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Abstract 
Rice–wheat cropping system, intensively followed in Indo-Gangetic plains (IGP), played a prominent role in fulfilling the 
food grains demand of the increasing population of South Asia. In northern Indian plains, some practices such as intensive 
rice cultivation with traditional method for long-term have been associated with severe deterioration of natural resources, 
declining factor productivity, multiple nutrients deficiencies, depleting groundwater, labour scarcity and higher cost of cul-
tivation, putting the agricultural sustainability in question. Varietal development, soil and water management, and adoption 
of resource conservation technologies in rice cultivation are the key interventions areas to address these challenges. The 
cultivation of lesser water requiring crops, replacing rice in light-textured soil and rainfed condition, should be encour-
aged through policy interventions. Direct seeding of short duration, high-yielding and stress tolerant rice varieties with 
water conservation technologies can be a successful approach to improve the input use efficiency in rice cultivation under 
medium–heavy-textured soils. Moreover, integrated approach of suitable cultivars for conservation agriculture, mechanized 
transplanting on zero-tilled/unpuddled field and need-based application of water, fertilizer and chemicals might be a suc-
cessful approach for sustainable rice production system in the current scenario. In this review study, various challenges in 
productivity and sustainability of rice cultivation system and possible alternatives and solutions to overcome such challenges 
are discussed in details.

Keywords Rice production · Factor productivity · Residue management · Groundwater table · Conservation agriculture · 
Global warming

Introduction

Rice (Oryza sativa L.)–wheat (Triticum aestivum L.) is the 
largest cropping system practised in South Asian countries 
(Nawaz et al. 2019). About 85% of this cropping system 
falls in Indo-Gangetic plains (IGP), covering nearly 13.5 
million hectares (mha) area (Saharawat et al. 2012). India 
alone covers approximately 76% of IGP, spreading in the 
states of Punjab, Haryana, Uttar Pradesh, Bihar and West 
Bengal. Being staple food crops in the country, rice and 
wheat played a key role in minimizing the gap between 
food grains demand and production. In recent years, coun-
try witnessed surplus food grains production through an 
integrated approach of high-yielding varieties, disease and 
pest management, nutrient management, irrigation water 
management and better mechanization. Rice and wheat 
production was reported as 34.6 million tonnes (mt) and 11 
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mt, respectively, during 1960–1961, which is expected to 
rise to 122.3 and 109.5 mt, respectively, during 2020–2021 
(PBAS 2019; PIB 2021). In the last one decade, slow growth 
in crop productivity has been registered, which may fur-
ther decline in near future due to some ongoing resource 
guzzling practices. The trend of rice yield in South Asia is 
presented in Fig. 1. From 1998 onwards, Bangladesh wit-
nessed a noble growth in rice yield, surpassing India and 
Pakistan, and continues to uphold the growing trend. It was 
due to intensive use of modern technologies such as cul-
tivation of high-yielding varieties, adoption of improved 
irrigation technologies and balanced fertilizer application 
(Ahmed 2004; Shew et al. 2019). In past few years, rice 
productivity in India looks stagnant, even it may decline in 
future due to over-exploitation of natural resources (Ladha 
et al. 2009), low seed replacement rate (UPSDR 2019), poor 
management of irrigation water, fertilizer and crop residue 
(Ladha et al. 2009), same cropping pattern over the years 
(Nambiar and Abrol 1989) and lack of awareness about 
consequences of faulty cultivation practices among farmers 
(Dis et al. 2015; UPSDR 2019). The problem is not limited 
to India but also extends to other countries of IGP, where 
intensive tillage practices and confined agro-biodiversity 
degraded natural resources to a great extent. Researchers 
questioned the sustainability of rice–wheat cropping sys-
tem under present challenges of stagnant yield (Ladha et al. 
2003a), soil degradation (Bhandari et al. 2002; Tripathi and 
Das 2017), declining water table (Humphreys et al. 2010) 
and environmental pollution (Bijay-Singh et al. 2008). The 
trend of the area covered under rice cultivation in South 
Asia is shown in Fig. 2. In IGP, most of the rice cultivated 
area falls under Indian Territory, but this area was bounded 
within 40–45 mha during 1988–2018. The stagnant and 
limited spatial coverage of rice area is due to unavailability 
of irrigation facility, high water requirement of the crop, 
declining water table, labour-intensive cultivation, poor feed 

quality of by-product (straw), degradation of soil structure 
and irregular nature of rainfall. In fact, rice cultivation using 
the conventional method is believed as water-, energy- and 
capital-exhaustive practice (Bhatt et al. 2016).

India, a home to 17.7% of the world population, is the 
prime consumer of water requiring 3000 billion cubic meters 
annually (Vyas et al. 2019). India is the largest consumer of 
groundwater accounting for about 230  km3 of groundwater 
use every year (TWB 2012). India receives nearly 4000 bil-
lion cubic meters of precipitation every year. However, only 
48% of this water is stored in the surface and groundwater 
bodies due to losses in various hydrological processes such 
as runoff, water discharge through rivers to oceans, evapo-
ration and evapotranspiration (Verma and Phansalkar 2007; 
Dhawan 2017). A major portion (88–90%) of groundwater 
extracted is used for irrigation purpose in agricultural fields 
(Siebert et al. 2010; GoI 2014). Rice crop requires huge 
amount of water than other cereal crops, and it consumes 
about 3000–5000 L of water to produce 1 kg of rice (Bou-
man 2009; Geethalakshmi et al. 2011). Tuong and Bouman 
(2003) reported that around 75% of global rice is produced 
by raising the seedlings in a nursery followed by transplant-
ing operation in puddled field. In addition to excessive water, 
capital and energy demand, this practice of rice cultivation is 
associated with soil degradation (Bhatt et al. 2016), loss of 
ecosystem (Nawaz et al. 2019) and environmental pollution 
(Jimmy et al. 2017).

In the current scenario, when degradation of soil struc-
ture, declining soil health, residue handling issues and harm-
ful emissions from rice cultivated fields are taking place, 
the sustainability of rice production system is questionable. 
In India, rice is cultivated on 44 mha area, accounting 20% 
of total rice production worldwide (Oo et al. 2018). It is 
estimated that India needs to produce 130 mt rice by 2030 
to meet the demand of the growing population (Gujja and 
Thiyagarajan 2009). To achieve the projected demand, use 
of high-yielding varieties, expansion of rice cultivation area 
and wet tillage would be required, but latter two practices 
would further increase the irrigation water demand and 
greenhouse gas emissions (Oo et al. 2018). Considering all 
these aspects, an attempt has been made to critically review 
the challenges and opportunities in productivity and sustain-
ability of rice cultivation system in Indian perspective. Also, 
attempts were made to highlight the possible alternatives and 
solutions to overcome the present challenges in rice culti-
vation system. The key challenges and intervening areas in 
rice cultivation system are discussed in details under the 
following sections:

Fig. 1  Trend of rice yield in South Asia ( Source: FAOSTAT )
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Underground water table depletion

India is the top user of groundwater around the world 
(Mukherjee et  al. 2015), and it has about 25% share in 
global groundwater consumption. In fact, the groundwater 
consumption of India is higher than collective groundwater 
use of China and USA (Margat and van der Gun 2013). The 
unsystematic use of groundwater for irrigation caused wide-
spread over-exploitation of groundwater resources (Rodell 
et al. 2009), which is not sustainable in long-term. In India, 
out of 160 mha cultivable land, only 68 mha cultivated area 
is covered with irrigation facilities, while about two-third 
area is still rain-dependent (Dhawan 2017). About 61.6% of 
irrigation water is extracted from groundwater through wells, 
dug wells, shallow tube wells and deep tube wells (Suhag 
2016). The rate of groundwater level fall in India is probably 
the fastest globally (Aeschbach-Hertig and Gleeson 2012). 
During the last three decades, underground water levels in 
northern region of India have dropped from 8 to 16 m below 
ground level, and in rest of India, it has declined from 1 to 
8 m below ground level (Sekhri 2013). Another estimate 
reports that north-western India lost 109 giga cubic meter 
of groundwater between 2002 and 2008 (Rodell et al. 2009). 
The rapid extraction and slow groundwater recharge caused 
groundwater table to fall at a rate of about 1 m per year (m 
 y−1) in Punjab and Haryana, which may fall more rapidly in 
the coming years (Humphreys et al. 2010; Singh et al. 2014). 
In many cities of north-western India, the groundwater table 
is declining at a rate of 1.6 m  y−1 (Singh et al. 2015). The 
huge volumetric loss of groundwater and its faster declining 
rate might be the cause for India becoming a home for 25% 
of worldwide population living under water-scarce conditions 
(Mekonnen and Hoekstra 2016; Anonymous 2019a). The 
continuous decline of groundwater table has created water-
stressed condition, affecting the per-capita water availability. 
In 1951, per-capita water availability was 5177 cubic meter 

