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Abstract
We consider inference on optimal treatment assignments. Our methods allow infer-
ence on the treatment assignment rule that would be optimal given knowledge of the
population treatment effect in a general setting. The procedure uses multiple
hypothesis testing methods to determine a subset of the population for which
assignment to treatment can be determined to be optimal after conditioning on all
available information, with a prespecified level of confidence. A Monte Carlo study
confirms that the inference procedure has good small sample behavior. We apply the
method to study Project STAR and the optimal assignment of a small class inter-
vention based on school and teacher characteristics.

Keywords Optimal treatment assignment · Set inference · Multiple
testing

1 Introduction

In recent decades, there has been increasing recognition in both academic and public
circles that social experiments or social programs, as costly as they are, should be
rigorously evaluated to learn lessons from past experience and to better guide future
policy decisions. While recent literature has considered the problem of treatment
decision rules given experimental or observational data (see, among others, Manski,
2004; Dehejia, 2005; Hirano and Porter, 2009; Stoye, 2009; Chamberlain, 2011;
Tetenov, 2012; Bhattacharya andDupas, 2012), the problemof constructing confidence
statements for the optimal treatment assignment has received little attention. The goal of
this paper is to formulate this problem and propose a solution. This allows researchers to
quantify how strong the evidence is in favor of treating certain individuals.
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To understand the importance of confidence statements for optimal treatment
assignments, consider the case where a policy-maker wants to design a social
program that gives some selected individuals a treatment intervention (say, reduced
class size). The effect of the treatment on the response outcome (say, student test
score) is expected to be heterogeneous and varies along certain observed variables
(say, teacher experience). A natural goal of the policy maker is to assign treatment
only to those with treatment effect expected to be above some prespecified threshold
such as zero or the cost of the treatment. The expected treatment effects of different
individuals are unknown, but, if data from a previous experimental intervention are
available, the policy-maker can make an informed guess about who should be
treated, say, by selecting only individuals with values of observed variables linked to
an estimated conditional average treatment effect (conditional on individuals’
observed characteristics) exceeding the prespecified threshold. The literature on
statistical treatment rules has formulated the notion of an “informed guess” and
proposed solutions in terms of statistical decision theory. The contribution of this
paper is to develop methods that accompany the treatment assignment rule with a
confidence statement quantifying the strength of the evidence in favor of providing
treatment to certain selected individuals.

We formulate the problem of inference on the optimal treatment assignment as one
of reporting a subset of individuals for which treatment can be determined to be
optimal conditional on observables while controlling the probability that this set
contains any individual for whom treatment should not be recommended conditional
on the available information. Our procedures recognize the equivalence of this
problem with the problem of multiple hypothesis testing. We propose to select the
individuals for whom it can be determined that the population optimal assignment
gives treatment by testing multiple hypotheses regarding the conditional average
treatment effect for each individual based on the value of the conditioning variable,
while controlling the probability of false rejection of any single hypothesis.

The proposed inference procedure for optimal treatment assignment is useful in
policy analysis and program evaluation studies. In this paper, we apply the inference
method to study the assignment of small class in Project STAR. With a 5%
significance level, the method determines that the population optimal treatment
assignment rule assigns less experienced teachers in poor schools to teach small
classes. The proposed inference method also finds evidence for treatment effect
heterogeneity among students with different observed characteristics.

The problem of optimal statistical decision rules for treatment assignment has
been considered by Manski (2004), Dehejia (2005), Hirano and Porter (2009), Stoye
(2009), Chamberlain (2011), Tetenov (2012), Bhattacharya and Dupas (2012), and
others. Additional papers that consider this problem and were circulated after the
initial draft of the present paper include Kitagawa and Tetenov (2018), Mbakop and
Tabord-Meehan (2021) and Athey and Wager (2021). In this literature, individuals
are assigned to different treatments by a social planner who maximizes social welfare
or minimizes the risk associated with different statistical decision rules for treatment
based on noisy data. As discussed above, our goal is distinct from and
complementary to the goal of this literature: we seek to formulate and solve the
problem of confidence statements for the (population) optimal treatment assignment,
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which can be reported along with a “point estimate” given by the solution to the
statistical decision problem formulated and solved in the literature described above.
We emphasize that our methods are intended as confidence statements for the
treatment assignment that would be optimal given knowledge of the joint distribution
of variables in the population, not as a statistical treatment assignment rule that
should be implemented given the data at hand (which is the problem formulated by
the papers cited above). Rather, we recommend that results based on our methods be
reported so that readers can quantify the statistical evidence in favor of treating each
individual. We provide further discussion of situations where our confidence region
is of interest in Appendix A.

While confidence regions are often interpreted as a measure of statistical precision,
they do not, in general, provide a statement about the performance of any given
estimator. The same distinction arises in our setting: our confidence regions are for
the population optimal treatment assignment rule; they do not provide a statement
about the performance of any particular statistical decision rule proposed in the
literature described above. The problem of reporting and interpreting guarantees on
the performance of statistical decision rules has been considered by Manski and
Tetenov (2016) and Manski and Tetenov (2019).

While we are not aware of other papers that consider inference on the treatment
assignment rule that would be optimal in the population, Luedtke and Laan (2016)
consider inference on expected welfare under the population optimal treatment rule
and Bhattacharya and Dupas (2012) derive confidence intervals for the expected
welfare associated with certain statistical treatment rules. In contrast, we focus on
inference on the population optimal treatment rule itself. These two methods achieve
different goals. Our methods for inference on the optimal treatment rule can be used
to answer questions about how optimal treatment assignment varies along observed
covariates. On the other hand, our methods do not attempt to quantify the increase in
welfare from a given treatment rule, which is the goal of estimates and confidence
intervals for average welfare.

This paper is closely related to Anderson (2008) and to Lee and Shaikh (2014).
Those papers use finite sample randomization tests to construct subsets of a discrete
conditioning variable for which treatment can be determined to have some effect on
the corresponding subpopulation. Our problem is formulated differently from theirs.
Our goal of finding correct inference on optimal treatment assignment rule leads us to
report only those values of covariates for which treatment increases the average
outcome (rather than, say, increasing the variance or decreasing the average
outcome). This, and our desire to allow for continuous covariates, leads us to an
asymptotic formulation of the corresponding multiple testing problem. In short, while
we both use the idea of multiple hypothesis testing for set construction, our multiple
hypotheses are different, leading to different test statistics and critical values.

The method we use to construct confidence statements on optimal treatment
decision rules is related to the recent literature on set inference, including
Chernozhukov et al. (2007) and Romano and Shaikh (2010). Indeed, the complement
of our treatment set can be considered a setwise confidence region in the sense of
Chernozhukov et al. (2007), and our solution in terms of multiple hypothesis testing
can be considered a confidence region for this set that extends the methods of
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Romano and Shaikh (2010) to different test statistics. In addition, our paper uses
step-down methods for multiple testing considered by Holm (1979) and Romano and
Wolf (2005) and applied to other set inference problems by Romano and Shaikh
(2010). In the case of continuous covariates, we use results from the literature on
uniform confidence bands (see Neumann and Polzehl, 1998; Claeskens, 2003;
Chernozhukov et al., 2013; Kwon, 2022). In particular, we use results from
Chernozhukov et al. (2013), who are interested in testing a single null hypothesis
involving many values of the covariate. Our testing formulation is different from
theirs as our formulation leads us to the multiple hypothesis testing problem of
determining which values of the covariates lead to rejection; the step-down method
gains precision in our context, but would be irrelevant in Chernozhukov et al. (2013).

The phrase “optimal treatment assignment” is also used in the experimental design
literature, where treatment assignments are designed to minimize the asymptotic
variance bound or risk of treatment effect estimators (see Hahn et al., 2011). In
contrast to this literature, which considers the design phase of the experiment, we
take data from the initial experiment as given and focus on implications for future
policy.

Our proposed inference procedure on optimal treatment assignments is also related
to the test for treatment effect heterogeneity considered by Crump et al. (2008). In
fact, it not only tests the null hypothesis that the treatment effect does not vary along
an observed variable, but also solves the additional problem of determining which
values of the variable cause this null to be rejected. Thus, our paper extends the body
of knowledge on treatment effect heterogeneity by providing a procedure to
determine for which values of the conditioning variable the conditional average
treatment effect differs from the average over the entire population.

Monte Carlo experiments show that our proposed inference procedures have good
size and power properties in small samples. The method properly controls the
probability of including wrong individuals to the confidence region and successfully
selects a large portion of the true treatment beneficiaries. The step-down method in
multiple testing improves the power of the inference procedure given a sample size,
meaning that it helps to include more individuals into the confidence region while
properly controlling its type I error. The size and power properties of the proposed
inference procedure are also compared with a “folk wisdom“ method based on
pointwise confidence bands of the conditional average treatment effect. We show that
the latter method often generates nonempty treatment sets in cases where no
treatment effect is actually present.

The remainder of the paper is organized as follows: Section 2 formulates the
problem of constructing confidence statements for treatment assignment rules.
Section 3 links the problem of statistical inference to multiple hypothesis testing and
proposes an inference method that derives the treatment assignment rule with
statistical precision controlled for. Section 4 conducts several Monte Carlo
experiments that study the small sample behavior of the proposed inference method.
Section 5 applies the method to Project Star. Section 6 concludes. Appendix A
discusses situations where our confidence region is of interest. Appendix B discusses
an extension to two-sided confidence regions. Appendix C derives some of the

123



properties of our confidence region in terms of average welfare when used as a
statistical treatment rule.

