
Vol.:(0123456789)

Communications on Applied Mathematics and Computation
https://doi.org/10.1007/s42967-023-00345-y

1 3

ORIGINAL PAPER

Accuracy Analysis for Explicit‑Implicit Finite Volume Schemes
on Cut Cell Meshes

Sandra May1 · Fabian Laakmann2

Received: 10 September 2023 / Revised: 10 September 2023 / Accepted: 14 October 2023
© The Author(s) 2024

Abstract
The solution of time-dependent hyperbolic conservation laws on cut cell meshes causes
the small cell problem: standard schemes are not stable on the arbitrarily small cut cells if
an explicit time stepping scheme is used and the time step size is chosen based on the size
of the background cells. In May and Berger (J Sci Comput 71: 919–943, 2017), the mixed
explicit-implicit approach in general and MUSCL-Trap (monotonic upwind scheme for con-
servation laws and trapezoidal scheme) in particular have been introduced to solve this prob-
lem by using implicit time stepping on the cut cells. Theoretical and numerical results have
indicated that this might lead to a loss in accuracy when switching between the explicit and
implicit time stepping. In this contribution, we examine this in more detail and will prove in
one dimension that the specific combination MUSCL-Trap of an explicit second-order and
an implicit second-order scheme results in a fully second-order mixed scheme. As this result
is unlikely to hold in two dimensions, we also introduce two new versions of mixed explicit-
implicit schemes based on exchanging the explicit scheme. We present numerical tests in two
dimensions where we compare the new versions with the original MUSCL-Trap scheme.

Keywords Cartesian cut cell method · Finite volume scheme · Embedded boundary grid ·
Mixed explicit-implicit · Truncation error · Error accumulation

Mathematics Subject Classification 65M08 · 65M12 · 76M12 · 35L65

1 Introduction

Cartesian embedded boundary meshes for computing flow problems involving complex
geometries have become very popular as mesh generation is fully automatic and fairly
cheap: the geometry is simply cut out of Cartesian background cells. This results in cut

 * Sandra May
 sandra.may@it.uu.se

 Fabian Laakmann
 fabian.laakmann@maths.ox.ac.uk

1 Department of Information Technology, Uppsala University, Box 337, Uppsala 751 05, Sweden
2 Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s42967-023-00345-y&domain=pdf
http://orcid.org/0000-0001-9178-6595

 Communications on Applied Mathematics and Computation

1 3

cells where the object intersects the background mesh. Cut cells can have various shapes
and can in particular be arbitrarily small. This causes various issues when standard meth-
ods are used to solve partial differential equations (PDEs) on these meshes. The specific
issue depends on the kind of PDE to be solved.

In the context of time-dependent hyperbolic conservation laws the main issue is what
is referred to as the small cell problem: typically, explicit time stepping schemes are
used. By the CFL condition the time step size is coupled to the size of the cells. One
wants to choose the time step based on the size of the larger background cells and use
the same time step on the arbitrarily small cut cells. For standard schemes, this approach
causes the values on the small cut cells to explode.

One approach to solve this issue is to use cell merging or cell agglomeration, see,
e.g., [26, 38, 40]. In that approach cut cells that are too small are merged/combined with
neighboring cells, which eliminates the problem. The downside is that the complexity
is moved back into the mesh generation process. The alternative is to develop algorith-
mic solution approaches to overcome the small cell problem. Two very well-established
approaches are the flux redistribution method [10, 12] and the h-box method [7, 8, 21].
More recent approaches include the dimensionally split approach [19, 25], the extension
of the active flux method to cut cells [22], and the state redistribution scheme (SRD)
[6]. All of these schemes are based on finite volume approaches (if one counts the active
flux method as a finite volume scheme). A few years ago, the development of algorith-
mic solution approaches in the context of discontinuous Galerkin (DG) methods has
started. Existing solution approaches here are the DoD stabilization [14, 35], the exten-
sion of the ghost penalty stabilization [9] to time-dependent first-order hyperbolic prob-
lems [16, 17], as well as the extension of the SRD scheme to a DG setting [18].

In this contribution we will consider the mixed explicit implicit scheme in more detail,
which was introduced by May and Berger [30, 33, 34] in the context of a finite volume
setting to overcome the small cell problem. The idea is quite simple: cut cells are treated
implicitly for stability but cells away from the cut cells use a standard explicit time stepping
scheme to keep the cost low. The switch happens by means of flux bounding. The authors
combined a second-order explicit scheme with a second-order implicit scheme. Numerical
experiments [34] have shown that the resulting mixed scheme converges with second order
in the L1 norm. In the L∞ norm, one numerically sees full second order in one dimension
but in two and three dimensions orders between 1 and 2 were observed.

