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Abstract
Understanding the dynamics of phase boundaries in fluids requires quantitative knowledge 
about the microscale processes at the interface. We consider the sharp-interface motion 
of the compressible two-component flow and propose a heterogeneous multiscale method 
(HMM) to describe the flow fields accurately. The multiscale approach combines a hyper-
bolic system of balance laws on the continuum scale with molecular-dynamics (MD) simu-
lations on the microscale level. Notably, the multiscale approach is necessary to compute 
the interface dynamics because there is—at present—no closed continuum-scale model. 
The basic HMM relies on a moving-mesh finite-volume method and has been introduced 
recently for the compressible one-component flow with phase transitions by Magiera and 
Rohde in (J Comput Phys 469: 111551, 2022). To overcome the numerical complexity of 
the MD microscale model, a deep neural network is employed as an efficient surrogate 
model. The entire approach is finally applied to simulate droplet dynamics for argon-
methane mixtures in several space dimensions. To our knowledge, such compressible two-
phase dynamics accounting for microscale phase-change transfer rates have not yet been 
computed.
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1  Introduction

In this work, we consider the dynamics of a compressible two-component fluid which allows 
for phase changes between a liquid and a vapor phase state. Keeping temperature constant, we 
aim to determine continuum-scale quantities like component-wise densities and momenta on a 
spatial scale where all phase boundaries are explicitly represented, i.e., without further averag-
ing like in, e.g., Baer-Nunziato modeling [4, 37, 43]. This choice implies that the phase—liq-
uid or vapor—is uniquely determined by the values of the component densities. Having made 
this decision, we focus on a sharp-interface approach, and refer to [3] and just recently [24] for 
diffuse-interface models. We start from an extension of the isothermal Euler equations with 
frictional forces for one-phase flows, as introduced in [6], to the two-phase case, see (1) below. 
We will focus mainly on the two-component system comprised of the noble gases argon and 
methane which allows a relatively simple thermodynamical description. These evolution 
equations are supposed to hold in the liquid-phase domain �−(t) and the vapor-phase domain 
�+(t) , where they form a set of hyperbolic balance laws. The two bulk domains are separated 
by a co-dimension-1 manifold, the interface � = �(t) . Thus, the entire fluid domain � ⊂ ℝd , 
d ∈ {1, 2, 3} , at any time t ∈ [0, tend] , tend > 0 , is partitioned into � = �+(t) ∪ �(t) ∪�+(t) , 
see Fig. 1 for illustration. The basic mathematical model is provided in Sect. 2.

To determine the motion of the interface and to ensure the well posedness of the resulting 
free boundary value problem one has to prescribe transmission conditions across the interface 
�(t) . Obviously, the Rankine-Hugoniot conditions have to be imposed; but it is well known, 
even in the one-component case, that additional conditions have to be prescribed at the inter-
face [8, 17, 21, 36]. This can be achieved by imposing further algebraic relations that prescribe 
the entropy dissipation rate across the interface [40]. However, determining the explicit form 
of this relation remains a largely unsolved issue for complex flow regimes, including in par-
ticular the multi-component flow. To overcome this fundamental modeling problem on the 
continuum scale and to avoid using ad hoc closures, one can look at smaller spatial scales 
using a molecular-dynamics (MD) approach. On this ab initio level, the modeling of a multi-
component fluid becomes accessible since each molecule of a component has the same physi-
cal properties regardless of the fluid phase it is part of (see Sect. 3). However, MD simula-
tions can only be run for very limited spatial and temporal scales. We utilize a tailored MD 
algorithm to solve MD Riemann problems across the (discrete) interface only, whereas the 
dynamics in the bulk phase domains are approximated by a standard finite-volume method for 
the first-order two-component system (2). With this hybrid ansatz we propose a heterogeneous 
multiscale method (HMM, in the sense of [10]) that accounts for physically accurate inter-
facial mass and momentum transfer, as well as the motion of the phase boundary by an MD 
interface solver, see Sect. 4. A critical issue in this context is the coupling of the different mod-
els, i.e., from MD systems with pairwise interactions to continuum-scale Euler-type equations 
and vice versa. We rely on classical, statistical averaging to infer continuum-scale quantities 
from microscale particle simulations. In that way, we transfer the microscale behavior at fluid 

Fig. 1   Partitioned domain � with interface �(t) and bulk domains �± for d = 2 spatial dimensions
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interfaces to the continuum scale via a data-based approach. Concerning the numerical discre-
tization on the continuum scale we employ a moving-mesh finite-volume method which ena-
bles us to include the MD dynamics directly at the phase boundary, while resolving the sharp 
interface directly within the mesh. The corresponding moving mesh algorithms are presented 
in [7, 32], see [1] for the corresponding open-source code.

Finally, to overcome the computational costs of expensive MD simulations, we apply 
a surrogate model for the MD interface solver. This surrogate model is based on the con-
straint-aware neural networks that have been developed in [30], which come up with the 
same computational efficiency, but ensure mass conservation of the numerical discretiza-
tion, in particular across the interface.

In Sect. 5, we present numerical results for the HMM for the compressible two-compo-
nent flow with phase transitions. We focus on a mixture of the noble gases argon and meth-
ane using their exact physical properties. In particular, this includes a specific equation of 
state (EOS) that is used in the bulk domains. The results comprise simulations in one, two, 
and three space dimensions and settle, for multiple space dimensions, around the impinge-
ment of pressure waves on droplets inducing oscillation and condensation processes. We 
summarize our findings in the concluding Sect. 6.

Up to our knowledge, the continuum-scale phase-transition regimes in Sect. 5 for real-
istic argon-methane mixtures have not been computed before using a physically accurate 
model for the interfacial motion. This contribution is the main novelty of the paper at hand, 
showing that the approach we have developed for the much simpler single-component cases 
in [31–33] can be readily extended to complex scenarios lacking any knowledge about the 
proper choice of transmission conditions on the continuum scale.

In the remainder of the introductory section, we embed our work into the existing literature 
for sharp-interface modeling in the phase-transition flow. In fact, two-phase fluid flow mod-
els with sharp interfaces for a single component are widely investigated, see, e.g., [11, 12, 
14, 27, 38, 39] for various modeling approaches in the mathematical realm. As mentioned 
above, much less is known for the multi-component flow. We refer to the works [19, 20] which 
address the closure problem but do not provide a full continuum-mechanical closure. An alter-
native ansatz [18] builds on the integration of first-order models into phase-field models [9].

MD simulations have been readily and for a long time used tools for the dynamics of 
phase boundaries. However, multiscale modeling that connects to the continuum-scale 
dynamics for the compressible liquid-vapor flow has not been done up to our knowledge. 
The works in, e.g., [13, 22] indeed support the excellent match of up-scaled quantities if an 
appropriate closed continuum-scale model exists.

