2020). Chi-
nese cities reported a nearly 40% reduction in greenhouse 
gas emissions by March 2020 in comparison to the same 
period in 2019 (Chen et al. 2021; Mina et al. 2021). Similar 
findings were made in India, Japan, and Europe. According 
to the European Environment Agency 2020,  NO2 emission 
rates, for instance, decreased by 50% in Europe compared 
to 2019 and by 20–30% in the United States. Throughout 
South America in February and March of 2020, levels of 
particulate matter (PM2.5 and PM10) including  SO2 and 
CO dropped, and the ozone layer's thickness also declined 
(Feldman et al. 2020).

Furthermore, fossil fuel consumption across the world 
declined due to the impact of the lockdown on industries, 
transportation, and other sectors using fuel. This reduction 
imposed a positive effect on the earth’s environment, like a 
reduction in GHG emissions and a subsequent increase in 
the ozone layer's thickness (Chakraborty and Maity 2020). 
Consequently, this lockdown due to COVID-19 was proven 
to be effective for the ozone layer and was found to have 
a healing effect on ozone because when the activities are 
limited, the ozone destruction is also controlled. Ecosystems 
have been significantly recovered due to lockdown, but as 
the lockdowns were for the time being, their consequences 
might not be observed in the future.

Stratospheric ozone reduction, UV‑B radiation, 
and climate change

The ozone layer is approximately 10–50 km thick (the 
lower portion of the stratosphere) over the earth; how-
ever, its thickness varies from season to season and region 
to region. Although ozone is present in the entire atmos-
phere, its greatest concentration can be found 19–30 kms 
above the surface of the earth. This sheet of ozone-concen-
trated air is generally called the "ozone layer". The average 
concentration of ozone is almost 300–350 DU (Dobson 
Units) (AFEAS 1995). The stratospheric ozone layer is 
crucial in safeguarding the biosphere from hazardous UV 
radiation from the sun (Rozanov 2020). This layer makes 
the stratosphere's temperature skeleton and affects the sur-
face climate directly (Bernhard et al. 2020). It is of the 

Table 1  Reduction in  CO2 emission due to coronavirus lockdown 
(NASA 2020a)

Country Reduction 
in  CO2 %

United States of America 7.5
United Kingdom 48
China 18
Italy 27
Pakistan 17
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utmost importance to comprehend the previous and future 
amounts of ozone at various atmospheric levels, as well 
as its consequences on UV radiation, human health, and 
agriculture (Rozanov 2020).

The measures taken as a result of the Montreal Pro-
tocol and its amendments (MPA) to reduce the emission 
of GHGs to prevent the lessening of the ozone layer and 
guarantee its recovery in the future seem to fail in attaining 
their objectives as the continuing depleting trend in ozone 
in the lower stratosphere is reported (Ball et al. 2018). 
One piece of evidence supporting this argument is the 
emergence of a big ozone hole over the Arctic in the near 
future, i.e., 2020 (Witze 2020). According to Mohammed 
and Trapley (2010), the amount of UV-B radiation reach-
ing the earth will not be able to be reduced to pre-indus-
trialization levels by 2050, even if all countries follow the 
Montreal Protocol. Despite efforts to reduce the use of 
ozone-depleting substances, mathematical models predict 
increased UV-B radiation levels in the future, which will 
be further impacted by climate change interactions (Barnes 
et al. 2022a, b). NASA (2020b) compared the ozone con-
centration over the arctic region between March 12, 2020, 
and March 12, 2019 and reported that the ozone concentra-
tion was at its lowest level (205 Dobson units) for 2020, 
and that such low levels are unusual (Fig. 2).

Smyshlyaev et al. (2020) informed that the scenarios pre-
sented by the World Meteorological Organization (WMO) 
regarding the decline in the emission of "halogen-containing 
ozone depleting substances" (HODS) into the atmosphere 
in the last decade, i.e., 2010–2020, are possibly overesti-
mated. According to Pawson et al. (2014), for the period 
2008–2013, the stratospheric ozone layer was 6% thinner 
than for the period 1964–1980, with the highest depletion 
recorded in the southern latitude zones, and this depletion 
may become a significant factor in determining the future 
performance of crops (Wijewardana et al. 2016). The range 
of UV-B radiation received daily in summer is between 2 
and 9 kJ/m2 in 40°N and 40°S latitudes, and this level com-
pared to 1994 is higher by almost 3 kJ  m–2 (McKenzie et al. 
2007). Moreover, this level is expected to increase further 
in the twenty-first century (WMO 2007).

Estimates project an increase in the UV-B level, but 
uncertainty exists between projected climate changes and 
their interactions with atmospheric chemistry (Taalas et al. 
2000). Among GHGs, the more powerful are ozone-deplet-
ing substances (ODS) (Hodnebrog 2020), like CFC-11, 
which is 19000, and CFC-12, which is 23000 times more 
radioactively efficient (in W  m–2 per part per billion) than 
 CO2 (Myhre et al. 2013). Likewise, CFC-11 has 7,000 and 
CFC-12 has 11,000 times more potential for global warm-
ing than  CO2 (Fahey 2018). ODS are thus a serious threat 

Fig. 2  Ozone concentration over Arctic regions on March 12, 2020 (a) in comparison with March 12, 2019 (b). Dark and light blue color shows 
low levels, while red and yellow color depicts the higher concentration of ozone (NASA 2020b)
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to the ozone layer, and the increase in GHG emissions and 
ODS due to anthropogenic activities is raising the planet's 
temperature, reducing the ozone layer, and thus giving more 
chances for this deleterious radiation to enter the earth's sur-
face. The gases (ODS) are both recognised as potent GHGs 
and are primarily responsible for the ozone hole over Ant-
arctica. The physical interaction between climate change 
and ozone depletion is far more complex than previously 
assumed, and the focus is on understanding this interaction 
(Tang et al. 2011). Both can work bilaterally, i.e., climate 
change can cause changes in the ozone layer and vice versa. 
Climate change and ozone dynamics interact in several ways 
to affect the global ecosystem (Fig. 3).

The observed variations in the UV radiations may be 
caused by changes in the ozone layer or by changes in other 
factors such as shifts in surface reflectance, clouds, or aero-
sols (McKenzie et al. 2011). Ozone recovery is predicted in 
non-polar regions (UNEP 2006), while in polar regions, a 
rapid loss of the ozone may occur (Rex et al. 2006); thus, 
changes in the ozone in the future are predicted depending 
on the emission of GHGs (Montzka 2010). Climate change 
alters atmospheric circulation, causing a difference in the 
ozone on a regional basis, subsequently decreasing UV in 
some regions and increasing UV in others (Tilmes and Sala-
witch 2008). Rather than previously predicted zone recovery, 

degradation is predicted due to an increase in GHG emis-
sions, accelerating the ozone depletion rate in the coming 
decades (Dreyfus et al. 2023). A decline of 1% in the ozone 
layer increases exposure to UV by 2–3% in the lower atmos-
phere (Reddy et al. 2010).

