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Abstract
In this paper, we review the structure of various epidemic models in mathematical 
epidemiology for the future applications in economics. The heterogeneity of popula-
tion and the generalization of nonlinear terms play important roles in making more 
elaborate and realistic models. The basic, effective, control and type reproduction 
numbers have been used to estimate the intensity of epidemic, to evaluate the effec-
tiveness of interventions and to design appropriate interventions. The advanced epi-
demic models includes the age structure, seasonality, spatial diffusion, mutation and 
reinfection, and the theory of reproduction numbers has been generalized to them. 
In particular, the existence of sustained periodic solutions has attracted much inter-
est because they can explain the recurrent waves of epidemic. Although the theory 
of epidemic models has been developed in decades and the development has been 
accelerated through COVID-19, it is still difficult to completely answer the uncer-
tainty problem of epidemic models. We would have to mind that there is no single 
model that can solve all questions and build a scientific attitude to comprehensively 
understand the results obtained by various researchers from different backgrounds.
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1 Introduction

The first study of a mathematical epidemic model was conducted by Bernoulli 
(1760) in order to discuss the effectiveness of the universal inoculation against 
smallpox. One of the most celebrated epidemic models is the susceptible–infec-
tive–removed (SIR) model, which was developed by Kermack and McKendrick 
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(1927) to simulate the epidemic dynamics in a closed population. Against the coro-
navirus disease 2019 (COVID-19) pandemic, many epidemic models have been con-
structed to predict the epidemic curve and evaluate the effectiveness of interventions 
(Abdullah et  al., 2021; Acuña-Zegarra et  al., 2020; Bhadauria et  al., 2021; Buhat 
et al., 2021; Kim et al., 2020; Kuniya & Inaba, 2020; Liu et al., 2020; Mandal et al., 
2020; Wang, 2020; Zeb et al., 2020; Zhang et al., 2021). Most of these models are 
related to the original SIR model.

Through COVID-19, epidemic models have attracted much attention from 
researchers in many fields, not limited to mathematical epidemiology. In particular, 
as COVID-19 has given huge impacts on the global economy, many economists have 
become interested in the application of epidemic models to the economic considera-
tions (Avery et al., 2020). Before COVID-19, the possibility of the cross-discipline 
collaboration between economics and mathematical epidemiology was explored by 
Klein et  al. (2007). They raised the following criticisms toward typical epidemic 
models from the viewpoint of economists:

– Most models regard that hosts in epidemics are freely mixing and the contact 
rate is incapable of change.

– Few models address the problem of rational behavior at the individual level.
– Behavior of agents in the context of externalities is often ignored.

Klein et al. (2007) insisted that behavioral choices should be incorporated into epi-
demic models to improve the accuracy of estimations and develop appropriate poli-
cies. Similar issues were addressed by Philipson (2000) from the viewpoint of eco-
nomic epidemiology. However, to our knowledge, the majority of epidemic models 
has disregarded these issues even in the time of COVID-19. The purpose of this 
paper is to review the previous studies on epidemic models in mathematical epide-
miology and to indicate possible directions to improve epidemic models for further 
applications in economics.

In mathematical epidemiology, some epidemic models have taken into account 
the behavior change of individuals by introducing the additional nonlinearity into 
incidence rates. For instance, Capasso and Serio (1978) generalized the incidence 
rate in the SIR model to the saturated or non-monotone one to capture the situation 
where individuals reduce the opportunity of contacts when the number of infective 
individuals becomes large. As such saturation or psychological effects would be a 
key idea to answer the aforementioned problems, we will review it and related stud-
ies in this paper. Moreover, as the heterogeneity of population would also be a key 
idea to consider the individual’s rational behavior, we will review the previous stud-
ies on structured epidemic models including multi-group models and age-structured 
models. We will also review the concepts of reproduction numbers (basic, effective, 
type and control reproduction numbers) because they play important roles in evalu-
ating the effectiveness and impact of intervention policies.

The organization of this paper is as follows. In Sect. 2, we introduce the basic epi-
demic models (without intervention) including SIR, SEIR, SIS and SIRS models. We 
review how to incorporate the multi-group structure into them, and how to define the 
basic and effective reproduction numbers for them. In Sect. 3, we review how to take 
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into account the effects of intervention policies in epidemic models. We also review the 
concepts of control and type reproduction numbers that play important roles in deter-
mining the target values of intervention policies to curb the epidemic. In Sect. 4, we 
review the previous results on the people’s behavior changes in epidemic models. We 
review some types of nonlinear incidence rates and show a simulation result in which 
the time delay and the sensitivity of the behavior change play essential roles in the 
occurrence of the recurrent epidemic waves. In Sect. 5, we review advanced epidemic 
models in the forms of PDEs or non-autonomous systems. They includes the age struc-
ture, seasonality, spatial diffusion, mutation and reinfection, and the theory of reproduc-
tion numbers can be generalized to them. Finally, Sect. 6 is devoted to the discussion.