2 � Modeling of Two‑Component, Two‑Phase Flow

In this section, we first review a continuum-scale model from [6] that governs the descrip-
tion of the two-phase flow for a fluid that consists of several components. We focus on 
argon-methane mixtures with comparably well-known fluid properties. Albeit the fact that 
the governing equations take the form of first-order balance laws, it turns out that the ana-
lytical understanding of hyperbolicity and the properties of solutions for, e.g., Riemann 
problems is quite limited, and cannot serve as the basis for numerical simulation.

Throughout this work, we consider all variables in combination with their physical 
units. This is important for converting microscale quantities to continuum-scale quantities 
later on. Moreover, the simulations in Sect. 5 refer to realistic fluid regimes for the argon-
methane mixture.
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2.1 � An Isothermal Two‑Component Flow Model

We consider isothermal, inviscid, non-reactive fluids consisting of two components, which 
we mark by an index a ∈ {0, 1} . Later, the index 0 indicates argon and the index 1 methane.

To model two-component flow, we choose the so-called class-II model for the multi-
component flow which has been derived in [6] as a thermodynamically consistent ansatz. It 
includes Maxwell-Stefan diffusion to account for the crucial frictional interaction between 
components. The model can be written in terms of a first-order balance law. Precisely, we 
have for each component a ∈ {0, 1} the equations

in �±(t) for t ∈ (0, tend) . The primary variables are the partial mass densities �a [ kg ⋅m−3 ] 
and the partial velocities va [ m ⋅ s−1 ]. The constant reference temperature of the mixture is 
denoted by T [K]. The function �a = �a(�0, �1;T) [ J ⋅ kg

−1 ] represents the chemical poten-
tial of component a ∈ {0, 1} with respect to the partial mass densities and temperature. We 
will discuss a specific choice for �a below.

The term f01 = f10 > 0 denotes the friction factor between the components 0 , 1 and is 
proportional to the reciprocal of the Maxwell-Stefan diffusion coefficients −D01 [ m2

⋅ s−1 ]. 
More specifically, f01 computes as

Here, c [ mol ⋅m−3 ] denotes the total molar concentration, which is defined by c = c0 + c1 , 
where ca = �a∕Ma [ mol ⋅m−3 ] are the molar concentrations, and Ma [ kg ⋅mol−1 ] 
the molar masses of component a ∈ {0, 1} . The ideal gas constant is given by 
R ≈ 8.314 J ⋅mol−1 ⋅ K−1 . Another relevant quantity in the context of the two-component 
flow is the mole fractions xa [–], which are defined as xa = ca∕c , a ∈ {0, 1} . They describe 
the ratio of the number of 0∕1-component particles to the total amount of particles. For an 
in-depth discussion of friction in multi-component systems, we refer to, e.g., [25].

The initial data of (1) are comprised of a connected initial phase boundary �(0) , initial 
partial mass densities �a,0(x) , and initial partial velocity fields va,0(x) , such that

We define U0(x) = (𝜌0,0(x), 𝜌1,0(x), (𝜌0,0v0,0)(x)
⊤, (𝜌1,0v1,0)(x)

⊤)⊤ . Boundary conditions will 
be specified in Sect. 5.

To close the system (1), we have to provide expressions for the chemical potentials 
�0,�1 . This means in the isothermal case that an EOS has to be defined which describes 
the functional dependencies for the chemical potentials �a = �a(�0, �1;T) . For the two-
component flow, we choose the PC-SAFT EOS [15]. Its underlying theoretical framework 
provides us in particular with precise parameter values describing argon-methane mixtures, 
see Appendix A. This is the first reason for choosing this mixture in Sect. 5 on realistic 
numerical simulations (see Sect. 3 for the second reason related to molecular-dynamical 
modeling). We do not give the highly complex functional form of the PC-SAFT EOS. 
Rather, in Fig. 2, we display a plot of the mixture pressure for the argon-methane mixture 
at T = 110K as a function of the total density �0 + �1 and the mole fraction x0 of argon. We 
observe a vapor-state domain and, separated by a spinodal region, a liquid-state domain. 
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Although no proof is available we claim that for sufficiently small temperatures the set 
{(𝜌0, 𝜌1,m

⊤
0
∶= 𝜌0v

⊤
0
,m⊤

1
∶= 𝜌1v

⊤
1
)⊤ | 𝜌0, 𝜌1 > 0, v0, v1 ∈ ℝd} is separated into a liquid-

state region P− and a vapor-state region P− which define the phases in our case. Having 
defined a liquid and a vapor phase, we assume that the two-component fluid in � partitions 
the domain in two subdomains �± = �±(t) separated by a single, sharp phase boundary 
�(t) , see Fig. 1. Just as for the topology of the state space and the splitting, there is up to 
now no proof that the left-hand side of system (1) is hyperbolic in the state space

and elliptic in the spinodal region. Motivated by the situation of the single-component, 
two-phase flow this is exactly what we assume from now in [36]. In all the numerical simu-
lations, we have not encountered contrary evidence.

2.2 � Planar Two‑Phase Solutions and the Riemann Problem

The system (1) consists of first-order evolution laws. To gain insight into the two-phase 
behavior of the solution, we fix t ∈ [0, tend] and some point � on the interface �(t) . We con-
sider planar solutions of (1) on the line depicted by the normal n = n(�, t) ∈ �d−1 (pointing 
in the direction of the vapor-state domain �+(t)) , see again Fig. 1.

We define, for some state U ∈ U ⊂ ℝ2+2d , the normal velocities v0 = v0 ⋅ n , v1 = v1 ⋅ n , 
and the n-rotated state

U = P− ∪ P+,

(4)
u ∶= U∥n = (𝜌0, 𝜌1,m0 ∶= 𝜌0v0,m1 ∶= 𝜌1v1)

⊤ ∶= (𝜌0, 𝜌1, 𝜌0v0 ⋅ n, 𝜌1v1 ⋅ n)
⊤ ∈ ℝ4.
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Fig. 2   Pressure of the PC-SAFT EOS for an argon-methane mixture at T = 110K . The left-hand (right-
hand) region displays vapor (liquid) states
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Furthermore, we set