2 Setup

To describe the problem in more detail, we introduce some notation. For each
individual i, there is a potential outcome Yið1Þ with treatment, a potential outcome
Yið0Þ with no treatment, and a vector of variables Xi observed before a treatment is
assigned. Let Di 2 f0; 1g be an indicator for treatment. The goal of a policy-maker is
to decide which individuals should be assigned to the treatment group so as to
maximize the expectation of some social objective function. We take the social
objective function, without loss of generality, to be the realized outcome itself.1

Let tðxÞ � EðYið1Þ � Yið0ÞjXi ¼ xÞ be the conditional average treatment effect.
Then the population optimal treatment policy is to treat only those individuals with a
covariate Xi ¼ x such that the conditional average treatment effect t(x) is positive. In
other words, the treatment rule that would be optimal given knowledge of the
distribution of potential outcomes in the population and the covariate Xi of each
individual would assign treatment only to individuals with covariate Xi taking values
included in the set

Xþ � fxjtðxÞ[ 0g:
While the ideas in this paper are more general, for the sake of concreteness, we
formulate our results in the context of i.i.d. data from an earlier policy intervention
with randomized experimental data or observational data in which an unconfound-
edness assumption holds. Formally, we observe n observations of data
fðXi;Di; YiÞgni¼1 where realized outcome Yi � YiðDiÞ and Di 2 f0; 1g is an indicator
for treatment and Xi is a vector of pre-treatment observables. The data are assumed to
satisfy the following unconfoundedness assumption.

Assumption 1

EðYiðjÞjDi ¼ j;Xi ¼ xÞ ¼ EðYiðjÞjXi ¼ xÞ; j ¼ 0; 1:

Assumption 1 is restrictive only if the policy intervention is non-experimental. It is
also called the selection on observables assumption as it requires that the
observational data behave as if the treatment is randomized conditional on the
covariate Xi. Assumption 1 is a standard assumption in the treatment effect literature.
Under the assumption, the expected outcomes for both the treatment and the control
group in the sample give the same expected outcomes as if both potential outcome
variables were observed for all individuals.

If the data we observe is from an initial trial period of the policy intervention with
a random sample from the same population, Assumption 1 is enough for us to

1 This is without loss of generality because costs can be incorporated into the set-up by being subtracted
from the treatment.
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perform inference on the positive treatment set Xþ. However, if the policy maker is
deciding on a treatment policy in a new location, or for a population that differs
systematically from the original sample in some other way, one must make additional
assumptions (see Hotz et al., 2005). In general, one needs to assume that the
conditional average treatment effect is the same for whatever new population under
consideration for treatment in order to directly apply estimates and confidence
regions from the original sample.

We propose to formulate the problem of forming a confidence statement of the

true population optimal treatment rule Xþ as one of reporting a treatment set X̂þ for
which we can be reasonably confident that treatment is, on average, beneficial to
individuals with any value of the covariate x that is included in the set. Given a pre-

specified significance level a, we seek a set X̂þ that satisfies

lim inf
n

P X̂þ � Xþ
� �� 1� a; ð1Þ

or a treatment group that, with more than probability ð1� aÞ, consists only of

individuals who are expected to benefit from the treatment. Therefore, X̂þ is defined
as a set that is contained in the true optimal treatment set Xþ, rather than a set

containing Xþ. This definition of X̂þ corresponds to the goal of reporting a sub-
population for which there is overwhelming evidence that the conditional average
treatment effect is positive. As discussed in the introduction, this goal need not be
taken as a policy prescription: a researcher may recommend a policy based on a more
liberal criterion while reporting a set satisfying (1) as a set of individuals for whom
evidence for treatment is particularly strong. We propose methods to derive the set

X̂þ by noticing that a set that satisfies (1) is also the solution to a multiple hypothesis
testing problem with an infinite number of null hypotheses Hx : tðxÞ� 0 for all

x 2 ~X , where ~X is the set of values of Xi under consideration. The multiple
hypothesis testing problem controls the familywise error rate (FWER), or the

probability of rejecting a single x for which Hx is true. With this interpretation, X̂þ
gives a subset of the population for which we can reject the null that the conditional
average treatment effect is non-positive given the value of Xi while controlling the
probability of assigning to treatment even a single individual for which the condi-
tional average treatment effect (conditional on Xi) is negative. The next section

describes in detail the proposed inference method for deriving the set X̂þ. In any
case, the role of Yið0Þ and Yið1Þ can be reversed to obtain a confidence region that
contains Xþ with 1� a probability. We give a formulation of two-sided confidence
sets in Appendix B.

3 Inference procedures

Let t̂ðxÞ be an estimate of the conditional average treatment effect t(x) and r̂ðxÞ an
estimate of the standard deviation of t̂ðxÞ. Let ~X be a subset of the support of the Xi

under consideration. For any set X � ~X , let the critical value ĉu;aðX Þ satisfy
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lim inf
n

P sup
x2X

t̂ðxÞ � tðxÞ
r̂ðxÞ � ĉu;aðX Þ

� �
� 1� a: ð2Þ

The critical value ĉu;aðX Þ can be obtained for different estimators t̂ðxÞ using classical
central limit theorems (if X is discrete), or, for continuously distributed Xi, results on
uniform confidence intervals for conditional means such as those contained in
Neumann and Polzehl (1998), Claeskens (2003), Chernozhukov et al. (2013) or
Kwon (2022) as we describe later. For some of the results, we will require that these
critical values be non-decreasing in X in the sense that

X a � X b ¼) ĉu;aðX aÞ� ĉu;aðX bÞ: ð3Þ

Given the critical value, we can obtain a set X̂ 1
þ that satisfies (1). Let

X̂ 1
þ � x 2 ~X

����t̂ðxÞ=r̂ðxÞ[ ĉu;a ~X
� �� �

:

Clearly X̂ 1
þ satisfies (1), since the event in (2) implies the event in (1).

However, we can make an improvement on inference using a step-down

procedure (see Holm, 1979; Romano and Wolf, 2005). That is, we can find a set X̂þ
that includes X̂ 1

þ but also satisfies (1). The procedure is as follows. Let X̂ 1
þ be

defined as above. For k[ 1, let X̂ k
þ be given by

X̂ k
þ ¼ x 2 ~X

����t̂ðxÞ=r̂ðxÞ[ ĉu;a ~XnX̂ k�1
þ

� �� �
:

Note that X̂ k�1
þ � X̂ k

þ, so the set of rejected hypotheses expands with each step.

Whenever X̂ k
þ ¼ X̂ k�1

þ , or when the two sets are close enough to some desired

level of precision, we stop and take X̂þ ¼ X̂ k
þ to be our set.

Theorem 1 Let (2) and (3) hold. Then X̂ k
þ satisfies (1) for each k.

Proof On the event that X̂þ 6� Xþ, let ĵ be the first j for which X̂
ĵ
þ 6� Xþ. Since

X̂
ĵ�1
þ � Xþ (where X̂ 0

þ is defined to be the empty set), this means that

sup
x2 ~XnXþ

t̂ðxÞ � tðxÞ
r̂ðxÞ � sup

x2 ~XnXþ

t̂ðxÞ=r̂ðxÞ[ ĉu;a ~XnX̂ ĵ�1
þ

	 

� ĉu;a ~XnXþ

� �
:

Thus, for X ¼ ~XnXþ, we have that, on the event that X̂þ 6� Xþ, the event in (2) will
not hold. Since the probability of this is asymptotically no greater than a, it follows

that PðX̂þ 6� XþÞ is asymptotically no greater than a, giving the result. h

Next we provide critical values that satisfy (2) for different estimators t̂ðxÞ
depending whether the covariate Xi is discrete or continuous. The inference
procedure described below for the discrete covariate case parallels results described
in Lee and Shaikh (2014) while the procedure for the continuous covariates case uses
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results from the literature on uniform confidence bands and is new to the treatment
effect literature.

3.1 Discrete covariates

Suppose that the support of Xi is discrete and takes on a finite number of values. We
write

~X ¼ fx1; . . .; x‘g

for the set ~X of values of the covariate under consideration, which we may take to be
the entire support of Xi. In this setting, we may estimate the treatment effect t̂ðxÞ with
the sample analog. Let N0;x ¼

Pn
i¼1 1ðDi ¼ 0;Xi ¼ xÞ be the number of observations

for which Xi ¼ x and Di ¼ 0, and let N1;x ¼
Pn

i¼1 1ðDi ¼ 1;Xi ¼ xÞ be the number
of observations for which Xi ¼ x and Di ¼ 1. Let

t̂ðxjÞ ¼ 1

N1;xj

X
1� i� n;Di¼1;Xi¼xj

Yi � 1

N0;xj

X
1� i� n;Di¼0;Xi¼xj

Yi

We estimate the variance using

r̂2ðxjÞ ¼ 1

N1;xj

X
1� i� n;Di¼1;Xi¼xj

Yi � 1

N1;xj

X
1� i� n;Di¼1;Xi¼xj

Yi

0
@

1
A

2

=N1;xj

þ 1

N0;xj

X
1� i� n;Di¼0;Xi¼xj

Yi � 1

N0;xj

X
1� i� n;Di¼0;Xi¼xj

Yi

0
@

1
A

2

=N0;xj :

Under an i.i.d. sampling scheme, fðt̂ðxjÞ � tðxjÞÞ=r̂ðxjÞg‘j¼1 converge in distribution

jointly to ‘ independent standard normal variables. Thus, one can choose ĉuaðXÞ to
be the 1� a quantile of the maximum of jX j independent normal random variables
where jX j is the number of elements in X . Some simple calculations show that this
gives

ĉu;aðX Þ ¼ U�1 ð1� aÞ1=jX j
	 


ð4Þ

where U is the cdf of a standard normal variable. For ease of calculation, we can also
use a conservative Bonferroni procedure, which uses Bonferroni’s inequality to
bound the distribution of jX j variables with standard normal distributions regardless
of their dependence structure. The Bonferroni critical value is given by

ĉu;aðXÞ ¼ U�1 1� a=jX jð Þ: ð5Þ
The Bonferroni critical values will be robust to correlation across the covariates
(although r̂ would have to be adjusted to take into account serial correlation across
the outcomes for a given x).
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Both of these critical values will be valid as long as we observe i.i.d. data with
finite variance where the probability of observing each treatment group is strictly
positive for each covariate.