per year  (m3  y−1), which reduced to 1598  m3  y−1 in 2011 
as presented in Table 1. It has made India a water-stressed 
country according to international norms (Dhawan 2017; 
GoI 2018). Further, projected per-capita water availability is 
expected to fall to 1174  m3  y−1 by 2051 (GoI 2018). Water 
stress to scarce condition would put enormous pressure on the 
sustainability of water-guzzling crops like rice. Traditionally 
grown rice requires around 200–240 cm of the water column 
from nursery preparation to harvesting stage (Humphreys 
et al. 2008; Chauhan et al. 2012). However, the actual amount 
of water applied by the farmers is much higher especially 
in light-textured soils (Timsina and Connor 2001). Over the 
years, flood irrigation has become a common practice, even 
water ponding is considered as necessary part of rice cultiva-
tion. Easily accessible and sufficient availability of irrigation 
water in north-western India turned out rice–wheat cropping 
system, a classical example of high productive system in non-
ideal soils for rice cultivation, which are porous, coarse and 
highly permeable in nature (Chauhan et al. 2012). However, 
intensive cultivation of rice–wheat cropping system in these 
regions has forced the farmers to extract the groundwater 
with submersible pumps, which resulted in over-exploitation 
of groundwater. Singh and Kasana (2017) reported that area 
under the safe limit of groundwater (3.1–10 m) in Haryana 
state reduced from 44 to 34%, while the area under critical 
and over-exploited category of groundwater increased from 
56 to 64% and 4 to 23%, respectively, during 2004–2012. The 
decline in groundwater of many districts of Haryana was in 
the tune of 0.7–1.1 m  y−1. It was concluded that variations 
in groundwater levels could be due to rice–wheat cropping 
systems, irregular distribution of rainfall, over urbanization, 
variation in hydrogeological setup and different aquifer con-
ditions. The irregularity in annual rainfall of India is pre-
sented in Fig. 3. The deviation of annual rainfall from mean 
value could be very high during the drought years. Moreover, 
rainfall pattern makes this problem more complicated as dur-
ing the monsoon season, events of excessive rainfall and the 
large interval between two consecutive rainfall events take 
place. In the absence of rainfall events at a certain interval, 
rice cultivation requires a huge amount of irrigation water, 
causing rapid extraction of groundwater, which is associated 
not only with water table depletion but also with carbon diox-
ide  (CO2) emissions, where engines and tractors are used as 
the prime mover for pumping unit. Undoubtedly, excessive 
rice cultivation in non-ideal soils, traditional rice cultivation 
practices and major dependency of irrigation on groundwa-
ter would put enormous pressure on natural resources. Fur-
thermore, the excessive use of chemicals and fertilizers in 
rice cultivation under coarse-textured soils also poses other 
threats of soil and groundwater contamination with harmful 
chemicals.

Fig. 2  Trend of rice area in South Asia ( Source: FAOSTAT )
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Groundwater pollution

Groundwater pollution is a serious concern, which affects 
grain quality and health of human and animals. The excess 
and untimely use of N-fertilizer is associated with nitrate 
leaching, which pollutes the groundwater (Bhatt et  al. 
2016). In a study, researchers found higher nitrate content 
in groundwater of the regions where intensive rice–wheat 
cropping system was practised (Bajwa 1993). The problem 
of groundwater pollution is more serious in rice cultivat-
ing regions with coarse-textured soils, where frequent and 
heavy irrigation is applied. Bouman et al. (2002) found 
higher N leaching losses under wet season rainfed rice 
than irrigated rice. Pathak et al. (2009) observed higher 
cumulative leaching losses of nitrogen (46–69 kg N  ha−1) 
in rice field than the wheat field (16–22 kg N  ha−1). Rainfall 
plays an important role in N losses, which can be as high 
as 18% of applied nitrogen in high rainfall years (Pathak 
et al. 2009). Wang et al. (2015a) reported that intensive rice 
cultivation practice in subtropical China led to moderate 
ammonium-N  (NH4-N) pollution of shallow groundwater. It 
was concluded that flooded land and excessive N-fertilizer 
rate could lead to worse  NH4–N and nitrate–N  (NO3–N) 
pollution, respectively. Coarse-textured soils leach N more 
rapidly than heavy-textured soils, and N leaching under 
such soils is highly dependent on N-fertilizer application 
(Benbi 1990). Though it is very difficult to stop the nitro-
gen leaching completely, better management practices by 
adopting the proper irrigation and fertilizer scheduling can 
minimize the leaching losses and improve N-use efficiency 
(Singh et al. 1995). The cultivation of high water requiring 
crop like rice in arsenic-contaminated soils like in mid-
dle IGP of northern India carries the threat of groundwater 
contamination with arsenic (Srivastava et al. 2015). In many 

locations, arsenic content of groundwater under rice culti-
vation exceeded the acceptable limit (10 µg  L−1), raising 
the contamination level up to 312 µg  L−1 (Srivastava et al. 
2015). The application of such polluted groundwater for 
irrigation purpose can lead to other problems of soil and 
grain toxicity.

Soil and grain toxicity

It is extremely important to relook the practice of intensive 
rice cultivation under toxic soils and toxic irrigation water 
as it could lead to grain toxicity, affecting the human health. 
The practice of growing rice in arsenic-contaminated soils 
like in middle IGP escalates the possibility of soil and grains 
contamination with arsenic beyond the safe limit (Srivastava 
et al. 2015). It was reported that arsenic content in soil under 
rice cultivation exceeded the allowable limits of 20 mg  kg−1, 
raising the contamination level up to 35 mg  kg−1. Moreo-
ver, arsenic toxicity in the grains was found in the range of 
0.179–0.932 mg  kg−1, leaving 8 of 17 varieties unsafe for 
human consumption. Dhillon and Dhillon (1991) found sele-
nium toxicity in the soil and plants when selenium contami-
nated irrigation water was used for irrigation in rice–wheat 
cropping system under silty loam soils for a longer period. 
The intensive cultivation of frequent irrigation requiring 
crops like low land rice turned out one of the major factors 
responsible for the deposition of seleniferous material in the 
soil, leaving more than 100 ha area under selenium toxicity 
(Dhillon and Dhillon 1991). Sara et al. (2017) observed that 
arsenic and selenium content of soil increased with duration 
of rice monoculture system. The increase in arsenic and sele-
nium concentration in soil caused toxicity in rice grain. The 
anaerobic condition in rice cultivation affects nutrient uptake 

Table 1  Change in population 
and per-capita water availability 
of India over the years

*Estimated values
Sources: Anonymous (2019b), Babita and Kumar (2019)

Year Population (in 
millions)

Decadal change in 
population (%)

Per-capita water avail-
ability  (m3  y−1)

Decadal change in per-
capita water availability 
(%)

1951 361 – 5177 –
1961 439 21.6 4987 −3.8
1971 548 24.8 4632 −7.7
1981 683 24.6 3498 −32.4
1991 846 23.9 2209 −58.4
2001 1029 21.6 1820 −21.4
2011 1210 17.6 1598 −13.9
2021* 1345 11.2 1421 −12.5
2031* 1463 8.8 1306 −8.8
2041* 1560 6.6 1225 −6.6
2051* 1628 4.4 1174 −4.3
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by the plants and production of toxic substances (De Datta 
1981). Tran (1998) also reported that long-term soil pud-
dling and rice monoculture system increases the risk of soil 
toxicities. Shah et al. (2021) highlighted the toxic residues 
of pesticides and metalloids in rice grain under flooded rice 
cultivation system. Needless to say that intensive rice culti-
vation with puddling and flooding method projects the health 
risk associated with soil and grain toxicity in long-term. Sara 
et al. (2017) recommended to control these elements with 
prior importance by employing the different actions includ-
ing crop rotations, soil amendments, etc.