2  Basic models and concepts

2.1  Basic models

In the SIR model, the total population is divided into three classes called susceptible, 
infective (or infected) and removed (or recovered). Individuals in the susceptible class 
can transfer to the infective class by infection, and individuals in the infective class can 
transfer to the removed class by recovery or quarantine (see the first row in Fig. 1). The 
SIR model without vital dynamics (births and deaths) is formulated by the following 
system of ordinary differential equations (Kermack & McKendrick, 1927, Section 3.2):

where S(t), I(t) and R(t) denote the susceptible, infective and removed populations 
at time t, respectively. � denotes the removal rate such that 1∕� means the average 

(1)

⎧⎪⎨⎪⎩

S�(t) = −�(t)S(t),

I�(t) = �(t)S(t) − �I(t),

R�(t) = �I(t),

Fig. 1  Transfer diagram of SIR, SEIR, SIS and SIRS models
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period of infectiousness. �(t) is called the force of infection at time t, which typical 
forms are

where � denotes the disease transmission coefficient and N = S + I + R denotes the 
total population. The mass action incidence has been widely used but it disregards 
the saturation effect of the number of contacts. The standard incidence reflects the 
saturation effect of the number of contacts in a sufficiently large-scale population 
and has been usually adopted for modeling sexually transmitted diseases (Inaba, 
2017, Section 5.1.1). If the total population N is constant, then there is no essential 
difference between both of these two incidence rates. In this paper, unless otherwise 
noted, each parameter is assumed to be positive.

Usually, epidemic models are constructed by adding (resp. removing) class(es) 
to (resp. from) the original SIR model. For instance, the susceptible–exposed–infec-
tive–removed (SEIR) model is constructed by adding the exposed class to the SIR 
model (see the second row in Fig. 1). The system (1) can then be reformulated as 
follows:

where E(t) denotes the exposed population at time t and � is the transition rate from 
E to I. If we regard E as the latent class, then the force of infection � is given as simi-
lar to (2). On the other hand, if we regard E as the asymptomatic infective class, then 
the typical forms of � are

where �1 and �2 are the disease transmission coefficients for the asymptomatic and 
symptomatic infections, respectively. In this case, N = S + E + I + R . In COVID-
19, the asymptomatic infection has been regarded as an important transmission path 
(He et  al., 2020) and the asymptomatic class has been incorporated into models 
(Kuniya & Inaba, 2020; Zhang et al., 2021).

How long the immunity to infection will last is one of the most attracting topics 
in COVID-19 (Dan et al., 2021). If the immunity is not permanent in an epidemic 
model, then there would exist a transfer path back to the susceptible class. SIS and 
SIRS models are typical examples of such models (see the third and fourth rows in 
Fig. 1). The SIS and SIRS models without vital dynamics are given by

and

(2)� = �I (mass action incidence) and � =
�I

N
(standard incidence),

⎧⎪⎨⎪⎩

S�(t) = −�(t)S(t),

E�(t) = �(t)S(t) − �E(t),

I�(t) = �E(t) − �I(t),

R�(t) = �I(t),

� = �1E + �2I (mass action) and � =
�1E + �2I

N
(standard),

{
S�(t) = −�(t)S(t) + �I(t),

I�(t) = �(t)S(t) − �I(t),
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respectively, where � denotes the transition rate from R to S and � is given similar as 
in (2). SIRS-type reinfection models have also been applied to COVID-19 (Good & 
Hawkes, 2020; Kassa et al., 2020).

We now briefly review some other epidemic and related models. SIRI-type mod-
els have been studied for diseases with relapse (van den Driessche & Zou, 2007), 
drug diseases (White & Comiskey, 2007) and fictional zombie diseases (Munz et al., 
2009). MSIR-type models have been studied to consider the class M with passive 
immunity at birth (Hethcote, 2000). The idea of compartmental models has also 
been applied to model the viral infection of cells (Kitagawa et al., 2019; Nowak & 
Bangham, 1996), the spread of computer virus (Kephart & White, 1993; Muroya & 
Kuniya, 2015) and the spread of rumor (Kawachi, 2008). They are not essentially 
the same as the SIR model but consider specific infective agents such as virus and 
rumor spreader.

On the other hand, if we consider the vital dynamics (births and deaths), then the 
SIR model (1) can be reformulated as follows (Hethcote, 1976):

where b and � denote the birth and mortality rates, respectively. To distinguish the 
models without and with vital dynamics, the latter is sometimes called the endemic 
model (Hethcote, 2000). The justification of the constant birth rate b in model (3) 
is as follows: let kN(t) be the population of newborns at time t. In this case, the first 
equation in (3) is replaced by

By adding the three equations of S, I and R, we obtain

This is the Malthus model with exact solution N(t) = N(0)e(k−�)t . Under the assump-
tion that the nontrivial demographic steady state exists, k = � and thus, N(t) is con-
stant. We can then regard b = kN = �N as a constant, and (3) is obtained.

2.2  Multi‑group models

One common way to improve epidemic models is to incorporate the multi-group struc-
ture. In multi-group models, the heterogeneity (e.g., age, position, sex, etc.) of each 

⎧
⎪⎨⎪⎩

S�(t) = −�(t)S(t) + �R(t),

I�(t) = �(t)S(t) − �I(t),

R�(t) = �I(t) − �R(t),

(3)

⎧⎪⎨⎪⎩

S�(t) = b − �(t)S(t) − �S(t),

I�(t) = �(t)S(t) − (� + �)I(t),

R�(t) = �I(t) − �R(t),

(4)S�(t) = kN(t) − �(t)S(t) − �S(t).

N�(t) = (k − �)N(t).
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individual can be indexed by a subscript. For instance, the SIR model (1) without vital 
dynamics can be reformulated into the following two-group model (see also Fig. 2):

where each symbol is similar to that in (1) but the subscript represents the group. 
For example, if we let subscripts 1 and 2 denote the male and female groups, respec-
tively, then (5) can be a model for sexually transmitted diseases (Lajmanovich & 
Yorke, 1976). The interaction between different groups is considered in the forces of 
infection �1, �2 , which typical forms are

where �jk denotes the disease transmission coefficient for infective individuals in 
group k to susceptible individuals in group j, and Nj = Sj + Ij + Rj is the total popu-
lation in group j. If we assume that two groups represent human and vector groups, 
then (5) can also be a model for vector-borne diseases (Bacaër, 2011). Other types 
of epidemic models with two-group structure have been also applied to COVID-19 
(Acuña-Zegarra et al., 2020; Buhat et al., 2021).