In this contribution we want to examine the error behavior of the mixed explicit-implicit
scheme in more detail and also test possible cures. In one dimension, we will first analyze
the one step error and then show that the mixed scheme indeed converges with second
order. As numerical results indicate that we will not be able to prove the same result in
higher dimensions, we will then introduce two new versions of the mixed explicit-implicit
scheme with an improved transition error. These will be designed so that on a Cartesian
mesh the transition between explicit and implicit time stepping has a third-order one step
error. We will include results from a test involving cut cells to see whether this increases
the overall accuracy of the scheme. Some of the material presented here has been part of
the master thesis of Laakmann [27].

The idea of combining explicit and implicit time stepping to gain stability has been used
by other authors as well and has in particular become more popular in recent years, see,
e.g., [13, 15, 37, 39] and the references cited therein. Here, we will focus on the approach
as introduced in [30, 34] in the context of cut cells. We note though that this approach can
easily be extended to other problem settings as well. Recently, it has been applied in the
context of two phase flow problems: if one uses a sharp interface method, then the creation

Communications on Applied Mathematics and Computation

1 3

of new phases (nucleation or cavitation) results in the creation of new tiny cells. In [36],
the newly created tiny cells have successfully been treated with the first-order version of
the mixed explicit-implicit scheme, extended to the isothermal Euler equations.

This contribution is structured as follows: in Sect. 2, we focus on the situation in one
dimension. We introduce the mixed explicit-implicit MUSCL-Trap (monotonic upwind
scheme for conservation laws and trapezoidal scheme) as used in [34] and examine its
error. We then present two different variants of the mixed explicit-implicit scheme, which
have a reduced transition error compared to the original scheme. In Sect. 3, we extend the
considerations to two dimensions. We first formulate the new variants in two dimensions
and then compare the three schemes numerically. We conclude with an outlook in Sect. 4.

2 Mixed Explicit‑Implicit Schemes in One Dimension

We consider the linear advection equation

with initial data s(t0, ⋅) = s0 . The standard model mesh for developing cut cell schemes in
one dimension is shown in Fig. 1: an equidistant mesh with mesh width h contains one cell
of length �h , labeled as cell 0, in the middle. Here, � ∈ (0, 1] denotes the volume fraction—
the ratio of the small cell to full cell volume.

2.1 The MUSCL‑Trap Scheme

The idea behind mixed explicit-implicit schemes for cut cell meshes as used in [30, 33,
34] is to employ an implicit scheme on the cut cell 0 for stability. Away from the cut cell
an explicit scheme is used to keep the cost low. In [34], May and Berger developed what
we will refer to as MUSCL-Trap, the combination of the explicit MUSCL and the implicit
Trapezoidal scheme by means of flux bounding.

MUSCL [11, 28] is a common explicit finite volume scheme. The scheme is second-
order accurate in space and time. In one dimension, the MUSCL for the linear advection
(1) on an equidistant grid is given by

with Sn
i,x

≈ �xs(t
n, xi) , computed using central difference gradients and a standard slope lim-

iter [29], with CFL number � =
uΔt

h
 . The scheme is stable for 0 < 𝜆 ⩽ 1 and would there-

fore become unstable on the cell 0 for 𝛼 < 1.
The implicit Trapezoidal rule in time in combination with a suitable slope reconstruc-

tion in space is given by

(1)s(t, x)t + us(t, x)x = 0, u > 0 constant

(2)Sn+1
i

= Sn
i
−

Δt

h

(
F
n+1∕2,M

i+1∕2
− F

n+1∕2,M

i−1∕2

)
, F

n+1∕2,M

i+1∕2
= u

(
Sn
i
+ (1 − �)Sn

i,x

h

2

)

Fig. 1 One-dimensional model problem: equidistant grid with one small cell of length �h labeled as cell 0

 Communications on Applied Mathematics and Computation

1 3

 for a non-equidistant mesh with cells of length hi.
In [30, 34], May and Berger examined various ways for combining an explicit scheme

with an implicit scheme and found flux bounding to be the best way. The idea is illustrated
in Fig. 2. One first updates all Cartesian cells that are not direct neighbors of the cut cell
using the explicit scheme, see Fig. 2a. In a second step, one updates the value on cells −1 ,
0, 1 comparing Fig. 2b. Here, cell 0 is treated fully implicitly to guarantee the stability on
the small cut cell, indicated by the light blue edges. The cells −1 and 1 are transition cells:
when updating cell −2 in Step (i) with the fully explicit scheme, one assumed that a certain
amount of mass, represented by Fn+1∕2,M