Degradation of soil structure

Rice cultivation using conventional method requires inten-
sive wet tillage primarily to reduce the percolation losses 
and to suppress the weed growth. The repeated puddling 
operation creates an impervious layer at 15–20 cm depth, 
which restricts water infiltration and root growth (Aggar-
wal et al. 1995; Kukal and Aggarwal 2003). The negative 
effects of subsurface compaction on the establishment, 
seed emergence, root growth and yield of succeeding crop 
are of major concern (Kukal and Aggarwal 2003). The pud-
dling operation deteriorates the soil structure by damaging 
the soil aggregates, breaking the capillary pores and dis-
persing the fine clay particles (Aggarwal et al. 1995). Bakti 
et al. (2010) recommended that in fine-textured soil like 
clay having low percolation rate, puddling, which is capital 
intensive and detrimental to soil structure, should be mini-
mized. It would be beneficial for soil health and its func-
tionality to replace the puddled transplanted rice (PTR) 
with lesser intensive cultivation practices such as zero-till-
based mechanized transplanting, direct-seeded rice (DSR) 

and strip tillage-based transplanting. The adoption of such 
rice cultivation practices under conservation agriculture 
(CA) either on a flat or permanent bed and diversified crop-
ping systems with wetting and drying irrigation method 
could be effective to improve the soil structure (Singh et al. 
2005a; Bakti et al. 2010; Chauhan et al. 2012).

Soil health deterioration

The intensive tillage, puddling operation and excessively 
cultivation of rice–wheat cropping system deteriorated 
health, structure and nutrient balance of the soils in 
north-western India. Killebrew and Wolff (2010) reported 
that long-term intensive rice cultivation system led to 
soil salinization, nutrient deficiencies, soil toxicities and 
reduced capacity of the soil to supply the nitrogen to the 
plant roots. Such changes can lead to reduced yield and 
abandonment of paddy fields in long-term. In other stud-
ies, Boparai et al. (1992) and Mohanty and Painuli (2004) 
observed that long-term water submergence and mineral 
fertilization practices in conventional rice cultivation 
resulted in degraded soil quality in terms of disintegra-
tion of stable aggregates and reduced soil organic matter. 
The concerns have been expressed on the sustainability 
of high yield of crops due to intensive rice cultivation 
system and multiple harvests of crops in a year (Livsey 
et al. 2019). The sustainability of rice production under 
rice–wheat cropping system in Punjab has been reported 
at risk due to soil degradation and declining water table 
(Dhaliwal et al. 2020) along with inadequate crop residue 
recycling and lack of organic fertilization. These changes 
in soil–water environment led to micro-nutrients defi-
ciencies and yield stagnation (Dobermann and Fairhurst 

Fig. 3  Annual rainfall and 
deviation from mean rainfall 
of India during 1988–2018  
Source: Somasundar (2014), 
Jaganmohan (2020)
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2002; Yadvinder-Singh and Bijay-Singh 2003). However, 
such negative impacts can be lowered by adopting rice in 
combination with leguminous crops and rice–oilseed crop 
rotation (Chen et al. 2012; Meetei et al. 2020). Moreover, 
shifting the rice monoculture to rice–fish farming showed 
positive effects on soil health in terms of labile pool of 
C fractions, microbial populations, nutrients and soil fer-
tility in addition to environmental sustainability (Bihari 
et al. 2015). The problem of declining soil health becomes 
worse with the burning of rice residue, which results in 
20–100% loss of precious nutrients retained in the residue 
(Singh et al. 2008). In response to nutrient losses with 
residue burning, farmers have to apply more fertilizers 
to obtain a similar crop yield, which raises the cost of 
cultivation. It needs urgent attention to improve the soil 
health in which residue retention on the soil surface and 
seeding with zero-till practice can play significant roles 
(Malik and Yadav 2008; Sidhu et al. 2008). Extending 
the resource conservation technologies (RCTs) for rice 
cultivation under conventional and CA along with soil 
water potential-based irrigation scheduling could be effec-
tive to improve the soil health and environmental qual-
ity (Dwivedi et al. 2003; Gupta and Sayre 2007; Jat et al. 
2010).

Declining crop response

The decline in crop response to applied fertilizers is a seri-
ous concern, causing the farmers to apply fertilizers above 
the recommended dose in an injudicious way. Although 
crop response to P and K fertilizers can be realized only 
after 5–10 years, it is necessary to apply these fertilizers 
along with N as the application of N-fertilizer alone in 
long-term can cause yield decline in rice–wheat cropping 
system (Bhatt et al. 2016). The low fertilizer use efficiency 
due to fertilizer losses as surface runoff, leaching, volatili-
zation and unfavourable soil moisture is one of the major 
reasons for declining crop response to applied fertilizers. 
Moreover, long-term practice of same cropping sequence 
like rice–wheat in IGP over the years, injudicious and 
unbalanced application of fertilizers, inappropriate tim-
ing of fertilizer application and low soil organic matter 
are other factors responsible for declining crop response to 
applied fertilizers (Chauhan et al. 2012; Bhatt et al. 2016). 
In rice–wheat cropping system, the net negative balance 
of NPK is 2.22 mt per annum for IGP (Tandon 2007). The 
current trend of decline in crop response to applied fertiliz-
ers would create more difficulties for any further improve-
ment in crop productivity. Therefore, soil and water man-
agement, integration of green or brown manuring, growing 
of dual-purpose pulses and addition of organic manure 

along with inorganic fertilizers are required to reverse the 
trend and improve the crop response in long run.

Decreasing water productivity

In the scenario of depleting groundwater table, decreased 
water productivity is of major concern, which has been 
reported from different agro-climatic zones of the coun-
try (Humphreys et  al. 2010; Bhatt 2015). Decreased 
water productivity along with deteriorating water table 
can hamper the objective of sufficient grains production 
in future. It requires urgent attention to increase the water 
productivity of crops especially C3 crops like rice, which 
are less water efficient. This can be achieved by grabbing 
the opportunities at biological, environment and man-
agement levels (Sharma et al. 2015). Rice (lowland) is a 
less water productive crop (0.2–1.2 kg  m−3) as compared 
to wheat (0.8–1.6 kg  m−3) and maize (1.6–3.9 kg  m−3) 
(Sharma et  al. 2015). While the Punjab and Haryana 
states of India report the highest land productivity (4 
tonnes per hectare) for rice, the water productivity is 
relatively low at 0.22–0.60 kg  m−3, even though these 
states have almost 100% irrigation coverage. It signifies 
the inappropriate use of irrigation water. Puddling and 
flooding operations in lowland rice production system 
consume a major portion of irrigation amount, causing 
lesser water productivity. The PTR requires 15–25 cm 
water column for saturation and flooding of soil (Tuong 
1999). However, puddling method also reduces deep 
drainage losses by lowering the infiltration rate, which 
is generally high in the absence of puddling in coarse-
textured soils (Sharma et  al. 2004). The reduction in 
infiltration rate depends on soil texture, tillage inten-
sity and puddling operations, water table and depth 
of floodwater (Gajri et al. 1999; Kukal and Aggarwal 
2002). Bouman and Tuong (2001) reported that rice 
performs well in terms of yield when continuous flood-
ing or saturated soil condition is maintained. Rice yield 
reduces when soil moisture drops below to saturation 
level. Technologies such as alternate wetting and drying 
(AWD), a system of rice intensification (SRI), bed plant-
ing, DSR and soil mulching have been adopted to reduce 
the water inputs and improving the water productivity 
(Tuong et al. 2005). Tabbal et al. (2002) reported that 
rice cultivation in saturated soil culture required 30–60% 
lesser water, which increased the water productivity by 
30–115% over conventional practice. However, a yield 
penalty of 4–9% was levied on rice cultivation in satu-
rated soil culture as compared to conventional practice. 
Water-saving in AWD method is attributed to a reduction 
in seepage and drainage losses (Tuong et al. 1994). This 
practice of irrigation is usually applied to DSR in which 
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water required for raising the nursery and transplanting 
the rice is eliminated. However, the duration of DSR is 
longer than PTR, which would require higher water for 
evapotranspiration process than conventionally cultivated 
rice (Cabangon et  al. 2002; Humphreys et  al. 2010). 
Researchers asserted that net water savings depends on 
water saved from longer irrigation interval and additional 
water required in pursuance to deep drainage losses in 
DSR as compared to PTR. A few researchers reported 
that lesser irrigation amount was required in DSR than 
PTR with or without yield penalty (Jat et al. 2009; Yadav 
et al. 2010). The yield of DSR reduced rapidly when the 
soil was permitted to dry beyond soil moisture tension of 
20 kPa (Yadav et al. 2010). These findings suggest that 
it is essential to reduce the unproductive water outflows 
to improve the water productivity of rice, which may be 
accomplished by soil water potential-based frequently 
irrigated DSR. Water-saving techniques such as micro-
irrigation systems (sprinkler and drip irrigation) proved 
as cutting edge technology for improving the water use 
efficiency and conserving the water due to elimination of 
conveyance losses, evaporation from the water surface, 
runoff losses, etc. (Meena et al. 2015). Technologies such 
as CA should be promoted and practised on a large scale 
to improve the water productivity of crops. Agronomical 
practices such as rice cultivation on a raised bed with 
furrow irrigation, DSR with cultivars of high stress toler-
ance index, unpuddled transplanted rice and DSR with 
straw mulching would be effective approaches to increase 
the water productivity without much effect on the rice 
yield (Mahajan et al. 2011; Kar et al. 2018). Needless to 
say that India also need to review the present scenario of 
producing the higher water requiring crops such as rice 
and sugarcane in water-stressed areas (Dhawan 2017).