Theorem 2 Suppose that the data are i.i.d. and PðDi ¼ d;Xi ¼ xjÞ is strictly
positive and Yi has finite variance conditional on Di ¼ d;Xi ¼ xj for d ¼ 0; 1 and
j ¼ 1; . . .; ‘ , and that Assumption1 holds. Then the critical values defined in (4) and
(5) both satisfy (2) and (3).

3.2 Continuous covariates

For the case of a continuous conditioning variable, we can use results from the
literature on uniform confidence bands for conditional means to obtain estimates and
critical values that satisfy (2) (see, among others, Neumann and Polzehl, 1998;
Claeskens, 2003; Chernozhukov et al., 2013; Kwon, 2022). For convenience, we
describe the procedure here for multiplier bootstrap confidence bands based on local
linear estimates, specialized to our case.

Let m1ðxÞ ¼ EðYið1ÞjXi ¼ xÞ and m0ðxÞ ¼ EðYið0ÞjXi ¼ xÞ be the average of
potential outcomes with and without the treatment intervention given a fixed value of
the covariate Xi. Under Assumption 1,

mjðxÞ ¼ EðYiðjÞjXi ¼ xÞ ¼ EðYiðjÞjXi ¼ x;Di ¼ jÞ ¼ EðYijXi ¼ x;Di ¼ jÞ; j ¼ 0; 1:

Let Xi ¼ ðXi1::: XidÞ and x ¼ ðx1::: xdÞ. For a kernel function K and a sequence of
bandwidths h1 ! 0, define the local linear estimate m̂1ðxÞ of m1ðxÞ to be the intercept
term a for the coefficients a and fbjgdj¼1 that minimize

X
1� i� n;Di¼1

Yi � a�
Xd
j¼1

bjðXi;j � xjÞ
" #2

KððXi � xÞ=h1Þ

Similarly, define m̂0ðxÞ to be the corresponding estimate of m0ðxÞ for the control
group with Di ¼ 0 and h0 the corresponding sequence of bandwidths. Let êi ¼
Yi � Dim̂1ðXiÞ � ð1� DiÞm̂0ðXiÞ be the residual for individual i. Then define the
standard error s1ðxÞ of estimator m̂1ðxÞ as

s21ðxÞ ¼
P

1� i� n;Di¼1½êiKððXi � xÞ=h1Þ�2P
1� i� n;Di¼1 KððXi � xÞ=h1Þ

h i2
and similarly define s0ðxÞ for m̂0ðxÞ.

Let n1 and n0 denote the sample sizes for the treatment and control group
respectively. Let the estimator for the conditional average treatment effect be t̂ðxÞ ¼
m̂1ðxÞ � m̂0ðxÞ and its standard error r̂ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21ðxÞ þ s20ðxÞ

p
. To obtain the

asymptotic properties of t̂ðxÞ, we use the following smoothness assumptions and
assumptions on kernel function and bandwidths, which specialize the regularity
conditions given in Chernozhukov et al. (2013) to our case.

123



Assumption 2

1. The observations fðXi;Di; YiÞgni¼1 are i.i.d. and PðDi ¼ 1jXi ¼ xÞ is bounded
away from zero and one.

2. m0ðxÞ and m1ðxÞ are twice continuously differentiable and X is convex.
3. XijDi ¼ d has a conditional density that is bounded from above and below away

from zero on X for d 2 f0; 1g.
4. Yi is bounded by a nonrandom constant with probability one.
5. Yi � mdðxÞð ÞjXi ¼ x;Di ¼ d has a conditional density that is bounded from

above and from below away from zero uniformly over x 2 X and d 2 f0; 1g.
6. The kernel K has compact support and two continuous derivatives, and satisfies

that
R
uKðuÞ du ¼ 0 and

R
KðuÞ du ¼ 1.

7. The bandwidth for the control group, h0, satisfies the following asymptotic
relations as n ! 1: nhdþ2

0 ! 1, nhdþ4
0 ! 0 and n�1h�2d

0 ! 0 at polynomial
rates. In addition, the same conditions hold for the bandwidth h1 for the treated
group.

Part 7 of Assumption 2 incorporates an undersmoothing assumption as well as
assumptions on the bandwidth needed for technical reasons in the proofs of the
results in Chernozhukov et al. (2013). The undersmoothing assumption leads to
confidence bands that are suboptimal in rate, which may lead to a loss in power for
our multiple testing procedure.

To approximate the supremum of this distribution over a non-degenerate set, we
follow Neumann and Polzehl (1998) and Chernozhukov et al. (2013) and
approximate m̂1 and m̂0 by simulating and using the following multiplier processes

m̂�
1ðxÞ �

P
1� i� n;Di¼1 giêiK ðXi � xÞ=h1ð ÞP
1� i� n;Di¼1 K ðXi � xÞ=h1ð Þ

and

m̂�
0ðxÞ �

P
1� i� n;Di¼0 giêiK ðXi � xÞ=h0ð ÞP
1� i� n;Di¼0 K ðXi � xÞ=h0ð Þ

where g1; . . .; gn are i.i.d. standard normal variables drawn independently of the data.
To form critical values ĉu;aðXÞ, we simulate S replications of n i.i.d. standard normal
variables g1; . . .; gn that are drawn independently across observations and bootstrap
replications. For each bootstrap replication, we form the test statistic

sup
x2X

t̂
�ðxÞ
r̂ðxÞ ¼ sup

x2X

m̂�
1ðxÞ � m̂�

0ðxÞ
r̂ðxÞ : ð6Þ

The critical value ĉu;aðXÞ is taken to be the 1� a quantile of the empirical distri-
bution of these S simulated replications.

To avoid issues with estimation at the boundary, we place some restrictions on the

set ~X of values of the covariate under consideration. In practice, one can choose ~X in
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the following theorem to be any set such that the kernel functions x 7!Kððx� ~xÞ=h0Þ
and x 7!Kððx� ~xÞ=h1Þ are contained entirely in the support of Xi for all ~x 2 ~X .

Theorem 3 Let ~X be any set such that, for some e[ 0 ,

~x
��k~x� xk� e for some x 2 ~X

�  � suppðX Þ , where suppðX Þ denotes the support
of the Xi’s. Suppose Assumptions1 and2 hold. Then the multiplier bootstrap critical

value ĉu;aðXÞ defined above satisfies (2) and (3) for any X � ~X.

Proof The critical value satisfies (2) by the arguments in Example 7 of
Chernozhukov et al. (2013, pp. 7–9 of the supplementary appendix). The conditions
in that example hold for the treated and untreated observations conditional on a
probability one set of sequences of Di. The strong approximations to m̂0ðxÞ and
m̂1ðxÞ and uniform consistency results for s1ðxÞ and s2ðxÞ then give the correspond-
ing approximation for ðm̂1ðxÞ � m̂0ðxÞÞ=r̂ðxÞ. The critical value satisfies Condition
(3) by construction. h

The multiplier processes m�
1ðxÞ and m�

0ðxÞ and standard errors s1ðxÞ and s0ðxÞ
given above follow Chernozhukov et al. (2013), who use a Nadaraya–Watson (local
constant) estimator with an equivalent kernel as an asymptotic approximation to the
local polynomial estimator (see Fan and Gijbels, 1996, Section 3.2.2 for a definition
and discussion of equivalent kernels). The formula for the equivalent kernel given in
Chernozhukov et al. (2013) requires restricting attention to points on the interior of

the support of Xi, which leads to the additional conditions2 on the set ~X used in
Theorem 3. For local linear estimators on the interior of the support of Xi, this
equivalent kernel is the same as the original kernel, which leads to form of the
multiplier processes given above.

3.3 Extension: testing for treatment effect heterogeneity

The inference procedure described above can be easily modified to test for treatment
effect heterogeneity. Here we focus on the continuous covariate case since the testing
problem in the discrete covariate case is well-studied in the multiple comparison
literature. Let t be the (unconditional) average treatment effect. The null hypothesis
of treatment effect heterogeneity is

H0 : tðxÞ ¼ t 8x:

Let Xþ� ¼ x
��tðxÞ 6¼ t

� 
and X̂þ� be a set that satisfies

lim inf
n

P X̂þ� � Xþ�
� �� 1� a:

The probability that X̂þ� includes some value(s) of x such that tðxÞ ¼ t cannot
exceed the significance level a. Then the decision rule of the test is to reject H0 if the

set X̂þ� is nontrivial.

