Skip to main content
Log in

The environmental interpretation of Pinus yunnanensis community differentiation after the invasion of Ageratina adenophora in Panxi region, China

  • Original Article
  • Published:
Community Ecology Aims and scope Submit manuscript

Abstract

The relationship between plants and the environment is the foundation of plant community composition. It is urgent to clarify the distribution pattern and influencing factors of community biodiversity, especially the driving patterns of environmental factors under the conditions of invasive alien species. In this study, we investigated the effects of various environmental factors, especially altitude and Ageratina adenophora invasion, on forest community differentiation in Pinus yunnanensis forest in Panxi region, providing a strong theoretical basis for forest management and natural resource protection in this area. Based on the field survey data of 40 sample sites, a total of 18 environmental factors, including climate, terrain, soil and biology are selected, which may affect Pinus yunnanensis community. The methods of Two-way indicator species analysis (TWINSPAN), Redundancy analysis and Locally weighted linear regression are adopted by quantitative ecology. The effects of environmental factors on forest community type, species distribution pattern and species diversity were discussed. The results show that: (1) The Pinus yunnanensis community was divided into 4 types by TWINSPAN. (2) Altitude, annual mean temperature, soil pH, soil total phosphorus, Ageratina adenophora invasion were significantly correlated with forest community types and species distribution. (3) With the increase in altitude, the species diversity of Pinus yunnanensis community decreased firstly and then increased, and reached its lowest point at about 1800–2000 m a.s.l. With the increase in Ageratina adenophora invasion, the species diversity index of the community showed a downward trend. (4) The species diversity index of the tree layer was negatively correlated with the altitude. The species diversity index of herbaceous layer was negatively correlated with the Ageratina adenophora invasion intensity. Environmental factors had little influence on the species diversity index of shrub layer. It is suggested that the next research focus should be on setting up experimental areas for the invasion area of Ageratina adenophora, exploring scientific and effective removal methods, strengthening the restoration research and demonstration construction of the invaded ecosystem. By simulating and reconstructing the historical distribution dynamics of Ageratina adenophora, analyzing its diffusion trend and environmental interpretation, predicting the suitable areas in China under the background of climate change. We will conduct long-term monitoring and risk assessment of invaded and potential spread areas, and formulate and implement prevention and control policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The following information was supplied regarding data availability: the climate data presented in the study were obtained from the WorldClim (https://www.worldclim.org/data/worldclim21.html). The raw data are available as a Supplemental File.

References

  • Aerts, R., Cornelissen, J. H. C., & Dorrepaal, E. (2006). Plant performance in a warmer world: General responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecology, 182(1–2), 65–77. https://doi.org/10.1007/s11258-005-9031-1

    Article  Google Scholar 

  • Al Harthy, L., & Grenyer, R. (2019). Classification and ordination of the main plant communities of the Eastern Hajar Mountains, Oman. Journal of Arid Environments, 169, 1–18. https://doi.org/10.1016/j.jaridenv.2019.05.017

    Article  Google Scholar 

  • Al Harun, M. A. Y., Johnson, J., Uddin, M. N., & Robinson, R. W. (2015). Identification and phytotoxicity assessment of phenolic compounds in Chrysanthemoides monilifera subsp. monilifera (Boneseed). Plos One, 10, e0139992. https://doi.org/10.1371/journal.pone.0139992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auld, B. A. (1970). The distribution of Eupatorium adenophorum Spreng. on the far north coast of New South Wales. Journal & Proceedings Royal Society of New South Wales, 102(3–4), 159–161. https://doi.org/10.5962/p.360944.

    Article  Google Scholar 

  • Baze, S., Collins, S. L., Pockman, W. T., Johnson, J. E., & Small, E. E. (2013). Effects of experimental rainfall manipulations on Chihuahuan Desert grassland and shrubland plant communities. Oecologia, 172(4), 1117–1127. https://doi.org/10.1007/s00442-012-2552-0

    Article  Google Scholar 

  • Bennett, J. A., & Klironomos, J. (2019). Mechanisms of plant-soil feedback: Interactions among biotic and abiotic drivers. New Phytologist, 222(1), 91–96. https://doi.org/10.1111/nph.15603

    Article  PubMed  Google Scholar 

  • Bonari, G., Chytrý, K., Çoban, S., & Chytrý, M. (2020). Natural forests of Pinus pinea in western Turkey: A priority for conservation. Biodiversity and Conservation, 29(14), 3877–3898. https://doi.org/10.1007/s10531-020-02052-z