Then, the rotational invariance of the Euler-type system (1) ensures that there is a matrix 
A = A(u; n) ∈ ℝ4×4 such that the solution u = u(x, t) of the n-rotated (one-dimensional) 
problem

defines a planar solution of (1). We recover the original states in U by the operator

with n1,⋯ , nd being the entries of n . Now, posing the Riemann problem for the system (5) 
means to choose initial data of the form

where u± are computed from given Riemann states U± ∈ U by

The Riemann states U± ∈ P± should be understood as traces states in �±(t) , respectively.
The Riemann problem for the n-rotated system (5) will play a crucial role in the construction 

of the HMM in Sect. 4. The most convenient situation would be to have an exact Riemann solver 
for (5)1 . Motivated by the one-phase case, one can then expect that the solution of the Riemann 
problem (5), (7) includes exactly one isolated phase boundary connecting two constant states in 
P± . Its speed s ∈ ℝ and the values of the adjacent states u∗

±
∶= (𝜌∗

0,±
, 𝜌∗

1,±
, v∗

0,±
, v∗

1,±
)⊤ ∈ P± 

would then provide all the necessary information about the future behavior of the solution 
locally at � ∈ �(t) . Let us denote such a (perfect) interface solver in terms of the original vari-
ables for (1), i.e., using the mapping (4) and the back projection P

n
 , by

Actually, an exact Riemann solver R∶P− × P+ × 𝕊d−1
→ P− × P+ ×ℝ for arbitrary two-

phase Riemann data U± is not available for the multicomponent flow (but see [18, 19] for 
some works in this direction). This problem is of course related to the lacking information 
about hyperbolicity of (1). We aim to substitute the missing Riemann solver by an interface 
solver based on MD simulations which will be discussed in the next section.

3 � Molecular Dynamics for Multicomponent Fluids

One big advantage of the MD is its versatility to simulate fluid mixtures consisting of more 
than one fluid component. Fluid components in this context denote different types of mol-
ecules that make up the composition of a fluid.

In this section, we review the molecular-dynamical modeling for binary mixtures. Then we 
extend a numerical method that has been developed in [32] for one-component fluids to the 

q(u) ∶= −Tf01𝜌0𝜌1
(

0, 0, v0 − v1, v1 − v0
)⊤
.

(5)

{

�
t
u + A(u;n)�

x
u = q(u) in ℝ × (0, tend),

u(⋅, 0) = u0 ∶= U0,∥n in ℝ

(6)P
n
∶ (𝜌0, 𝜌1,m0,m1)

⊤
↦ (𝜌0, 𝜌1,m0,1n1,⋯ ,m0,dnd,m1,1n1,⋯ ,m1,dnd)

⊤

(7)u0(x) =

{

u− for x < 0,

u+ for x > 0,

u± ∶= (U±)∥n.

(8)R∶ (U−,U+;n) ↦ (U∗
−
,U

∗
+
, s).
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case of binary mixtures, i.e., fluid mixtures consisting of two components. We also discuss the 
compatibility of the MD modeling for argon-methane mixtures with the PC-SAFT EOS intro-
duced in Sect. 2.1. As before, we indicate the two components by the numbers 0 and 1.

3.1 � Molecular Dynamics for Binary Mixtures

We focus on fluid components that can be modeled by spherical, rotational invariant Lennard-
Jones particles, such as noble gases or relatively simple molecules like methane. In the two-
component setting, each particle belongs to either component 0, or to component 1. We denote 
the particle type for the i-th particle by �i . Accordingly, the mass of each particle is m0 [u], if 
�i = 0 , or alternatively m1 [u], if �i = 1.

On the atomistic scale the dynamics of an ensemble of N = N0 + N1 particles with N0 ∈ ℕ 
particles of component 0 and N1 ∈ ℕ particles of component 1 are governed by the ordinary 
initial value problem [2]

for the particle positions xi(𝜏) = (xi(𝜏), yi(𝜏), zi(𝜏))
⊤ ∈ ℝ3 , velocities vi(�) ∈ ℝ3 , and accel-

erations ai(�) ∈ ℝ3 of the i-th particle, with � ∈ [0, �end] . Here 𝜏end > 0 is the MD end time. 
The MD simulations are carried out in the atomistic-scale units [K] for energy, [Å] for 
distances, and [u] for mass. The crucial ingredients for the MD model (9) are the Lennard-
Jones potentials �ab with

The Lennard-Jones parameters �01 = �10 , �01 = �10 depend on the corresponding param-
eters �0 , �0 , �1 , �1 for single-component potentials. If both interacting particles belong to 
the same component a ∈ {0, 1} , the parameters are given by �aa ∶= �a, �aa ∶= �a . If they 
belong to different components, the Lorentz-Berthelot combination rules [5, 26] suggest 
for some scaling numbers � [–] and � [–]

In Fig. 3, the Lennard-Jones potentials for different parameters are plotted.
As discretization for (9) we use the classical Velocity-Verlet algorithm [16] which amounts 

to performing the following steps with a given time step Δ𝜏 > 0 , Nend = ⌈�end∕Δ�⌉ times:

(9)

⎧

⎪

⎨

⎪

⎩
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for all i = 1,⋯ ,N.
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i
for all i = 1,⋯ ,N.

(iii) Compute accelerations an+1
i

for all i = 1,⋯ ,N as in (9),

using the positions xn+1
j

.
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i
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2
Δ� an+1

i
for all i = 1,⋯ ,N.
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Remark 1  (Reduced units, time scales, and cutoff-potential)  

	 (i)	 The MD simulations using the Velocity-Verlet algorithm (12) are done in reduced 
units according to Table 1 below. With this procedure, we follow [2]. It avoids float-
ing point over-/underflow in performing the numerical algorithm.

		    The number of particles N, the time step Δ� (in reduced units), and the number of 
time steps Nend will enter among others as parameters in Algorithm 1 for solving an 
MD Riemann problem. The precise values of the method’s parameters are listed in 
Table A1. These parameters are chosen in a way that allows a reliable extraction of 
Riemann data in the final multiscale method which acts on the continuum scale. Note 
that we expect the MD Riemann problem to have a self-similar solution such that we 
can extract data at any point in time. Without any information about numerical errors 
the ad hoc choice of these parameters remains a weakness of the entire multiscale 
approach.

	 (ii)	 The application of the algorithm (12) leads to a quadratic complexity in terms of 
the total particles number N. This is due to the particle-wise interaction in (10). A 
remedy is the cut-off potentials. For a two-component mixture, we substitute �ab for 
a, b ∈ {0, 1} by 

Like all numerical parameters for the MD simulations, the actually used value for 
the cut-off radius rcutoff can be found in Table A1 in the appendix. The error intro-
duced by the cutoff functional will be corrected by the introduction of long-range 
interaction forces on the discrete level. We refer to [28] for a special choice for two-
component flows.

