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Abstract
Patterns in species × sample tables of communities depend above all on the organisms of the data sets and the conditions 
involved. Patterns that surpass individual sets are of special interest. Our question, looking for a shared pattern in 12 sets, is 
if relative abundances among species are independent of the sample, or formulated alternatively, if species have abundances 
that are correlated with total abundances over samples. For exploration we study the overdispersion/aggregation of the data. 
A relatively high variation in the total abundances of samples is noticed, indicating an effect of environmental variation. 
Overdispersion imposes constraints on the accommodation of relatively high abundance values to samples with a relatively 
low total abundance. The null hypothesis of ‘no association’ is modelled by permutation/resampling of the data at the level 
of the individual. A correlation study of actual and permuted sets is performed. All actual sets contain a significant number 
of species that defy our question. These species flourish when many do not. The relation of our question with issues in 
theoretical ecology, such as the assumption of a neutral effect of environmental conditions and/or of neutral characteristics 
of species, is discussed.
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Introduction

Patterns in multi-sample data sets of communities depend on 
the organisms of the data sets and the conditions involved. 
Taxonomical characteristics and environmental conditions 
separate the sets. We are interested in patterns that are shared 
by different sets, as Lawton (1999) and McGill (2019), 
ignoring specific properties of species and samples. The 
existence of such a pattern, a law, is relevant for theories and 
models for ecological community assembly. These theories 
(Chase & Myers, 2011) are falsified if they contradict a law.

Our initial interest was raised by a long-term data set 
on mushrooms (Egli et al., 1977; Straatsma et al., 2001). 
Mushrooms are sporocarps of, mostly, long living mycelia 
in soil (Cairney, 2005). Since the dynamics in the soil are 
low annually, we wondered if years with relatively few indi-
viduals were dominated by the same species as years with 

relatively many. This question can be articulated as: are rela-
tive abundances among species independent of the sample, 
or formulated alternatively, do species have abundances that 
are correlated with total abundances over samples? This can 
be asked for multi-sample data sets of any community. We 
could not find any (macro)ecological literature addressing 
this question. We study 12 data sets, as species × sample 
tables (also called cross or contingency tables), that cover 
different biological groups, in different regions on earth, in 
different ecosystems.

Ecological data are generally ‘overdispersed’ (Bliss & 
Fisher, 1953). The term is used if the variance of values 
exceeds their mean. It captures the aggregated nature of 
individuals, implying a relatively high chance of cells in 
the tables to hold no individuals at all (Warton, 2005). We 
anticipate that overdispersion is relevant for our analysis 
and study it as a matter of statistical exploration (Zuur et al. 
2010). From population studies it is well known that the 
variance of abundance increases with the mean, showing a 
straight line in a log/log plot (Taylor’s law on ‘fluctuation 
scaling’; Taylor, 1961; Brown et al., 2017). We wonder if 
variance and mean within species and within samples also 
produce this pattern. We also wonder what overdispersion/
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aggregation means for the sample with the highest total 
abundance and for the highest abundance values of species. 
Is the ‘capacity’ of this sample sufficient to hold all highest 
abundances of all species, as in a table with expected values.

The analysis of structure in contingency tables is a long- 
and well-known topic in statistics (Stigler, 2002). For a null 
model we can use the ordinary procedure and produce a 
table with expected values, calculated from the marginal 
totals (the total abundances of species and of samples), to 
be tested against the actual values with a chi-squared test. 
Alternatively, data can be resampled/permutated at the level 
of the individual (Capone & Kushlan, 1991; see also Ulrich 
& Gotelli, 2010). This is the method of our choice, as it 
acknowledges the discrete nature of the data.

Actual and modelled tables are analysed for overdisper-
sion and for correlations between the abundance of species 
and total abundance, over samples. Additionally, the number 
of species showing their highest abundance in the sample 
with the highest total abundance is determined.