−3∕2
 , has left cell −2 . For the full scheme to be con-

servative, one needs to ensure that the mass arrives in cell −1 . This is achieved by reusing
the explicit flux for the edge −3∕2 in Step (ii). Note that transition cells employ both
explicit and implicit fluxes. Cut cells are treated fully implicitly, and Cartesian cells that
are not neighbors of cut cells are treated fully explicitly. Flux bounding is set up in a sym-
metric manner, i.e., it does not distinguish between u > 0 and u < 0 , allowing the extension
to more general problems, such as Euler equations [36]. Flux bounding has the following
properties.

 (i) It is conservative (by construction).
 (ii) It satisfies a TVD property in a suitable setting. May and Berger [34, Theorem 1]

showed the TVD stability for a mixed scheme combining MUSCL (with the minmod
limiter [29]) as an explicit scheme with implicit Euler and piecewise constant data
as an implicit scheme for 0 < 𝜆 ⩽ 1 , independent of the size of � ∈ (0, 1].

 (ii) It has a natural extension to two and three dimensions (see Sect. 3 as well as [34]).

(3a)Sn+1
i

= Sn
i
−

Δt

hi

(
F
n+1∕2,T

i+1∕2
− F

n+1∕2,T

i−1∕2

)
,

(3b)F
n+1∕2,T

i+1∕2
=

u

2

(
Sn
i
+ Sn

i,x

hi

2
+ Sn+1

i
+ Sn+1

i,x

hi

2

)

Fig. 2 Flux bounding: first the cells away from the cut cell are updated using an explicit scheme (edges
marked in green). Then the neighborhood of the cut cell is updated. The Cartesian neighbors of the cut
cell are transition cells. The update on these cells employs both explicit fluxes (edges marked in green) and
implicit fluxes (edges marked in light blue), see also [31] and [34, Fig. 6]

Communications on Applied Mathematics and Computation

1 3

This results in the following formulae for MUSCL-Trap in one dimension:

For the slope reconstruction on cells i ⩽ −2 and i ⩾ 2 unlimited central differences are
used. On the cut cell 0 and the transition cells −1 and 1 a least squares approach is
employed [5]. This extends in a straight-forward way to higher dimensions [3, 32]. Note
that the least squares slope S1,x enters the computation of the MUSCL flux Fn+1∕2

3∕2
 . Except

for this special case, only central difference slopes are used for the computation of MUSCL
fluxes. Throughout this paper we will assume all slopes to be unlimited.

Remark 1 This contribution focuses on the accuracy of mixed schemes in general and the
accuracy of MUSCL-Trap in particular. We will not discuss limiting here. For limiting on
cut cells, see, e.g., [32].

2.1.1 The One Step Error of MUSCL‑Trap

The one step error of scheme (4) has roughly been analyzed in [31, 34]. We will do
this here more thoroughly. Let the MUSCL-Trap scheme be given by Sn+1

i
= Φ(Sn, Sn+1)i

with

with Fn+1∕2,X

i+1∕2
 representing Fn+1∕2,M

i+1∕2
 or Fn+1∕2,T

i+1∕2
 , depending on i. For the computation of the

one step error, we replace the input arguments of Φi with the true cell averages at time tn
and tn+1 , given by s̄n

i
 and s̄n+1

i
 , resulting in

Remark 2 The one step error L(s̄n, s̄n+1)i measures the error made in one time step tn → tn+1
on cell i. Typically, i.e., on uniform meshes, the order of convergence of the one step error
is one order higher than the overall order of the scheme.

The numerically observed convergence order of the one step error for a smooth test
problem is summarized in Fig. 3. We observe a third-order one step error on cells that are
sufficiently far away from the cut cell. These cells use the full MUSCL scheme on a uni-
form mesh. In the neighborhood of the cut cell, we observe a second-order one step error.
This is due to the following four error sources.

(4)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Sn+1
−2

= Sn
−2

−
Δt

h

�
F
n+1∕2,M

−3∕2
− F

n+1∕2,M

−5∕2

�
(MUSCL),

Sn+1
−1

= Sn
−1

−
Δt

h

�
F
n+1∕2,T

−1∕2
− F

n+1∕2,M

−3∕2

�
(transition),

Sn+1
0

= Sn
0
−

Δt

�h

�
F
n+1∕2,T

1∕2
− F

n+1∕2,T

−1∕2

�
(Trapezoidal),

Sn+1
1

= Sn
1
−

Δt

h

�
F
n+1∕2,M

3∕2
− F

n+1∕2,T

1∕2

�
(transition),

Sn+1
2

= Sn
2
−

Δt

h

�
F
n+1∕2,M

5∕2
− F

n+1∕2,M

3∕2

�
(MUSCL).