Declining factor productivity

The declining trend of total factor productivity in agriculture 
is a severe threat to sustainable farming and food security. In 
recent years, a significant portion of the cultivable land faced 
stagnation or negative growth in total factor productivity 
(Kumar and Mittal 2006). In low land of Asia, excessive till-
age led to degradation of land resource base, which reduced 
the productivity growth of primary cereals like rice and 
wheat (Pingali and Heisey 2001). In north-western India, 
the rice–wheat cropping system has been associated with 
environmental degradation along with stagnant or declin-
ing crop productivity, thereby posing a threat to sufficient 
grain production (Aggarwal et al. 2000). A few researchers 
stated that declining factor productivity and degrading soil 
and water resources have threatened the sustainability of 
rice–wheat cropping system (Hobbs and Morris 1996; Ladha 

et al. 2003a). A more yield decline has been witnessed in 
rice as compared to wheat under rice–wheat cropping sys-
tem (Ladha et al. 2003b). However, generally, it is argued 
that wheat yield suffers more after PTR due to soil structure 
degradation (Humphreys et al. 1994; Bhushan and Sharma 
1999). Ladha et al. (2003b) suggested to adopt the suitable 
agronomic and soil management practices for sustaining and 
improving the crop productivity.

Diverse weed flora

Weeds are the major problem in rice cultivation. Effec-
tive weed management plays an important role in the 
overall profitability of any cropping system. The 
destruction of weeds with puddling is the main reason 
for ongoing traditional practice in rice cultivation. How-
ever, intensive rice cultivation over the years confined 
the eco-biodiversity and weed spectrum, and therefore, 
specific weeds develop more resistance against herbi-
cides and compete with crop plants for water, nutrient 
and energy. Crop diversification can effectively change 
the weed spectrum and reduce weed infestation and 
resistance (Chhokar and Malik 2002). Unlike in tradi-
tional practice, DSR restricts the weed seed distribution 
and weed killing and leaves 60–90% weed seeds in the 
top layer of the soil (Swanton et al. 2000; Chauhan et al. 
2006). The diverse weed flora consisting of grasses, 
broadleaved and sedges infest rice crop depending on the 
rice culture and management practices adopted as well 
as soil and climate conditions. The major weeds found 
in the rice fields in South Asia are mentioned in Table 2. 
Echinochloa crus-galli and Echinochloa colona are the 
major weeds found in different rice ecologies (aerobic 
as well as anaerobic rice) in Asian countries. There are 
many weeds such as Dactyloctenium aegyptium, Digi-
taria sanguinalis, Digera arvensis, Trianthema portu-
lacastrum and Cyperus rotundus, which do not infest 
puddle transplanted rice but found in abundance in DSR 
and cause huge yield reductions (Chhokar et al. 2014). 
Overall, DSR has diverse weed flora due to alternate 
wetting and dry conditions. Further, the losses caused 
by weeds in rice depend upon weed densities, nature 
of weed flora, duration of weed competition as well as 
crop establishment methods (Diarra et  al. 1985; Fis-
cher and Ramirej 1993; Eleftherohorinos et al. 2002; 
Chhokar et al. 2014). Crop establishment methods such 
as direct seeding (under dry or wet conditions) or trans-
planting (under puddled or unpuddled conditions) have 
strong influence on weed diversity and intensity. Numer-
ous studies have reported higher yield losses in direct 
seeding compared to transplanting in rice cultivation. 
(Walia et al. 2008; Chauhan 2012; Chhokar et al. 2014). 
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Based on the large number of farm trials (Gharade et al. 
2018), weeds in India caused a loss of about 15–66% in 
DSR and 6–30% in PTR. Similarly, other workers also 
reported that weeds cause worldwide, 30–100 per cent 
rice grain yield reductions in DSR (Oerke and Dehne 
2004; Rao et al. 2007; Kumar and Ladha 2011; Chhokar 
et al. 2014). The higher yield reductions in DSR com-
pared to PTR are due to infestation of diverse weed flora 
in abundance and their emergence before or along with 
the crop as well as in several flushes, whereas in PTR 
crop has an advantage of about one-month-old seedlings 
over weeds (Chhokar et al. 2014; Rao et al. 2007). More-
over, standing water during the initial stages reduces 
weeds germination and also improves the herbicides 
effects. Hill and Hawkins (1996) reported that same rela-
tive E. crus-galli density caused a 20% yield reduction 
in PTR compared to 70% in DSR. Besides yield losses, 
weed infestation also reduces rice quality (Menzes et al. 
1997). Worldwide, rice is grown under different ecolo-
gies ranging from an upland to lowland situations, but 
maximum area is occupied with PTR, where fields are 
flooded during the most of the crop duration. The depth 
of the water influences the type and density of the weed 
flora (Kent and Johnson 2001; Kumar and Ladha 2011). 
However, the scarce and costly labour for transplanting 
is forcing to shift towards the DSR. The labour problem 
has been aggravated recently due to Covid-19 pandemic 
in northern India (Haryana and Punjab) and as a result, 
many farmers shifted from PTR to DSR. However, for 
long-term success of DSR, two pre-requisites are selec-
tion of suitable varieties and efficient weed management 
(Chhokar et al. 2014).

In DSR, single pre- or post-application of herbicide fails 
to control the diverse weed flora and combination of herbi-
cides either in tank mixture or in sequence is required to have 
effective control of broad-spectrum weeds. The application 
of pre-emergence pendimethalin or oxadiargyl followed by 
either bispyribac or penoxsulam in combination with eth-
oxysulfuron or pyrazosulfuron controls the diverse weed 
flora in DSR. Fenoxaprop + safener (Rice Star) effectively 
controls the problematic weeds, Dactyloctenium aegyptium 
and Digitaria sanguinalis. Also, the ready mixture of tria-
famone + ethoxysulfuron as well as penoxsulam + cyhalo-
fop can be utilized for diverse weed flora control. The sole 
dependency on herbicide is not desirable due to the risk of 
evolution and spread of herbicide resistant weeds. Weedy 
rice or red rice (O. sativa f. spontanea) has turned out as 
a major challenge in rice cultivation where PTR has been 
replaced with DSR (Kumar and Ladha 2011). In fact, weedy 
rice problem in Malaysia has left some farmers to switch 
back to transplanting method of rice cultivation to control 
it. Therefore, for effective weed management in long-term, 
herbicides in mixtures and rotations should be supported Ta
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with multiple non-chemical weed control strategies such 
as stale seed bed, competitive cultivars, crop rotation, use 
of weed free seed and mechanical weeding to remove the 
weeds before seed setting. In addition, the development and 
large-scale adoption of herbicide-tolerant rice in future will 
simplify and provide cost-effective diverse weed flora con-
trol in DSR.

Labour scarcity

The labour scarcity and higher labour cost are the emerg-
ing challenges in rice production system (Lauren et al. 
2008). The labour shortage causes the delay in rice trans-
plantation, which may reduce the yield by 30–70% upon 
delay of 1–2 months (Rao and Pradhan 1973). The prob-
lem of a labour shortage during the rice transplantation 
and wheat-sowing season arises due to engagement of 
labour in assured working scheme like MGNREGA by 
Government of India. Rice transplantation is very labo-
rious, tedious and time-consuming operation, which 
requires 300–350 man-h  ha−1 (Bhatt et al. 2016). It has 
also been observed that manual random transplanting of 
rice results in lesser seedlings per unit area compared 
to the recommended level of 30–40 plants per square 
meter. Mechanical transplanting of rice is being adopted, 
which requires only 40 man-h  ha−1 to tackle the issues 
of labour scarcity, higher labour cost and delay in rice 
transplantation (Mohanty et al. 2010). After harvesting 
the rice with combine harvesters, the problems of critical 
window period between rice harvest and wheat sowing, 
labour scarcity and higher labour cost involved in manual 
residue handling encourage the farmers to adopt the prac-
tice of residue burning to avoid any delay in wheat sow-
ing. The farmers of Punjab and Haryana regions are more 
concerned about timely seeding of wheat as its yield is 
reduced by 26.8 kg  day−1  ha−1, when sowing is done after 
30th November (Tripathi et al. 2005). The research focus 
on machinery development, subsidiary on residue handling 
machines and ban on crop residue burning by Govern-
ment of India have prompted the farmers to adopt alter-
nate practices for residue management. However, it would 
require more research focus on machinery development for 
multi-cropping systems, awareness of farmers about con-
sequences of residue burning, set-up of industries engaged 
in manufacturing of residue-based products at block level 
and schemes like incentives for supplying the raw materi-
als, i.e. crop residues to such industries.