In general, we can consider arbitrary n groups in the multi-group model. The two-
group SIR model (5) can be generalized to the following n-group model:

where the typical forms of force of infection �j are

(5)

⎧
⎪⎨⎪⎩

S�
1
(t) = −�1(t)S1(t), S�

2
(t) = −�2(t)S2(t),

I�
1
(t) = �1(t)S1(t) − �1I1(t), I

�
2
(t) = �2(t)S2(t) − �2I2(t),

R�
1
(t) = �1I1(t), R�

2
(t) = �2I2(t),

⎧⎪⎨⎪⎩

�1 = �11I1 + �12I2, �2 = �21I1 + �22I2 (mass action) and

�1 =
�11I1

N1

+
�12I2

N2

, �2 =
�21I1

N1

+
�22I2

N2

(standard),

(6)

⎧⎪⎨⎪⎩

S�
j
(t) = −�j(t)Sj(t),

I�
j
(t) = �j(t)Sj(t) − �jIj(t),

R�
j
(t) = �jIj(t),

j = 1, 2,… , n,

Fig. 2  Conceptual diagram of the two-group SIR model
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Multi-group epidemic models with n (≥ 2) groups have been applied to sexually 
transmitted diseases to consider the activity of each individual (Murray, 2002, Sec-
tion 10.4). Here, the activity implies the frequency of sexual contacts, and the popu-
lation is divided into n subgroups according to the gender and the activity. On the 
other hand, if we consider the movement of individuals among different groups, 
then the n-group SIR model (6) can be modified into the following form:

where mjk denotes the rate of movement from group k to group j and mj =
∑

k≠j mkj . 
This type of model is often called a metapopulation model (Arino, 2009) or a model 
in patchy environment (Wang & Zhao, 2004). Other models related to the multi-
group models are, for instance, multi-strain models (Otani et al., 2017) and network 
models (Kiss et al., 2017).

2.3  Basic reproduction number

The basic reproduction number R0 is defined by the expected number of secondary 
cases produced by a typical infective individual in a completely susceptible popula-
tion (Diekmann et al., 1990). Intuitively, R0 implies the strength of the epidemic and if 
R0 > 1 , then an outbreak will occur, whereas if R0 < 1 , then there will be no outbreak. 
The effective reproduction number Rt is defined by the expected number of secondary 
cases produced by a typical infective individual at calendar time t (Nishiura & Chowell, 
2009). R0 and Rt have attracted much attention in COVID-19 and have been estimated 
by many authors (Ahammed et al., 2021; Linka et al., 2020).

In the SIR model (1) without vital dynamics, the differential equation of I can be 
written as

Hence, we can obtain the explicit formula of Rt as

⎧
⎪⎪⎨⎪⎪⎩

�j =

n�
k=1

�jkIk (mass action) and

�j =

n�
k=1

�jkIk

Nk

(standard),

j = 1, 2,… , n.

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

S�
j
(t) = −�j(t)Sj(t) − mjSj(t) +

�
k≠j

mjkSk(t),

I�
j
(t) = �j(t)Sj(t) − �jIj(t) − mjIj(t) +

�
k≠j

mjkIk(t),

R�
j
(t) = �jIj(t) − mjRj(t) +

�
k≠j

mjkRk(t),

j = 1, 2,… , n,

I�(t) =

⎧
⎪⎨⎪⎩

[�S(t) − �]I(t) (mass action),�
�S(t)

N
− �

�
I(t) (standard).
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so that if Rt > 1 , then I�(t) > 0 and the infective population will increase, whereas 
if Rt < 1 , then I�(t) < 0 and the infective population will decrease. In a completely 
susceptible population, we have S = N , and hence, the explicit formula of R0 is 
given by

Figure 3 illustrates the typical epidemic curves generated by the SIR model (1) with-
out vital dynamics. For R0 < 1 , the infective population I(t) is monotone decreasing 
and there is no outbreak (Fig. 3a). For R0 > 1 , the infective population I(t) is not 
monotone and an outbreak occurs (Fig. 3b). In both cases, Rt is monotone decreas-
ing. However, in the case of R0 > 1 , Rt crosses 1 at which the epidemic curve 
attains the peak (Fig. 3b).

On the other hand, for the SIR model (3) with vital dynamics, the explicit for-
mula of the effective reproduction number Rt is given by

In a completely susceptible population, we have S = N = b∕� , and hence, the 
explicit formula of the basic reproduction number R0 is given by

Figure 4 illustrates the typical epidemic curves generated by the SIR model (3) 
with vital dynamics. Similar to the case in Fig. 3a, if R0 < 1 , then the infective 

Rt =
�S(t)

�
(mass action), Rt =

�S(t)

�N
(standard),

R0 =
�N

�
(mass action), R0 =

�

�
(standard).

Rt =
�S(t)

� + �
(mass action), Rt =

�S(t)

(� + �)N
(standard).

R0 =
�N

� + �
=

�b

(� + �)�
(mass action), R0 =

�

� + �
(standard).

Fig. 3  Time variation of the infective population I(t) (black) and the effective reproduction number R
t
 

(red) for the SIR model (1) without vital dynamics
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population I(t) is monotone decreasing and there is no outbreak (Fig. 4a). How-
ever, note that Rt is not monotone in Fig. 4. For R0 > 1 , the infective population 
I(t) converges to a positive steady state I∗ at which Rt = 1 (Fig. 4b). Such I∗ is 
explicitly given by

which is positive if and only if R0 > 1 . That is, in the SIR model (3) with vital 
dynamics, R0 is the threshold for the existence of the positive steady state, which is 
traditionally called the endemic equilibrium (Hethcote, 2000). In fact, R0 for model 
(3) satisfies the following threshold theorem:

Threshold theorem If R0 ≤ 1 , then the disease-free equilibrium is globally 
asymptotically stable, whereas if R0 > 1 , then the endemic equilibrium is glob-
ally asymptotically stable.