    Article  Google Scholar 

  • Bonari, G., Fernández-González, F., Çoban, S., Monteiro-Henriques, T., Bergmeier, E., Didukh, Y. P., Xystrakis, F., Angiolini, C., Chytry, K., Acosta, A. T. R., Agrillo, E., Costa, J. C., Danihelka, J., Hennekens, S. M., Kavgaci, A., Knollova, I., Neto, C. S., Saglam, C., Skvorc, Z., … Chytrý, M. (2021). Classification of the Mediterranean lowland to submontane pine forest vegetation. Applied Vegetation Science, 24(1), e12544. https://doi.org/10.1111/avsc.12544

    Article  Google Scholar 

  • Borcard, D., Gillet, F., & Legendre, P. (2011). Numerical Ecology with R. Springer.

    Book  Google Scholar 

  • Britton, T. G., Hovenden, M. J., Porter, M., Flittner, A., Brinkhoff, R., & Mayfield, M. M. (2021). Plant communities, populations and individuals have distinct responses to short-term warming and neighbour biomass removal in two montane grasslands. Applied Vegetation Science, 24, e12557. https://doi.org/10.1111/avsc.12557

    Article  Google Scholar 

  • Cai, N. H., Wang, D. W., Huang, W. X., Wu, J. W., Wang, J. M., Chen, S., Xu, Y. L., & Duan, A. (2019). Correlation and path analysis on growth traits and biomass of Pinus yunnanensis seedlings. Bulletin of Botanical Research, 39(6), 853–862.

    Google Scholar 

  • Callaway, R. M., & Aschehoug, E. T. (2000). Invasive plants versus their new and old neighbors: A mechanism for exotic invasion. Science, 290, 521–523. https://doi.org/10.1126/science.290.5491.521

    Article  CAS  PubMed  Google Scholar 

  • Cao, Z. L., Wang, X. L., Zhang, Q. X., & Li, G. Q. (2016). Characteristics of population structure and soil seed bank of Pinus yunnanensis population invaded by Eupatorium adenophorum. Journal of Yunnan University. Natural Science, 38(6), 958–964.

    Google Scholar 

  • Carpenter, C. (2005). The environmental control of plant species density on a Himalayan elevation gradient. Journal of Biogeography, 32(6), 999–1018. https://doi.org/10.1111/j.1365-2699.2005.01249.x

    Article  Google Scholar 

  • Chen, T. G., & Zhang, J. T. (1999). A comparison of fifteen species diversity indices. Henan Science, 17(S1), 62–64+78.

    Google Scholar 

  • Chen, X., Wei, Z., Liu, H., Yang, D., Wang, H., & Huangfu, C. (2016). Comparison of photosynthetic characteristics between invasive and co–occuring native Asteraceae plants in Yunnan province, China. Research of Environmental Sciences, 29, 538–546.

    CAS  Google Scholar 

  • Chmielewski, F. M., & Rotzer, T. (2001). Response of tree phenology to climate change across Europe. Agricultural and Forest Meteorology, 108(2), 101–112. https://doi.org/10.1016/S0168-1923(01)00233-7

    Article  Google Scholar 

  • Cindy, E. P. (2002). The influence of the forest canopy on nutrient cycling. Tree Physiology, 22(15–16), 1193–1200. https://doi.org/10.1093/treephys/22.15-16.1193

    Article  Google Scholar 

  • Cornwell, W. K., Schwilk, D. W., & Ackerly, D. D. (2006). A trait–based test for habitat filtering: Convex hull volume. Ecology, 87, 1465–1471. https://doi.org/10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Cui, L. L., Shi, J., Yang, Y. M., & Fan, W. Y. (2004). Ten-day response of vegetation NDVI to the variations of temperature and precipitation in eastern China. Acta Geographica Sinica, 64(7), 850–860.

    Google Scholar 

  • Darji, T. B., Adhikari, B., Pathak, S., Neupane, S., Thapa, L. B., Bhatt, T. D., Pant, R. R., Pant, G., Pal, K. B., & Bishwakarma, K. (2021). Phytotoxic effects of invasive Ageratina adenophora on two native subtropical shrubs in Nepal. Scientific Reports, 11(1), 13663. https://doi.org/10.1038/s41598-021-92791-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, H., Xu, H., & Liu, Z. (2007). Impacts of invasion of Eupatorium adenophorum on vegetation diversity. Journal of Ecology and Rural Environment, 23(29–32), 75.

    CAS  Google Scholar 

  • Elton, C. E. (1958). The ecology of invasions by animals and plants. Chapman and Hall.