We are interested in running MD simulations that provide an approximation of the 
solution of the Riemann problem (5), (7). For this purpose, the n-rotated Riemann ini-
tial data u± from (7) have to be represented as initial data for (9), i.e., we need an initial 
particle and velocity distribution in 3D. In [32], we have suggested a linked-cell algo-
rithm to realize this transfer of single-component, two-phase constant Riemann data into 
a cubic domain Σ that consists of two cuboids Σ± separated by the atomistic interface. 
The algorithm includes a thermalization process that makes sure that the MD particle 

(13)𝜙
ab
(r; rcutoff)∶=

{

𝜙
ab
(r)∶ r < 𝜎

ab
rcutoff,

0∶ r ⩾ 𝜎
ab
rcutoff.

Table 1   Unit conversion table Reduced units SI units

Mass 1 u 1.66 × 10−27 kg

Length 1 � 10−10 m

Energy 1 � 1.38 × 10−23 J

Velocity 1 �0.5 u−0.5 91.16m ⋅ s−1

Time 1 � u0.5 �−0.5 1.10 × 10−12 s

Pressure 1� �−3 1.38 × 107 Pa

Temperature 1� k−1
B

1 K
Density 1u �−3 1.66 × 103 kg ⋅m−3
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and particle velocity distributions match the constant reference temperature T, see (15) 
below for the definition of atomistic-scale temperatures. The linked-cell algorithm can 
be readily applied to the two-component case and is not further detailed.

In the next step, the system (9) is solved numerically by the scheme (12). We can 
again utilize a procedure from [32] to determine the approximate position of the atom-
istic interface and in particular an approximate interface speed s ∈ ℝ like in the exact 
interface solver R from (8). To obtain all output data in (8) we need to find approxima-
tions of adjacent continuum-scale states U∗

±
 , u∗

±
 , respectively. Thus, we need to define 

continuum-scale quantities from the MD-simulation data.
Let us consider a system of N particles. The component-wise mass concentra-

tions �̂0(x, �) , �̂1(x, �) [u⋅Å−3 ], and momentum concentrations m̂0(x, �) , m̂1(x, �) 
[ K0.5  ⋅ u0.5⋅  Å−3 ] can be computed by the Irving-Kirkwood formulas in the following 
way, for a ∈ {0, 1},

where mi , xi , vi are the mass, position, and velocity of the i-th particle. The local tempera-
ture distribution of the mixture can be formally understood as

where v = v(x, �) [ K0.5  ⋅ u−0.5 ] denotes the local barycentric average velocity of the mix-
ture. The local average velocity can be realized by, e.g.,

(14)�̂
a
(x, �) =

N
∑

i = 1

�
i
= a

m
i
�
x
i
(�)(x), m̂

a
(x, �) =

N
∑

i = 1

�
i
= a

m
i
v
i
(�) �

x
i
(�)(x),

(15)T̂(x, �) =
1

3

(

N
∑

i=1

�xi(�)(x)

)−1 N
∑

i=1
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|
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(
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Fig. 3   Two-component Lennard-
Jones potential for the parameters 
�0 = 1.2 , �0 = 1.2 , and �1 = 1 , 
�1 = 1 . The two solid-line 
graphs display intra-component 
interaction, and the dashed one 
the interaction potential between 
the two components, using the 
combination rules (11)
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where K�∶ℝ → ℝ is a smooth kernel with length-scale parameter 𝜀 > 0 . It cannot be 
expected that the temperature field T̂  from (15) equals the constant temperature T in the 
isothermal system (1). This can be partially circumvented by applying a thermostat, but we 
will observe in Sect. 5 that substantial discrepancies can occur for the vapor-phase region.

Using the formulas (14), we obtain the adjacent states by sampling over small spatial 
slices Σ∗

±
 next to the interface. That means we compute for a ∈ {0, 1}

where vol(Σ∗
±
) denotes the volume of the sampling region Σ∗

±
 , and ||

|

xi ∈ Σ∗
±
, �i = a

|

|

|

 the 
number of component-a particles inside it. We can obtain the local interface states for 
every time step during an MD simulation. For the final outcome we perform time-averag-
ing of these instantaneous states over a fraction ��-smpl of the total simulation time �end . 
Note that the conversion of MD quantities and continuum-scale quantities has to account 
for the unit conversion given in Table 1.

We summarize all steps for solving an MD-Riemann problem in Algorithm 1, see also 
Algorithm 2 in the context of the multiscale method. 

Algorithm 1   Atomistic-Scale Interface Solver for Binary Mixtures

(17)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�∗
a,±

(�) = vol(Σ∗
±
)−1

�

xi∈Σ
∗
± , �i=a

mi,

v∗
a,±

(�) =
�

�

�

xi ∈ Σ∗
±
, �i = a

�

�

�

−1 �

xi∈Σ
∗
± , �i=a

vi,
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Note that the states v∗
a,±

(�n) are computed from v∗
a,±

(�n) by the back projection P
n
 , and 

that �n = nΔ� , n ∈ {0,⋯ ,Nend}.

3.2 � Notes on the Argon‑Methane Mixture

Up to now, we considered a generic binary mixture. In the following, we focus on two-compo-
nent mixtures consisting of argon and methane. In this case, parameters for the Lennard-Jones 
potential (10) can be found in [41], and even experimental data are available [35]. For the 
Lennard-Jones parameters in (11) we take the values from [41] listed in Table 2. The cor-
responding combination parameters in (11) are � = 1.001 41 and � = 0.964 00 , see also [41]. 
For methodological background on the used approach, we refer to [42].

Remark 2  (Temperature parameterization of Lennard-Jones parameters) The chosen Len-
nard-Jones parameters are given in [41] for temperatures T = 111K (argon) and T = 140K 
(methane). The combination parameters refer to the temperature T = 115K and have also 
been computed in [41]. In this work, the quantities have been shown to be in good fit with 
available experimental data in [35]. Up to our knowledge this setting is commonly used 
for temperatures well below the critical temperature of the mixture. Notably, our HMM 
method applies only for settings where the phase boundary can be expected to be a sharp 
interface separating the liquid and the vapor regions. Close to the critical temperature this 
separation property would fail.

The studies in the literature refer solely to the homogeneous case, i.e., they do not span 
the entire two-phase state space. In [28] it has been shown by extended MD simulations for 
homogeneous data covering the whole state space, that the predictions of the PC-SAFT theory 
for the chemical potentials �0,�1 are in good quantitative agreement with the MD simulations 
using the Lennard-Jones potentials for argon-methane mixtures. This justifies to use the PC-
SAFT chemical potentials for the continuum-scale computations in the HMM which will be 
proposed in Sect. 4.