UV‑B radiation and agriculture

The three cereal crops playing a significant role in the world 
food chain are wheat, maize, and rice. The UV radiations 
from the sun, particularly UV-B radiation, affect the perfor-
mance of terrestrial plants, causing damage at the molecu-
lar level and producing variations in plant physiology and 
morphology, thus, reducing yield (Fig. 4). Understanding 
the response of plants to UV-B radiation is of significant 
importance in evaluating its effect on terrestrial ecosystems 
(Bornman et al. 2019). Although UV-B radiation represents 
a very narrow portion of the solar spectrum, it imposes a 
crucial photobiological effect on animals and plants because 
of its absorption by key molecules like lipids, proteins, phy-
tohormones, and nucleic acids (Singh et al. 2012).

Higher UV-B radiation enhances harmful effects on 
insects health and behaviour and subsequently their interac-
tion with plants via photomorphogenic changes and stimu-
lation of the production of defensive materials (Yin et al. 

Fig. 3  Pathways by which cli-
mate change and ozone dynam-
ics affect the global ecosystem. 
Adapted from Barnes et al. 
(2022a, b)
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2018; Escobar-Bravo et al. 2017). In general, solar UV 
radiation is greater in lower latitudes, with the exception 
of the ozone hole region. As a result, species residing at 
lower latitudes are more susceptible to its damaging effects 
(Meador et al. 2009). This causes insects to evolve defensive 
mechanisms and other adaptations against UV-B radiation 
in the environment (Gaudreau et al. 2017). Plant-dwelling 
mites mainly reside on the lower leaf surfaces of their host 
plants (Sudo and Osakabe 2011). In addition to topographic 
differences between adaxial and abaxial leaf surfaces (Sudo 
and Osakabe 2013), the preference for residing on lower leaf 
surfaces by tiny mites (Kiritani 2013) has been ascribed to 
the avoidance of harsh environments on upper leaf surfaces 
such as rain (Rêgo et al. 2013), radiant heat (Lu et al. 2014), 
and UV-B (Barcelo 1981). Studies have demonstrated signif-
icant biological impacts of UV-B radiation on mites residing 
on plants (Suzuki et al. 2009; Ohtsuka and Osakabe 2009). 
Genus Tetranychus, which comprises the two-spotted spider 
mite (T. urticae Koch), is one of the most important spider 
mites acting as horticultural pests due to their robust fertility, 
extremely wide host range, and development of acaricide 
resistance (Van Leeuwen et al. 2015).

Therefore, the use of UV-B for spider mite control has 
received attention (Short et al. 2018). UV light is also impor-
tant for various biochemical processes associated with plant 
defence responses against insect herbivory (Roberts and Paul 
2006). Studies revealed that UV-B induced effects on plant 
secondary chemicals in turn affect plant–insect interactions 
like decreased herbivory under elevated UV-B light levels 
(Caputo et al. 2006; Izaguirre et al. 2007). This decrease in 
insect herbivory under elevated UV-B conditions has been 
attributed to changes in nutritional quality (Roberts and 
Paul 2006) or plant secondary chemistry (Izaguirre et al. 
2007) as well as resulting from direct effects of UV-B on 
insect herbivore behavior (Caputo et al. 2006). These con-
sequences of higher UV-B levels have led to reduced insect 
oviposition rates (Fountain et al. 2023), insect performance 
(Lindroth et al. 2000), and plant damage (Liu et al. 2023). In 
soybean, UV-B-induced reductions in herbivore attack have 
been related to increases in phenolics (Zavala et al. 2001). 
Similarly, Veteli et al. (2003) observed that insect abundance 
was higher under elevated UV-B than under shade or UV-A, 
however, insect damage levels did not differ between control 
and elevated UV-B treatments.

Fig. 4  UV-B impacts on morphological, physiological, molecular, and yield attributes of plants Kataria et al. (2014). Adapted from 
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In contrast to the effects of UV radiation on plant–insect 
interactions, the impact of enhanced UV light on plant dis-
ease (bacteria and fungi) is limited and not well understood 
(Bidart‐Bouzat and Imeh‐Nathaniel 2008). Some stud-
ies suggested that plant resistance against pathogens may 
be improved by exposure to UV radiation, as this type of 
radiation induces plant defence responses (Roberts and Paul 
2006). UV light may also directly affect fungal pathogens by 
suppressing spore production and their ability to infect a host 
plant (Bidart‐Bouzat and Imeh‐Nathaniel 2008). Research 
conducted thus far has shown both an increase and decrease 
in disease damage in response to elevated UV-B radiation 
(Priya et al. 2016). Effects of UV-B on diseases and insects 
could be attributed to direct effects on their growth and 
indirect effects through changes in tissue characteristics 
and composition. Studies showed that thrips consumed less 
leaf tissue, and Lepidopeteran larvae had lower survival in a 
laboratory assay when fed on leaves grown under near-ambi-
ent solar UV-B compared with leaves from UV-B excluded 
plots (Priya et al. 2016). The lower larval survival was due 
to higher levels of soluble phenolics and lower lignin content 
in the foliage subjected to UV-B radiation (Priya et al. 2016).

Ultraviolet-B radiation alters the morphology, and physi-
ology of plants, which can directly influence disease and 
pest incidence. UV-B can affect carbohydrate, nitrogen, and 
fiber content in leaves, indirectly affecting the growth and 
survival of insects. Similarly, secondary metabolites (such 
as jasmonic acid and phenolics) produced by plants exposed 
to UV-B can influence insect behaviour and incidence by 
acting as an attractant or repellent. Insects that are sensi-
tive to ultraviolet radiation shield themselves from its harm-
ful effects by avoiding sections of plants where protective 
compounds have accumulated and instead feeding on the 
undersides of leaves, where UV-B penetration is less (Priya 
et al. 2016).

An increase in UV-B could cause a shift in the relative 
competitiveness of some plant species, such as weeds and 
crops. Increased UV-B levels have been shown in studies 
to affect the competitive balance between crops and weeds, 
while weed competition can reduce crop yield (Bornman 
et al. 2019). Li and Wang (2001) noticed that elevated UV-B 
in a wheat ecosystem caused a reduction in weed quantity 
and biomass, species population, and soil macroanimals. A 
change in species diversity was also observed in the same 
study. Their outcomes disclosed that the competitive balance 
between weeds and wheat could be altered under elevated 
UV-B levels. Changes in the balance of competition have 
been seen in mixtures of plants exposed to increased UV-B 
radiation, despite the fact that the respective monocultures 
of these plants exhibited no particular impacts (Bornman 
et al. 2019).

Changes in species competition relationships will be 
one of the most significant ecosystem-level effects of 

stratospheric ozone reduction, particularly in non-agricul-
tural ecosystems (Wu et al. 2019). From the perspective of 
species competition, even a minor reduction in plant height 
caused by UV-B radiation may eventually be significant if 
various species are affected to varying degrees, resulting in 
a shift in the competent balance between species (Wu et al. 
2019). Still, the fundamental mechanisms by which a change 
in UV-B level affects the competitive relationships between 
plant species remain poorly understood.