    Book  Google Scholar 

  • Erktan, A., Cecillon, L., Graf, F., Roumet, C., Legout, C., & Rey, F. (2016). Increase in soil aggregate stability along a Mediterranean successional gradient in severely eroded gully bed ecosystems: Combined effects of soil, root traits and plant community characteristics. Plant and Soil, 398(1–2), 121–137. https://doi.org/10.1007/s11104-015-2647-6

    Article  CAS  Google Scholar 

  • Fang, J. Y., Wang, X. P., Shen, Z. H., Tang, Z. Y., He, J. S., Yu, D., Jiang, Y., Wang, Z. H., Zheng, C. Y., Zhu, J. L., & Guo, Z. D. (2009). Methods and protocols for plant community inventory. Biodiversity Science, 17(6), 533–548.

    Article  Google Scholar 

  • Fang, Y. P., Su, C. J., & Xu, Y. (2004). Spatial structure of natural resources and allocation of biological resources development in Panxi area. Mountain Research, S1, 46–53.

    Google Scholar 

  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1–km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Flora of China Editional Committee of Chinese Academy of Sciences. (1980). Flora of China. Science Press.

    Google Scholar 

  • Franklin, J. F. (1993). Preserving biodiversity: Species, ecosystems, or landscapes? Ecological Applications: A Publication of the Ecological Society of America, 3, 202–205. https://doi.org/10.2307/1941820

    Article  PubMed  Google Scholar 

  • Fu, D., Wu, X., Huang, N., & Duan, C. (2018). Effects of the invasive herb Ageratina adenophora on understory plant communities and tree seedling growth in Pinus yunnanensis forests in Yunnan, China. Journal of Forest Research, 23, 112–119. https://doi.org/10.1080/13416979.2018.1429202

    Article  CAS  Google Scholar 

  • Gao, J. P., Zhao, R. F., Zhang, L. H., Wang, J. F., & Xie, Z. K. (2021). Effects of precipitation changes on plant community diversity and soil C: N: P ecological stoichiometric characteristics in a desert steppe of China. Environmental Science, 42(2), 977–987. https://doi.org/10.13227/j.hjkx.202007041

    Article  CAS  Google Scholar 

  • Gong, X., Brueck, H., Giese, K. M., Zhang, L., Sattelmacher, B., & Lin, S. (2008). Slope aspect has effects on productivity and species composition of hilly grassland in the Xilin River Basin, Inner Mongolia, China. Journal of Arid Environments, 72(4), 483–493. https://doi.org/10.1016/j.jaridenv.2007.07.001

    Article  Google Scholar 

  • Gu, C. J., Tu, Y. L., Liu, L. S., Wei, B., Zhang, Y. L., Yu, H. B., Wang, X. L., Yangjin, Z. G., Zhang, B. H., & Cui, B. H. (2021). Predicting the potential global distribution of Ageratina adenophora under current and future climate change scenarios. Ecology and Evolution, 11(7), 12092–12113. https://doi.org/10.1002/ece3.7974

    Article  Google Scholar 

  • Hao, Z. Q., Yu, D. Y. Y., Yang, X. M., & Ding, Z. H. (2002). Alpha diversity of communities and their variety along altitude gradient on northern slope of Changbai Mountain. The Journal of Applied Ecology, 13(7), 785–789.

    Google Scholar 

  • He, W. M., Li, J. J., & Peng, P. H. (2012). A Congeneric comparison shows that experimental warming enhances the growth of invasive Eupatorium adenophorum. PLoS One, 7(4), e35681. https://doi.org/10.1371/journal.pone.0035681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, J. Y., Yu, H. L., Li, L. H., Yuan, Z. Y., & Bartels, S. (2009). Water supply changes N and P conservation in a perennial grass leymus chinensis. Journal of Integrative Plant Biology, 51(11), 1050–1056. https://doi.org/10.1111/j.1744-7909.2009.00872.x

    Article  CAS  PubMed  Google Scholar 

  • Inderjit, & van der Putten, W. H. (2010). Impacts of soil microbial communities on exotic plant invasions. Trends in Ecology & Evolution, 25, 512–519. https://doi.org/10.1016/j.tree.2010.06.006.