Residue management challenges

In India, more than 686 mt of crop residue is generated 
every year, of which 234 mt is surplus (Hiloidhari et al. 
2014). Around 368 mt crop residue is generated from 
cereal crops in which rice and wheat contribute approxi-
mately 154 and 131 mt, respectively (Hiloidhari et al. 
2014). Along with the crop production, residue gener-
ated from the agriculture sector is increasing every year 
as given in Table 3. Among the various crop residues, 
management of rice residue and sugarcane trash has 
been very challenging due to its poor feed quality owing 
to higher silica content, narrow window period between 
rice harvest and wheat sowing, higher cost of residue 
handling machines, labour-intensive operation of residue 
removal and lack of storage and energy generation sys-
tems. These challenges force the farmers of north-western 
India to adopt the injudicious practice of residue burn-
ing as an economical option for timely sowing of wheat 
into combine harvested rice fields. Such unfair practices 
degrade the environment by contaminating the air with 
carbon monoxide (CO), carbon dioxide  (CO2), methane 
 (CH4) and particulate matter. In fact, air quality index of 
National Capital Region of India falls sever to emergency 
level during the rice-harvest and wheat-sowing season 
(APRC 2018). Crop residue burning is also associated 
with other problems such as loss of nutrients retained in 
the residue, global warming and soil health deterioration. 

Table 3  Residue production from various crops in India over the 
years

Residue production has been calculated from yield data of rice, 
wheat, maize and sugarcane (Source: PBAS 2019) with their residue-
to-product ratio as 1.4, 1.3, 2.3 and 0.33, respectively

Year Residue production (in million tonnes)

Rice Wheat Maize Sugarcane

1950–1951 28.81 8.40 3.98 21.68
1960–1961 48.41 14.30 9.38 41.80
1970–1971 59.11 30.98 17.23 48.02
1980–1981 75.08 47.20 16.01 58.62
1990–1991 104.01 71.68 20.61 91.60
2000–2001 118.94 90.58 27.69 112.46
2010–2011 134.37 112.93 49.98 130.10
2011–2012 147.42 123.34 50.05 137.20
2012–2013 147.32 121.56 51.20 129.66
2013–2014 149.31 124.61 55.80 133.81
2014–2015 147.67 112.49 55.59 137.69
2015–2016 146.17 119.98 51.91 132.41
2016–2017 153.58 128.06 59.57 116.31
2017–2018 157.86 129.83 66.13 144.36
2018–2019 162.99 132.85 62.63 152.06
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Hence, the farmers have been suggested to use the rice 
residue for manure, energy production, biogas production, 
ethanol generation, gasification, biochar and mushroom 
cultivation according to easily accessible option to them 
(Fig. 4). A few researchers reported that incorporation of 
residue in the soil is an effective in-situ residue manage-
ment option, which improves the soil health in long-term 
(Kumar and Goh 2000; Sidhu and Beri 2005; Bijay-Singh 
et al. 2008). However, higher energy requirement and tem-
porary immobilization of nitrogen are the key challenges 
in this method, which increases the cost of cultivation 
(Singh et al. 2005b, 2020). The surface retention of rice 
residue by direct seeding the wheat or other crops with 
resource conserving machines such as zero-till drill, strip-
till drill, mulcher, punch planter, Happy Seeder and Rotary 
Disc Drill emerged as more promising option for residue 
management (Sidhu et al. 2007, 2015; Sharma et al. 2008). 
Researchers reported multiple benefits of reduced soil ero-
sion, improved soil organic carbon, reduced water losses 
through evaporation and less emergence of weeds in direct 
seeding of wheat under residue covered field (Ding et al. 
2002; Humphreys et al. 2010; Sidhu et al. 2015). Busari 
et al. (2015) concluded that conservation tillage either zero 

tillage or reduced tillage along with anchored crop residue 
can build up a better soil environment along with lessened 
impact on the environment, leading to climate resilience 
crop production system. The non-conventional seeding 
practice, i.e. direct drilling, allows in-situ management of 
crop residue and timely seeding of crops. It also provides 
the yield advantage to crops, while saving the time, water 
(10–15%) and diesel (70–80%) along with reduced impact 
on the environment (Erenstein and Laxmi 2008; Erenstein 
2009; Mishra and Singh 2012). Despite multiple benefits, 
the adoption of these technologies is not very impressive 
at farmers’ field. Therefore, more efforts on the develop-
ment of suitable seeding machines for multi-cropping sys-
tems under conventional and CA and their popularization 
are required for effective in-situ residue management on 
large scale at farmers’ field. Custom hiring service needs 
to be promoted at block and village level to overcome the 
issue of costly residue handling and seedling machines for 
farmers belonging to small- and medium-land holdings. 
Moreover, utilization of crop residue for industrial and 
energy applications requires infrastructure development, 
establishment of residue collection centres at block level, 
build-up of strong supply chains, policy interventions, 

Fig. 4  Different in-field and off-field options for residue management
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large-scale trainings and incentives to farmers to drive the 
sustainable residue management mission.

Environmental pollution

The agriculture sector has been a major source of methane 
 (CH4) and nitrous oxide  (N2O) emissions, primarily driven 
from flood-based rice cultivation (Kritee et al. 2018), use 
of synthetic fertilizers (Zschornack et al. 2018) and resi-
due burning practices (Jain et al. 2014). Such emissions can 
raise the global warming potential to 10 times in rice season 
than winter (Zschornack et al. 2018). It is estimated that 
agriculture is the largest sector, contributing about 44% of 
anthropogenic methane emissions (Janssens-Maenhout et al. 

2019). The graph plotted using the data taken from FAO 
shows a consistent decrease in the contribution of the agri-
culture sector to  CH4 emission during 1990–2017 (Fig. 5a). 
However, interestingly amount of  CH4 emission emitted 
from agriculture sector consistently increased for the same 
period (Fig. 5b). Needless to say that other sectors emitted 
 CH4 emissions in a faster way than agriculture. But changes 
in agricultural practices such as increased cultivable area 
especially under rice cultivation, an overdose application 
of fertilizers and residue burning have elevated  CH4 emis-
sions significantly. Similarly, the amount of  N2O emission 
emitted from agriculture sector consistently increased during 
1990–2017 (Fig. 5c and 5d). Apart from  CH4 and  N2O emis-
sions, the traditional practice of rice cultivation significantly 
contributes to other greenhouse gas emissions, too. Puddling 
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Fig. 5  Figure depicting (a) share of agriculture sector in  CH4 emission, (b) amount of  CH4 emission from agriculture sector, (c) share of agricul-
ture sector in  N2O emission, (d) amount of  N2O emission from agriculture sector ( Source: FAOSTAT )
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operation in mechanized rice cultivation consumes much 
amount of fuel and thereby raises  CO2 level in the envi-
ronment. Also, more water requiring crops are responsible 
for higher  CO2 emission as compared to other crops in the 
areas where stationary diesel engines or tractors are used 
for pumping out the water. The burning of 1 L of diesel sup-
plies 2.67 kg of  CO2 to the environment. The problems of 
environmental pollution from rice cultivation are not limited 
to its growth period but also after harvesting of rice. Eco-
nomic constraints, unavailability of suitable residue handling 
machines and poor feed quality of rice residue encourage the 
farmers to adopt the unfair practice of residue burning for 
quick in-situ management of residue and timely seeding of 
wheat. It creates a huge burden on the environment during 
the rice-harvesting and wheat-sowing season. Kumar et al. 
(2019) estimated the loss due to residue burning by taking 
nutrient losses, yield loss, soil biodiversity, irrigation, health 
and other factors into consideration. It was observed that res-
idue burning in north-western India caused losses to the tune 
of Rs. 8953 per hectare. As far as  CH4 and  N2O emissions 
are concerned, better water management practices can lower 
these emissions from the rice fields.  CH4 emission reduces 
significantly with intermittent irrigation approach, while 
 N2O emission rises under such conditions, thereby creating a 
trade-off between  CH4 and  N2O emissions (Yue et al. 2005). 
However,  CH4 emission plays a dominant role in greenhouse 
gas emissions. The excessive use of fertilizer, chemicals and 
non-renewable energy in PTR raises other emissions of  CO2, 
oxides of nitrogen  (NOx), oxides of sulphur  (SOx) and heavy 
metal (Jimmy et al. 2017). It is important to optimize N-fer-
tilizer doses to improve its uptake efficiency and to reduce 
the losses and emission load on the environment (Ju et al. 
2009; Qiao et al. 2012). A shift in cultivation method from 
PTR + residue retention to non-puddled transplanting using 
strip tillage + residue retention can mitigate 15–30% green-
house gas emissions  (CO2 equivalent emission) along with 
the benefit of carbon storage in the soil (Alam et al. 2016, 
2019). The adoption of cultivation practices such as DSR 
on flat or permanent beds, zero-till mechanized transplant-
ing and strip tillage + transplanting can alleviate harmful 
impacts of puddling method on the environment. However, 
it requires more research efforts to address weed control, 
soil-borne pathogens and grain quality challenges of rice 
cultivated under non-puddled practices (Kumar et al. 2011). 
A shift from intensive cereal–cereal production system to 
leguminous-cereal cultivation or replacing rice–wheat with 
maize–wheat cropping system periodically under zero-till or 
CA practice could be beneficial for sustainable food grain 
production. The integrated approach of adopting low dura-
tion and lesser water requiring varieties, water management, 
residue management and RCTs in rice cultivation can miti-
gate the environmental pollution.