2 It appears that such conditions are an unstated assumption needed for the results in Kong et al. (2010)
used in Example 7 of Chernozhukov et al. (2013).
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The set X̂þ� is in fact more informative than simply testing the null hypothesis of
no treatment effect heterogeneity. It also helps researchers determine for which
values of the conditioning covariate Xi the conditional average treatment effect

differs from its average over the entire population. The set X̂þ� can be obtained

using a method similar to that described in the previous section for set X̂þ. Let t
denote the unconditional average treatment effect, and ĉhet;aðX Þ the critical value of
this test for treatment effect heterogeneity. It satisfies

lim inf
n

P sup
x2X

t̂ðxÞ � t̂ � ðtðxÞ � tÞ
r̂ðxÞ

����
����� ĉhet;aðX Þ

� �
� 1� a;

where t̂ is a
ffiffiffi
n

p
-consistent estimator of t. Let

X̂ 1
þ� � x 2 ~X

���� t̂ðxÞ � t̂ð Þ=r̂ðxÞj j[ ĉhet;a ~X
� �� �

. For k[ 1, let

X̂ k
þ� ¼ x 2 ~X

���� t̂ðxÞ � t̂ð Þ=r̂ðxÞj j[ ĉhet;a ~XnX̂ k�1
þ�

� �� �
. When X̂ k

þ� ¼ X̂ k�1
þ� , or

when the two sets are close enough to some desired level of precision, stop and take

X̂þ� ¼ X̂ k
þ�. In practice, ĉhet;aðXÞ could be set as the 1� a quantile of the empirical

distribution of the multiplier bootstrap statistic supx2X
t̂�ðxÞ�t̂�

r̂ðxÞ
��� ���, where t̂

�ðxÞ is the

multiplier process defined earlier and t̂
�
is the estimator for t in the simulated dataset.

4 Monte Carlos

In this section, we investigate the small sample behavior of our proposed inference
procedure for optimal treatment assignment. We consider three data generating
processes (DGPs) for the conditioning variable Xi, the outcome Yi and the treatment
indicator Di.

DGP 1: Xi 	Uð0; 1Þ, ei 	Nð0; 1=9Þ, vi 	Uð0; 1Þ, Di ¼ 1ð0:1Xi þ vi [ 0:55Þ,
Yi ¼ 5ðXi � 0:5Þ2 þ 5ðXi � 0:5Þ2Di þ ei;
DGP 2: Xi 	Uð0; 1Þ, ei 	Nð0; 1=9Þ, vi 	Uð0; 1Þ, Di ¼ 1ð0:1Xi þ vi [ 0:55Þ,
Yi ¼ 0:5 sinð5Xi þ 1Þ þ 0:5 sinð5Xi þ 1ÞDi þ ei;
DGP 3: Xi 	Uð0; 1Þ, ei 	Nð0; 1=9Þ, vi 	Uð0; 1Þ, Di ¼ 1ð0:1Xi þ vi [ 0:55Þ,
Yi ¼ 10ðXi � 1=2Þ2 þ ei.

The unconfoundedness assumption is satisfied in all three DGPs. The conditional
average treatment effect t(x) is the difference between the conditional mean m1ðxÞ ¼
EðYijXi ¼ x;Di ¼ 1Þ and m0ðxÞ ¼ EðYijXi ¼ x;Di ¼ 0Þ. In the first DGP, t(x) always
lies above zero except for one tangent point. In the second DGP, tðxÞ ¼ 0:5 sinð5xþ
1Þ is positive in some parts of the Xi support and negative in the other parts. In the
third DGP, t(x) is uniformly zero.

For each DGP, datasets are generated with three different sample sizes and
repeated 500 times. The conditional mean m0ðxÞ and m1ðxÞ are estimated using local
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linear estimation with Epanechnikov kernel and bandwidths chosen by following rule
of thumb:

hl ¼ ĥl;ROT 
 ŝl 
 n1=5�1=4:75
l l ¼ 0; 1;

where ŝl is the standard deviation of Xi in the subsample with Di ¼ l, and n1=5�1=4:75
l

is used to ensures under-smoothing, l ¼ 0; 1. ĥl;ROT minimizes the weighted Mean
Integrated Square Error (MISE) of the local linear estimator with studentized Xi

values and is given by Fan and Gijbels (1996):

ĥl;ROT ¼ 1:719
~r2l
R
wðxÞdx

n�1
l

Pnl
i¼1 ~mð2Þ

l ðXiÞ
n o2

wðXiÞ

2
64

3
75
1=5

n�1=5
l :

In the formula, ~mð2Þ
l is the second-order derivative of the quartic parametric fit of

mlðxÞ with studentized Xi and ~r2l is the sample average of squared residuals from the
parametric fit. w(.) is a weighting function, which is set to 1 in this section. The
computation is carried out using the np package in R (see Hayfield and Racine,
2008). To avoid the boundary issue, the local linear estimator t̂ðxÞ is evaluated
between 0.2 and 0.8. The critical values for the proposed step-down procedure are
data dependent and calculated using the multiplier bootstrap method with S ¼ 500
for each simulated dataset.

Before reporting the Monte Carlo results for all 500 simulations, we first illustrate
the implementation of our proposed inference procedure using graphs. The left panel
of Fig. 1 reports the true CATEs and the local linear estimates of the CATEs based on
one randomly simulated sample of size 500. The right panel reports studentized
CATE estimates, the true optimal treatment set Xþ and the proposed inference region

X̂þ for the optimal treatment set. The optimal treatment set contains all x values with

positive CATE. The confidence region X̂þ includes all x values with studentized
CATE estimates lying above the final step-down critical value.

The confidence region X̂þ for the optimal treatment set controls familywise error
rates properly. As a comparison, the right panel of Fig. 1 also reports treatment sets
based on pointwise confidence bands. These sets are constructed as the region where
the studentized CATE estimates lie above 1.645, the 95% quantile of standard normal
distribution.

We see from the graphs that the proposed confidence regions are no wider than the
pointwise treatment sets. That is expected because the latter does not control the error
rate correctly. The figure for DGP 3 gives an example where the pointwise treatment
set gives very misleading treatment assignment information regarding a policy
treatment that has no effect at all. The step-down method improves the power of the
inference procedure for both DGP 1 and DGP 2. As is noted in the figure subtitle, the
total number of steps for critical value calculation is 4 for DGP 1 and 3 for DGP 2.
The step-down refinement does not lead to improvement for DGP 3 because the
initial confidence region is a null set.
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Although the simulation that makes Fig. 1 is specially selected for illustration
purposes, the good performance of the proposed inference procedure holds when we
look at results from all 500 simulations. Columns (3)–(6) and (9)–(12) in Table 1

report the size and power of the proposed confidence region X̂þ obtained with and
without applying the step-down refinement of critical values. The associated nominal
familywise error rate is 0.05 for columns (3)–(6) and 0.1 for columns (9)–(12). The
size measure used is the empirical familywise error rates (EFER), the proportion of

simulation repetitions for which X̂ 1
þ (X̂þ) is not included in the true set Xþ. The

power is measured by the average proportion of false hypothesis (correctly) rejected
(FHR), or the average among 500 repetitions of the ratio between the length of

X̂ 1
þ \ Xþ (X̂þ \ Xþ) and the length of the true optimal treatment set Xþ. The size

measure is denoted in the table as EFER and EFER-SD for the step-down method.
The power measure is denoted as FHR and FHR-SD for the step-down method. We
see from results reported in these columns that the proposed confidence region for the
optimal treatment set controls familywise error rates very well. In the case of DGP 3
where the least favorable condition of the multiple hypothesis testing holds and the
conditional average treatment effect equals to zero uniformly, the familywise error
rates are close to the targeted significance level especially when the sample size is
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larger. Comparing results of DGPs 1 and 2 in columns (5)–(6), (11)–(12) to those in
columns (3)–(4), (9)–(10), we also see that the power of our procedure increases
when the step-down refinement is used for the calculation of the critical values.

For comparison purposes, we also report in Table 1 the size and power properties
of confidence regions obtained from pointwise confidence intervals, or all x values
that reject the pointwise null hypothesis that t(x) is negative. Comparing the results in
columns (1)–(2) and (7)–(8) to their uniform counterparts, we see that the pointwise
sets, as expected, fail to control the familywise error rate. In the case of DGP 3,
where the true average treatment effect is zero for all x values, the chance that the
pointwise set estimator discover some falsely identified nonempty positive treatment
set more than quadruples the significance level, regardless of the sample size.

5 Empirical example: the STAR project

Project STAR was a randomized experiment designed to study the effect of class size
on students’ academic performance. The experiment took place in Tennessee in the
mid-1980s. Teachers as well as over eleven thousand students in 79 public schools
were randomly assigned to either a small class (13–17 students), regular-size class
(22–25 students), or regular-size class with a full time teacher aide from grade K to 3.
Previous papers in the literature find that attending small classes improves student
outcomes both in the short run in terms of Stanford Achievement Test scores
(Krueger, 1999) and in the long run in terms of likelihoods of taking college-entrance
exam (Krueger and Whitmore, 2001), attending college and in terms of earnings at
age 27 (Chetty et al., 2010). Previous papers also find that students benefit from
being assigned to more experienced teacher in kindergarten, but little has been said
about whether and how the effect of reducing class size varies with teacher
experience. The nonparametric analysis in this section sheds new light on this
question. We find small class matters most for students taught by inexperienced
teachers, especially those in poor schools. We use this heterogeneity to study the
optimal assignment of the small class treatment.