  • Jin, Y., Russo, S. E., & Yu, M. J. (2018). Effects of light and topography on regeneration and coexistence of evergreen and deciduous tree species in a Chinese subtropical forest. Journal of Ecology, 106(4), 1634–1645. https://doi.org/10.1111/1365-2745.12911

    Article  Google Scholar 

  • Kaboli, M., Guillaumet, A., & Prodon, R. (2006). Avifaunal gradients in two arid zones of central Iran in relation to vegetation, climate, and topography. Journal of Biogeography, 33(1), 133–144. https://doi.org/10.1111/j.1365-2699.2005.01379.x

    Article  Google Scholar 

  • Kipkoech, S., Melly, D. K., Mwema, B. W., Mwachala, G., Musili, P. M., Hu, G., & Wang, Q. (2019). Conservation priorities and distribution patterns of vascular plant species along environmental gradients in Aberdare ranges forest. PhytoKeys, 131, 318–329. https://doi.org/10.3897/phytokeys.131.38124

    Article  Google Scholar 

  • Leff, J. W., Bardgett, R. D., Wilkinson, A., Jackson, B. G., Pritchard, W. J., De Long, J. R., Oakley, S., Mason, K. E., Ostle, N. J., Johnson, D., Baggs, E. M., & Fierer, N. (2018). Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME Journal, 12, 1794–1805. https://doi.org/10.1038/s41396-018-0089-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Lemke, D., Schweitzer, C. J., Tazisong, I. A., Wang, Y., & Brown, J. A. (2013). Invasion of a mined landscape: What habitat characteristics are influencing the occurrence of invasive plants? International Journal of Mining Reclamation and Environment, 27, 275–293. https://doi.org/10.1080/17480930.2012.699215

    Article  Google Scholar 

  • Lepš, J., & Šmilauer, P. (2014). Multivariate analysis of ecological data using CANOCO 5. Cambridge University Press.

    Google Scholar 

  • Levine, J. M., Adler, P. B., & Yelenik, S. G. (2004). A meta-analysis of biotic resistance to exotic plant invasions. Ecology Letters, 7, 975–989. https://doi.org/10.1111/j.1461-0248.2004.00657.x

    Article  Google Scholar 

  • Li, X., Hu, T., Yang, D., Yang, X., Zhang, Q., Liu, Z., & Wang, F. (1997). Identification of the structure and stand types of Pinus yunnanensis low-efficiency forests in the Panxi region. Journal of Sichuan Agricultural University, 15(2), 236–240.

  • Li, H., Qiang, S., & Qian, Y. L. (2008). Physiological response of different croftonweed (Eupatorium adenophorum) populations to low temperature. Weed Science, 56(2), 196–202. https://doi.org/10.1614/WS-07-104.1

    Article  CAS  Google Scholar 

  • Li, W. H., Luo, J. N., Tian, X. S., Chow, W. S., Sun, Z. Y., Zhang, T. J., Peng, S. L., & Peng, C. L. (2015). A new strategy for controlling invasive weeds: Selecting valuable native plants to defeat them. Scientific Reports, 5, 11004. https://doi.org/10.1038/srep11004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Du, H. B., Wu, Z. F., He, H. S., Wang, L., & Zong, S. W. (2017). Recent and future changes in the combination of annual temperature and precipitation throughout China. International Journal of Climatology, 37(2), 821–833. https://doi.org/10.1002/joc.4742

    Article  Google Scholar 

  • Liu, X. L., Su, C. J., Xu, Y., & Zhang, J. Y. (2007). Natural agricultural resources evaluation and agricultural deveiopment potentiality analysis in Panxi District. Chinese Journal of Eco-Agriculture, 15(5), 185–187.

    Google Scholar 

  • Lu, Z. (2005). Plant community resistance to the invasion of Eupatorium adenophorum in southwest China. Chinese Academy of Sciences.

    Google Scholar 

  • Luo, H. L. (2003). Discussion on the sustainable utilization of agricultural natural resources in Panxi area. Journal of Sichuan Normal University, 26(1), 79–82.

    CAS  Google Scholar 

  • Marshall, J. M. (2014). Influence of topography, bare sand, and soil pH on the occurrence and distribution of plant species in a lacustrine dune ecosystem. Journal of the Torrey Botanical Society, 141, 29–38. https://doi.org/10.3159/TORREY-D-13-00043.1

    Article  Google Scholar 

  • Massante, J. C., & Gerhold, P. (2020). Environment and evolutionary history depict phylogenetic alpha and beta diversity in the Atlantic coastal white-sand woodlands. Journal of Vegetation Science, 31, 634–645. https://doi.org/10.1111/jvs.12900

    Article  Google Scholar 

  • Masviken, J., Dalerum, F., & Cousins, S. A. O. (2020). Contrasting altitudinal variation of alpine plant communities along the Swedish mountains. Ecology and Evolution, 10, 4838–4853. https://doi.org/10.1002/ece3.6237