Global warming

Global warming is an emerging serious threat to agri-
culture sector. Greenhouse gases like  CH4,  CO2 and  N2O 
trap the short wave radiation, causing a net increase in the 
global temperature. The comparative assessment of differ-
ent crops should be made not only based on yield poten-
tial but also their emission intensity, i.e. net return to the 
environment. For instance, the production of 1 kg rice 
returns 0.71 kg  CO2 equivalent  (CO2-eq) emissions to the 
environment as compared to 0.27 kg  CO2-eq emissions 
per kg production of other cereals (Source: FAOSTAT ). In 
addition to this, huge amount of residue generated from 
rice and sugarcane crops creates management challenges 
and farmers burn the residue for timely sowing of wheat 
especially in IGP. The total carbon present in rice resi-
due converts to  CO2 (70%), CO (7%),  CH4 (0.66%) and 
particulate matter, while 2.09% nitrogen to  N2O gas upon 
burning (NPMCR 2014). The burning of crop residue is 
not only associated with air pollution but also with loss 
of precious nutrients retained in the crop residue. Dur-
ing the crop residue burning, almost 100% carbon, more 
than 90% nitrogen, 20–25% phosphorus and potassium 
and about 60% sulphur are lost in the form of various 
gases and particulate matter (Singh et al. 2008). The gases 
emitted from crop residue burning can cause radiation 
imbalance, leading to harmful effects such as more aero-
sols in the region, acid rain and ozone layer depletion. 
Hence, like in other crops, farmers should adopt residue 
management and RCTs in rice cultivation as well for a 
sustainable farming. Ma et al. (2019) found that global 
warming potential (GWP) and greenhouse gas intensity 
(GHGI) reduced by 12.6–59.9% and 10.5–65.8%, respec-
tively, by returning the wheat crop waste to the soil in 
the form of straw, straw-derived biochar and straw with 
straw-decomposing microbial inoculants over no straw 
return practice. Sapkota et  al. (2017) and Chen et  al. 
(2021) highlighted the use of no-tillage with residue 
retention practice to combat the global warming poten-
tial in rice–wheat and rice–rice cropping systems. The 
return of crop residue to the soil should be in the form 
of mulching as residue incorporation into soil can raise 
 CH4 emissions by 3.2–3.9 times of straw-induced SOC 
sequestration rate, thereby worsening the GWP rather 
than mitigating climate change (Xia et al. 2014). In a 
different study, Pittelkow et al. (2014) found that poten-
tial yield of rice along with minimal yield-scaled GWP 
is achievable by using the optimal doses of N-fertilizer. 
Nemecek et al. (2012) highlighted the lowest GWP for 
sugar crops (< 0.05 kg  CO2-eq  kg−1) followed by root 
crops (< 0.15 kg  CO2-eq  kg−1) and vegetable and fruits 
(< 0.35 kg  CO2-eq  kg−1). Cereals (except rice) and pulses 
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were found to have medium GWP (< 0.6 kg  CO2-eq  kg−1), 
while oil crops (cotton, peanuts) and rice exhibited the 
highest GWP (1.2–2.4 kg  CO2-eq  kg−1). Needless to say 
that it would be beneficial to the environment and agro-
ecosystem to replace the higher GWP posing cereal crop 
with vegetable, sugar or root crops in cereal–cereal crop-
ping system. The better water management techniques 
replacing the continuous flooding in rice cultivation 
might be effective to reduce the GWP further from rice-
based cropping systems (Jiang et al. 2019a).

Abiotic stress challenges in rice

Rice can be grown in most diverse ecologies; however, its 
growth and productivity are severely affected by abiotic 
factors such as heat stress, cold stress, salinity, flood and 
drought (Biswal et al. 2019). The severity and intensity of 
these abiotic stresses are increasing due to climate change 
(Pereira 2016). With the continuous increase in greenhouse 
gases and extensive human interference in the environment, 
adverse effects of climate change are likely to increase. The 
prediction models have shown severe rice yield losses under 
intensive climate warming scenarios (Zhao et al. 2016). 
Increased concentration of  CO2 and fluctuations in tempera-
ture and precipitation would impact the rice growth and pro-
ductivity severely due to significant effects of these factors 
in photosynthesis and other important metabolic processes 
(Liu et al. 2017; Wang et al. 2020). A recent study suggested 
that elevated levels of  CO2 also affected protein, iron, zinc 
and vitamins content of rice cultivars grown in Asia, thereby 
posing a serious challenge to human health (Zhu et al. 2018). 
Temperature is one of the most critical abiotic factors which 
influences the rice production, productivity and grain quality 
directly. Heat stress affects rice growth and metabolism and 
has severe impact on all the growth phases, especially seed-
ling and reproductive stage (Sailaja et al. 2015; Bhogireddy 
et al. 2021). In a recent study, Zhao et al. (2017a) estimated 
the global yield loss of rice by 3.2% for every 1 °C increase 
in global mean temperature by compiling the extensive 
published results from different analytical methods. On the 
contrary, positive effects of temperature and increased  CO2 
on rice growth were predicted in Madagascar (Gerardeaux 
et al. 2012) suggesting that climate change may bring better 
scenario for rice cultivation in this region.

Little efforts have been made towards mapping the 
quantitative trait locus (QTL) for heat stress tolerance 
(Shanmugavadivel et al. 2017; Kilasi et al. 2018). More-
over, further characterization of these QTLs to under-
stand the mechanisms and causal genes has not been very 
impressive. Few genes like ERECTA  (ER), a homolog of 
Arabidopsis receptor like kinase and α2 subunit of the 26S 
proteasome have been identified as potential regulators 

imparting heat stress tolerance in rice (Li et al. 2015; Shen 
et al. 2015). The O. glaberrima allele of TT1 was shown 
to be more efficient in degradation of cytotoxic denatured 
proteins during the heat stress. Another gene OsDPB3-2 
(LOC_Os03g63530) imparts heat stress tolerance in rice 
through positive regulation of dehydration-responsive ele-
ment binding protein 2A (DREB2A). Notably, the over-
expression of DPB did not show any phenotypic aberra-
tions suggesting that it can be used as candidate gene for 
improving thermotolerance in rice (Sato et al. 2016).