The upper panel of Fig. 2 plots the conditional mean estimates of grade K test
score percentiles (defined in the footnote of Fig. 2) conditional on teacher experience
and class type.3 Regardless of whether schools are located in disadvantaged
neighborhoods (defined by whether more than half of the students receive free
lunch), the positive effect of attending a small class is larger if the student is taught
by a teacher with some but not a lot of experience in teaching. The nonparametric
estimates also suggest that reducing class size may hurt student performance in
classes taught by very experienced teachers. One might argue that very experienced
teachers have set ways of teaching and hence less incentive to adapt to a small class
size. But one needs to keep in mind that these negative effects are imprecisely

3 We do not look at test scores at higher grades because after grade K there is self-selection into small
classes. According to Krueger (1999), “Approximately 10% of students switched between small and
regular classes between grades, primarily because of behavioral problems or parental complaints.“
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estimated due to the small sample size at the right tail of the teacher experience
distribution. Therefore, it is important to apply the proposed inference method to
determine whether the data are precise enough to give evidence for this negative
effect.

Since we examine treatment effect heterogeneity along both dimensions of teacher
experience and school characteristic, the conditioning set x for the treatment effect
effect t(x) defined in inequality (2) is two dimensional. Specifically, let tðx1; 1Þ (and
tðx1; 0Þ) be the treatment effect of the small classroom intervention for students in
schools with (and without) more than half of students on free lunch and in classrooms
with a teacher having x1 years of experience. Treating the year of teacher experience
as a continuous covariate, the treatment effect is estimated through subsample local
linear regressions combining the discussions in Sects. 3.1 and 3.2. We take the
supremum over the multiplier processes for the studentized estimates of both tðx1; 1Þ
and tðx0; 0Þ when forming our critical values. Following our proposed inference
method, the resulted optimal treatment set is also two dimensional and derived based
on uniform inference over both dimensions of teacher experience and school
characteristic.
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Fig. 2 Optimal Treatment Assignment Based Teacher Experience. Note: In the top panel, score percentiles
are defined following Krueger (1999), where student scores from all type of classes are translated to score
percentile ranks based on the total score distribution in regular and regular/aide classes. The shaded bars in
the top panel represent the number of students assigned to small classes given teacher experience and white
bars represent the number of students assigned to regular/aide classes. In the bottom panel, Studentized
CATEs are conditional average treatment effects divided by their pointwise standard error. Pointwise
Critical Value is equal to 1.645 for one-sided testing with 5% significance level. Uniform Stepwise Critical
Values and Confidence Sets are obtained following our proposed optimal treatment assignment procedure.
Nonparametric estimation uses the Epanechnikov kernel and the rule-of-thumb bandwidth discussed in
Sect. 4. Multiplier bootstraps for inference are carried out 1000 times. Codes for replication are available
on the authors’ websites
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In addition, since students in the same school may face common shocks that affect
test scores, we modify the inference procedure described in Sect. 3 to allow for data
clustering. Let i ¼ 1; 2; :::;N denotes individuals and j ¼ 1; 2; . . .; J denotes schools.
To account for potential within-school error term dependence, we substitute the
multiplier processes used in (6) by m̂��

0 ðxÞ and m̂��
1 ðxÞ with

m̂��
l ðxÞ �

P
1� i� n;Di¼l gjêijKððXij � xÞ=hlÞP

1� i� n;Di¼l KððXij � xÞ=hlÞ ; l ¼ 0; 1;

where g1; . . .; gJ are i.i.d. standard normal random variables drawn independently of
the data following the wild cluster bootstrap suggestion in Cameron et al. (2008). We
also substitute the standard error r̂ðxÞ used to construct the test statistic in equa-
tion (2) with a null-imposed wild cluster bootstrap standard error suggested
in Cameron et al. (2008) using the Rademacher weights (?1 with probability 0.5 and
1 with probability 0.5). The critical value is then taken to be the 1� a quantile of the
empirical distribution of the supremum estimator described in (6). We conjecture
that, as with other settings with nonparametric smoothing, accounting for depen-
dence is not technically necessary under conventional asymptotics but will lead to
nontrivial finite sample improvement.

The bottom panel of Fig. 2 studies the statistical inference of optimal treatment
assignment assuming zero cost relative to the small class treatment. Given the rule-
of-thumb bandwidth (reported in graphs in the top panel) and the support of teacher
experience, we conduct the inference exercise for teachers with 4–18 years of
experience to avoid the boundary issue described in Sect. 3. With a 95% confidence
level, the confidence set contains teachers with 4–8 years of experience in schools
with more than half students on free lunch, as well as teachers with 4–12 years of
experience in schools with less than half students on free lunch. The results suggest
that for both types of schools, assigning small classes to teachers who are relatively
new but not completely new to teaching improves students’ test score on average.
One should notice that although the confidence sets for optimal treatment assignment
(assuming zero cost) are similar for both types of schools, the average score
improvement is much larger in the first type of disadvantaged schools. If one takes
into consideration that the cost of reducing class size is roughly equivalent to the
benefit of a 2.22 percentile score increase (roughly calculated break-even point for
the intervention as explained in the footnote of Fig. 3), the confidence set for optimal
treatment assignment will only include classrooms taught by teachers with 4–7 years
of experience in disadvantaged schools, as is shown in graph (a) of Fig. 3.

What about the very experienced teachers? Does the inference method say
anything against assigning experience teachers to small classes? If the null
hypothesis is whether the effect of the small class intervention is zero, the rejection
region does not include very experienced teachers across both types of schools. If the
null hypothesis is whether the effect of small class intervention is 2.22 percentile, the
step-wise method picks out both inexperienced teachers in disadvantage schools and
teachers with 18 years of experience in schools with less than half students on free
lunch, as is demonstrated in Fig. 3b. Apart from this one group of very experienced
teachers, the graph suggest that the effect of small class intervention is not
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distinguishable from the alternative cost of the intervention for very experienced
teachers.

Next we provide a nonparametric analysis of treatment effect heterogeneity using
the method discussed in Sect. 3.3. Here, we form our estimates at the level of the
individual student, and we condition on teacher experience as well as student gender
and free lunch status. As with our classroom level specification, we form critical
values that are uniform over both the continuous variable (teacher experience) and
the discrete variable (given here by student gender interacted with free lunch status).

Previous papers in the literature find that the effect of attending small class is
larger for boys and for students from disadvantaged backgrounds. The nonpara-
metric estimates plotted in Fig. 4a reinforce these findings. Specifically, the
multiple testing for the positive treatment effect reported in Fig. 4b shows that the
score improvement reported in Fig. 2 is driven by boys and by girls who receive
free lunch. This finding supports the theoretical results in Lazear (2001) who
predicts that the effect of reducing class size is larger for students with worse initial
performance. Furthermore, in contrast to Whitmore (2005) who finds no significant
gender and ratio differences in the effect of attending small classes, our
nonparametric analysis rejects the null hypothesis of treatment effect homogeneity
with a 5% significance level. The corresponding test statistic is 3.35, and the
simulated critical value is 3.13. Figure 4c shows that the rejection of treatment
effect homogeneity is driven by boys who do not receive free lunch assigned to
teachers with 4 and 5 years of experience.
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Fig. 3 Optimal Treatment Assignment With Nonzero Treatment Cost. Note: The graph is based on the
cost-benefit analysis conducted in Chetty et al. (2010), Online Appendix C. Specifically, the cost of
reducing class size is roughly ð22:56=15:1��1Þ 
 $8848 ¼ $4371 per student per year in 2009 dollars.
(The annual cost of school for a child is $8,848 per year. Small classes had 15.1 students on average, while
large classes had 22.56 students on average.) On the other hand, the benefit of 1 percentile increase in test
score is roughly $1968 (Chetty et al., 2010 states a $9,460 benefit for a 4.8 percentile increase in test score,
derived assuming constant wage return to score increase) per student when life-time earning increase
driven by early childhood test score increase is discounted at present values and measured in 2009 dollars.
Therefore, the break-even point of class size reduction for the STAR project is an average test score
increase of 2.22 percentile. Studentized CATEs are the conditional average treatment effects divided by
their pointwise standard errors. Uniform Stepwise Critical Values and Confidence Sets are obtained
following our proposed optimal treatment assignment procedure. Nonparametric estimation uses the
Epanechnikov kernel and the rule-of-thumb bandwidth discussed in Sect. 4. Multiplier bootstraps for
inference are carried out 1,000 times. Codes for replication are available on the authors’ websites
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Fig. 5 Falsification Tests. Note: Groups are defined as in Fig. 4. Studentized CATEs are the average
conditional treatment effect divided by their standard errors. Pointwise CV is 1.645. Uniform CV is the
critical value obtained following our proposed stepwise procedure. Nonparametric estimation uses the
Epanechnikov kernel and the rule-of-thumb bandwidth discussed in Sect. 4. Codes for replication are
available on the authors’ websites
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Figure 5 provides a check on our method using student id number and student
birthday (day 1 to day 31) as falsification outcomes. We expect that the treatment will
have no effect on these outcomes, so that our 95% confidence region will be empty
with probability.95 if it delivers the promised coverage. With 95% confidence level,
our proposed confidence region for optimal treatment assignment is empty, indicating
that the treatment is not at all helpful in improving the falsification outcomes.
However, if one constructs confidence region based on the pointwise one-sided
critical value 1.645, one would falsely select out some teacher experience and student
characteristic combinations and conclude that, for such combinations, the small class
treatment has positive effects on students’ birthday (day 1 to day 31). Figure 5
reinforces the motivation of our proposed optimal treatment assignment procedure.