UV‑B radiation effects on plant morphology

Plants are sessile and lack the ability to move in pursuit 
of a suitable environment for optimal growth and develop-
ment. Their fixed nature compels them to finish their life 
span in the ecosystem in which they are growing. It is of 
utmost worth to understand the response of plants to UV 
radiation under natural conditions in the context of climate 
change. Wide interspecific and intraspecific variations in 
plant growth, dry matter production, and physiological and 
biochemical alterations in response to UV-B irradiation have 
been observed (Fedina et al. 2010). Some plant species did 
not show any changes in response to UV-B radiation, and 
many apparently benefited in their growth; however, the 
majority of the species, such as rice and maize, are sus-
ceptible and suffer harm (Hidema et al. 2007; Lidon 2012; 
Du et al. 2011). Numerous plant species have been shown 
to have dwarf plant architecture after being exposed to UV 
radiation. UV-B exposure typically has detrimental effects 
on the growth, morphology, and developmental processes 
of plants (Chaudhary and Agrawal 2015; Dotto and Casati 
2017). Enhancement in leaf thickness, leaf curling, and 
modifications in leaf width and shape are the most often 
documented UV-B-induced morphological changes (Robson 
and Aphalo 2012; Klem et al. 2012).

Reduction in leaf area is one of the most constant 
responses of the plants to UV-B exposure (Wargent et al. 
2009, Fierro et al. 2015). This reduction in leaf area is due 
to a reduction in cell growth and inhibition of cell division, 
which appears to vary from species to species (Hectors et al. 
2010). Likewise, reduction in stem elongation has also been 
documented in a number of plant species (Hofmann and 
Campbell 2011; Germ et al. 2013). Roro et al. (2017) exhib-
ited that the decline in leaf area and shoot elongation in pea 
when subjected to UV-B was related to lower gibberellin 
levels in young leaves and tissues of the apical stem. Yet, it 
is unclear whether the reduction in shoot elongation in plants 
exposed to UV-B is only due to lower cell growth or whether 
UV-B also affects cell division (Dotto and Casati 2017).

In addition, there is substantial evidence that UV-B radia-
tion promotes axillary branching and/or tillering (Kumari 
et al. 2023). The aboveground effects are likely to have an 
impact on the roots: shoot ratio and UV-B radiation have 
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been reported to result in a greater allocation of biomass to 
the roots (Bussell et al. 2012). The correct timing of flower-
ing is of utmost importance for a successful seed set. UV-B 
radiation changes the flowering time in many species like 
maize, Vigna raidate, Arabidopsis, and Phaseolus vulgaris 
(Yan et al. 2012; Mark et al. 1996; Tevini 1997; Rajendiran 
and Ramanujam 2004). Flowering was delayed in all these 
crops, but the molecular specifics behind this mechanism 
are not available (Dotto and Casati 2017). UV-B exposure 
reduces plant inflorescence elongation and increases axil-
lary growth, indicating that UV-B plays a significant role in 
retarding plant growth (Hectors et al. 2007).

There is also relatively little information about UV-B 
effects on flower development, and the few studies that 
have examined its effect on fruit development have mostly 
described changes in the composition of secondary metabo-
lites (Alonso et al. 2016). These modifications are frequently 
inferred as a result of plants reallocating resources while 
growing in the presence of UV-B light. Higher UV-B expo-
sure clearly reduced the relative growth rate and nitrogen 
productivity as the leaf area ratio, productivity, and leaf 
nitrogen productivity were all reduced (Eissa et al. 2011). 
Concisely, plants subjected to a higher level of UV-B 
radiation show a reduction in both biomass and dry matter 
production. A summary of the various developmental pro-
cesses in plants stimulated by UV-B radiation is presented 
in Table 2.

UV‑B radiation influence on plant physiology

Higher levels of UV-B exposure can harm plant cells, which 
consequently affect the plant's physiological activities as a 
whole. Dicotyledons are typically more susceptible than 
monocotyledons when subjected to UV-B radiation (Kataria 
et al. 2013). UV-B can damage DNA and induce mutations 
in DNA replication (Schmitz-Hoerner and Weissenböck 

2003). UV-B radiation, as described by Staxén et al. (1993), 
affects the cytoskeleton of plant cells by creating breakage 
in cortical microtubules, which can, in turn, inhibit cell 
division. Additionally, UV-B radiation destroys amino 
acids, resulting in the inactivation of enzymes and proteins 
(Grossweiner 1984). In the presence of oxygen, UV-B radia-
tion also damages lipids in plant cell membranes, a process 
known as lipid peroxidation (Kramer et al. 1991).

The impact of UV-B radiation on plant photosynthesis 
depends on several factors, including crop species, amount 
of UV-B, PAR to UV-B ratio, and cultivars (Fernando et al. 
2012). UV-B targets several plant tissues and processes, but 
the photosynthetic apparatus is the one with the greatest sus-
ceptibility to UV-B, and it significantly contributes to the 
overall damage caused by UV-B (Lidon and Ramalho 2011). 
The impact of UV-B on the photosynthetic apparatus can be 
seen at different levels, including changes in leaf anatomy, 
morphology and the destruction of photosynthetic pigments 
(Jenkins 2009). UV-B decreases the content of photosyn-
thetic pigments in the chloroplast, particularly chlorophyll 
a, which is the major pigment in photosynthesis (Ayash et al. 
2017; Sebastian et al. 2018). The reduction in net photo-
synthetic rate is much higher than the reduction in stomatal 
conductance due to enhanced UV-B (Fernando et al. 2012). 
UV-A radiation stimulates stomatal opening, while UV-B 
radiation induces its closure (Brestic et al. 2023).

Studies reported the negative effects of UV-B on stomatal 
conductance, which decreases the amount of  CO2 available 
for photosynthesis (Cechin et al. 2018; Reyes et al. 2019). 
UV can damage important cellular components like protein 
and lipids (Fedina et al. 2010). The chloroplast is the target 
site for UV-B radiation that significantly impairs photosyn-
thetic functions (Lidon et al. 2012a, b). UV-B has an indirect 
deleterious effect on chlorophylls a and b in plants (Salama 
et al. 2011), thus affecting photosynthesis. UV-B radia-
tion has a more deleterious effect on PSII and cytochrome 
than PSI (Lidon et al. 2012a, b). Carotenoids are less sus-
ceptible to an increase in UV-B than chlorophyll (Pfundel 
et al. 1992). Regarding carotenoids, they are photosynthetic 
accessory pigments. They invariably increase under elevated 
UV-B (Kurinjimalar et al. 2019). UV-B radiation drastically 
affects the leaf thickness, morphology, and anatomy of 
plants, thus influencing plant photosynthesis (Wijewardana 
et al. 2016).