Material and methods

Data sets

Twelve multi-sample data sets, each with a constant sam-
pling effort, are analysed. We acknowledge the biocurators 
in their efforts to collect the data, in publishing and/or shar-
ing them, in Table 1. Data sets cover different biological 
groups, different regions on earth in different ecosystems. 
The number of observed individuals range from 14,965 to 
1,178,380. The number of species is highly variable among 
the datasets with a minimum of 16 species in set 3 and a 
maximum of 502 in set 11. We used the sets for other pattern 

analyses already, on rarity (Straatsma & Egli, 2012) and on 
the species abundance distribution (Straatsma & Egli, 2017).

Null hypothesis and model

The choice of our null model starts with a thought exercise. 
The simplest null model assigns all individuals randomly 
to the cells of the species × sample table. We can do that 
using an auxiliary table with the number of rows equal to 
the number of individuals and three columns, the first for 
the individual’s number, the others for tags of species iden-
tity and of sample code, respectively. Tags for species and 
samples can be randomly assigned and a species × sample 
table constructed. Cell values will approximate a Poisson 
distribution, characterized by values whose variation equals 
the mean. The same is true for the totals of species and of 
samples (the marginal totals); they can either be totalled 
over cell values or determined directly from the individual’s 
tags for species or for samples, respectively. Poisson dis-
tributions contradict ecological facts. Ecological data are 
generally ‘overdispersed’ (Bliss & Fisher, 1953). (Total) 
abundances of species follow a law that is known for over 
a century (McGill et al. 2007; ‘species abundance distribu-
tion’): ‘every community shows a hollow curve or hyper-
bolic shape on a histogram with many rare species and just 
a few common species’. We are not aware of a law or pattern 
for total abundances of samples.

For an appropriate null model, we should acknowledge 
the total abundances of the species as they are. Further, we 
need to know if there is more to the total abundances of 
samples than randomness. In the results section, we will 
learn that their variation exceeds the mean of sample totals, 
in all data sets. Thus, we also should acknowledge these 

Table 1  Set origins and characteristics. The availability of the data is mentioned in a note at the end of the text. Abundances are number of indi-
viduals (organisms in most sets, colonies in set 9)

Data set Origin of data Total abundance Number of 
samples

Number 
of spe-
cies

1 Mushrooms Egli et al. 1977, 2006 108,014 551 408
2 Fish Henderson & Bird, 2010 143,420 357 83
3 Crustaceans Ibid 1,039,322 340 16
4 Fish + Crustaceans Ibid 1,178,380 340 99
5 Trees Condit et al. 1996, Hubbell et al. 2005 206,513 512 295
6 Rodents Brown et al. 2001, Ernest et al. 2009 33,013 617 40
7 Winter annuals Ibid 414,080 282 47
8 Summer annuals Ibid 364,958 335 49
9 Ant colonies Ibid 14,965 288 20
10 Seedlings Firbank et al. 2003 284,678 915 240
11 Brachiopod fossils Cooper & Grant, 1977, Olszewski & Erwin, 2004 793,077 187 502
12 Flies Papp, 2007 92,680 1,015 106
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totals as they are. We arrive at the analysis of structure in 
contingency tables with given marginal totals, a long- and 
well-known topic in statistics (Stigler, 2002).

For contingency tables with given marginal totals, 
expected values of the table cells can be calculated by the 
product of the total abundance of the species involved and 
of the total abundance of the sample involved, divided by 
the total abundance of the set. In a table with expected val-
ues, all species of a data set will show a perfect correlation 
between their abundance values and the total abundances 
of the samples. Also, all species of a data set will show 
their highest abundance in the sample with the highest total 
abundance.

The calculation of expected values results in decimal val-
ues, not discrete ones as the counts in the actual sets. This 
problem can be met with resampling/permutation of the data 
at the level of the individual. Again, we can use an auxiliary 
table, now for every individual of an actual species × sample 
table, with two tags already for species and sample. These 
tags can be re-shuffled, and a permuted table obtained 
(Capone & Kushlan, 1991; see also Ulrich & Gotelli, 2010, 
their ‘IT’ algorithm). This represents our null model. The 
results of permutation will vary due to chance placement 
of individuals in table cells. Nevertheless, cell values will 
approximate expected values. To account for chance place-
ment, we use 100 permutation runs in our final analysis.