6 Conclusion

This paper formulates the problem of forming a confidence region for treatment rules
that would be optimal given full knowledge of the distribution of outcomes in the
population. We have proposed a solution to this problem by pointing out a
relationship between our notion of a confidence region for this problem and a
multiple hypothesis testing problem. The resulting confidence regions provide a
useful complement to the statistical treatment rules proposed in the literature based
on other formulations of treatment as a statistical decision rule. Just as one typically
reports confidence intervals in addition to point estimates in other settings, we
recommend that the confidence regions proposed here be reported along with the
statistical treatment rule resulting from a more liberal formulation of the treatment
problem. In this way, readers can assess for which subgroups there is a
preponderance of empirical evidence in favor of treatment.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to
the material. If material is not included in the article's Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

Appendix

A Motivation for the coverage criterion

In this appendix, we provide a more detailed discussion of settings where our

confidence set X̂þ may be of interest.
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A.1 Intrinsic interest in the conditional average treatment effect

The CATE and the population optimal treatment rule it leads to are often of intrinsic
interest in their relation to economic theory and its application to the design of policy
interventions. In such settings, one is interested in how the evidence from a particular
study adds to the body of scientific knowledge and overall evidence in favor of a
particular theory, rather than (or in addition to) the more immediate question of how

the intervention at hand should be implemented. Our confidence set X̂þ guarantees
frequentist coverage properties, which can be used by researchers in forming or
testing scientific theories regarding the treatment being studied.

In our application to the class size intervention in Project STAR, we estimate the
average treatment effects of assigning kindergarten students to small class on their
test scores conditional on teacher experience and whether a school has more than half
of its students receiving free or reduced-price lunch (later on we follow the literature
and just use the term “free lunch”). The estimated CATE is larger for less experienced
teachers, and is smaller and even negative for more experienced teachers. One may
speculate about the reasons for this (perhaps experience allows teachers to overcome
the negative effects of large class sizes, or perhaps more experienced teachers have
difficulty adapting their teaching to take advantage of smaller class sizes), but, before
doing so, it is of interest to determine whether the data are precise enough to give
evidence in favor of this effect at all. Our confidence region determines at a 5% level
that the effect is indeed positive for less experienced teachers. However, using a
version of our procedure with the definitions of Yið1Þ and Yið0Þ switched, one can see
that the negative effect for more experienced teachers is not statistically significant.

We note that, for certain hypotheses regarding the population optimal treatment
rule, one can use a standard hypothesis test that does not correct for multiplicity. In
our application, one can test, for example, the null hypothesis that students in the first
type of school taught by teachers with 10 years of experience do not benefit from
smaller classes using a standard z-test. This works as long as (1) the researcher
chooses the hypothesis without using the data, and (2) the null hypothesis takes a
simple form involving a predetermined value of the covariate. While there are
certainly applications where these criteria are met, (1) becomes an issue whenever
correlations in the data suggest new hypotheses to test. Indeed, given that our data set
contains information on school characteristics and student demographics as well as
teacher experience, it seems difficult to argue convincingly that teacher experience
should have been the focus of our study a priori, particularly if the interaction effect
described above was not expected. Using our approach, we uncover heterogeneity
over teacher experience as well as other dimensions, while controlling for the
possibility that the decision to focus on heterogeneity along a particular dimension
was influenced by correlations in the data.

Regarding issue (2), one could try to determine whether the optimal treatment
assignment favors less experienced teachers by testing the null hypothesis, say, that
teachers with less than six years of experience have a larger CATE than those with
six or more years of experience, but this clearly involves some arbitrary choices

(such as the number six in this case). With our methods, if one finds that X̂þ includes
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all teachers with experience within a certain range, while the set formed analogously
by reversing the roles of Yið1Þ and Yið0Þ shows that teachers with experience above a
certain threshold should not be treated, one can conclude that the population optimal
treatment assignment favors less experienced teachers.

In other settings as well, studies of optimal treatment assignment often have, as an
additional goal, the formulation and testing of theories explaining observed
heterogeneity in treatment effects. In their study of insecticide-treated nets,
Bhattacharya and Dupas (2012) discuss reasons why uptake may vary along
covariates such as wealth and children’s age (see Section 7.1). The multiple testing
approach of the present paper could be used to assess whether heterogeneity in
CATEs is consistent with these theories, while taking into account the possibility that
the theories themselves were formulated based on an initial inspection of the data.

A.2 “Do No Harm” and other decision criteria

Policy decisions regarding treatment assignment often involve considerations other
than expected welfare maximization of the form that would lead to a decision
theoretic formulation with the negative of the sum of individual utility functions
defining the loss function. When evaluating new medical treatments, the United
States Food and Drug Administration requires clinical trials that include statistical
hypothesis tests with a null hypothesis of ineffective or harmful treatment. This can
be interpreted as following the “do no harm” directive of the Hippocratic Oath. For
economic policy, a similar interpretation may be given to arguments that government
intervention should be justified by a certain degree of certainty that the policy will
not be ineffective or harmful. The notion of coverage satisfied by our confidence set

X̂þ can be regarded as an extension of this criterion to the setting where treatment
rules based on stratification by a covariate are a possibility.

Given that a policy-maker with an objective function based on the above
interpretation of the “do no harm” objective may indeed wish to implement our

confidence set X̂þ as a treatment rule, it is of interest to ask how this rule performs
under the expected welfare risk considered by Manski (2004). That is, how much will

a policy maker who cares about expected welfare lose by implementing X̂þ (perhaps
out of a desire to avoid debate with a rival policy maker who prefers “do no harm”)?

In Appendix C, we derive some of the expected welfare properties of X̂þ when used
as a statistical treatment rule.

A.3 Political economy

In addition to asking about average welfare, one may be interested in how welfare
gains and losses are distributed over the population, and how this relates to observed
variables. This can have implications for political economy questions regarding what
types of individuals one might expect to support a given policy. Depending on the
assumptions made about the information sets and objectives of policy makers and

those affected by the policy, our confidence set X̂þ can be used to answer such
questions, as we now illustrate.

123



Suppose that a policy is being considered that would have CATE t(x). In forming
an opinion about this policy, individual i knows his or her covariate Xi and the
distributions F1ðsjXiÞ ¼ PðYið1Þ� sjXiÞ and F0ðsjXiÞ ¼ PðYið0Þ� sjXiÞ of outcomes
for treatment and non-treatment conditional on this value of the covariate, but has no
further information about his or her place within these distributions. If Yi is given in
units of individual i’s Bernoulli utility, individual i will be in favor of the policy if

tðXiÞ[ 0. Thus, under these assumptions, our criterion gives a set X̂þ such that all

individuals with Xi 2 X̂þ will be in favor of the policy. Our approach can then be
used to see whether heterogeneity of the treatment effect along the support of the
covariate Xi can explain political opinions and voting behavior.

Note the importance of information assumptions. The information assumptions
above will be reasonable when an individual’s standing in the outcome distribution is
sufficiently uncertain. For example, it may be reasonable to assume that individuals
have little knowledge of whether they will benefit from a job training program more
or less than their peers. In contrast, if each individual i has full knowledge of Yið0Þ
and Yið1Þ before the treatment, then support for the policy among individuals with
covariate Xi will be determined by PðYið1Þ[ Yið0ÞjXiÞ, which is not identified
without further assumptions (see Fan and Park, 2010).

As another example, suppose that, in addition to experimental data satisfying our
conditions, we observe another setting where a policy maker assigns treatment to
some group X �. We wish to test the null hypothesis that the policy-maker is fully
informed about the CATE and is maximizing expected welfare against the alternative
that the policy maker has a different objective or information set. In our notation, this

null hypothesis can be written as H0 : Xþ ¼ X �, and rejecting when X̂þ 6� X �

provides a level a test, which, in the case of rejection, can further be used to find
groups that would be treated differently by a fully informed, welfare maximizing
policy maker. Considering our application to the STAR experiment, we find that the
population optimal treatment assignment gives small classes to less experienced
teachers. If we found that small classes were given to a different set of teachers in a
similar setting, this could be taken as evidence about the motives or information sets
of the decision-makers involved.

B Two-sided confidence sets for X +

In this appendix, we develop two-sided confidence sets for the population optimal
treatment set Xþ based on a single step version of our procedure with a two-sided

critical value. Formally, our goal is to form sets X̂ inner
þ and X̂ outer

þ such that

lim inf
n

P X̂ inner
þ � Xþ � X̂ outer

þ
� �� 1� a ð7Þ

We also note that, for the notion of two-sided coverage given by (7), inverting a two-
sided step-down test will not guarantee coverage when the number of steps is greater
than one, unless additional conditions hold. The issues have to do with so-called
directional errors, as we discuss further below.