Here, the disease-free equilibrium is defined by the steady state at which there 
is no infective population (that is, I = 0 ). Roughly speaking, the global asymp-
totic stability of an equilibrium means that every solution in a specific set con-
verges to the equilibrium as time goes to infinity. Therefore, the above threshold 
theorem implies that either the disease-free or endemic equilibrium will eventu-
ally be attained depending on R0 . This theorem suggests that R0 is an important 
threshold value for predicting the eventual dynamics of epidemic spreading, how-
ever, it excludes the possibility of periodic solutions that may explain the recur-
rent epidemic waves.

Mathematically, R0 is defined by the spectral radius of an operator called the 
next generation operator (Diekmann et al., 1990). For multi-group epidemic mod-
els (see Sect. 2.2), in many applications, R0 can be computed as the maximum 
eigenvalue of a matrix called the next generation matrix (van den Driessche & 
Watmough, 2002). Usually, the next generation matrix is written as � = (kij) , 
where kij implies the expected number of secondary cases in group i produced 

I∗ =
b

� + �

(
1 −

1

R0

)
,

Fig. 4  Time variation of the infective population I(t) (black) and the effective reproduction number R
t
 

(red) for the SIR model (3) with vital dynamics
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by a typical infective individual in group j when the population is completely 
susceptible. For instance, the next generation matrix for the two-group SIR model 
(5) is given by

R0 is the spectral radius of such a next generation matrix. Threshold theorem of R0 
holds not only for a two-group SIR model with vital dynamics but also for a general 
n-group SIR model with vital dynamics (Guo et al., 2006).

3  Intervention

To evaluate the (positive or negative) effects of intervention would be one of the cen-
tral purposes of mathematical modeling in both of economics and epidemiology. One 
of the key concepts is the control reproduction number Rc , which is the reproduction 
number when intervention is in place (Gumel et al., 2004).

3.1  Modification of parameters

The simplest way to consider the effects of intervention is to modify some model 
parameter(s). For example, we may assume that the disease transmission coefficient 
� in the SIR model (1) without vital dynamics is reduced to (1 − r)� , 0 < r < 1 by 
virtue of intervention such as social distancing. In such a case, the control reproduc-
tion number is given by Rc = (1 − r)R0 , and thus, r should be greater than the critical 
value r∗ ∶= 1 − 1∕R0 to achieve Rc < 1 . On the other hand, if we assume that the 
removal rate � in model (1) is raised to �� , � > 1 by intervention such as isolation, then 
Rc = R0∕� , and thus, � should be greater than the critical value �∗ ∶= R0 to achieve 
Rc < 1.

3.2  Addition of treatment classes

The other common way to study the effects of intervention is to add new treatment 
classes to epidemic models. For instance, quarantined population is often denoted by 
Q, and epidemic models with class Q have been studied for decades (Hoppensteadt, 
1974; Feng & Thieme, 1995). Traditionally, the quarantine of infective individuals has 
been studied by SIQR-type models. A typical SIQR model without vital dynamics is 
formulated as follows (see also Fig. 5).

⎛
⎜⎜⎜⎝

�11N1

�1

�12N1

�2

�21N2

�1

�22N2

�2

⎞
⎟⎟⎟⎠
(mass action),

⎛
⎜⎜⎜⎝

�11

�1

�12

�2

N1

N2

�21

�1

N2

N1

�22

�2

⎞
⎟⎟⎟⎠
(standard).



591

1 3

The Japanese Economic Review (2021) 72:581–607 

where q denotes the quarantine rate and � denotes the transition rate from Q to R. 
The meaning of the other symbols is similar to those in the SIR model (1). SIQR-
type models have been applied to COVID-19 (Abdullah et  al., 2021; Bhadauria 
et al., 2021; Mandal et al., 2020; Zeb et al., 2020). On the other hand, SQIR-type 
models have also been studied to consider the quarantine of susceptible individuals 
(Safi & Gumel, 2013; Algehyne & Din, 2021). SQIR-type models seem to corre-
spond to the SVIR-type models, where V denotes the vaccinated population (Kribs-
Zaleta & Velasco-Hernández, 2000; Liu et al., 2008). A typical SVIR model without 
vital dynamics is formulated as follows (see also Fig. 5).

where v denotes the vaccination rate, 𝜎 < 1 denotes the reduction coefficient to the 
disease transmission coefficient ( 1 − � is the vaccine efficacy) and � denotes the 
transition rate from V to R.

The control reproduction number Rc for the SIQR model (7) is given by

where R0 is the basic reproduction number for the SIR model (1) without vital 
dynamics. Thus, the quarantine rate q should be greater than the critical value 
q∗ ∶= �(R0 − 1) to achieve Rc < 1 . On the other hand, the control reproduction 
number Rc for the SVIR model (8) without vital dynamics is given by Rc = R0 

(7)

⎧
⎪⎨⎪⎩

S�(t) = −�(t)S(t),

I�(t) = �(t)S(t) − (� + q)I(t),

Q�(t) = qI(t) − �Q(t),

R�(t) = �I(t) + �Q(t),

(8)

⎧⎪⎨⎪⎩

S�(t) = −[�(t) + v]S(t),

V �(t) = vS(t) − [��(t) + � ]V(t),

I�(t) = �(t)[S(t) + �V(t)] − �I(t),

R�(t) = �I(t) + �V(t),

Rc =
�

� + q
R0,

Fig. 5  Transfer diagram of SIQR and SVIR models
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because there is no vaccinated individual in the completely susceptible population. 
However, for the following SVIR model with vital dynamics

the control reproduction number Rc is given by, for � = 0,

Thus, the vaccination rate v should be greater than the critical value 
v∗ ∶= �(R0 − 1)∕(1 − �R0) to achieve Rc < 1 . This can be achieved only if 
𝜎R0 < 1.