Gartia et al. (2003) registered a decline in the efficiency of 
photosystem II, while Kolb et al. (2001) reported no impact 
of UV-B on PSII. This contradiction in the impact of UV-B 
radiation on PSII needs further investigation. Enhancement 
in the UV-B-absorbing compounds in leaves like flavonoids, 
which act as a protective wall for sensitive targets, is a typi-
cal reaction to higher UV-B (Bassman 2004). Flavonoids are 
light-sensitive, so their concentrations are higher in plant 
cells subjected to UV radiation (Bilodeau et al. 2019; Liu 

Table 2  UV-B radiation impacts on various plant developmental pro-
cesses

Process Reference

Reduction in hypocotyl extension Biever (2014)
Higher trichome density Yan et al. (2012)
Reduction in root growth Tong et al. (2008)
Reduction in leaf number Wijewardana et al. (2016)
Reduction in leaf area Hectors et al. (2010)
Downward curling Fierro et al. (2015)
Delays flowering time Yan et al. (2012)
leaf, flower and root development Dotto and Casati (2017)
Reduction in root biomass Jaiswal et al. (2023)
Reduction in lengths of root and bud of 

barley seedlings
Xie et al. (2023)
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et al. 2020). According to Hada et al. (2003), anthocyanin 
did not cooperate in the UV-B protection system, while Gitz 
et al. (1998) reported that anthocyanin cooperates in the sys-
tem that works to improve UV-B protection. The metabolism 
of amino acids may be affected by UV-B radiation, and it can 
induce protein biosynthesis in both the cytoplasm and chlo-
roplast, which might help protect the plant against functional 
and structural impairments (Nedunchezhian et al. 1992). Yao 
and Liu (2007) documented that elevated UV-B radiation 
can inhibit photosynthesis in Gossypium sp., P. asperata 
while in Vitis vinifera, ambient UV-B is sufficient to hin-
der photosynthesis (Kolb et al. 2001). Variations in plant 
response to supplementary and ambient UV-B depend on 
the plants' sensitivities to UV-B (Tsormpatsidis et al. 2010). 
UV induces downregulation of genes encoding chlorophyll a 
and b binding proteins and causes damage in PSI and PSII. 
UV-B damages the D1 and D2 protein constituents of PSII 
(Hollósy 2002). Moreover, the other components are nega-
tively affected by including quinone acceptors, reaction cen-
tres, and redox-active tyrosine (Hollósy 2002). In response 
to increased incident UVB radiation, many important pho-
tosynthetic genes exhibit reduced expression (Yadav et al. 
2020).

Variations in secondary metabolites, photosynthetic pig-
ments impairment due to oxidative stress (Kataria 2017; 
Escobar-Bravo et al. 2017), variations in cuticular wax depo-
sition (Willick et al. 2017), disruption in the electron trans-
port chain, and massive damage to PSI and PSII proteins 
(Rai et al. 2018; Zhang et al. 2016) are all harmful effects of 
UV-B. UV-B radiation has the ability to lower the maximum 
quantum yield of PSII (PSII max: Fv/Fm), a measure of the 
photosynthetic system's health in higher plants (Zhang et al. 
2016). In addition, a significant decline in stomatal conduct-
ance (Gs) and generation of reactive oxygen species (ROS) 
were seen when plants were subjected to UV-B (Hideg et al. 
2013; Tossi et al. 2014).

The increased ROS production, when exposed to UV, has 
been related to metabolic disturbance and escalated activ-
ity of membrane-localized NADPH-oxidase (Nawkar et al. 
2013). IAA is a key plant hormone of the auxin class, and 
its deficiency reduces stem growth (Ros and Tevini 1995). 
UV-B potentially damages IAA and could down-regulate 
genes related to IAA activity (Ros and Tevini 1995; Pontin 
et al. 2010). According to Kataria et al. (2013), a decline 
in the activity of Rubisco in plants exposed to UV-B leads 
to reduced carbon dioxide fixation and oxygen generation. 
The chlorophyll content of wheat, sorghum, barley, cotton, 
and amaranth was reported lower when treated with UV-B 
than in controls (Klem et al. 2015). UV-B radiation causes 
lower specific leaf weights (Yao et al. 2008). UV-B radiation 
reduces stomatal conductance, altering leaf anatomy, and 
enhances leaf thickness (Bornman and Vogelmann 1991; 
Bornman et al. 1983). This change in the leaf architecture 

causes variation in light penetration into the leaf and hence 
alters the plant morphology (Hollósy 2002).

Photoperiodic response and UV‑B radiation

Sunlight drives photosynthesis and provides vital environ-
mental information, but it can also be an environmental 
stressor for plants due to high light and ultraviolet B (UV-
B) radiation (Demarsy et al. 2018). Light information is 
obtained via specific photoreceptors, which influence plant 
metabolism, development, and viability throughout the life 
cycle (Jenkins 2017; Liang et al. 2018). Photoreceptor sign-
aling frequently optimizes photosynthesis and safeguards 
plants from potential light stress (Demarsy et al. 2018). 
Diverse photoreceptors that recognize photons of specific 
wavelengths and transform them into cellular signaling 
cascades have evolved. Photoreceptor-mediated signaling 
allows plants to respond appropriately to changes in the 
light spectrum's, quantity, quality, direction, and duration 
(photoperiod).

These photoreceptors in flowering plants include the blue/
ultraviolet-A (UV-A) light-perceiving cryptochromes, photo-
tropins, and Zeitlupe family members, the red/far-red light-
perceiving phytochromes, and the UV-B photoreceptor UV 
Resistance Locus 8 (UVR8) (Galvão and Fankhauser 2015). 
UV-B exposure caused Arabidopsis plants grown in long 
days to flower later, owing to an effect on the age pathway 
(Dotto et al. 2018). RUP2 has been shown to play a repres-
sive role in the regulation of photoperiodic flowering in the 
presence of UV-B (Arongaus et al. 2018). Intriguingly, rup2 
mutants exhibit a day length neutral phenotype under UV-B 
and flower early under noninductive, short-day conditions in 
a UVR8-dependent manner (Arongaus et al. 2018). RUP2 
interacts physically with the essential flowering inducer CO 
and inhibits the association of CO with the promoter of the 
flowering hormone FL (Arongaus et al. 2018). This mecha-
nism counterbalances the potential early flowering induced 
by UVR8 in plants containing RUP2 so that these plants 
flower late under short-day conditions, providing a critical 
mechanism of photoperiodic flowering control (Arongaus 
et al. 2018).

Limited research has been conducted on the role of UV-B 
and/or UVR8 in regulating flowering time in plants (Ziouto-
poulou et al. 2022). Wild type Landsberg erecta (Ler) plants 
exposed to UV-B irradiation showed a delayed flowering 
phenotype, whereas uvr8 mutants flowered earlier than their 
wild type counterparts (Hayes et al. 2014). Furthermore, 
the UVR8-signaling trajectory has been linked to a delay 
in flowering time in the Arabidopsis Columbia-0 (Col-0) 
ecotype under short day (SD) and long day (LD) photoperi-
odic conditions. Flowering time analysis revealed that UVR8 
did not reveal a significant difference in flowering time in 
response to WL (white light) supplemented with short-time 
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interval high fluence rate UV-B in LD compared to a late 
flowering phenotype observed in Col-0 (Dotto et al. 2018). 
RUP2, a UVR8-repressor, has been shown to prevent CO 
from binding to the FT promoter, resulting in a significant 
delay in flowering time in plants grown under a SD pho-
toperiod supplemented with UV-B (Arongaus et al. 2018).