    Article  PubMed  PubMed Central  Google Scholar 

  • Mekonnen, G. (2020). Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: A review. Journal of Ecology and Environment, 44(2), 81–89. https://doi.org/10.1186/s41610-020-0151-2

    Article  Google Scholar 

  • Mendez, T. M., Meave, J. A., Zermeno, H. I., & Ibarra, M. G. (2016). Effects of slope aspect and topographic position on environmental variables, disturbance regime and tree community attributes in a seasonal tropical dry forest. Journal of Vegetation Science, 27, 1094–1103. https://doi.org/10.1111/jvs.12455

    Article  Google Scholar 

  • Menzel, A., & Fabian, P. (1999). Growing season extended in Europe. Nature, 397(6721), 659–659. https://doi.org/10.1038/17709

    Article  CAS  Google Scholar 

  • Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B., & Running, S. W. (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300(5625), 1560–1563. https://doi.org/10.1126/science.1082750

    Article  CAS  PubMed  Google Scholar 

  • Nie, X. J., Lv, S. Z., Zhang, Y. X., Du, X. H., Wang, L., Biradar, S. S., Tan, X. F., Wan, F. H., & Song, W. N. (2012). Complete chloroplast genome sequence of a major invasive species, crofton weed (Ageratina adenophora). PLoS One, 7(5), e36869. https://doi.org/10.1371/journal.pone.0036869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu, H. B., Liu, W. X., Wan, F. H., & Liu, B. (2007). An invasive aster (Ageratina adenophora) invades and dominates forest understories in China: Altered soil microbial communities facilitate the invader and inhibit natives. Plant and Soil, 294, 73–85. https://doi.org/10.1007/s11104-007-9230-8

    Article  CAS  Google Scholar 

  • O’Connor, T. G. (1994). Composition and population responses of an African savanna grassland to rainfall and grazing. Journal of Applied Ecology, 31(1), 155–171. https://doi.org/10.2307/2404608

    Article  Google Scholar 

  • Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., R. Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2020). vegan: Community ecology package. R package version 2.5–7. https://cran.r-project.org/web/packages/vegan/index.html

  • Papes, M., & Peterson, A. T. (2003). Predicting the potential invasive distribution for Eupatorium adenophorum Spreng. in China. Plant Science Journal, 2, 137–142.

    Google Scholar 

  • Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361–371. https://doi.org/10.1046/j.1466-822X.2003.00042.x

    Article  Google Scholar 

  • Poudel, A. S., Jha, P. K., Shrestha, B. B., & Muniappan, R. (2019). Biology and management of the invasive weed Ageratina adenophora (Asteraceae): Current state of knowledge and future research needs. Weed Research, 59(2), 79–92. https://doi.org/10.1111/wre.12351

    Article  Google Scholar 

  • Qin, X., Li, G., Wang, D., Yang, G., Ren, X., Liu, Z., & Wang, M. (2011). Effect of area and geometric constraints on altitudinal patterns of angiosperm plant richness in Mt. Taibai, the Qinling Mountains. China. African Journal of Agricultural Research, 6, 5625–5637. https://doi.org/10.5897/AJAR11.644

    Article  Google Scholar 

  • Rawal, R. S., Rawal, R., Rawat, B., Negi, V. S., & Pathak, R. (2018). Plant species diversity and rarity patterns along altitude range covering treeline ecotone in Uttarakhand: Conservation implications. Tropical Ecology, 59, 225–239.

    Google Scholar 

  • Sang, W. G., Zhu, L., & Axmacher, J. C. (2010). Invasion pattern of Eupatorium adenophorum Spreng in southern China. Biological Invasions, 12(6), 1721–1730. https://doi.org/10.1007/s10530-009-9584-3

    Article  Google Scholar 

  • Sasaki, T., Katabuchi, M., Kamiyama, C., Shimazaki, M., Nakashizuka, T., & Hikosaka, K. (2012). Nestedness and niche-based species loss in moorland plant communities. Oikos, 121, 1783–1790. https://doi.org/10.1111/j.1600-0706.2012.20152.x

    Article  Google Scholar 

  • Shaver, G. R., Canadell, J., Chapin, F. S., Curevitch, J., Harte, J., Henry, G., Ineson, P., Jonasson, S., Melollo, J., Pitelka, L., & Rustad, L. (2000). Global warming and terrestrial ecosystems: A conceptual framework for analysis. BioScience, 50(10), 871–882. https://doi.org/10.1641/0006-3568(2000)050[0871:GWATEA]2.0.CO;2