3.3  Type reproduction number

As stated above, the basic reproduction number R0 for multi-group models is defined 
by the spectral radius of the next generation matrix. If we use the control reproduction 
number Rc based on such R0 , then it would provide only a critical value that is uniform 
for all groups. Type reproduction number T  was introduced by Roberts and Heester-
beek (2003) to obtain a critical value that focuses on a specific group. More precisely, 
in a general n-group epidemic model, the type reproduction number T  for group 1 is 
given by

where � is a column vector whose first element is 1 and the others are 0, � = (kij) 
is the next generation matrix, � is the n × n identity matrix, and � is the projection 
matrix whose (1, 1) element is 1 and the others are 0. If n = 2 , then we obtain

If k22 > 1 , then the infective population in group 2 can reproduce by itself, and thus, 
we can not control the disease by intervention restricted to group 1. If k22 < 1 , then 
T > 1 is equivalent to R0 > 1 (Roberts & Heesterbeek, 2003, Section 2). In this case, 
we may assume that intervention on group 1 reduces k1j to (1 − r)k1j , j = 1, 2 , and 
thus, T  is reduced to (1 − r)T  . The critical value r∗ to make the reproduction num-
ber equal to 1 can then be obtained as r∗ ∶= 1 − 1∕T  . That is, r > r∗ is sufficient to 
curb the epidemic.

⎧
⎪⎨⎪⎩

S�(t) = b − [�(t) + � + v]S(t),

V �(t) = vS(t) − [��(t) + � + �]V(t),

I�(t) = �(t)[S(t) + �V(t)] − (� + �)I(t),

R�(t) = �I(t) + �V(t) − �R(t),

Rc =
� + �v

� + v
R0.

T = �
T
�[� − (� − �)�]−1�,

T = k11 +
k12k21

1 − k22
.
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4  Behavior change

4.1  Nonlinear terms

One way to intrinsically consider the behavior change of people in epidemic mod-
els is to introduce new nonlinear terms. For instance, the force of infection term 
in the SIR model (1) or (3) can be generalized to � = g(I) satisfying the following 
assumptions: 

 (A1) g(0) = 0 and g(I) > 0 for all I > 0;
 (A2) g is differentiable on ℝ+.

Capasso and Serio (1978) further considered the following assumptions to take into 
account the saturation or psychological effects: 

 (A3) There exists a constant c > 0 such that g(I) ≤ c for all I > 0;
 (A4) g′ is bounded on ℝ+ and g(I) ≤ g�(0)I for all I > 0.

Typical examples of such g are as follows (see also Table 1):

The saturation effect implies that the force of infection will be saturated at a cer-
tain level when the infective population becomes large (Fig. 6a).

The psychological effect implies that the force of infection will decrease when 
the infective population becomes large (Fig. 6b). Both of these effects are based on 
the idea that people may tend to reduce the number of contacts when there are many 
infected individuals. Capasso and Serio (1978) stated that the idea of these effects 
were suggested after the study of the cholera epidemic spread in Bari in 1973. We 
can guess that these effects could be suitable for widely broadcasted and cautioned 

g(I) =
𝛽I

1 + 𝛼I
(saturation effect),

g(I) =
𝛽I

1 + 𝛼Ip
, p > 1 (psychological effect).

Table 1  Example of nonlinear incidence rates

g(I) Description References

�I Mass action incidence Kermack and McKendrick (1927)
�I

N

Standard incidence Hethcote (2000)

�I

1 + �I

Saturation effect Capasso and Serio (1978)

𝛽I

1 + 𝛼Ip
, p > 1

Psychological effect Xiao and Ruan (2007)

�Ip, p ≠ 1 General incidence Liu et al. (1986)
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diseases such as COVID-19. In fact, some authors have considered the saturation 
effect in epidemic models applied to COVID-19 (Bhadauria et al., 2021). If the func-
tion g satisfies assumptions (A1)–(A4) and g′ > 0 and g′′ ≤ 0 on ℝ+ , then the basic 
reproduction number R0 for the SIR model (3) with � = g(I) satisfies the threshold 
theorem: if R0 ≤ 1 , then the disease-free equilibrium is globally asymptotically sta-
ble, whereas if R0 > 1 , then the endemic equilibrium is globally asymptotically sta-
ble (Korobeinikov, 2007). Thus, in this case, no periodic solution exists. Although 
g(I) = �Ip , p ≠ 1 does not satisfy assumptions (A3) and (A4), it was shown by Liu 
et al. (1986) that a periodic solution can exist by the Hopf bifurcation.

The nonlinearity can be introduced into terms other than the force of infection. 
Perra et al. (2011) assumed in their model that k1S(t)[1 − e−k2I(t)] susceptible indi-
viduals change their behavior per unit time, where k1 and k2 are positive constants. 
This idea was applied to COVID-19 modeling by Kim et al. (2020).