Table 2   Lennard-Jones 
parameters from [41] and species 
masses in reduced units for the 
argon-methane mixture, cf. 
Table 1

Component � [Å] �∕kB [K] m [u]

Argon Ar 3.396 7 117.05 39.948
Methane CH4 3.727 5 148.99 16.043
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4 � An HMM for Isothermal Two‑Component, Two‑Phase Flow

Following [32] for the single-component flow with phase transitions, we introduce a corre-
sponding HMM that combines the isothermal two-component flow model on the continuum 
scale (2) with two-component MD simulations described in Sect. 3 for the microscale descrip-
tion of the interface motion.

Here, we focus again on a fluid mixture consisting of argon and methane, see 
Sect. 2. The component-specific quantities are marked by the indices 0 for argon, and 
1 for methane. The two fluid phases are again denoted by the subscripts − and + for 
the liquid and vapor phases.

First, we formulate on the basis of Algorithm  1 the MD-based microscale inter-
face solver RMD which provides an approximate solution for Riemann initial data 
(Sect. 4.1). Using an MD-based interface solver directly in place is still too computa-
tionally expensive. Therefore we suggest the machine-learned surrogate solver R� in 
Sect. 4.2, which exploits the fact that the interface solver RMD can be understood as a 
nonlinear function mapping finite-dimensional Riemann data to a finite-dimensional 
space including the phase boundary speed and the state values adjacent to the phase 
boundary. Finally, in Sect. 4.3 we present the complete HMM for the two-component, 
two-phase flow. For the sake of simplicity we ignore in the entire section boundary 
conditions on ��.

4.1 � The Atomistic‑Scale Interface Solver R
MD

To reduce the input space of the atomistic-scale interface solver from Algorithm  1 we 
exploit that the continuum-scale system (1) is invariant with respect to velocity shifts. We 
define the barycentric velocities

and choose v̄ ∶= v− as the reference velocity. Furthermore, we introduce the relative veloc-
ity for each phase

Assuming we know the densities �0,± , �1,± , we can compute (v0,±, v1,±) from (v±, vrel,±) and 
vice versa. In the sequel this conversion is done implicitly to simplify the notation.

Algorithm  2 implements the final MD-interface solver RMD∶P− × P+ × �d−1

→ P− × P+ ×ℝ substituting the exact Riemann solver R.

(18)v± ∶=
m0,± +m1,±

�0,± + �1,±

(19)vrel,± ∶= v0,± − v1,±.
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Algorithm 2   MD-Interface Solver RMD : Two-Component, Two-Phase Flow

Due to the velocity shift described before, we can always achieve that the compo-
nent m0,− can be assumed to vanish when Step (iv) is executed within Algorithm 2.
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4.2 � The Machine‑Learned Interface Solver R�

To reduce the computational complexity of Algorithm 2, we employ a machine-learned sur-
rogate interface solver R� that approximates RMD , i.e.,

For the full multiscale model, the surrogate model R� replaces the molecular-scale inter-
face solver RMD in Step (iv) of Algorithm 2. We note that the implementation of R� relies 
on the reduced-dimensional state spaces in the rotated Riemann problem (5) and using the 
invariance with respect to the reference velocity v− in (18).

The final surrogate solver offers large computational gains: it takes only around 0.10 ms 
for a single evaluation. The MD simulations (Algorithm 2) on the other hand needs 14 min to 
17 min.

4.2.1 � Data Set Generation

To prepare the surrogate interface solver, we have to generate a data set D for the input-output 
relation of the microscale interface solver RMD . The range of the ±-phase densities �0,± , �1,± 
for each component is defined by the convex set and is formed by the points given in Table 3. 
The barycentric velocity v+ ranges from vmin = −750m ⋅ s−1 to vmax = 750m ⋅ s−1 . The rela-
tive velocities vrel,± are bounded by vrel,min = −500m ⋅ s−1 and vrel,max = 500m ⋅ s−1 . Taken 
all together, the resulting convex set forms the input bounding domain Bin.

Using distance-maximizing sampling similar to [34], we generate Ndata = 12 000 samples 
in Bin , while exploiting the reduced dimensionality, due to rotational invariance and v− ≡ 0 . 
Consequently, we generate the input data set

(22)R�(U−,U+;n)) ≈ RMD((U−,U+; n) ≈ R((U−,U+; n).

Din = {(�0,−, �1,−, vrel,−, �0,+, �1,+, v+, vrel,+)i∶ i = 1,⋯ ,Ndata}.

Table 3   Density corner points 
for the two-component (argon-
methane) model input data set

�0,+ [ kg ⋅m−3] �1,+ [ kg ⋅m−3] �0,− [ kg ⋅m−3] �1,− [ kg ⋅m−3]

1.000 000 0.000 000 1 024.214 739 0.000 000
1.000 000 0.000 000 0.000 000 343.403 446
1.000 000 0.000 000 1 616.252 845 0.000 000
1.000 000 0.000 000 0.000 000 509.380 478
0.000 000 1.000 000 1 024.214 739 0.000 000
0.000 000 1.000 000 0.000 000 343.403 446
0.000 000 1.000 000 1 616.252 845 0.000 000
0.000 000 1.000 000 0.000 000 509.380 478
162.996 622 0.000 000 1 024.214 739 0.000 000
162.996 622 0.000 000 0.000 000 343.403 446
162.996 622 0.000 000 1 616.252 845 0.000 000
162.996 622 0.000 000 0.000 000 509.380 478
0.000 000 30.960 615 1 024.214 739 0.000 000
0.000 000 30.960 615 0.000 000 343.403 446
0.000 000 30.960 615 1 616.252 845 0.000 000
0.000 000 30.960 615 0.000 000 509.380 478
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For each (�0,−, �1,−, vrel,−, �0,+, �1,+, v+, vrel,+) ∈ Din an MD simulation with the MD inter-
face solver (Algorithm 2) is performed. It provides with the corresponding input variables 
the output

which is gathered into the output data set

By associating each output data point with its input, we obtain the complete data set

(23)(�∗
0,−

, �∗
1,−

,m∗
0,−

,m∗
1,−

, �∗
0,+

, �∗
1,+

,m∗
0,+

,m∗
1,+

, s),

(24)Dout = {(�∗
0,−

, �∗
1,−

,m∗
0,−

,m∗
1,−

, �∗
0,+

, �∗
1,+

,m∗
0,+

,m∗
1,+

, s)i∶ i = 1,⋯ ,Ndata}.

D =
{(

(�0,−, �1,−, vrel,−, �0,+, �1,+, v+, vrel,+),

(�∗
0,−

, �∗
1,−

,m∗
0,−

,m∗
1,−

, �∗
0,+

, �∗
1,+

,m∗
0,+

,m∗
1,+

, s)
)

i

∶ i = 1,⋯ ,Ndata

}

.