Despite significant efforts to understand how UVR8 and 
UV-B regulate plant responses, the molecular mechanism 
by which the aforementioned factors regulate flowering time 
under LDs continues to remain largely unknown (Ziouto-
poulou et al. 2022). Zioutopoulou et al. (2022) demon-
strated that constant low levels of UV-B (0.5 µmol  m−2  s−1) 
promote flowering initiation in Col-0 and Ler Arabidopsis 
ecotypes under LD photoperiodic conditions. UV-B also 
induces early flowering in mutants missing key flowering 
(co), UV-B (uvr8 and rup1rup2) and light signaling (cop1, 
pif4, and ztl) components. Moreover, they demonstrated that 
UVR8 functions as a negative regulator of UV-B-induced 
early flowering, as uvr8 mutants exhibited early flowering 
phenotypes when exposed to white light supplemented with 
UV-B. Overall, their findings showed that UV-B can influ-
ence flowering initiation at the transcriptional level via the 
action of UVR8.

Redox homeostasis and UV‑B radiation

The sustenance of plant life in stressful environments is con-
trolled at the cellular level by homeostasis in the usual redox 
reactions (Anjum et al. 2016). Redox reactions can produce 
a variety of reactive oxygen species (ROS). ROS, as integral 
signaling molecules, regulate plant growth and development 
as well as modulate their responses to abiotic and/or biotic 
stimuli (Baxter et al. 2013). ROS and their reaction products 
can modulate plant stress responses and/or severely impair 
cellular redox homeostasis beyond their steady-state cel-
lular concentrations (Baxter et al. 2013). However, severe 
environmental conditions are unavoidable for plants and can 
over-oxidize or over-reduce the cellular environment. Plants 
are equipped with a number of mechanisms to proficiently 
metabolize and firmly regulate the steady-state levels of 
cellular ROS and its reaction products, as well as maintain 
optimal cellular redox homeostasis (Anjum et al. 2016). The 
major cellular redox homeostasis managers contain redox 
related components such as proteinaceous hiol members 
like glutaredoxin, thioredoxin, and peroxiredoxin proteins 
as well as crucial soluble redox compounds like ascorbate 
and glutathione (Anjum et al. 2016).

The radiation induces an imbalance between the energy 
absorbed through the photophysical process of photosystem 
(PS) II and the energy consumed for carbon assimilation. 
Decline in the primary photochemistry of PS II induced by 
UV-B in the background of relatively stable Pn, has been 
implicated in the creation of the energy  imbalance. The 

radiation induced damage of PS II hinders the flow of elec-
tron from  QA to  QB resulting in a loss in the redox home-
ostasis between the  QA to  QB leading to an accumulation 
of  QA

−. The accumulation of  QA
− generates an excitation 

pressure that diminishes the PS II-mediated  O2 evolution, 
maximal photochemical potential (Fv/Fm) and PS II quantum 
yield (ΦPS II). While UV-B radiation inactivates the carot-
enoid-mediated protective mechanisms, the accumulation 
of flavonoids seems to have a small role in protecting the 
photosynthetic apparatus from UV-B onslaught. The failure 
of protective mechanisms makes PS II further vulnerable 
to the radiation and facilitates the accumulation of malon-
dialdehyde (MDA) indicating the involvement of reactive 
oxygen species (ROS) metabolism in UV-B-induced damage 
of photosynthetic apparatus (Joshi et al. 2011).

The uneven destruction of these photosystems is likely 
to result in an energy imbalance that causes a loss of redox 
homeostasis in the photosynthetic apparatus, a possibility 
that has not been investigated in detail (Joshi et al. 2011). 
In addition, the majority of findings regarding UV-B effects 
on photosynthetic apparatus are based on reductionist stud-
ies, and no effort has been made to evaluate both primary 
photochemistry of thylakoids and carbon assimilation in the 
Calvin–Benson cycle in a single plant system in order to 
determine the relative susceptibility of various major com-
ponents of chloroplasts to UV-B radiation (Joshi et al. 2011). 
The simultaneous study of primary photochemistry and car-
bon assimilation allows for the analysis of UV-B-induced 
changes in the efficiency of electron source and electron sink 
capacity, which may lead to an energy imbalance in pho-
tosynthetic apparatus (Joshi et al. 2011). High UVB doses 
induce the oxidation of biomolecules like proteins, phospho-
lipids, and nucleic acids, which causes severe cell damage 
in plants (Cassia et al. 2019). Low UVB doses function as 
signaling molecules, effectively regulating cellular redoxho-
meostasis (Yokawa et al. 2016). Relevant literature discloses 
that UV-B radiation causes damage to green plants' photo-
synthetic apparatus at numerous sites. The sites of damage 
include oxygen evolving complex, D1/D2 reaction centre 
proteins and other components on the donor and acceptor 
sides of PS II (Brosché and Strid 2002). Additionally, the 
radiation deactivates the xanthophyll cycle related with light 
harvesting complex II and modifies gene expression for the 
synthesis of PS II reaction centre proteins (Brosché and Strid 
2002). Even ambient UV-B radiation has deleterious effects 
on the photosynthesis of Arctic plants and algae (Albert 
et al. 2011; Roleda et al. 2009), in addition to altering their 
ultrastructure, growth, respiration, and reproduction (Roleda 
et al. 2009).

Electron carriers and energy metabolism mediators 
like non-phosphorylated  (NAD+) and the phosphorylated 
 (NADP+) coenzyme forms and their redox couples GSSG/
GSH, DHA/AsA  NAD+/NADH, and  NADP+/NADPH also 
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play a role in cellular redox homeostasis (Suzuki et al. 2011; 
Giordano 2013). Cellular redox homeostasis has also been 
identified as the primary "integrator" of information derived 
from metabolism and the plant-environment interaction 
(Foyer and Noctor 2009). Thus, uncovering insights into 
the role and primary mechanisms of redox homeostasis in 
plants under environmental stresses should be the principal 
focus of present-day plant research.