    Article  Google Scholar 

  • Shen, Z. H., Fei, S. L., Feng, J. M., Liu, Y. N., Liu, Z. L., Tang, Z. Y., Wang, X. P., Wu, X. P., Zheng, C. Y., Zhu, B., & Fang, J. Y. (2012). Geographical patterns of community-based tree species richness in Chinese mountain forests: The effects of contemporary climate and regional history. Ecography, 35(12), 1134–1146. https://doi.org/10.1111/j.1600-0587.2012.00049.x

    Article  Google Scholar 

  • Sim-Sim, M., Lopes, T., Ruas, S., & Stech, M. (2015). Does altitude shape molecular diversity and richness of bryophytes in Madeira’s natural forest? A case study with four bryophyte species at two altitudinal levels. Plant Ecology and Evolution, 148(2), 171–180. https://doi.org/10.5091/plecevo.2015.1041

    Article  Google Scholar 

  • Stevens, G. C. (1992). The elevational gradient in altitudinal range: An extension of Rapoport’s latitudinal rule to altitude. The American Naturalist, 140(6), 893–911. https://doi.org/10.1086/285447

    Article  CAS  PubMed  Google Scholar 

  • Su, C. J., Xu, Y., Fang, Y. P., & Wang, Q. (2004). The development strategy of characteristic bio-resources industrialized exploitation in Panxi area. Journal of Mountain Science, 22, 26–30.

    CAS  Google Scholar 

  • Su, Y. Q., Zhang, Y., Jia, X. R., & Xue, Y. S. (2017). Application of several diversity indexes in forest community analysis. Ecological Science, 36(01), 132–138.

    Google Scholar 

  • Sun, L., Cai, Y. P., Zhou, Y., Shi, S. Y., Zhao, Y. S., Gunnarson, B. E., & Jaramillo, F. (2020). Radial growth responses to climate of Pinus yunnanensis at low elevations of the Hengduan Mountains, China. Forests, 11(10), 1066–1079. https://doi.org/10.3390/f11101066

    Article  Google Scholar 

  • Sun, X. Y., Lu, Z. H., & Sang, W. G. (2004). Review on studies of Eupatorium adenophoruman an important invasive species in China. Journal of Forestry Research, 15(4), 319–322. https://doi.org/10.1007/BF02844961

    Article  Google Scholar 

  • Sutherland, W. J. (1999). Ecological survey techniques. Scientific and Technical Documents Publishing House.

    Google Scholar 

  • Symstad, A. J., Tilman, D., Willson, J., & Knops, J. (1998). Species loss and ecosystem functioning: Effects of species identity and community composition. Oikos, 81, 389–397. https://doi.org/10.2307/3547058

    Article  Google Scholar 

  • Tang, C. Q., He, L. Y., Su, W. H., Zhang, G. F., Wang, H. C., Peng, M. C., Wu, Z. L., & Wang, C. Y. (2013). Regeneration, recovery and succession of a Pinus yunnanensis community five years after a mega–fire in central Yunnan, China. Forest Ecology and Management, 294, 188–196. https://doi.org/10.1016/j.foreco.2012.07.019

    Article  Google Scholar 

  • Tang, Z. H., Wei, Q. S., Liu, J. H., Jiang, S. X., He, F. L., Zhang, Y. H., Wang, F. L., Zhang, Y. N., Zhao, H. R., & Zhao, P. (2020). Characteristics of alpine vegetation community and its relationship to topographic climate factors in the eastern Oilian Mountain. Acta Ecologica Sinica, 40(01), 223–232.

    Google Scholar 

  • Tao, S., Liu, J., Miao, X., Chen, Z., Chen, Y., Gong, H., Xue, D., & Ackermann, K. (2022). Determination the total amount of nitrogen, phosphorus and potassium in the soil by perchloric acid-hydrofluoric acid digesting system. China Measurement & Test, 48, 78–83.

    Google Scholar 

  • The Eiditional Committee of Vegetation of China. (1980). Vegetation of China. Science Press.