Fig. 4   The data set for the isothermal, two-component, two-phase flow multiscale model. The data set con-
sists of 12 000 data points. The scatter plots show the relation of the input states �0,− , �1,− , v0,− , v1,− , �0,+ , 
�1,+ , v0,+ , v1,+ to their respective wave states �∗

0,−
 , �∗

1,−
 , v∗

0,−
 , v∗

1,−
 , �∗

0,+
 , �∗

1,+
 , v∗

0,+
 , v∗

1,+
 , and wave speed s. The 

error-bars show the data range of each separate triplet of MD simulation
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Note that we run three MD simulations for each input data point. The data set D is visual-
ized in Fig. 4. It is digitally archived at [29]. With the run time of 14–17 min for a sin-
gle, two-component MD simulation, the generation of the whole data set D took approxi-
mately 3 200 h of computing time, which can be easily split among several of machines to 
decrease the real time until all data points are sampled.

4.2.2 � Neural Network Training

To train the neural-network surrogate solver R� , we use a standard training procedure, 
albeit with some model-specific parameters as described in the following. The network is 
comprised of 5 hidden layers with 60 nodes each. The data set D from Sect. 4.2.1 is split 
into a training data set Dtrain with 10 800 samples and a validation data set Dval with 1 200 
samples.

Finally, we note that we use a CRes-neural network, which has been developed in [30] 
to incorporate conservation of selected state variables into the surrogate interface Riemann 
solver. For the two-component, two-phase flow we decided to preserve the mass conserva-
tion across the interface.

4.3 � The Complete HMM

Using the machine-learned interface solver R� we present the final HMM and the inter-
play of each of its components. To see the integration of the interface solvers in detail, 
we describe the HMM in the framework of the numerical discretization, a moving-mesh 
finite-volume method. The method has been introduced for two space dimensions in [7] 
and open-source code for two and three space-dimensions can be found in [1].

We partition the continuum-scale time interval [0, tend] according to 0 = t
0
< ⋯

< t
N = tend , and start with an initial mesh T(0) = {T0

i
∶ i ∈ I0} for � that is assumed to con-

sist of simplices Ti indexed via some index set I0 . Let the mesh parameter h > 0 be given by 
the maximum of all edges’ length. The mesh T(0) is supposed to include a connected set of 
mesh facets of the simplices, which form the approximation of the initial interface �h(0) , 
and thus discrete liquid and vapor bulk domains �h,±(0) . The initial datum U0 from (3) is 
projected to the mesh T(0) giving

We assume that we have U0
i
∈ P± for T0

i
∈ �h,±(0).

To introduce the finite-volume time-stepping let us assume that for some discrete time tn , 
n ∈ {1,⋯ ,N − 1} , we have the same situation, i.e., a simplicial mesh T(tn) = {Tn

i
∶ i ∈ In} 

for � , a discrete partition � = �h,−(t
n) ∪ �h(t

n) ∪�h,+(t
n) with the discrete interface

of connected facets, and a set of cell averages {Un
i
}
i∈In

 with the property Un
i
∈ P± for 

Tn
i
∈ �h,±(t

n) . Furthermore, for any facet from �h(t
n) with normal nn

ij
∈ �d−1 (pointing to 

the vapor domain �h,+(t
n) ), we can compute

(25)U0
i
=
∫T0

i

U0(x) dx (i ∈ I0).

(26)�h(t
n) = {Sn

ij
∶ i, j ∈ In, Tn

i
∈ �h,−(t

n), Tn
j
∈ �h,−(t

n)}
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Using the computed speeds sn
ij
 , the moving-mesh finite-volume method from [7] delivers a 

mesh ̃T(tn+1) = {T̃n+1
i

∶ i ∈ Ĩn+1} , a discrete partition � = �̃h,−(t
n+1) ∪ �̃h(t

n+1) ∪ �̃h,+(t
n+1) , 

and the family {Ũ
n+1

i
}
i∈In+1

 with the properties as in time-step tn . The new mesh T̃(tn+1) 
evolves from T(tn+1) by affine shifts. To avoid small cells that would deteriorate the time-
step, this mesh deformation is followed by a re-meshing leading finally to the new approxi-
mations at time tn+1 , i.e., the mesh

and the finite-volume approximations

A particular point in the moving-mesh finite-volume method is the choice of the numeri-
cal flux functions. They can be chosen arbitrarily for facets not in �h(t

n) but have to be 
Godunov fluxes across �h(t

n) using the adjacent states U∗
i
 , U∗

j
 . This avoids the occurrence 

of states not belonging to P± . For more details and the control of the explicit time-stepping 
we refer to [7].

We conclude the section with the complete HMM for the two-component, two-phase 
flow given in algorithmic form.

Algorithm 3   HMM for Two-Component, Two-Phase Flow

(U∗
i
,U∗

j
, sn

ij
) = R�(U

n
i
,Un

j
; nn

ij
).

T(tn+1) = {Tn+1
i

∶ i ∈ In+1}, � = �h,−(t
n+1) ∪ �h(t

n+1) ∪�h,−(t
n+1),

{Un+1
i

}
i∈In+1

.
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Algorithm  3 provides an approximation U
h
∶� × [0, tend] → U and an approximation 

�h(t) for the exact interface �(t) , t ∈ [0, tend] , solving the free boundary value problem for 
(1). The approximate function Uh and the interface �h are defined by

using the quantities computed in Algorithm  3. The machine-learned interface solver R� 
represents the atomistic microscale whereas the final approximation is valid on the con-
tinuum scale only.

Remark 3  (Discretization of source and non-conservative terms) The moving-mesh finite-
volume method from [7, 32] uses explicit Euler time-stepping and deals with first-order 
systems in divergence form only. The discretization of the 0th-order Maxwell-Stefan diffu-
sion terms is handled by simple evaluation of the cell averages.

More complicated is the discretization of the gradients ∇�a in the right-hand-side term 
of the continuum-scale system (1).

In one space dimension, we simply apply central finite-differences in the bulk phases. 
At the cells adjacent to the interface, we use left-/right-sided finite differences, to avoid 
computing the gradient over the discrete phase boundary.

In two and three space dimensions, for the n-th time-step, we approximate the gradient 
∇�a in a simplex Tn

j
 by linear reconstruction. The stencil for the reconstruction includes 

those neighbors Tn
k
 of Tn

j
 that share a surface with Tn

j
 and belong to the same phase domain 

as Tn
j
 . In that way, we avoid mixing the phases during the reconstruction. The reconstruc-

tion is done by solving the linear least squares system

with

where cj ∈ ℝd denotes the cell center of Tn
j
 , �a,j ∈ ℝ the cell value of the chemical poten-

tial, and K ∈ ℕ the number of neighbor cells in the stencil. The solution �′
a
 of (27) is used 

as an approximation of the gradient ∇�a in cell Tn
j
.