(5)Φ(Sn, Sn+1)i = Sn
i
−

Δt

hi

[
F
n+1∕2,X

i+1∕2
(Sn, Sn+1) − F

n+1∕2,X

i−1∕2
(Sn, Sn+1)

]

(6)L(s̄n, s̄n+1)i = Φ(s̄n, s̄n+1)i − s̄n+1
i

.

 Communications on Applied Mathematics and Computation

1 3

Error sources

(i) The switch in the time stepping scheme between MUSCL and Trapezoidal rule results
in an error term of size O(h2) . The examination of its propagation is one key aspect of
this research.

(ii) The irregularity of the cut cell causes several errors if 𝛼 < 1:
(a) the slope reconstruction, which uses a least squares approach, is only of first order,

resulting in second-order error terms that we summarize in aih2 for cell i (this is the
only reason for the error of size O(h2) on cell 2);

(b) in the computation of the fluxes, we use the variable Sn
i
 (which is supposed to be an

approximation to the cell average s̄n
i
) as the approximation to the point value s(tn, xi) ;

this results in second-order error terms that we summarize in bih2;
(c) for a third-order one step error, we would need to use a quadratic reconstruction in space

instead of a linear one; we summarize the resulting error terms on cell i in cih2.

We note that on an equidistant mesh, i.e., � = 1 , all error terms listed under (ii) reduce
to third-order errors, partly due to cancellation effects with neighboring cells. Using this
notation, we observe on cells −1 , 0, and 1 the following errors:

Note that the error that we make when switching from MUSCL to Trapezoidal on cell −1 is
to lead order the negative of the error that we make when switching back from Trapezoidal
to MUSCL on cell 1.

2.1.2 Numerical Results for MUSCL‑Trap

In [34], the authors presented numerical results for the model problem shown in Fig. 1,
which we will start with as well to keep the presentation mostly self-contained.

Test 1 Consider the model problem shown in Fig. 1. One cut cell is located in the inter-
val [0.5, 0.5 + �h] . The overall domain length is given by [0, 1 + �h] . Periodic boundary
conditions are used. The test function is sin

(
2π(x+0.36)

1+�h

)
 , � = 10−4 , and the final time is

T = 1 + �h so that the test function is back to its original position. The L1 error has been

(7a)L(s̄n, s̄n+1)−1 =
1

4
(1 − 𝜆)𝜆2h2sxx(t

n, x−1) + a−1h
2 + b−1h

2 + c−1h
2 +O(h3),

(7b)L(s̄n, s̄n+1)0 = a0h
2 + b0h

2 + c0h
2 +O(h3),

(7c)L(s̄n, s̄n+1)1 = −
1

4
(1 − 𝜆)𝜆2h2sxx(t

n, x1) + a1h
2 + b1h

2 + c1h
2 +O(h3).

Fig. 3 The one step error |L(s̄n, s̄n+1)
i
| for the MUSCL-Trap scheme for i = −3,⋯ , 3

Communications on Applied Mathematics and Computation

1 3

normalized to account for the changing domain length. We solve st + sx = 0 with � = 0.8 ,
independent of � . The results for the one step error and the error at time T are shown in
Table 1.

For the one step error in the L∞ norm we observe second-order convergence, as
expected. The third-order convergence in the L1 norm can be explained by a simple count-
ing argument: let M denote the number of Cartesian cells. Then, there are M−3 cells (out
of M+1 total cells) with an error of size O(h3) and only four cells with an error of size
O(h2) . This results in the third-order convergence in the L1 norm.

The results for the error at time T are more surprising: we observe full second-order
convergence in the L1 and L∞ norms despite the one step error only converging with second
order in L∞ . However, there is a reasonable explanation for this behavior. Let us consider
error accumulation from a Lagrangian view point: let us fix one cell, e.g., the cell that con-
tains the peak of the sine curve, put a tracer there, and follow the tracer during the simula-
tion. If we assume that our scheme is stable (and that error propagates with norm smaller/
equal than 1), the error at time T essentially corresponds to the sum of all the one step
errors of all the cells that our tracer has passed. Given that most cells have a one step error
of third order and that there are only four isolated cells with a one step error of second
order, this consideration actually implies to expect a second-order error on all cells at time
T. This is consistent with the numerical results.