    Google Scholar 

  • Tian, M. J. (2010). Photosynthetic ecophysiology of crofton weed during the dry season in the dry valley of Jinsha River and its invasion risks to Sichuan basin. Journal of China West Normal University (Natural Sciences), 31(04), 364–371. https://doi.org/10.16246/j.issn.1673-5072.2010.04.016

    Article  Google Scholar 

  • Valencia, E., Maestre, F. T., Le, B. Y., Luis, Q. J., Tamme, R., Boerger, L., Garcia, G. M., & Gross, N. (2015). Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands. New Phytologist, 206, 660–671. https://doi.org/10.1111/nph.13268

    Article  PubMed  Google Scholar 

  • Wan, F. H., Liu, W. X., Guo, J. Y., Qiang, S., Li, B. P., Wang, J. J., Yang, G. Q., Niu, H. B., Gui, F. R., Huang, W. K., Jiang, Z. L., & Wang, W. Q. (2010). Invasive mechanism and control strategy of Ageratina adenophora (Sprengel). Science China-Life Sciences., 41(1), 13–21. https://doi.org/10.1007/s11427-010-4080-7

    Article  Google Scholar 

  • Wang, C., Lin, H. L., Feng, Q. S., Jin, C. Y., Cao, A. C., & He, L. (2017). A new strategy for the prevention and control of Eupatorium adenophorum under climate change in China. Sustainability, 9(11), 2037. https://doi.org/10.3390/su9112037

    Article  Google Scholar 

  • Wang, R., & Wang, Y. (2006). Invasion dynamics and potential spread of the invasive alien plant species Ageratina adenophora (Asteraceae) in China. Diversity and Distributions, 12, 397–408. https://doi.org/10.1111/j.1366-9516.2006.00250.x

    Article  Google Scholar 

  • Wang, S., & Niu, S. K. (2016). Fuel classes in conifer forests of southwest Sichuan, China, and their implications for fire susceptibility. Forests, 7(3), 52–65. https://doi.org/10.3390/f7030052

    Article  Google Scholar 

  • Wang, X. P., Tang, Z. Y., & Fang, J. Y. (2006). Climatic control on forests and tree species distribution in the forest region of northeast China. Journal of Integrative Plant Biology, 48(7), 778–789. https://doi.org/10.1111/j.1744-7909.2006.00294.x

    Article  Google Scholar 

  • Wang, X. C., Zhang, Y. D., & Mcrae, D. J. (2009). Spatial and age-dependent tree-ring growth responses of Larix gmelinii to climate in northeastern China. Trees-Structure and Function, 23(4), 875–885. https://doi.org/10.1007/s00468-009-0329-9

    Article  Google Scholar 

  • Wang, Y. Y., Vestberg, M., Walker, C., Hurme, T., Zhang, X. P., & Lindstrom, K. (2008). Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan province of mainland China. Mycorrhiza, 18, 59–68. https://doi.org/10.1007/s00572-008-0161-x

    Article  PubMed  Google Scholar 

  • Weiss, J. L., Gutzler, D. S., Coonrod, J. E. A., & Dahm, C. N. (2004). Seasonal and inter-annual relationships between vegetation and climate in central New Mexico, USA. Journal of Arid Environments, 57(4), 507–534. https://doi.org/10.1016/S0140-1963(03)00113-7

    Article  Google Scholar 

  • Wen, Q., Wang, J., Zhang, Z., Yang, Z., Liu, J., & Chen, X. (2009). Study on the invasion of Eupatorium adenophorum in Pinus yunnanensis community damaged by Tomicus spp.. Forest Research, 22, 846–850.

    Google Scholar 

  • Wu, A. C., Deng, X. W., Ren, X. L., Xiang, W. H., Zhang, L., Ge, R., He, H. L., & He, L. J. (2018). Biogeographic patterns and influencing factors of the species diversity of tree laver community in typical forest ecosystems in China. Acta Ecologica Sinica, 38(21), 7727–7738.

    Google Scholar 

  • Xie, F. J., Xiao, D. N., Li, X. Z., Wang, X. G., & Shi, B. D. (2005). Factorial analysis on forest canopy density restoration in the burned area of northern Great Xing’an Mountains, China. Journal of Forestry Research, 16(2), 125–131.

    Article  Google Scholar 

  • Xu, Z. F., Hu, T. X., Zhang, L., Zhang, Y. B., Xian, J. R., & Wang, K. Y. (2010). Short–term gas exchange responses of Betula utilis to simulated global warming in a timber–line ecotone, eastern Tibetan Plateau, China. Acta Phytoecologica Sinica, 34(3), 263–270.

    CAS  Google Scholar 

  • Yang, J. D., Zhang, Z. M., Dawazhaxi, Wang, B., Li, Q., Yu, Q. C., Ou, X. K., & Ali, K. (2019). Spatial distribution patterns and intra–specific competition of pine (Pinus yunnanensis) in abandoned farmland under the Sloping Land Conservation Program. Ecological Engineering, 135, 17–27. https://doi.org/10.1016/j.ecoleng.2019.04.026.