5 � Numerical Simulations for the HMM

In this section, we present a series of numerical results to validate the multiscale method 
that has been introduced in Sect. 4 to solve the free boundary value problem for the two-
component, two-phase flow model (1).

The model and numerical parameters used for the simulations in this section, if not oth-
erwise stated, are found in Appendix A. We choose the Maxwell-Stefan diffusion coefficient 
to be −D01 = 1.0 . We refer to [23] for the computation of specific Maxwell-Stefan diffusion 
coefficients leading to much smaller values. Numerical tests for simplified settings have 
shown that the influence of −D01 is minor for the overall dynamics, which justifies our choice.

Uh(x, t) = Un
i
, �h(t) = �h(t

n) (x ∈ Tn
i
, t ∈ [tn, tn+1]),

(27)A⊤A��
a
= A⊤ba

A =

(

cj − ck
⋮

)

∈ ℝK×d, ba =

(

�a,j − �a,k

⋮

)

∈ ℝK , Tn
k
in stencil of Tn

j
,
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5.1 � One‑Dimensional Simulation Results

We consider one-dimensional Riemann problems and compare the multiscale simulation 
results with MD simulations on the entire domain as reference. The section serves as vali-
dation for the multi-dimensional droplet simulations in the subsequent Sects. 5.2 and 5.3.

Example 1  (Pressure-driven shock wave) In the first example, we simulate a pressure-
driven shock wave originating from an argon-rich liquid. This is set up by the initial 
data �0,− = 1 200 kg ⋅m−3 , �1,− = 100 kg ⋅m−3 on the liquid side, �0,+ = 10 kg ⋅m−3 , 
�1,+ = 20 kg ⋅m−3 on the vapor side, and v0,± = 0m ⋅ s−1 , v1,± = 0m ⋅ s−1 . The simulation 
results are plotted in Fig. 5, including the corresponding two-component MD simulation 
results.

In the multiscale solution it can be observed that the liquid phase expands to the right 
side, while the total density inside the liquid phase decreases. Near the interface, argon 
moves from the liquid into the vapor phase, whereas methane accumulates inside the liq-
uid, and decreases in the vapor phase.

Fig. 5   Multiscale simulation for the isothermal, two-component, two-phase flow model in one space-
dimension, overlaid over the corresponding MD simulations
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By comparing the multiscale and the MD solution, we see that the interface position is 
captured accurately. Furthermore, on the liquid side, the MD simulation and the multiscale 
model behave qualitatively in the same manner. On the vapor phase side, we see that the 
argon component of the multiscale simulation is close to the MD simulation. In contrast 
to that, substantial deviations in the methane component can be observed. We assume that 
these deviations can be attributed to the isothermal continuum model which does not cap-
ture the whole range of the MD simulation. The latter is not perfectly isothermal allowing 
for small temperature variations. We observed the same effect for the isothermal flow of 
one component in [32]. Finally, the deviations in the low-density vapor phase might be 
caused by poor sampling on the MD scale, as few particles of each component are present 
near the interface. This problem can be solved by increasing the number of particles, as 
well as the size of the computational domain (see Sect. 3) for the MD simulations.

Example 2  (Colliding vapor wave) In the second example, we simulate a vapor wave that 
collides with a liquid argon-methane mixture. The corresponding Riemann initial data are 
�0,− = 440 kg ⋅m−3 , �1,− = 280 kg ⋅m−3 , v0,− = 0m ⋅ s−1 , v1,− = 0m ⋅ s−1 for the liquid 
phase, and �0,+ = 20 kg ⋅m−3 , �1,+ = 2 kg ⋅m−3 , v0,+ = −50m ⋅ s−1 , v1,+ = −50m ⋅ s−1 for 
the vapor phase. The multiscale simulation results are plotted in Fig.  6, alongside with 
their respective MD simulation. It can be seen that the vapor wave transmits into the liquid 
phase, and increases the liquid density slightly. Furthermore, the wave speeds, as well as 
the interface speed, are captured very well by the multiscale model. As in Example 1, we 
observe deviations for the velocity in the vapor-phase domain.

5.2 � Two‑Dimensional Simulation Results

Example 3  (Interaction shock wave/droplet) In this section, we present a two-dimensional, 
two-component multiscale simulation, where a methane droplet in an argon vapor atmos-
phere is hit by a shock wave. To this end, we consider the domain � = [−1.5, 1.5]2 , which 
is split into a liquid droplet �−(0) = {x ∈ ℝ2∶ ‖x‖2

2
< 0.15} and the surrounding vapor 

domain �+(0) = �⧵�−(0) . The initial conditions are given by

On the left side, at x = −1.5 , we apply inflow boundary conditions by setting the ghost cell 
value to (�0, v0, �1, v1) = (20, (150, 0), 4, (150, 0)) . On the opposing side, at x = 1.5 , we use 
outflow boundary conditions. At the top and bottom, i.e., at y = ±1.5 , reflecting boundary 
conditions simulate closed walls.

The simulation results are depicted in Figs. 7 and 8. In the first figure, the component-wise 
densities and velocities are shown, and in the second figure the argon-mole fraction is plotted.

In the beginning, the liquid and vapor phases are not in equilibrium, resulting in small 
oscillations of the droplet. The oscillations can be clearly observed in the time evolution 
of the averaged quantities, as illustrated in Fig. 9. Then, the vapor wave hits the droplet, 
causing a ripple moving through its surface and finally pushing it through the vapor atmos-
phere. Throughout the simulation, argon accumulates inside the liquid phase, leading to a 
growth of the droplet; see Fig. 9.

(𝜌0, v0, 𝜌1, v1)(x, t) =

⎧

⎪

⎨

⎪

⎩

(180, (0, 0), 400, (0, 0)), x ∈ �−(0),

(20, (0, 0), 4, (0, 0)), x ∈ �+(0) and x ⩾ −0.5,

(20, (150, 0), 4, (150, 0)), x ∈ �+(0) and x < −0.5.
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5.3 � Three‑Dimensional Simulation Results

Example 4  (Interaction shock wave/droplet) The last example in this section is a three-
dimensional version of Example 3, i.e., a simulation of a liquid droplet, that consists mostly 
of methane, inside an argon-methane vapor atmosphere. The domain � = [−5, 5]3 is split 
into a liquid droplet �−(0) = {x ∈ ℝ3∶ ‖x‖2 < 2} and the surrounding vapor domain 
�+(0) = �⧵�−(0) . For the initial data, we set

Inflow boundary conditions are applied at x = −5 , by setting the ghost cell values to 
(�0, v0, �1, v1) = (20, (200, 0, 0), 4, (200, 0, 0)) . Opposed to that side, at x = 5 , outflow 

(𝜌0, v0, 𝜌1, v1)(x, t) =

⎧

⎪

⎨

⎪

⎩

(180, (0, 0, 0), 400, (0, 0, 0)), x ∈ �−(0),

(20, (0, 0, 0), 4, (0, 0, 0)), x ∈ �+(0) and x ⩾ −3,

(20, (200, 0, 0), 4, (200, 0, 0)), x ∈ �+(0) and x < −3.