For a set ~X of values of x under consideration, let the critical value ĉj�j;að ~XÞ satisfy
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lim inf
n

P sup
x2 ~X

jt̂ðxÞ � tðxÞj
r̂ðxÞ � ĉj�j;að ~X Þ

 !
� 1� a: ð8Þ

Let the sets X̂ inner
þ and X̂ outer

þ be defined as

X̂ inner
þ ¼ fx 2 ~X jt̂ðxÞ[ ĉj�j;að ~XÞ � r̂ðxÞg; X̂ outer

þ ¼ fx 2 ~X jt̂ðxÞ� � ĉj�j;að ~X Þ � r̂ðxÞg:
ð9Þ

Theorem 4 If Xþ � ~X , then the sets X̂ inner
þ and X̂ outer

þ defined in (9) satisfy the
coverage condition (7).

Proof On the event in (8), we have, for all x 2 ~X ,

t̂ðxÞ � ĉj�j;aðXÞ � r̂ðxÞ� tðxÞ� t̂ðxÞ þ ĉj�j;aðXÞ � r̂ðxÞ:

For x 2 Xþ \ ~X , tðxÞ� 0, so the second inequality implies that

0� t̂ðxÞ þ ĉj�j;aðXÞ � r̂ðxÞ, which implies that x 2 X̂ outer
þ . For x 2 X̂ inner

þ ,

t̂ðxÞ � ĉj�j;aðX Þ � r̂ðxÞ[ 0, so the first inequality implies that x 2 Xþ. h

From a multiple hypothesis testing standpoint, the sets X̂ inner
þ and ~XnX̂ outer

þ can be
considered sets where the null H0 : tðxÞ ¼ 0 has been rejected in favor of tðxÞ[ 0 or
tðxÞ\0 respectively, while controlling the FWER. To ensure that (7) is satisfied, it is
necessary to control not only the FWER for these null hypotheses, but also the
probability that the decision tðxÞ[ 0 is made when in fact tðxÞ\0, or vice versa.
Proving the control of these errors, called “directional” or “type III” errors in the
multiple testing literature, can be an issue for stepwise procedures (see Shaffer, 1980;
Finner, 1999).

While the single step procedure given above controls these error rates (thereby
giving two-sided coverage as defined above), the multistep extension of this
procedure requires further conditions. Indeed, the counterexample in Section 3 of
Shaffer (1980) shows that the multistep extension of the above procedure will not
satisfy (7) if ~X has two elements and t̂ðxÞ follows the Cauchy distribution
independently over x. For the case where t̂ðxÞ is asymptotically normal and
independent over x, as in Sect. 3.1, Theorems 1 and 2 of Shaffer (1980) show that the
directional error rate for the step-down procedure is controlled. However, results that
would apply to the normal approximation used in Sect. 3.2 (which involves a
sequence of Gaussian processes with complicated dependence structures that do not
even settle down in the sense of weak convergence) are, to our knowledge, not
available. The control of directional errors in such settings is an interesting topic for
future research.
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C Performance of X̂ + under average welfare loss

This appendix considers the performance of X̂þ under average welfare loss, when
implemented as a statistical treatment rule. Consider the setup with discrete

covariates with support fx1; . . .; x‘g. For a treatment rule assigning treatment to X̂ ,
the regret risk under average welfare loss, considered by Manski (2004), is given by

the difference between expected welfare under the optimal treatment and under X̂ ,
and can be written in our setup as

RðX̂ ;PÞ �
X‘
j¼1

jtPðxjÞjfX ðxjÞ Pðx 2 Xþ;PnX̂ Þ þ Pðx 2 X̂nXþ;PÞ
� �

;

where we now index tPð�Þ and Xþ;P by P to denote the dependence on the underlying
distribution explicitly (note that fX depends on P as well, but we will consider classes
of distributions where fX is fixed).

Let Pn be a sequence of distributions such that fX ðxÞ ¼ PðXi ¼ xÞ does not change
with n, and such that

ffiffiffi
n

p
tPnðxÞ ! t1ðxÞ for some t1.

Suppose that

t̂ðxjÞ � tPnðxjÞ
r̂ðxjÞ

converges in distribution, jointly over j, to a vector of independent standard normal

variables, and that
ffiffiffi
n

p
r̂ðxjÞ!p sðxjÞ for each j. Let ca;k ¼ caðXÞ for jX j ¼ k.

Theorem 5 Under the above assumptions with a� 1=2 ,

lim sup
n

ffiffiffi
n

p
RðX̂þ;PnÞ� sup

t[ 0
t � U ca;‘ � t

maxx sðxÞ
� �

:

Proof For any x with t1ðxÞ[ 0, we will have x 2 Xþ;Pn under Pn for large enough n
and

ffiffiffi
n

p
tPnðxÞPn x 62 X̂þ

� �� ffiffiffi
n

p
tPnðxÞPn

t̂ðxÞ
r̂ðxÞ � ca;‘

� �

¼ ffiffiffi
n

p
tPnðxÞPn

t̂ðxÞ � tPnðxÞ
r̂ðxÞ � ca;‘ � tPnðxÞ

r̂ðxÞ
� �

!n!1
t1ðxÞU ca;‘ � t1ðxÞ

sðxÞ
� �

:

For x with t1ðxÞ\0, we have x 62 Xþ under Pn for large enough n andffiffiffi
n

p jtPnðxÞjPn x 2 X̂þ
� �� ffiffiffi

n
p jtPnðxÞjPn t̂ðxÞ� 0ð Þ

¼ ffiffiffi
n

p jtPnðxÞjPn
t̂ðxÞ � tPnðxÞ

r̂ðxÞ � � tPnðxÞ
r̂ðxÞ

� �
!n!1jt1ðxÞjU � jt1ðxÞj

sðxÞ
� �

;

where the first inequality uses the fact that cn;k � 0 for all k. For t1ðxÞ ¼ 0, we haveffiffiffi
n

p
t1ðxÞ ! 0. Thus,
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lim sup
n

ffiffiffi
n

p
RðX̂ ;PÞ�

X
t1ðxÞ[ 0

t1ðxÞU ca;‘ � t1ðxÞ
sðxÞ

� �
fX ðxÞ

þ
X

t1ðxÞ\0

jt1ðxÞjU � jt1ðxÞj
sðxÞ

� �
fX ðxÞ

� sup
t[ 0

t � U ca;‘ � t

maxx sðxÞ
� �

:

h

We now give a lower bound specialized to the case where t1ðxÞ and s(x) are
constant.

Theorem 6 Suppose that the above assumptions hold with t1ðxÞ ¼ C[ 0 and
sðxÞ ¼ 1 for all x. Then, for any m 2 f1; . . .; ‘g

lim inf
n

ffiffiffi
n

p
RðX̂þ;PnÞ�C � U ca;m � C

� �
X‘�1

k¼m�1

‘� 1

k

� �
U ca;m � C
� �k

1� U ca;m � C
� �� �‘�1�k

:

Proof For each x we have, for any m 2 f1; . . .; ‘g,

Pn x 62 X̂þ
� ��Pn

t̂ðxÞ
r̂ðxÞ � ca;m and x0 2 f1; . . .; ‘gnx

���� t̂ðx0Þr̂ðx0Þ � ca;m

� �����
�����m� 1

� �

!n!1
U ca;m � t1ðxÞ

sðxÞ
� �

�
X

�Xs:t:x 62 �X ;j �X j �m�1

Y
x02 �X

U ca;m � t1ðx0Þ
sðx0Þ

� �

�
Y
x0 62 �X

1� U ca;m � t1ðx0Þ
sðx0Þ

� �� �

¼ U ca;m � C
� � X‘�1

k¼m�1

‘� 1

k

� �
U ca;m � C
� �k

1� U ca;m � C
� �� �‘�1�k

:

Thus,
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lim inf
n

ffiffiffi
n

p
RðX̂þ;PnÞ ¼ lim inf

n

X‘
j¼1

ffiffiffi
n

p
tPnðxjÞfX ðxjÞP xj 62 X̂þ

� �

�
X‘
j¼1

CfX ðxjÞ � U ca;m � C
� �

X‘�1

k¼m�1

‘� 1

k

� �
U ca;m � C
� �k

1� U ca;m � C
� �� �‘�1�k

¼ C � U ca;m � C
� �

X‘�1

k¼m�1

‘� 1

k

� �
U ca;m � C
� �k

1� U ca;m � C
� �� �‘�1�k

h

The comparison between X̂þ as a treatment rule and other statistical treatment
rules will depend on how one compares risk functions. Consider the conditional

empirical success (CES) rule, defined by the set X̂CES ¼ fxjt̂ðxÞ[ 0g (see Manski,

2004). For a� 1=2, X̂þ is contained in X̂CES with probability one, so the risk

function will always be smaller for X̂þ when tðxÞ� 0 for all x. Thus, if one chooses a
criterion that puts a large enough amount of weight on cases with negative treatment
effects, such as Bayes risk where the prior puts enough of the mass on negative

treatment effects, X̂þ will be preferred to X̂CES. However, the situation will be
reversed in cases where less weight is given to negative effects.

Consider the minimax regret criterion, which takes the supremum of Rð�;PÞ over
an given class of distributions P 2 P. Theorem 6 gives an asymptotic lower bound
on minimax regret for any class of distributions that contains a sequence Pn

satisfying the conditions of that theorem. Theorem 5 essentially gives an upper
bound on minimax regret, although additional technical conditions would be needed
to ensure that the lim sup is uniform over sequences Pn under consideration.