Similarly, stress due to cold temperature at seedling and 
booting stages can cause severe loss to rice grain produc-
tion (Xiao et al. 2018). In rice, a pathway mediated by CBF/
DREB1 play a crucial role in cold tolerance (Chinnusamy 
et al. 2007; Ritonga and Chen 2020). Other transcription fac-
tors such as OsMYB4, MYBS3, OsbHLH002 and OsMAPK3 
positively regulate the cold stress tolerance response in 
rice (Su et al. 2010). Fujino et al. (2008) identified that 
qLTG3–1 (Os03g0103300) encoding protein of unknown 
function is important for germination at low temperature. 
Cultivars harbouring tolerant allele of qLTG3–1 or over-
expressing rice lines showed low-temperature germinabil-
ity phenotype, suggesting variations in promoter region of 
tolerant and susceptible alleles. In a crucial study, a gene 
responsible for cold tolerance of japonica rice was cloned 
and characterized through QTL analysis. COLD1 (Chilling 
Tolerance; LOC_Os04 g51180) was found to be a key player 
associated with chilling tolerance, which acts through acti-
vation of  Ca++ channel by interacting with G protein and 
regulating G protein signalling at plasma membrane (Ma 
et al. 2015). Interestingly, a single nucleotide polymorphism 
(SNP) at the 15th nucleotide of the 4th exon of COLD1A was 
attributed to difference in low-temperature-tolerant japonica 
and susceptible indica cultivars. The susceptible genotypes 
had T/C instead of A present in tolerant genotypes, which 
resulted in Met187/Thr187 (susceptible) to Lys187 (toler-
ant) substitution. The tolerant allele was suggested to be 
derived from O. rufipogan wild rice (Ma et al. 2015). An 
SNP in coding sequence of LOC_Os10g34840 was identi-
fied through genome-wide association study of 1033 rice 
accessions, which contribute low-temperature tolerance 
at seedling stage. This SNP at 18,598,921 (G in tolerant 
while A in susceptible) caused Gly (tolerant) to Ser (sus-
ceptible) substitution (Xiao et al. 2018). Another such gene 
Os09g0410300 was shown to contribute cold tolerance at 
seedling stage, and the phenotype was attributed to nucleo-
tide variations present in its promoter resulting in tolerant 
and susceptible alleles of a gene (Zhao et al. 2017b). In addi-
tion to genes for cold tolerant at seedling stage, few genes 
imparting tolerance at vegetative and booting/reproductive 
stages have also been characterized. Ctb1 (cold tolerance at 
booting stage) encoding a F box protein and CTB4a encod-
ing a conserved leucine rich repeat receptor like kinase have 
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been cloned and demonstrated their role in conferring cold 
tolerance at booting stage (Zhang et al. 2017). The toler-
ant allele of CTB4a contained 5 SNPs (at positions 2536, 
2511, 1930, 780 and 2063) in its promoter, which helps in 
better expression of gene in tolerant genotypes (Zhang et al. 
2017). In another study, a gene contributing cold tolerance 
at vegetative growth stage was mapped and characterized 
(Lu et al. 2014). The Low-Temperature Growth 1 (LTG1) 
encoding a casein kinase I regulates cold tolerance through 
auxin dependent pathway. The tolerant allele of LTG1 has a 
SNP, i.e. T at 1070 in place of A in susceptible allele, caus-
ing amino acid substitution Iso357 (in tolerant) to Lys357 
(in susceptible) (Lu et al. 2014). A few genetic engineering 
approaches for developing the abiotic stress tolerance in rice 
are presented in Table 4.

Genetic resources and molecular approaches 
of rice improvement

Rice is one of the most widely adapted crops due to the 
vast genetic diversity and its wild relatives (Singh  et 
al. 2018). There are 22 wild and 2 cultivated species (Oryza 
sativa  and  Oryza glaberrima) under the genus  Oryza 
(Vaughan 1989). The O. sativa  covers most of the area 
under rice cultivation and has been classified into five major 
groups: indica, aromatic japonica, tropical japonica, tem-
perate japonica and aus (Garris et al. 2005). These genomic 
resources conserved by national and international organiza-
tions have been used in crop improvement programs and also 
for basic research. A total of 132,000 accessions of rice were 
maintained by International Rice Genebank Collection Infor-
mation System (IRGCIS) of International Rice Research 

Table 4  Genetic engineering approaches for developing abiotic stress tolerance in rice

Gene Gene description Gene source Phenotype Reference

Overexpression
HVA1 LEA (Late Embryogenesis 

Abundant) protein
Hordeum vulgare Salinity and drought toler-

ance
Xu et al. (1996)

OsLEA3-2 LEA protein Oryza sativa Salinity and Drought toler-
ance

Duan and Cai (2012)

OsPIP1 Aquaporin (plasma mem-
brane intrinsic protein)

Oryza sativa Salinity tolerance Liu et al. (2013)

OsTSP1 Trehalose-6-phosphate 
synthase

Oryza sativa Salinity, drought, and cold 
tolerance

Fan et al. (2012)

HSP70 Heat shock protein Citrus tristeza virus (CTV) Salinity tolerance Hoang et al. (2015)
sHSP18.6 Heat shock protein Oryza sativa Heat, drought, salt and cold 

tolerance
Wang et al. (2015b)

pdc1 Pyruvate Decarboxylase Oryza sativa Submergence tolerance Quimio et al. (2000)
PYL10 ABA receptor Oryza sativa (Nagina22) Drought and cold tolerance Verma et al. (2019)
Rab7 ABA pathway protein Oryza sativa Drought and heat tolerance El-Esawi et al. (2019)
OsMYB6 Transcription factor Oryza sativa Drought and salinity toler-

ance
Tang et al. (2019)

RNA interference (RNAi)
OsmiR156k Regulatory non-coding 

small RNA
Oryza sativa Cold tolerance Cui et al. (2015)

miR390 Regulatory non-coding 
small RNA

Oryza sativa Cadmium tolerance Ding et al. (2016)

miR319 Regulatory non-coding 
small RNA

Oryza sativa Cold tolerance Yang et al. (2013)

miR159 Regulatory non-coding 
small RNA

Drought tolerance Zhao et al. (2017a, 2017b)

miR393 Regulatory non-coding 
small RNA

Oryza sativa Sensitive to salinity and 
alkalinity

Gao et al. (2011)

miR164b Regulatory non-coding 
small RNA

Oryza sativa Drought and salt tolerance Jiang et al. (2019b)

Genome editing
dst DST protein Oryza sativa Drought and salinity toler-

ance
Kumar et al. (2020b)

OsRR22 Transcription factor Oryza sativa Salinity tolerance Zhang et al. (2019b)
OsMYB30 Transcription factor Oryza sativa Cold tolerance Zeng et al. (2020)
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Institute (IRRI) as on December 2019. A large number of 
indigenous, exotic and wild rice accessions are also main-
tained by National gene bank of India of National Bureau of 
Plant Genetic Resources (NBPGR), New Delhi. Among the 
crops, rice is the first to have complete genome sequence, 
which helped in developing genetic resources for gene dis-
covery, molecular markers and crop improvement (IRGSP 
2005). Recent efforts of sequencing of 3,000 rice accessions 
from 89 countries have helped in identification of superior 
alleles and haplotypes for rice breeding programs (T3RGP 
2014). Genomic information of 3,010 diverse Asian culti-
vated rice including 3000 rice accessions of 3 K rice genome 
project was used to identify 29 million SNPs, 2.4 million 
small indels, 10,000 novel full-length protein-coding genes 
and more than 90 thousand structural variations, which will 
serve as an extremely important genetic resource for breed-
ing and biotechnology research (Wang et al. 2018). Several 
databases and genomic resources of rice are available in 
public domain for gene/allele discovery, molecular marker 
designing and basic studies (Kamboj et al. 2020). These 
resources have facilitated the QTL discovery and gene clon-
ing for marker-assisted breeding programs and transgenic 
research. Novel resources such as gene activation mutants, 
EMS mutants and T-DNA-tagged rice mutant populations 
are powerful genetic resources for functional genomics and 
crop improvement (Yi and An 2013; Mohapatra et al. 2014; 
Reddy et al. 2020). Recently, a genomic resource based on 
CRISPR/Cas9 (clustered regularly interspaced short pal-
indromic repeats–associated nuclease 9) genome editing 
has been developed wherein more than 34,000 genes of rice 
have been targeted (Lu et al. 2017). Many high-throughput 
sequencing-based genomic resources for abiotic stress-
related traits are discussed by Bansal et al. (2014). Tran-
scriptomic and micro-RNA-based genomic resources for 
abiotic stress traits are also available in rice (Bansal et al. 
2014; Mangrauthia et al. 2016, 2017). Such resources have 
been utilized in various molecular approaches such as 
marker-assisted breeding, genome-wide association studies, 
cis-and transgenic and genome editing for crop improvement 
(Varshney et al. 2020). Marker-assisted selection and intro-
gression have been used for developing biotic and abiotic 
stress-tolerant rice genotypes (Das et al. 2017). Three major 
bacterial blight resistance genes (Xa21, xa13 and xa5) were 
introduced through marker-assisted breeding to produce a 
bacterial blight resistant rice cultivar, Improved Samba Mah-
suri (Sundaram et al. 2008). Transgenic rice lines for vari-
ous traits have been developed using a number of genes and 
genetic elements (Fraiture et al. 2016). Recently, genome 
editing is projected as the potential breeding technique due 
to its precision and efficiency (Aglawe et al. 2018). Sev-
eral traits and genes of rice are being targeted and improved 
using the CRISPR/Cas technology of genome editing (Zafar 
et al. 2020).