4.2  Time delay

Time delay is known as one of the key factors that causes periodic solutions in epi-
demic models (Hethcote & Levin, 1989). Cooke (1979) studied an epidemic model 
with force of infection �(t) = �I(t − �) with fixed time delay � to consider the spread 
of a vector-borne disease. Beretta and Takeuchi (1995) studied an SIR model with 
a more general distributed time delay �(t) = � ∫ ∞

0
f (�)I(t − �)d� , where f is a non-

negative distribution on ℝ+ , that is, ∫ ∞

0
f (�)d� = 1 . McCluskey (2010) proved 

the threshold theorem of the basic reproduction number R0 for the SIR model (3) 
with delayed forces of infection �(t) = �I(t − �) and �(t) = � ∫ �

0
f (�)I(t − �)d� : if 

R0 ≤ 1 , then the disease-free equilibrium is globally asymptotically stable, whereas 
if R0 > 1 , then the endemic equilibrium is globally asymptotically stable. Thus, in 
such case, there is no possibility of periodic solutions.

Motivated by the idea of the saturated incidence rate, we now consider the SIR 
model (3) with the following force of infection:

Fig. 6  g(I) for considering a the saturation effect and b the psychological effect
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where f is the truncated exponential distribution

and k and � are positive constants (see also Fig. 7). By regarding � as a bifurcation 
parameter, we can numerically check that a periodic solution exists for some param-
eter sets.1 For instance, setting parameters

we can numerically check that the endemic equilibrium is stable for � = 14 
(Fig. 8a), whereas it is unstable and a periodic solution exists for � = 16 (Fig. 8b). In 
this case, we can check that the destabilization of the endemic equilibrium occurs at 
� = �c ≈ 15 . Such critical value �c can be calculated for each � and we can plot the 
parameter region where the periodic solution exists or not (Fig. 9). From Fig. 9, we 
can conjecture that the time delay � and the sensitivity of the behavior change � play 
essential roles in the occurrence of the recurrent epidemic waves.

In the classical SIR model (1) without vital dynamics, the epidemic curve has at 
most one peak as shown in Fig. 3. However, in COVID-19, multiple peaks have been 
observed in many countries (see Fig. 10 for the case of Japan). In the early stage 
of COVID-19, the author used a one-peak model to predict the long-term behav-
ior of the epidemic (Kuniya, 2020a). However, it was revealed that such a model is 
rarely to be close to the actual data if interventions are taken and people’s behavior 

(9)�(t) =
�I(t)

1 + � ∫ ∞

0
f (�)I(t − �)d�

,

(10)f (𝜎) =

{
0, 𝜎 < 𝜏,

ke−k(𝜎−𝜏), 𝜎 ≥ 𝜏,

(11)

b = � =
1

100
, � = 1, R0 = 2, � = 10, � =

R0(� + �)�

b
, k = 1,

Fig. 7  Truncated exponential 
distribution given by (10)

1 More rigorous analysis on the existence of periodic solutions has been done in the author’s unpub-
lished manuscript: Kuniya, T. Hopf bifurcation in an SIR epidemic model with psychological effect and 
distributed time delay, submitted for a chapter in a book entitled Recent Studies in Mathematical Mod-
eling and Control of the Dynamics of Human Viruses (Hattaf, K. ed.).
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Fig. 8  Time variation of the infective population in the SIR model (3) with the force of infection (9), the 
truncated exponential distribution (10) and parameters (11)

Fig. 9  Parameter region where 
the periodic solution exists or 
not

Fig. 10  Daily number of newly reported cases of COVID-19 in Japan from 14 January, 2020 to 31 July, 
2021 (WHO, 2021)



597

1 3

The Japanese Economic Review (2021) 72:581–607 

changes in response to the epidemic (Kuniya, 2020b). One-peak models might have 
to be used for the purpose of assessing the short-term intensity of the epidemic, and 
it may be better to use models with behavior change to understand the long-term 
dynamics if the epidemic is frequently announced and people tend to respond to it.

4.3  Switching

Switching is also an important concept to consider the people’s behavior change. 
Time-dependent parameters have often been considered in the applications to 
COVID-19 (Acuña-Zegarra et al., 2020; Liu et al., 2020). They enable us to consider 
the time variation of parameters in each event and seem to suitable for evaluating the 
effects of periodic/non-periodic interventions. We can regard that the solution obeys 
different dynamical systems in each time interval.

On the other hand, piecewise functions have also been considered in switched 
systems for COVID-19 (Wang, 2020). For instance, it is assumed that � = g(I) and

for some Ic > 0 . We can regard such g is a discontinuous nonlinear incidence rate 
and such a system as a hybrid dynamical system. Hybrid dynamical systems can 
exhibit characteristic dynamics such as pseudoequilibria and sliding-modes (Wang 
et al., 2016).

5  Further advanced models

5.1  Age structure

Age structure is the key concept to capture the age-specific disease dynamics (Ian-
nelli, 1995; Inaba, 2017). In the original epidemic model by Kermack and McKen-
drick (1927), the infection age (time elapsed since the infection) was considered. 
Let I(t, a) be the infective population of infection age a at time t. The SIR model (1) 
without vital dynamics can be generalized to the following coupled system of ordi-
nary differential equations (ODEs) and a partial differential equation (PDE):

where �(a) denotes the removal rate at infection age a. The force of infection in the 
mass action law is given by

g(I) =

{
𝛽1I, I ≤ Ic,

𝛽2I, I > Ic,

(12)

⎧⎪⎪⎨⎪⎪⎩

S
�(t) = −�(t)S(t),�
�

�t
+

�

�a

�
I(t, a) = −�(a)I(t, a), I(t, 0) = �(t)S(t),

R
�(t) = ∫

∞

0

�(a)I(t, a)da,
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where �(a) denotes the disease transmission coefficient at infection age a. For model 
(12), the basic reproduction number R0 is given by

where N = S(t) + ∫ ∞

0
I(t, a)da + R(t) denotes the total population. Threshold theo-

rem of R0 for an infection age-structured SIR model with vital dynamics was proved 
by Magal et al. (2010). The concept of the type reproduction number T  was general-
ized to the state reproduction number for multi-group infection age-structured mod-
els by Inaba and Nishiura (2008).