UV‑B radiation effect on major cereals

UV‑B radiation and wheat

C3 crops like wheat, cotton, and soybeans are generally con-
sidered more susceptible to UV-B radiation than C4 plants 
(Gao et al. 2003). Reduction in biomass and yield under 
controlled environments due to UV-B is mainly associated 
with its detrimental impacts on plant photosynthetic pig-
ments (Alexieva et al. 2001) and the photosynthetic rate of 
the leaf (Hideg et al. 2006). Studies reported the pernicious 
impacts of ambient and enhanced UV-B radiation on the 
photosynthetic system in wheat, i.e., the efficiency of PS 
II, the thylakoid, and CA, MDH, Rubisco, PEPC, and chlo-
rophyllase enzymes (Kataria and Guruprasad 2012; Chen 
and Han 2014; Kataria et al. 2013). Feng et al. (2007) found 
that increased UV-B delayed phenology, decreased pigment 
contents such as chlorophyll a and b, and decreased photo-
synthetic capacity, root, stem, and leaf biomass, yield, water 
potential, and relative water content of wheat leaves. Addi-
tionally, a rise in membrane permeability and UV-B absorb-
ing compounds like flavonoids was observed. Reductions in 
photosynthetic performance, biomass, and growth in wheat 
seedlings were recorded due to ambient and supplemental 
UV-B radiation (Liu et al. 2015; Kataria and Guruprasad 
2015).

Furthermore, changes in shoots, plant dwarfism, and a 
reduction in the width and length of leaves in wheat seed-
lings were reported when subjected to UV-B radiation (Liu 
et al. 2015). These changes are related to alterations in cell 
division or elongation (Singh et al. 2014a). Ran et al. (2018) 
also documented that UV-B radiation caused significant 
modifications in the root length, number, biomass, and vig-
our of wheat.

The grain yield of wheat was reduced by 18–57% due 
to higher UV-B when stratospheric ozone reduction was 
assumed at 12–25%, along with a reduction of 30% in its 
thousand-grain weight (Li et al. 2010). Hakala et al. (2002) 
reported that enhanced UV-B radiation had no significant 
effect on wheat grain yield. Wheat phenophases and their 
sensitivity to a higher level of UV-B are critical for deter-
mining wheat performance in the future because biomass 
partitioning, and yield production depend on developmental 
stages (Slafer et al. 2019). Lizana et al. (2009) documented a 

decline of 11–19% in biological and 12–20% in grain yield 
of wheat with higher UV-B at the 3L-Bo phase, but no influ-
ence was recorded with higher UV-B in the later stages. No 
significant effect on the biological and grain yield of wheat 
was observed when subjected to a higher UV-B level in field 
conditions (Ambasht and Agrawal 2003).

Several studies regarding the effect of UV-B on the grain 
quality of wheat have been conducted, but the results found 
are contrasting. Zu et al. (2004) reported a positive effect, 
while Calderini et al. (2007) documented no influence of 
UV-B radiation on the grain protein content in wheat. Zu 
et al. (2004) reported that the response of wheat varieties to 
UV-B radiation differs in terms of quality, like amino acids 
or total sugar content. The decrease in quality and yield of 
wheat when exposed to enhanced UV-B radiation will have 
serious economic and nutritional consequences (Li et al. 
2010). Figure 5 depicts the impact of enhanced UV-B on 
wheat performance.

UV‑B radiation and maize

Crops, including maize grown between 40°N and 40°S (lati-
tudes), facing 2–10 (kJ  m–2  d–1) UV-B based on season and 
location (Reddy et al. 2013). Maize is seriously affected by 
abiotic stresses, including UV-B radiation, which are esti-
mated to intensify in the future. Maize is sensitive to higher 
UV-B radiation (Yin and Wang 2012) and increased UV-B 
radiation significantly reduced dry matter accumulation, 
grain yield, chlorophyll a, and b, and caused a decline in pro-
tein, starch, and sugar content of maize seed, while a signifi-
cant increase in flavonoid accumulation and lysine content 
was reported under higher UV-B treatment (Gao et al. 2004). 
Singh et al. (2014b) registered that higher UV-B radiation 
did not affect chlorophyll and carotenoid concentration in 
maize leaves, while plant growth was negatively affected 
by UV-B. Maize undergoes early senescence with lower 
photosynthesis when treated with higher UV-B concentra-
tion (Correia et al. 2005). Reddy et al. (2013) documented 
that both ambient and predicted UV-B levels could influence 
maize growth by negatively affecting the stem extension, 
leaf area development, photosynthesis, and eventually bio-
mass. UV-B radiation has a negligible effect on leaf appear-
ance and the susceptibility of each developmental phase 
to UV-B radiation in maize varies from hybrid to hybrid 
(Reddy et al. 2013).

UV-B radiation is one of the major stresses significantly 
affecting maize yield (Wijewardana et al. 2016). Several 
researchers (Ballare et al. 2011; Kim et al. 2007; Yin and 
Wang 2012) reported that crops, including maize, when 
exposed to higher UV-B levels showed an extensive decline 
in quality and yield, indicating that maize is sensitive to 
a higher dose of UV-B radiation. A rise of 9.5% in UV-B 
decreased the protein content of maize by 33% (Gao et al. 
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2004). Yin and Wang (2012) recognized that the growth and 
yield of maize were harmfully affected by enhanced UV-B 
radiation and the reduction in yield was due to the fewer 
seeds per row and seed weight.

Moreover, exposure to higher UV-B increased the protein 
content with no effect on starch and oil contents, showing 
both the positive and negative impacts of higher UV-B radia-
tion on maize. Higher UV-B treatment at silking enhanced 
N concentration in stems and leaves, K, Zn, and Ca in stem 
while UV-B showed no effect on Mg, Fe, P, Mn, and Cu 
concentration (Correia et al. 2012). Moreover, P declined in 
almost all plant organs, Mn decreased in grains and leaves, 
while Zn, Mg, and Ca increased in stem and grains. Cu con-
centration increased when maize was treated with enhanced 
UV-B at harvest maturity (Correia et al. 2012). They further 
reported a slight rise in NUE with higher UV-B treatment, 
although this increase was not significant. Though higher 
UV-B radiation decreases nutrient uptake, the studies did not 

show any critical nutrient limitation in plants treated with 
higher UV-B (Correia et al. 2012).

Likewise, Zancan et al. (2006) reported that Fe content in 
leaf and root increased in maize under greater UV-B. Addi-
tional UV-B radiation significantly reduced the dry matter 
and yield of maize along with its effect on seed quality i.e., 
starch, protein, and sugar levels decreased, however, the 
lysine level was found to be improved (Gao et al. 2004).

UV‑B radiation and rice

Rice is grown in tropical regions, receiving more UV radia-
tion because of higher solar angles. Most developing coun-
tries fall in this region (Wagh and Nandini 2019). Enhanced 
UV levels caused chloroplast destruction (De Almeida et al. 
2012), a decline in photosynthetic capacity, thus significantly 
reducing grain size, panicle number (Hidema et al. 2006), 
total biomass, and tiller production in rice (Mohammed et al. 

Fig. 5  Impact of greater UV-B on photosynthesis, growth, and antioxidants (Häder et al. 2015)
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2007). In rice, enhancement in the degradation of Rubisco 
was observed at leaf maturation when supplemented with 
UV-B radiation (Takeuchi et al. 2002). Wagh and Nand-
ini (2019) documented that with an increase in UV-B, the 
morphological traits (like plant height, and tiller numbers), 
physiological traits (like leaf gas exchange and chlorophyll 
content) decreased significantly while protective compounds 
like flavonoids and catalase increased and the combined 
effect of these components were noticed as a decline in 
grain yield in rice. Rice exposed to a prolonged period of 
enhanced UV-B resulted in spikelet sterility (Mohammed 
and Tarpley 2010).