Fig. 6   Multiscale simulation for the isothermal, two-component, two-phase flow model in one space dimen-
sion, overlaid over the corresponding MD simulations. We observe a vapor wave colliding with a liquid 
argon-methane mixture
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Fig. 7   Two-dimensional multiscale simulations. Each sub-figure depicts the densities �0 , �1 and velocities 
v0 , v1 of each component at various time steps. The upper part of each sub-figure shows �1 , v1 for methane, 
and the lower part �0 , v0 for argon
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Fig. 8   Two-dimensional multiscale simulation. Each sub-figure depicts the mole fraction x0 of argon at var-
ious time steps
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boundary conditions are applied. On every other side of the domain, we implement reflect-
ing boundary conditions.

For the multiscale simulation results, we refer to Figs.  10 and 11. Both figures show 
the three-dimensional solution visualized on the plane through z = 0 . In Fig. 10 the com-
ponent-wise densities and velocities are depicted. We display also the (projected) mesh to 
demonstrate that the interface is resolved on the discrete level. In Fig. 11, the phase bound-
ary is shown alongside the barycentric velocity magnitude.

We observe that the droplet is hit by a shock wave, which results in a ripple that runs over 
the liquid surface. Additionally, the momentum from the vapor causes the droplet to move to 

Fig. 9   Time evolution of phase-averaged quantities for the two-component two-phase flow multiscale simu-
lation in two space-dimensions
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Fig. 10   Three-dimensional multiscale simulation of the two-component two-phase flow model. The upper 
part of each sub-figure shows �1 , v1 for methane, and the lower part �0 , v0 for argon, at various time steps
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Fig. 11   Three-dimensional multiscale simulation. Each sub-figure depicts the barycentric velocity magni-
tude ‖v‖2 and the phase boundary at various time steps
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the right side. Considering the two fluid components, we see that the methane concentration 
inside the liquid droplet decreases slowly, whereas the amount of liquid argon slowly increases.

Next, we provide an overview over the simulation run times. A single time step of the 
simulation takes on average 2.7 s. This splits approximately into 1.0 s for the moving mesh 
operations (see Sect. 4.3), and 1.7 s for the finite volume part of the simulation. The mesh 
consists of 2.7 × 105 cells, with 2.0 × 103 interface facets averaged over all 100 000 time 
steps. In total, the whole simulation takes 75 h on a single desktop computer.

Note that in this simulation, the need for a surrogate solver becomes apparent. If we had 
not employed a surrogate, we would need to perform an MD simulation (taking 14 min to 
17 min) for every interface facet at every single time step. For a single time step, that would 
accumulate to approximately 500 h of computational time (albeit parallelizable). Compared 
to that, the surrogate solver needs 0.102 ms for a single evaluation. The offline phase of the 
surrogate solver takes approximately 3 200 h plus training. The majority of this workload 
(generating the training data set) is however embarrassingly parallel. Consequently, even if 
we include the offline phase, using a surrogate solver pays off after a few time steps.

6 � Conclusions

The main result of our study is a proof-of-concept validation for an HMM that has been 
designed to model the dynamics of the compressible two-component flow with the liquid-
vapor phase transition. The behavior of the numerical solutions on the continuum scale 
matches the MD simulations, with even quantitatively correct results in the liquid phase 
domains. Improving the results in the vapor phase seems to require more computational 
effort in the sampling procedure and the thermalization process. It is noteworthy that we 
do not consider a generic fluid mixture, but use a real EOS for argon-methane mixtures. 
Another significant outcome is that the HMM is able to simulate two- and three-dimen-
sional droplets in case of complex interactions. At the same time, both small- and large-
scale deformations of the (sharp) phase boundary can be rendered by the moving-mesh 
finite-volume method during the numerical simulations.

Up to our knowledge, this is the first time that compressible mixtures of real fluids with 
resolved sharp interfaces are simulated using an MD-based and neural network-accelerated 
multiscale model. In particular, we are able to simulate phase transitions of fluid mixtures-
without the need to prescribe some (ad hoc) closure relations at the interface.

We think that the HMM in combination with an ML surrogate modeling paves the way to 
handle more complex flow scenarios. Surface tension has not been taken into account, despite 
its importance for two-phase evolution. Here, it is possible to account for curvature effects on the 
continuum scale by adding a geometric term to the momentum equation [36]. However, the sur-
face tension coefficient might then require additional MD simulations like for the EOS. On the 
expense of more MD simulations, we expect that the extension to mixtures with more than two 
components is straightforward. A conceptual advantage of the underlying moving-mesh finite-
volume method is that tailored numerical schemes can be applied in the liquid and the vapor 
phases. This would allow for benefitting from, e.g., implicit time-stepping in the low-Mach liquid 
domain and, more importantly for mixtures, to account for large Maxwell-Stefan coefficients.

Appendix A Parameter Tables

See Tables A1, A2, A3, and A4.
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Table A1   Parameter table for the 
atomistic interface solver

Molecular Dynamics

Cutoff-radius rcutoff 2.5
Total number of particles N 32 768
Number of time steps Nend 5 × 102

Time step Δ� 5 × 10−4

Time sampling ratio �t−smpl 0.2

Table A2   Parameters for 
Sect. 5.1

Simulations for d = 1

End time tend 0.003
Time step Δt 107

Domain � [−5, 5]

Base cell width Δx 2 × 10−3

Δxmin 1∕2Δx

Δxmax 3∕2Δx

Maxwell-Stefan diffusion coefficient −D01 1.0

Table A3   Parameters for 
Sect. 5.2

Simulations for d = 2

Time step Δt 5 × 10−7

Domain � [−1.5, 1.5]2

Base edge length Δx 1.25 × 10−2

Δxmin 1∕2Δx

Δxmax 3∕2Δx

Table A4   Parameters for 
Sect. 5.3

Simulations for d = 3

Time step Δt 2 × 10−6

Domain � [−5, 5]3

Base edge length Δx 0.25
Δxmin 1∕2Δx

Δxmax 3∕2Δx

Maxwell-Stefan diffusion coefficient −D01 1.0
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