In contrast, chronological age (time elapsed since the birth) has also been often 
considered in epidemic models. The SIR model (3) with vital dynamics is general-
ized to the following system of PDEs:

where a denotes the chronological age and each function is generalized so as to 
depend on a. The force of infection in the mass action law is given by

where �(a, �) denotes the coefficient for disease transmission from infective indi-
viduals of age � to susceptible individuals of age a. Under appropriate assumptions 
on each coefficient, the basic reproduction number R0 is given by the spectral radius 
of the following next generation operator (Inaba, 1990):

where � is an arbitrary integrable function on ℝ+ and S0(a) ∶= be− ∫ a

0
�(�)d� denotes 

the susceptible population at the disease-free steady state. Although there is no 
explicit formula of R0 in general, we can obtain the following explicit formula in the 
proportionate mixing case (Dietz & Schenzle, 1985), where �(a, �) = �1(a)�2(�):

Threshold theorem of R0 for the chronological age-structured SIR model does not 
hold in general. In fact, although the global asymptotic stability of the disease-free 

�(t) = ∫
∞

0

�(a)I(t, a)da,

R0 = N �
∞

0

�(a)e− ∫ a

0
�(�)d�da,

⎧⎪⎪⎨⎪⎪⎩

�
�

�t
+

�

�a

�
S(t, a) = −[�(t, a) + �(a)]S(t, a), S(t, 0) = b,

�
�

�t
+

�

�a

�
I(t, a) = �(t, a)S(t, a) − [�(a) + �(a)]I(t, a), I(t, 0) = 0,

�
�

�t
+

�

�a

�
R(t, a) = �(a)I(t, a) − �(a)R(t, a), R(t, 0) = 0,

�(t, a) = ∫
∞

0

�(a, �)I(t, �)d�,

K�(a) ∶= S0(a)�
∞

0

�(a, �)�
�

0

e
− ∫ �

�
[�(�)+�(�)]d�

�(�)d�d�,

R0 = �
∞

0 �
�

0

�1(�)�2(�)e
− ∫ �

�
[�(�)+�(�)]d�

S0(�)d�d�.
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steady state for R0 < 1 was proved by Inaba (1990), the global asymptotic stabil-
ity of the endemic steady state for R0 > 1 does not hold in general (Thieme, 1991). 
In some cases, periodic solutions exist for R0 > 1 (Andreasen, 1995; Franceshetti 
et al., 2012; Kuniya, 2019).

In application, age-structured epidemic models are often formulated as multi-
group ODEs systems. In fact, PDEs models as above can be discretized into such 
ODEs systems under the assumption that each coefficient is stepwise constant 
(Tudor, 1985). Therefore, age-structured PDEs models are mathematically general. 
They enable us to consider the variation of continuous age distributions.

5.2  Seasonality

To take into account the seasonality, model parameters are often assumed to be peri-
odic with respect to time. For instance, we can assume that the disease transmission 
coefficient � and the removal rate � in the SIR model (1) without vital dynamics are 
periodic with respect to time. That is, for any t,

where T > 0 . The SIR model (1) can then be generalized to the following time-peri-
odic system:

where the force of infection in the mass action law is given by �(t) = �(t)I(t) . The 
basic reproduction number R0 for model (13) is given by the spectral radius of the 
following linear operator (Bacaër & Guernaoui, 2006):

where � is an arbitrary T-periodic function on ℝ . In this case, R0 can be explicitly 
calculated as follows (Bacaër & Guernaoui, 2006, Section 5):

That is, in this case, R0 can be obtained by averaging the periodic parameters. How-
ever, in general, there can exist a gap between a quantity obtained by averaging peri-
odic parameters and R0 defined by the spectral radius of a linear operator (Bacaër & 
Ouifki, 2007). R0 for more general nonautonomous systems was defined by Inaba 
(2012, 2019) from the perspective of the generation evolution operator.

As we can easily expect, epidemic models with time-periodic parameters have 
periodic solutions in many cases (Hethcote & Levin, 1989; Nakata & Kuniya, 

�(t + T) = �(t), �(t + T) = �(t),

(13)

⎧⎪⎨⎪⎩

S�(t) = −�(t)S(t),

I�(t) = �(t)S(t) − �(t)I(t),

R�(t) = �(t)I(t),

K�(t) ∶= N �
∞

0

�(t)e− ∫ t

t−�
�(�)d��(t − �)d�,

R0 =
∫ T

0
�(t)dtN

∫ T

0
�(t)dt

.



600 The Japanese Economic Review (2021) 72:581–607

1 3

2010). The periodicity of such periodic solutions is due to the periodicity (sea-
sonality) of model parameters.