We now consider these bounds and how they relate to the number of values ‘
taken by the covariate. Consider the case where s(x) is constant for all x, and let us
make the normalization sðxÞ ¼ 1. For the CES rule and other rules that assign
treatment to x based only on observations with Xi ¼ x, the minimax regret will not
increase as ‘ increases (the normalization sðxÞ ¼ 1 means that, as ‘ increases, the
variance of Yi decreases so that the difficulty of the estimation problem for each x
stays the same despite each x having fewer observations). However, the minimax

regret for X̂þ will increase without bound, as we now show.
First, consider the lower bound. Let C ¼ Cn ¼ ca;b‘=2c, where bsc denotes the

greatest integer less than or equal to s. Then, applying the bound with m ¼ b‘=2c, we
obtain a lower bound of
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ca;b‘=2cð1=2Þ
X‘�1

k¼b‘=2c�1

‘� 1

k

� �
ð1=2Þkð1=2Þ‘�1�k ¼ ca;b‘=2cð1=2Þ

X‘�1

k¼b‘=2c�1

‘� 1

k

� �
ð1=2Þ‘�1:

The last term is the probability of a binomð1=2; ‘� 1Þ being at least b‘=2c � 1,
which converges to 1/2 as ‘ ! 1. Since ca;b‘=2c=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log ‘

p
converges to one as

‘ ! 1, it follows that the asymptotic minimax regret is bounded from below byffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log ‘

p
=4 times a sequence that converges to one as ‘ increases.

For the upper bound, note that, using the fact that Uð�sÞ�/ðsÞ=s for s[ 0,
where /ðsÞ is the standard normal pdf, we have, for t[ ca;‘, letting s ¼ t � ca;‘

tUðca;‘ � tÞ ¼ ðsþ ca;‘ÞUð�sÞ� ca;‘ þ /ðsÞ� ca;‘ þ /ð0Þ:
For t� ca;‘, tUðca;‘ � tÞ is clearly bounded by ca;‘, so the right hand side of the above
display gives a bound for supt� 0 tUðca;‘ � tÞ. Since ðca;‘ þ /ð0ÞÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log ‘
p

converges

to one as ‘ increases, this gives an approximate upper bound of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log ‘

p
for large ‘.

Thus, the minimax regret (under average welfare loss) for implementing X̂þ as a
statistical treatment rule increases with ‘ at a

ffiffiffiffiffiffiffiffiffi
log ‘

p
rate. This reflects the fact that, due to

its incorporation ofmultiple hypothesis tests, this rule becomes increasingly conservative
with ‘. Since the average welfare loss function along with minimax regret leads to a
symmetric treatment of “overestimation” and “underestimation” of Xþ, this increasing
conservativeness leads to worse behavior for large ‘. On the other hand,

ffiffiffiffiffiffiffiffiffi
log ‘

p
increases

slowly with ‘, so the increase in minimax regret as ‘ increases is not too large.

Funding Open access funding provided by SCELC, Statewide California Electronic Library Consortium.

Data availability Replication codes for the simulation and empirical sections are provided on the authors’
websites.

References

Anderson, M. L. (2008). Multiple inference and gender differences in the effects of early intervention: A
reevaluation of the abecedarian. Perry Preschool, and Early Training Projects, Journal of the
American Statistical Association, 103, 1481–1495.

Athey, S., & Wager, S. (2021). Policy learning with observational data. Econometrica, 89, 133–161.
https://doi.org/10.3982/ECTA15732

Bhattacharya, D., & Dupas, P. (2012). Inferring welfare maximizing treatment assignment under budget
constraints. Journal of Econometrics, 167, 168–196.

Cameron, A. C., Gelbach, J. B., & Miller, D. L. (2008). Bootstrap-based improvements for inference with
clustered errors. Review of Economics and Statistics, 90, 414–427.

Chamberlain, G. (2011). Bayesian Aspects of Treatment Choice. Oxford Handbook of Bayesian
Econometrics, 11–39.

Chernozhukov, V., Hong, H., & Tamer, E. (2007). Estimation and confidence regions for parameter sets in
econometric models. Econometrica, 75, 1243–1284.

Chernozhukov, V., Lee, S., & Rosen, A. M. (2013). Intersection bounds: Estimation and inference.
Econometrica, 81, 667–737.

Chetty, R., Friedman, J. N., Hilger, N., Saez, E., Schanzenbach, D. W., Yagan, D. (2010). How Does Your
Kindergarten Classroom Affect Your Earnings? Evidence from Project STAR, Tech. rep., National
Bureau of Economic Research.

Claeskens, G. (2003). Bootstrap confidence bands for regression curves and their derivatives. The Annals
of Statistics, 31, 1852–1884.

123

https://doi.org/10.3982/ECTA15732


Crump, Hotz, V. J., Imbens, G. W., & Mitnik, O. A. (2008). Nonparametric tests for treatment effect
heterogeneity. Review of Economics and Statistics, 90(3), 389–405.

Dehejia, R. H. (2005). Program evaluation as a decision problem. Journal of Econometrics, 125(1), 141–173.
Fan, J., & Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. Chapman and Hall/CRC.
Fan, Y., & Park, S. S. (2010). Sharp bounds on the distribution of treatment effects and their statistical

inference. Econometric Theory, 26, 931–951.
Finner, H. (1999). Stepwise multiple test procedures and control of directional errors. The Annals of

Statistics, 27, 274–289.
Hahn, J., Hirano, K., & Karlan, D. (2011). Adaptive experimental design using the propensity score.

Journal of Business & Economic Statistics, 29, 96–108.
Hayfield, T., & Racine, J. S. (2008). Nonparametric econometrics: The np package. Journal of Statistical

Software, 27(5), 1–32.
Hirano, K., & Porter, J. R. (2009). Asymptotics for statistical treatment rules. Econometrica, 77, 1683–1701.
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of

Statistics, 6, 65–70.
Hotz, V. J., Imbens, G. W., & Mortimer, J. H. (2005). Predicting the efficacy of future training programs

using past experiences at other locations. Journal of Econometrics, 125, 241–270.
Kitagawa, T., & Tetenov, A. (2018). Who should be treated? Empirical welfare maximization methods for

treatment choice. Econometrica, 86, 591–616.
Kong, E., Linton, O., & Xia, Y. (2010). Uniform Bahadur representation for local polynomial estimates of

M-regression and its application to the additive model. Econometric Theory, 26, 1529–1564.
Krueger, A. B. (1999). Experimental estimates of education production functions. Quarterly Journal of

Economics, 114(2), 497–532.
Krueger, A. B., & Whitmore, D. M. (2001). The effect of attending a small class in the early grades on

college-test taking and middle school test results: Evidence from project STAR. The Economic
Journal, 111(468), 1–28.

Kwon, K. (2022). Essays in Inference for Nonparametric Regression Models. Yale Graduate School of Arts
and Sciences Dissertations.

Lazear, E. P. (2001). Educational production. Quarterly Journal of Economics, 116(3), 777–803.
Lee, S., & Shaikh, A. M. (2014). Multiple testing and heterogeneous treatment effects: Re-evaluating the

effect of PROGRESA on school enrollment. Journal of Applied Econometrics, 29(4), 612–626.
Luedtke, A. R., & Laan, M. J. V. U. (2016). Statistical inference for the mean outcome under a possibly

non-unique optimal treatment strategy. The Annals of Statistics, 44, 713–742.
Manski, C. F. (2004). Statistical treatment rules for heterogeneous populations. Econometrica, 72, 1221–1246.
Manski, C. F., & Tetenov, A. (2016). Sufficient trial size to inform clinical practice. Proceedings of the

National Academy of Sciences, 113, 10518–10523.
Manski, C. F., & Tetenov, A. (2019). Trial size for near-optimal choice between surveillance and

aggressive treatment: Reconsidering MSLT-II. The American Statistician, 73, 305–311.
Mbakop, E., & Tabord-Meehan, M. (2021). Model selection for treatment choice: Penalized welfare

maximization. Econometrica, 89, 825–848.
Neumann, M. H., & Polzehl, J. (1998). Simultaneous bootstrap confidence bands in nonparametric

regression. Journal of Nonparametric Statistics, 9, 307–333.
Romano, J. P., & Shaikh, A. M. (2010). Inference for the identified set in partially identified econometric

models. Econometrica, 78, 169–211.
Romano, J. P., & Wolf, M. (2005). Exact and approximate stepdown methods for multiple hypothesis

testing. Journal of the American Statistical Association, 100, 94–108.
Shaffer, J. P. (1980). Control of directional errors with stagewise multiple test procedures. The Annals of

Statistics, 8, 1342–1347.
Stoye. (2009). Minimax regret treatment choice with finite samples. Journal of Econometrics, 151, 70–81.
Tetenov, A. (2012). Statistical treatment choice based on asymmetric minimax regret criteria. Journal of

Econometrics, 166, 157–165.
Whitmore, D. (2005). Resource and peer impacts on girls’ academic achievement: Evidence from a

randomized experiment. American Economic Review, 95(2), 199–203.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Inference on optimal treatment assignments
	Abstract
	Introduction
	Setup
	Inference procedures
	Discrete covariates
	Continuous covariates
	Extension: testing for treatment effect heterogeneity

	Monte Carlos
	Empirical example: the STAR project
	Conclusion
	Open Access
	Appendix
	A Motivation for the coverage criterion
	A.1 Intrinsic interest in the conditional average treatment effect
	A.2 &#x201C;Do No Harm&#x201D; and other decision criteria
	A.3 Political economy

	B Two-sided confidence sets for {\mathcal {X}}_\plus 
	C Performance of \hat{{\mathcal {X}}}_\plus under average welfare loss
	Data availability
	References