Li et al. (2019) reported that in rice, the blast disease 
index was significantly reduced with an increase in UV-B 
radiation, but as the infection increased, the inhibitory effect 
due to UV-B on this disease was weakened. Storage proteins, 
particularly glutelin and total N increased under supplemen-
tal UV-B radiation in rice (Hidema et al. 2006). The taste 
of the rice grain could be changed when subjected to UV-B 
radiation (Hidema and Kumagai 2006). Ling et al. (2022) 
reported that the content of gibberellin and brassinolide in 
rice flag leaves increased by 60.1% and 29.94%, respec-
tively under elevated UV-B when compared to natural light. 
However, the content of auxin decreased by 17.3% under 
increase UV-B. A summary of the various physiological and 
biochemical responses of the cereals is displayed in Table 3.

Interaction between UV‑B radiation and other 
abiotic stresses

In the natural environment plants usually have to deal with 
continuous variations in light quality and intensity along 
with variations in other abiotic factors like increased  CO2, 
temperature, and water shortage, among others which have 
both positive and negative effects on plants (Table 3). Sic-
ora et al. (2006) concluded that PSII of the photosynthetic 
apparatus is highly sensitive to UV-B radiation. Conversely, 
because of its very effective repair system, impairment of 
this component becomes limiting for photosynthesis only 
when its repair capacity is reduced by other stresses like 
drought, higher temperatures, high-intensity visible light, 
etc. Hence, the plants subjected to UV-B under other envi-
ronmental stresses, which slow down the repair of PSII 
which can limit the production of NADPH and ATP needed 
for the Calvin cycle and ultimately for the overall process 
of photosynthesis. Several researchers have acknowledged 
the main effect of UV-B radiation and temperature on plants 
however; limited studies describe their mutual effects on 
plant chemistry and physiology (Escobar-Bravo et al. 2017). 
Mostly, these studies examined a compensatory effect of 
higher temperatures on plant growth inhibited due to UV-B 
radiation (Escobar-Bravo et al. 2017) (Table 4).

Mark and Tevini (1996) in their study on sunflower and 
maize reported that a rise in temperature from 28–32 °C 
increased the growth parameters irrespective of the UV-B 
treatment. Furthermore, they reported that the adverse effect 
of UV-B radiation on plant growth was compensated by 
the higher temperatures. Likewise, Han et al. (2009) also 
reported that enhanced UV-B radiation caused a reduction 
in photosynthesis rate, chlorophyll content, and plant growth 
in the seedlings of dragon spruce (Picea asperata) but these 
negative effects were compensated by higher temperature. 
While pre-exposure to ambient and low amounts of UV-B 
enhanced heat resistance in conifer seedlings (L’Hirondelle 
and Binder 2005) and cucumber (Teklemariam and Blake 
2003).

The interaction between drought and UV-B radiation in 
plants has received attention in recent years; however, the 
mechanism of tolerance or sensitivity to their combined 
effect has not been studied in detail and still needs more 
research (Zlatev et al. 2012). Uncovering drought and UV-B 
interaction would provide useful insights to understand the 
possible outcomes of stratospheric ozone depletion on an 
adaptation of plants to environmental shifts. When drought 
stress and moderate UV-B occur simultaneously, they can 
work synergistically to boost plant resistance and ultimately 
plant survival. These responses were related to higher pro-
duction of UV-B absorbing compounds, antioxidant pro-
teins, and leaf cuticle thickness (Bandurska et al. 2013). In 
wheat seedlings, UV-B radiation and drought stress caused 
higher  H2O2 accumulation leading to lipid peroxidation and 
reduction in growth. Moreover, it was concluded that com-
bined stress affected more negatively plant growth than indi-
vidual stress factors (Tian and Lei 2007). Feng et al. (2007) 
recorded that photosynthetic capacities, plant growth, pig-
ment contents, and yield of wheat were reduced when both 
UV-B radiation and drought stress treatments were applied 
mutually in comparison when stresses were applied sepa-
rately. Combined UV-B radiation and drought stress caused 
a reduction in chlorophyll content and photosynthetic capac-
ity in both soybean and maize, thus resulting in lower total 
dry matter production (Shen et al. 2015).

Environmentalists are concerned about the widespread 
use of herbicides and pesticides in agriculture (Ashry et al. 
2018; Ahmad et al. 2021a, b). Herbicides used in agricul-
ture are transported to bodies of water via run-off, drift, and 
leaching, increasing the risk of exposure in non-target organ-
isms (Chen et al. 2007). Some herbicides cause metabolic 
changes in algae as a result of oxidative stress (Romero et al. 
2011), while others work by binding to the exchangeable 
quinone site in the photosystem II reaction center, thereby 
blocking electron transfer (Rutherford and Krieger-Liszkay 
2001) or by altering the fluorescence emission and electron 
transport activities of the bio-samples (Ventrella et al. 2010). 
UV radiation has also been shown to promote the breakdown 
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Table 3  Physiological and biochemical responses of cereals to higher UV-B radiation

Crop Response References

Wheat Stunted growth Kataria et al. (2019)
Reduced rate of photosynthesis
Increased anti-oxidant defense
Reduced DNA, RNA, protein
Low PS II quantum yield
Decrease activity of Rubisco
Reduced thylakoid and enzymes like Rubisco, carbonic anhydrase (CA), malic dehydroge-

nase (MDH), PEPC, and chlorophyllase
Reduced grain yield
Decreased the indole-3-acetic acid content Li et al. (2010)
Reduced chlorophyll fluorescence yield Kataria and Guruprasad (2015)
A decline in ascorbic acid Agrawal and Rathore (2007)
High  H2O2 accumulation Chen et al. (2019)
Excessive ROS generation Tian and Lei (2007)
Changes in the content of amino acids, proteins, and total sugars of wheat grain Yavaş et al. (2020)
Increased phenolic content and antioxidant activity Chen et al. (2017)
Malondialdehyde content in the leaves of wheat seedlings significantly increased
Significant reduction of SOD (superoxide dismutase)
Increased CAT activity

Liu et al. (2012)

Changes in the molecular structure of the starch Nowak et al. (2023)
Decreased phytosiderophore release and root Fe accumulation Wong et al. (2023)

Maize Reduced PEPC and Rubisco enzymes activities Correia et al. (2005)
Increment of proline Carletti et al. (2003)
Inhibits maize leaf growth Fina et al. (2017)
Reduction in plant total leaf number
Increase in the production of epicuticular wax

Wijewardana et al. (2016)

Gibberellins concentration reduces Fina et al. (2017)
Ribosome damage
Decrease in translation in RNA of maize

Casati and Walbot (2004)

Levels of protein, sugar, and starch in maize seed decreased
The level of lysine increased
Flavonoid accumulation increases
Reduced the dry matter accumulation

Gao et al. (2004)