5.3  Diffusion

To consider the spatial spread of infectious diseases, reaction-diffusion systems 
have been studied (Hosono & Ilyas, 1995). The SIR model (1) without vital 
dynamics can be generalized to the following SIR model with diffusion:

where x ∈ � is the space variable and d1, d2 and d3 are diffusion coefficients for 
susceptible, infective and removed populations, respectively. Each function is gener-
alized to a function depending on x. The force of infection in the mass action law is 
given by

Reaction–diffusion systems have been used to model the spread of diseases such as 
rabies, which are transmitted by wild animals (Kallén et al., 1985). The basic repro-
duction number R0 for the diffusive SIR model (14) is given by the spectral radius 
of the following next generation operator K:

where � is an arbitrary continuous function on � , S0 is the susceptible population at 
the disease-free steady state, and �  is the Green function to the problem

with appropriate initial and boundary conditions.
For diffusive epidemic models, the threshold principle of R0 has been studied 

in the context of not only the global asymptotic stability of steady states (Allen 
et  al., 2008; Kuniya & Wang, 2017) but also the existence of traveling wave 
solutions (Hosono & Ilyas, 1995; Adimy et al., 2021). The property of solutions 
highly depends on the choice of set � and boundary conditions. For instance, 
even if model parameters are space-independent, R0 could be changed by the 
shape of the boundary of � in the case of the Dirichlet boundary conditions 
(Chekroun & Kuniya, 2020).

(14)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�S(t, x)

�t
= d1�S(t, x) − �(t, x)S(t, x),

�I(t, x)

�t
= d2�I(t, x) + �(t, x)S(t, x) − �(x)I(t, x),

�R(t, x)

�t
= d3�R(t, x) + �(x)I(t, x),

�(t, x) = �(x)I(t, x).

K�(x) ∶= �(x)S0(x)∫
∞

0 ∫
�

� (t, x, y)�(y)dydt,

�u(t, x)

�t
= d2�u(t, x) − �(x)u(t, x)
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5.4  Mutation and reinfection

Effect of the mutation of virus on the epidemic dynamics has also been modeled by 
the PDEs systems. Pease (1987) proposed an epidemic model to consider the drift 
and shift of influenza A virus. It can be generalized to the following SIS model:

where a is a variable indicating the immunity level of susceptible individuals. The 
force of infection in the mass action law is given by �(t, a) = �(a)I(t) and � is mono-
tone increasing on ℝ+ . In this model, as time evolves, the virus mutates and the vari-
able a increases with speed k, and the susceptible individuals become more suscep-
tible. The basic reproduction number R0 for model (15) is given as follows (Inaba, 
2017, Section 8.1):

where N = ∫ ∞

0
S(t, a)da + I(t) is the total population. If R0 ≤ 1 , then the disease is 

eradicated as time evolves, whereas if R0 > 1 , then there exists a unique endemic 
steady state (Inaba, 2017, Proposition 8.1). The endemic steady state is not always 
stable for R0 > 1 , and periodic solutions can exist in some cases (Magal & Ruan, 
2010). The waning of immunity and reinfection have been studied by age structured 
PDEs (Okuwa et al., 2019) and delay differential equations (Nakata et al., 2014).

6  Discussion

In this paper, we have reviewed the structure of basic and advanced epidemic mod-
els for the future applications in economics. To construct a suitable model, we sug-
gest to determine 

1. compartments to be studied;
2. whether and how the heterogeneity is incorporated into the model;
3. how the effect of intervention policies is taken into account.

For example, as stated in Sect. 2.1, the asymptomatic infection should not be dis-
regarded in the application to COVID-19. Therefore, if we construct a model for 
COVID-19, then it would be better to include the asymptomatic infective class into 
the model. Moreover, as the disease-induced death rate of COVID-19 is higher in 
the elderly people than in the young people, it would be better to incorporate the age 
structure into the model. If we want to discuss the optimal vaccination policy, then 
it would be better to consider the age-specific vaccination rate. We may evaluate 

(15)

⎧
⎪⎨⎪⎩

�
�

�t
+ k

�

�a

�
S(t, a) = −�(t, a)S(t, a), kS(t, 0) = �I(t),

I�(t) = ∫
∞

0

�(t, a)S(t, a)da − �I(t),

R0 =
�(∞)N

�
,
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the effectiveness of the intervention policy by performing the sensitivity analysis of 
model solutions or reproduction numbers with respect to the vaccination rate.

In this paper, we have reviewed the theory of basic, effective, control and type 
reproduction numbers. We now summarize the roles of them as follows:

– Basic reproduction number R0 represents the essential intensity of epidemic and 
can determine the model dynamics by the threshold property.

– Effective reproduction number Rt represents the real-time intensity of epidemic 
and can be used to evaluate the effectiveness of interventions.

– Control reproduction number Rc enables us to obtain a critical value for a control 
parameter to make the reproduction number less than 1.

– Type reproduction number T  plays a similar role as Rc but it enables us to focus 
on a control parameter to a specific group in multi-group models.

The theory of epidemic models has developed in decades and accelerated through 
COVID-19. Nevertheless, it would be still difficult to completely answer to the criti-
cisms raised by Klein et  al. (2007). Long-term predictions with constant parame-
ters would contain an essential uncertainty due to the possible change of situation 
(Kuniya, 2020a). On the other hand, the complexity of models does not necessarily 
imply the reliability of predictions (Roda et  al., 2020). As stated by Huppert and 
Katriel (2013), the comparison of different results would be important to raise the 
robustness of predictions. In particular, as there is no single model that can solve all 
questions (Panovska-Griffths, 2020), we would have to build a scientific attitude to 
comprehensively understand the results obtained by various researchers from differ-
ent backgrounds.

In this paper, we have focused only on deterministic models and have not dis-
cussed the stochasticity. The stochastic agent-based models have attracted much 
attention in the period of COVID-19 (Hoertel et al., 2020). They innately consider 
the interactions between individuals in a heterogeneous population.

In this paper, to model the people’s behavior change, we have mainly focused 
on the method of nonlinear functions (see Sect. 4.1) and have not discussed other 
methods such as the utility maximization (Fenichel et al., 2011) and the game theory 
(Bauch & Earn, 2004), which are rather standard in economics. The author hopes 
that the mathematical methods reviewed in this paper could contribute to further 
development of such methods in the context of economic epidemiology.
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