Overdispersion/aggregation

Overdispersed distributions have also been called ‘conta-
gious’, indicating that the presence of one individual in a 
cell of a table increases the chance of there being some more 
(terminology of G. Pólya; in Bliss & Fisher, 1953). Aggrega-
tion of individuals implies a relatively high chance of cells 
to hold no individuals at all, that the distribution is ‘zero-
inflated’ [Warton, 2005; a distribution is truly zero-inflated 
only if not even the negative binomial distribution (Bliss & 
Fisher, 1953) can account for the large number of zeros]. 
For the analysis of overdispersion, mean and variance are 
determined of cell values, zeros included, and of marginal 
totals. Additionally, the number of cells holding one or more 
individuals is counted.

The number of table cells, n, holding a zero value under 
a Poisson distribution, can be calculated by the expression:

where  ntot,  nsamp and  nspec represent the total abundance, the 
number of samples and the number of species of the set (the 
expression for a zero value gets simple by the circumstance 
that 0! = 1).

n = exp
(

− ntot∕
(

nsamp ∗ nspec

))

∗ nsamp ∗ nspec

Correlation analysis

Our question, if there is a correlation between the abun-
dances of species in samples and the total abundance of sam-
ples, is tested by linear regression between log transformed 
values of both variables. Only abundances ‘when present’, 
of one or higher, are used. The number of species with a sig-
nificant positive or negative correlation (p < 0.05) is used as 
a measure. Some of the species have too few individuals or 
too little variation to determine a reliable correlation. These 
species are considered not eligible for analysis.

We also determine the number of species showing their 
highest abundance in the sample with the highest total 
abundance.

The 5% and 95% percentiles of the 100 sets of permuted 
data are used as confidence limits. Statistical analysis is done 
in MATLAB; code is available from Online Resource 1.

Results

Exploratory statistics; overdispersion

The numbers of species and of samples of each data set is 
given in Table 1. The range of abundances of species and of 
samples is illustrated in Fig. 1 and shows that these ranges 
are different among sets and larger for abundances of species 
than of samples. Set 5 stands out by its relatively low level 
of variation between samples (also see Online Resource 2).

In all species × sample tables, the variance of the abun-
dances of table cells exceeds the mean (Table 2a), indicat-
ing that individuals are overdispersed. The same is true for 
marginal totals of species and of samples (Table 2b, c). This 
result implies that the marginal totals should be accounted 
for in the null model.

The numbers of zero values of table cells (the comple-
ment of values larger than zero in Table 2d) are high in 
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Fig. 1  Range of total abundances of species and of samples of the 
actual sets; ranges are 90% quantiles. Sets are numbered according to 
Table 1
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comparison to the number expected from a Poisson distri-
bution (not shown; can be calculated from the expression 
given in Materials and Methods). We considered the nega-
tive binomial distribution (Bliss & Fisher, 1953) for total 
abundances. Our impression is that predicted values from 
the negative binomial model resemble observed values bet-
ter for total abundances of samples than of species (results 
not shown).

The variances of abundances within species and within 
samples plotted against their means show the pattern known 
as Taylor’s law (Online Resource 2).

More cells of the species × sample tables of permuted data 
hold individuals than the tables of the actual sets (Online 
Resource 3a). This implies a relaxation of overdispersion 
by permutation; very high values are less high, the number 
of species having abundance values of just one increases 
(Online Resource 3a).

Correlation between species abundances and total 
abundances of samples

The number of species with abundances significantly cor-
related with total abundances of samples is significantly 
lower in the actual sets than in the sets with permuted 
data (Fig. 2a; Online Resource 3b). A collateral result of 
permutation is that the numbers of species eligible for 
calculating the correlation coefficient are lower in sets of 
permuted data than in the actual sets; except for sets 3 and 
7 (Online Resource 3b).