  • Yin, Z. H., Chen, X. F., & La, D. (2023). Analysis on the niche and interspecific association of dominant plant species in alpine meadow under simulated warming and grazing. Acta Agrestia Sinica, 31(05), 1302–1313.

    Google Scholar 

  • Yuan, M., Guo, M. N., Liu, W. S., Liu, C., Van der Ent, A., Morel, J. L., Huot, H., Zhao, W. Y., Wei, X. G., Qiu, R. L., & Tang, Y. T. (2017). The accumulation and fractionation of Rare Earth Elements in hydroponically grown Phytolacca americana L. Plant and Soil, 421(1–2), 67–82. https://doi.org/10.1007/s11104-017-3426-3

    Article  CAS  Google Scholar 

  • Zhang, H., Qian, Y., Wu, Z., & Wang, Z. (2012). Vegetation-environment relationships between northern slope of Karlik Mountain and Naomaohu Basin, East Tianshan Mountains. Chinese Geographical Science, 22, 288–301. https://doi.org/10.1007/s11769-012-0536-y

    Article  Google Scholar 

  • Zhao, H., Wang, Q. R., Fan, W., & Song, G. H. (2017). The relationship between secondary forest and environmental factors in the southern Taihang Mountains. Scientific Reports, 7, 16431. https://doi.org/10.1038/s41598-017-16647-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Y. J., Yang, X. J., Xi, X. Q., Gao, X. M., & Sun, S. (2012). Phenotypic plasticity in the invasion of crofton weed (Eupatorium adenophorum) in China. Weed Science, 60(3), 431–439. https://doi.org/10.1614/WS-D-11-00198.1

    Article  CAS  Google Scholar 

  • Zhu, L. J., Cooper, D. J., Yang, J. W., Zhang, X., & Wang, X. C. (2018). Rapid warming induces the contrasting growth of Yezo spruce (Picea jezoensis var. microsperma) at two elevation gradient sites of northeast China. Dendrochronologia, 50, 52–63. https://doi.org/10.1016/j.dendro.2018.05.002

    Article  Google Scholar 

  • Zhu, L., Sun, O. J., Sang, W. G., Li, Z. Y., & Ma, K. P. (2007). Predicting the spatial distribution of an invasive plant species (Eupatorium adenophorum) in China. Landscape Ecology, 22(8), 1143–1154. https://doi.org/10.1007/s10980-007-9096-4

    Article  Google Scholar 

  • Zhu, X. Z., Yi, Y. M., Huang, L., Zhang, C., & Shao, H. (2021). Metabolomics reveals the allelopathic potential of the invasive plant Eupatorium adenophorum. Plants, 10(7), 1473–1487. https://doi.org/10.3390/plants10071473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo, X. A., Wang, S. K., Zhao, X. Y., & Lian, J. (2014). Scale dependence of plant species richness and vegetation–environment relationship along a gradient of dune stabilization in Horqin Sandy Land, Northern China. Journal of Arid Land, 6, 334–342. https://doi.org/10.1007/s40333-013-0221-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express appreciation to the editors and reviewers for their help.

Funding

This research was supported by the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0301), the Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment, China (2019HJ2096001006) and the National Natural Science Foundation of P. R. China (31860123). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The following grant information was disclosed by the authors: Second Tibetan Plateau Scientific Expedition and Research Program: 2019QZKK0301. Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment, China: 2019HJ2096001006. National Natural Science Foundation of P. R. China: 31860123.

Author information

Authors and Affiliations

Authors

Contributions

PP conceived of the research idea; MZ, with contributions from SS and GW, collected data; MZ performed statistical analyses; MZ wrote the paper; all authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Peng Peihao.

Ethics declarations

Competing interests

The authors declare there are no competing interests.

Appendix

Appendix

See Fig. 

Fig. 10
figure 10

The relationship of the Ageratina adenophora invasion intensity and altitude. The gray area in the picture indicates that the significance level of 0.05 has been reached, the blue line indicates the fitting curve

10, Table

Table 5 The plant species of Pinus yunnanensis community

5

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Peng, P., Shi, S. et al. The environmental interpretation of Pinus yunnanensis community differentiation after the invasion of Ageratina adenophora in Panxi region, China. COMMUNITY ECOLOGY 25, 45–64 (2024). https://doi.org/10.1007/s42974-023-00170-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42974-023-00170-6

Keywords

Navigation