Grain quality challenges in rice

Rice grain quality is a permutation of several traits such as 
appearance, cooking, nutritional and milling qualities (Yu 
et al. 2008). Several factors such as cultivars, production and 
harvesting conditions, post-harvest management, milling and 
marketing techniques determine the rice grain quality. Rice 
endosperm is composed of 80–90% starch with 6–28% amyl-
ose content and 5–7% proteins, which serve as energy and 
protein source of the global population especially in devel-
oping countries. The grain appearances vis-à-vis cooking, 
eating and milling quality are largely determined by the com-
bination of several starch properties such as gelatinization 
temperature, amylose content and gel consistency (Bao et al. 
2008). Various approaches including genetic and molecular 
utilized to improve the starch properties of rice have been 
extensively reviewed by various researchers (Fujita 2014; 
Birla et al. 2017). The off-putting nutritional value of rice 
proteins is mainly due to the deficiency in certain amino 
acids such as lysine and tryptophan (Ufaz and Galili 2008). 
Compared to maize, efforts towards increasing the content 
of deficient amino acids such as lysine and tryptophan have 
not been extensively attempted in rice due to limited genetic 
variability, and side-effects of nutrient enrichment on germi-
nation and abnormal plant growth. Also, due to the absence 
of expression of some of the enzymes of the carotenoid path-
way, rice is not able to synthesize and accumulate sufficient 
quality of carotenoids. Therefore, efforts have been put forth 
to genetically alter the rice plants to produce golden rice 
that produces b-carotene in the endosperm giving rise to 
a characteristic yellow colour (Ye et al. 2000). Similarly, 
micro-nutrients such as Fe and Zn, vitamins such as folate 
and thiamine, antinutritional factor such as phytate and other 
bioactive compounds have been recently reviewed by Birla 
et al. (2017) and Custodio et al. (2019).

Owing to sufficient production, studies during the past 
have focussed towards quality traits including nutritional 
quality. It is usually agreed that rice quality depends on 
both genetic and environmental factors (Cheng et al. 2003). 
Increase in the night temperature is linked to poor grain 
quality such as decreased head rice ratio, increased chalki-
ness and reduced grain width (Shi et al. 2016; Li et al. 2018). 
Being complex polygenic traits, chalkiness and amylose con-
tent, protein content, grain length, grain width and aspect 
ratio of rice are highly influenced by environmental con-
ditions such as light, temperature and humidity, and cer-
tain cultural practices particularly during the grain-filling 
stage (Siebenmorgen et al. 2013; Li et al. 2018). Similarly, 
fertilizer application, plant density and irrigation manage-
ment especially during the grain-filling period significantly 
affect the rice grain quality (Huang et al. 2016; Wei et al. 
2018). However, little is known about the role of optimized 
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cultivation managements on rice grain quality (Zhang et al. 
2019a). Besides, deep flood irrigation has been shown to 
reduce the chalky grains due to the increased supply of car-
bohydrates to the panicles (Chiba et al. 2017). In the recent, 
several reports have suggested the significant harmful effect 
of global warming on crop quality (Morita et  al. 2016; 
Ishigooka et al. 2017). Taken together, systematic work 
on rice cultivation in varying environmental conditions in 
combination with genetic studies has widened our current 
understanding of rice grain quality. Even though, there are 
significantly more challenges coupled with opportunities 
to work on enhancing the quality of rice grain, the various 
approaches to improve rice grain quality are explicitly shown 
in Fig. 6.

Way forward with conservation agriculture 
and resource conservation technologies

Conservation agriculture (CA) is an alternate farming practice, 
which emphasizes on minimum soil disturbance, soil cover 
with crop residue (≥ 30%) and crop rotation (Hobbs et al. 
2008). It has the potential to address the sustainability issues 
in rice production system. Many farmers partially adopted 
CA mainly in the form of zero-till-based direct seeding and 
direct rice transplantation on untilled or unpuddled field. The 
minimum soil disturbance component of CA or zero-till-based 
seeding provides multiple benefits of reducing the negative 
impact of tillage and heavy machinery on soil structure, while 
saving time, labour and fuel along with lesser harmful air pol-
lutants (Sharma et al. 2003; Malik and Yadav 2008). Soil cover 
component of CA acts as an effective moisture conserving 

Fig. 6  Key intervention areas to ensure consumer pro high rice grain quality
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technique by reducing the evaporation rate. Moreover, it also 
provides physical protection to the soil from rainfall, runoff 
and wind-induced erosion, while improving the structure, 
organic carbon and physico-chemical properties of soil (Kas-
sam et al. 2009; Rockström et al. 2009). The crop rotation in 
CA promotes the biodiversity and helps in soil nutrient bal-
ance and weed spectrum (Kumar et al. 2020a). The threat of 
pest and disease incidence is also reduced with regular crop 
rotation (Farooq et al. 2011). The effects of CA practice on 
soil organic carbon, yield and other parameters under different 
cropping systems are presented in Table 5. CA practice in rice-
based cropping systems can provide a beneficial effect on soil 
properties like soil organic carbon, bulk density, soil compac-
tion, microbial biomass, infiltration rate, soil enzymatic activi-
ties, macro- and water-stable aggregates, water productivity, 
etc., with a similar or higher yield than CT practice. Laik et al. 
(2014) reported 46–54% and 10–24% higher yield of wheat 
and rice, respectively, in wheat–cowpea–rice cropping system 
under CA over conventional practice. The water productivity 
and benefit–cost ratio were also higher under this cultivation 
practice. Gathala et al. (2015) concluded that it is uncertain 
to have yield advantage in rice-based cropping systems under 
CA establishment methods; however, in terms of cultivation 
cost, labour cost and net profit, CA-based cultivation meth-
ods are advantageous over CT practice. Haque et al. (2016) 
observed lesser cultivation cost and higher profit for minimum 
tillage unpuddled transplanted rice under CA as compared to 
conventionally grown rice. In a different study, Mohammad 
et al. (2018) reported higher crop and water productivity of 
DSR under CA over CT practice. Chaki et al. (2021) found 
that system production, water productivity and nitrogen use 
efficiency of wheat–mungbean–rice cropping system increased 
by 5.4, 40 and 5%, respectively, under CA over conventional 
practice in fine-textured soils. However, grain and water pro-
ductivity of rice depleted under CA over conventional practice 
in coarse-textured soils. From the cited studies, it is evident 
that CA offers savings in time, labour, water and input cost, 
while improving the soil characteristics and diminishing GWP 
simultaneously. In the scenario of declining factor productiv-
ity coupled with climate change, it is extremely imperative 
to bring the rice crop under CA for long-term sustainability 
of crop production system. The use of RCTs such as leaf col-
our chart and normalized difference vegetation index (NDVI) 
sensors-based fertilizer application and electrostatic and 
variable rate spraying for chemical applications need to be 
integrated with CA for a sustainable rice cultivation system. 
Further research efforts are required on developing suitable 
rice cultivars and variety selection for CA and development 
of cost-effective RCTs such as zero-till rice transplanter and 
seeder integrated with pre-emergence herbicide applicator. The 
future studies on weed, nutrients and pest dynamics and qual-
ity aspects of rice under CA are desirable for effective weed 
and pest control and to have comparable rice yield as with 

PTR. In line with this, policy interventions, large-scale train-
ing and field-level demonstrations would also be required to 
accelerate the adoption of CA among farmers.

Conclusions

The continuous rice cultivation with traditional method 
imposed serious threats to natural resources and agricul-
tural sustainability. In the scenario of declining factor 
productivity, crop response and water table and rising air 
pollution, researchers and policymakers need to intervene 
through a systematic and integrated approach to produce 
more rice with less water in a sustainable way. The cultiva-
tion of some alternative and lesser water requiring crops 
should be encouraged by various measures like incentives 
and minimum support price for the regions of light-textured 
soils and rainfed condition. Resource use efficiency needs to 
be enhanced through multi-dimensional approach on vari-
etal development, soil and water management, adoption of 
resource conserving machines and need-based application 
of fertilizers and chemicals for sustainable rice cultivation 
in medium-to-heavy soils. The integrated resource con-
serving approach like delayed direct seeding of short dura-
tion, high-yielding and stress tolerant rice varieties with a 
zero-till seeder or transplanting such varieties with zero-till 
transplanter under CA with drip irrigation system should 
be encouraged for rice cultivation. However, more research 
studies and analysis are required to explore the yield aspect 
and profitability with promising results to convince the farm-
ers for shifting from PTR to a new rice cultivation system. 
Policy reforms are needed to stop the subsidy on methods 
and systems that contribute to low water productivity on a 
system basis. Reforms on water security to users, the decen-
tralization and privatization of water management functions 
to suitable levels, water pricing, markets in tradable prop-
erty rights and introducing water conserving technologies 
for irrigation purposes should be in vogue.
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