Sample with highest total abundance

The total abundance of the sample with the highest total 
abundance is lower than the sum of the highest abundances 

Table 2  The extent 
of overdispersion; a, 
b, c) variance to be 
compared with mean, d) 
number of cells with an 
abundance value > 0 to 
be compared with total 
number of cells. Sets are 
numbered according to 
Table 1

Data set a b c d

Abundance, table cellsTotal abundance, species Total abundance, 
samples

Number of table 
cells

Mean Variance Mean Variance Mean Variance Total Value > 0

1 0.480 123 265 1.08E + 06 196 1.97E + 05 224,808 8,865
2 4.84 3,310 1,728 5.33E + 07 402 3.35E + 05 29,631 5,241
3 191 1.06E + 06 6.50E + 04 3.04E + 10 3057 1.79E + 07 5,440 2,171
4 35.0 1.79E + 05 1.19E + 04 5.24E + 09 3466 1.90E + 07 33,660 7,206
5 1.37 38.1 700 6.76E + 06 403 3,892 151,040 38,593
6 1.34 30.8 825 3.03E + 06 53.5 1,041 24,680 4,299
7 31.2 8.48E + 04 8,810 1.16E + 09 1468 3.80E + 06 13,254 3,902
8 22.2 8.11E + 04 7,448 8.24E + 08 1089 5.01E + 06 16,415 3,702
9 2.60 34.1 748 1.27E + 06 52.0 772 5,760 2,520
10 1.30 843 1,186 3.96E + 07 311 3.13E + 05 219,600 12,069
11 8.45 4.57E + 04 1,580 2.20E + 07 4241 1.78E + 08 93,874 4,342
12 0.86 58.5 874 3.63E + 07 91.3 4.38E + 03 107,590 11,465
p
Wilcoxon test; 

0.001  < 0.001 0.002

Fig. 2  Statistics of actual and 
permuted sets with respect to 
species behaviour. Sets are 
numbered according to Table 1. 
Open dots: actual data, Bars: 
90% quantile ranges for 100 
permutated sets. a: the number 
of species having a significant 
positive relation; b: the number 
of species having their highest 
abundance in the sample with 
the highest total abundance. 
Data to this figure are given in 
Online Resource 3
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of species (Table 3). This sample cannot accommodate all 
species with their highest abundances.

Significantly fewer species in the actual sets have their 
highest abundance in the sample with the highest total 
abundance than in the sets with permuted data (Fig. 2b; 
Online Resource 3c). Occasionally, in the actual sets, a 
species has its highest abundance in a sample with a rela-
tively very low total one (not shown).

Discussion

Overdispersion

Overdispersion occurs in all sets. Although variance var-
ies among species and samples, it followed approximately a 
power-law function with mean density according to Taylor’s 
law.

Samples with a low total abundance will have difficulty 
to accommodate the highest abundance of a species that has 
a high total abundance. Possibly this single value exceeds 
the total abundance of such a sample. Only species with 
a moderate to low total abundance can have their highest 
abundances in samples with a moderate to low total abun-
dance. However, not exclusively: they can also have it in 
samples with a high total abundance. Because not all spe-
cies can have their highest abundance in the sample with the 
highest total abundance, some species will have that in other 
samples. The high abundance values rather than the low ones 
are constrained to samples with a high total abundance. We 
conclude that the high level of aggregation of individuals is 
one side of the coin and that, somehow, differential behav-
iour of species is the other.

Environmental variation among samples

Total abundances of samples in all sets are overdispersed. 
There is something beyond randomness that causes this high 
level of variation. We suggest that it is an effect of environ-
mental variation. In our study it was logical to ignore the 
specific characteristics of samples and the environmental 
conditions involved; such characteristics separate sets, are 
not shared. Specific effects of environmental conditions in 
some of the sets have been published: seasonality in the 
Mushroom (Straatsma et al., 2001) and Fish (Shimadzu et al. 
2013) sets; water availability in the Tree set (Engelbrecht 
et al., 2007) and precipitation in the sets of Rodents and 
Annual plants (Ernest et al., 2000). Environmental variation 
always plays a role, whatever the scale of sampling (Wiens, 
2000). The environment is patchy; even in what is intuitively 
taken a homogeneous environment, water, micro-patches 
occur (Jenkinson et al. 2015). The effects of environmen-
tal conditions illustrate the contingency issue mentioned by 
Lawton (1999) and McGill (2019). The specific environ-
mental conditions are relevant to the specific set only. What 
all sets share is the naked fact of variation of environmental 
conditions.