Increase of the iron content in both roots and leaves Zancan et al. (2006)
Reduced leaf area and leaf thickness Kataria and Guruprasad (2012)
Decreased chlorophyll Jovanić et al. (2022)

Rice Variations in IAA and ABA phytohormones Huang et al. (1998)
Reduction in photosynthetic activity De Almeida et al. (2012)
Decreased rubisco activity, content, and electron transport rate Fedina et al. (2010)
Increased antioxidant activity Ti et al. (2014)
Carotenoid content increased
MDA content significantly increased
Enhanced total phenolic content
Ascorbate content increased
Increased proline content
High SOD activity (superoxide dismutase)

Faseela and Puthur (2019)

Increase in protein Du et al. (2011)
Fe content decreased in leaves Mn, Cu content increased in root and leaves
Reduced chlorophyll and carotenoid

Lidon (2012)

Accumulated antioxidants and proanthocyanidins content Li et al. (2023)
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of many pesticides including fenitrothion (Weber et al. 2009) 
and triazophos (Leach et al. 2017). Increased UV-B radiation 
reduced the effectiveness of paraquat by increasing leaf wax 
content and inhibiting photosynthesis (Wang et al. 2007). 
Because paraquat's mechanism of action is closely correlated 
to light, the impacts of increased UV-B radiation on paraquat 
performance may differ from its impact on other herbicides 
with different modes of action.

Glyphosate is more extensively used and has a different 
mode of action than paraquat. Glyphosate's mode of action 
involves blocking the production of the enzyme 5-enolpyru-
vylshikimate-3-phosphate (EPSP) synthase (Yin et al. 2012). 
In their study, Yin et al. (2012) found that the effective-
ness of glyphosate decreased with enhanced UV-B radia-
tion because of changes in absorption, translocation, and 
distribution which were attributed to a higher leaf-surface 
wax and photosynthesis inhibition by elevated UV-B radia-
tion. Furthermore, they suggested that the negative effects 
of increased UV-B radiation on herbicide efficacy could 
be widespread. Therefore, additional research is required 
to confirm the aforementioned results and investigate the 
impact of elevated UV-B radiation on herbicide application 
technology (Yin et al. 2012).

Heavy metals when combined with other abiotic stresses 
also have a harmful effect on plant growth and development 
(Akladious and Mohamed 2017; El-Mahdy et  al. 2021; 
Abu-Shahba et al. 2022). UV-B radiation alone or Nickle 
inhibited the growth in the root and shoot of pea seedlings, 
but their combined effect resulted in more serious damage 
(Srivastava et al. 2012). Additionally, their combined effect 

reduced carotenoid concentration and might also have a del-
eterious effect on chlorophyll and photosynthesis (Srivastava 
et al. 2012). In natural habitats, the impact of UV-B radia-
tion on plants is closely associated with other factors like 
higher temperatures, drought, heavy metals,  CO2, and ozone. 
Therefore, future studies and improved insight into the inter-
action between UV-B radiation and other environmental 
stresses would greatly allow determining more realistically 
the impact of increased UV-B radiation in the presence of 
other stress factors.

Future prospects

Plants are sessile and cannot escape from UV-B radia-
tion from the sun. Many organisms, including plants, are 
affected by changes in UV-B radiation and other environ-
mental stresses produced because of climate change. The 
changes occurring due to climate change will continue and 
will, directly and indirectly, affect agricultural production by 
affecting plant performance. In this scenario, a significant 
research gap is how crops particularly major food crops react 
to changes in UV-B radiation in the presence of other several 
environmental stresses. Besides ozone depletion, climate 
change also significantly changes the amount of UV radia-
tion reaching the earth's surface. Therefore, a novel approach 
to studying the role of UV-B radiation in the context of cli-
mate change is of utmost importance. Research showed that 
UV radiation and other stress factors are modifying plant 
responses, but further understanding of these modifications 
is necessary to classify them as positive or negative to make 
possible future projections. A knowledge gap exists regard-
ing the impact of UV-B radiation in the presence of other 
stresses, and research that encompasses realistic conditions 
is required for future projections. This paper has summarized 
some impacts of UV-B radiation on plants, but further stud-
ies are also needed to evaluate the role of UV-B radiation in 
the background of climate change. More long-term experi-
ments under open conditions need to be designed to fully 
disclose the interactive effect of UV-B radiations and other 
stresses on crop response.

Table 3  (continued)

Crop Response References

Barley UV-B treatment accumulated phenolic acids and antioxidant enzyme Wang et al. (2022)

Reduced grain yield Tsygvintsev et al. (2019)

Effect on germination rates Lazim and Ramadhan (2020)

UV stress could efficiently improve/preserve the contents of total polyphenols, total flavo-
noids, total triterpenes, total polysaccharides, proanthocyanidins, chlorophyll a, chloro-
phyll b, and total chlorophyll, as well as the  OH• and ABTS scavenging

Jiang et al. (2020)

Table 4  References indicating the positive and negative interactions 
of stress combination

Stress combination References

Positive interaction Ozone + UV Mittler and Blumwald 
(2010)

Pathogen + UV Bowler and Fluhr (2000)
Negative interaction Drought + UV Bandurska et al. (2013)

Heat + UV Mittler and Blumwald 
(2010)

UV + Heavy metals Srivastava et al. (2012)
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Conclusion

Among other drastic effects of climate change on agricul-
ture, a rise in UV-B radiation due to ozone depletion is 
also a result of climate change. The rise in the emission of 
GHGs due to anthropogenic activities is reducing the ozone 
layer and providing a path for UV-B radiation to reach the 
earth's surface and interfere with agriculture. Enhanced 
UV-B affects plant morphology, physiology, biochemistry, 
and ultimately the yield negatively. Ozone is depleting, and 
UV-B radiation is increasing; thus, the role of plant physi-
ologists and breeders is vital in introducing new cultivars 
having traits to tolerate a higher level of UV-B under chang-
ing climate to compensate for the yield losses. There are 
limited studies reporting the impact of enhanced UV-B on 
the performance of major food crops. The available literature 
is not enough to generalize the effects of UV-B on plant 
performance. How crops will respond to elevated UV-B 
in the presence of many other environmental stresses is a 
major research gap. Further studies related to the impact of 
UV-B radiation in combination with other biotic and abiotic 
stresses emerging due to climate changes are recommended 
to assure high yield from the crops in the future and better 
understand the interaction of these various stresses. There 
isn't enough information about the potential to exploit plant 
UV-responses in climate change resilience breeding pro-
grams (Robson et al. 2019). In this regard, plant biotech-
nological approaches will provide improved breeding pro-
grammes to produce UV-B tolerant cultivars like using QTL 
mapping for genetic markers conferring resistance to UV-B 
radiation. Similarly, using crop transformation approaches 
like CRISPR/Cas9, molecular assisted genetic engineering 
will also assist in overcoming abiotic stresses like elevated 
UV-B radiations. Quantifying the simultaneous effect of 
UV-B radiation and other stresses on plant performance is 
challenging but is of paramount significance.
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