Correlation

Significant differences between actual and permuted sets 
are present in a) the number of species with a positive rela-
tion with total abundances and b) the number of species 
that has the highest abundance in the sample with the high-
est total abundance. The null hypothesis is rejected and a 
non-stochastic pattern in the data sets is accepted. Both, the 
study of overdispersion and the correlation analysis, lead 
to the conclusion that some species flourish when many do 
not. The pattern found is not surprising; it bears similar-
ity to naturalist’s observations that otherwise rare species 
can occur abundantly at peculiar sites like the occurrence of 
metallophytic plants in calaminarian grasslands [like Viola 
lutea subsp. calaminaria (Heimans, 1911); calamine is an 
ore of zinc]. The pattern has not explicitly been recognized 
in macroecology.

Quite some species show abundances that correlate with 
total abundances of samples in actual sets. That suggests a 
form of neutral behaviour.

Relation with theoretical ecology

One could hardly expect an affirmative answer to our ques-
tion, that there is a perfect correlation between the abun-
dances of species over samples with the total abundances of 
the samples. Affirmation would imply that the null hypoth-
esis of no association would not be rejected. What would 

Table 3  Highest total abundance of samples and their failing capacity 
to accommodate the highest abundances of all species. Sets are num-
bered according to Table 1

Data set Highest total abundance of 
samples

Sum of highest 
abundances of all 
species

1 4006 15,156
2 8060 12,718
3 38,328 53,734
4 39,312 66,420
5 629 3812
6 181 719
7 9936 21,055
8 13,943 33,241
9 159 395
10 7591 43,289
11 116,705 419,639
12 585 1195
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this mean? Then, all species show an identical response, 
in proportion to their total abundance, to variation among 
samples. Does that imply that the species involved behave 
neutrally? Not necessarily. One can speculate that samples 
represent nothing else than total abundance, rejecting grip 
for differential behaviour of species. Only if this speculation 
can be rejected, neutral behaviour of species needs consid-
eration. Thus, in case of an affirmative answer, we are con-
fronted with two assumptions, one on neutrality of samples 
and one on species. This relates to a result of Clark (2012). 
He analysed assumptions of ecologist that either take sites 
or species equivalent (niche ecologists versus neutralists, 
respectively) and judged that models based on their seem-
ingly opposite assumptions can yield the same answer.

As we rejected the hypothesis of no association, neither 
of the speculations above receives support. It implies that 
samples as well as species have functionally different charac-
teristics. This conclusion will correspond with the intuition 
of naturalists, however, the subject of neutrality is relevant 
in theoretical ecology. The concept is strongly influenced 
by the theory of Hubbell (2001) on the replacement of indi-
viduals in communities (‘births’ and ‘deaths’). Our ques-
tion is not directly aimed at replacement. Neutrality in a 
general meaning relates to issues of coexistence of species 
and stability of communities, for which we refer to Chase 
and Myers (2011).

The pattern found does not stand alone. Well-known other 
patterns are listed in Lawton (1999) and McGill (2019). Our 
results on overdispersion and the constraints it poses, as 
well as that Taylor’s law holds among species and samples, 
may indicate the existence of additional patterns. None of 
these alternative patterns should be contradicted by theories 
on community assembly [see Chase and Myers (2011) for 
theories].

The question if species have abundances that are corre-
lated with total abundances over samples is answered nega-
tively. Instead, we found a pattern in all data sets that some 
species flourish when many do not. The existence of the pat-
tern is linked with overdispersion/aggregation of individuals. 
Although the pattern is perhaps not surprising, it conflicts 
with assumptions on neutrality of characteristics of samples 
and/or species, a topic in theoretical ecology.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s42974- 021- 00045-8.
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