This consideration motivates the following new test, Test 2, which we expect to be more
challenging: instead of using only one cut cell, we double the number of cut cells as we
have the grid size h . Then, the number of cells with one step error O(h2) increases with
O(

1

h
) and should affect the convergence order at time T.

Test 2 The test setup is shown in Fig. 4. We use K = 40 and L = 4 on the coarsest
mesh. The overall domain length is given by [0, 1 + 4�h0] with h0 denoting the coarsest
mesh (in our case h0 =

1

160
). Different to Test 1, the domain length stays constant. The

Table 1 Result of Test 1:
MUSCL-Trap for the model
problem in Fig. 1

Final time h L1 error Order L∞ error Order

1 step error 1/160 2.95E−06 – 5.52E−04 –
1/320 3.65E−07 3.01 1.36E−04 2.02
1/640 4.55E−08 3.01 3.36E−05 2.01

1 period error 1/160 5.68E−05 – 3.51E−04 –
1/320 1.48E−05 1.94 7.41E−05 2.24
1/640 3.77E−06 1.97 1.77E−05 2.07

Fig. 4 New one-dimensional model problem: the grid consists of L blocks with K + 1 cells that each con-
tains K cells of length H (here H = h,

h

2
,
h

4
) and one cut cell of length �H in the middle. When the mesh is

refined by a factor of 2, we keep K (and �) fixed but double L. Analogous to Fig. 1, we refer to cut cells as
(cells of type) 0, to the left Cartesian neighbors of cut cells as (cells of type) −1 , and to the right Cartesian
neighbor as (cells of type) 1

 Communications on Applied Mathematics and Computation

1 3

test function is sin
(

2π(x+0.36)

1+4�h0

)
 , � = 10−4 , and T = 1 + 4�h0 so that the test function is

back to its original position. The results for the one step error and the error at time T are
shown in Table 2.

Despite the one step error being only of second order in both the L1 and L∞ norms,
the error after one period also converges with second order both in L1 and L∞ . This
behavior of the error accumulation behaving differently on non-uniform meshes has
been observed and analyzed before [41]. We will follow the proof from [41] to show
the second order accuracy for MUSCL-Trap in Theorem 1. Similar ideas have also been
used to show the second order accuracy of the h-box method [8].

Different to Test 1, we observe for the one step error measured in the L1 norm, a
convergence order of 2 (compared to 3 before). This can be explained as follows: let
ei = Sn

i
− s̄n

i
 denote the error on cell i, let K+1 be the number of cells per block, and let

there be L blocks. As before, M denotes the total number of Cartesian cells. This implies
M + L = L ⋅ (K + 1) . Then, the L1 error can be computed as (with c denoting a generic
constant)

Using L =
M

K
 and M = O(

1

h
) , we get

Therefore, for keeping K (the number of cells per block) fixed, we get an L1 error of O(h2) .
This theoretical consideration coincides with our numerical observation. Note that in Test
1, K is increased with O(

1

h
) , explaining the better convergence rate of 3 in the L1 norm for

the one step error.

2.1.3 Proof for MUSCL‑Trap Being Second‑Order Accurate

For the proof of second-order convergence, we require the stability of the method.
Examining this stability mathematically is very challenging due to using a non-uniform
mesh and a mixed scheme. Applying, for example, the von Neumann stability analysis

∑
cells

hi ⋅ |ei| =
∑

normal
cells

h ⋅O(h3) +
∑
cells

−1, 1, 2

h ⋅O(h2) +
∑
cell 0

�h ⋅O(h2)

= (M − 3L) ⋅ ch4 + 3L ⋅ ch3 + L ⋅ �ch3.

∑
cells

hi ⋅ |ei| =
(
1 −

3

K

)
⋅ ch3 + 3

1

K
⋅ ch2 +

1

K
⋅ �ch2.

Table 2 Result of Test 2: error
for MUSCL-Trap for the model
problem shown in Fig. 4

Final time h L1 error Order L∞ error Order

One step error 1/160 7.81E−06 – 6.86E−04 –
1/320 2.22E−06 1.82 1.67E−04 2.04
1/640 5.40E−07 2.04 4.31E−05 1.95

One period
error

1/160 4.76E−05 – 5.10E−04 –
1/320 1.15E−05 2.05 1.06E−04 2.27
1/640 2.90E−06 1.98 2.27E−05 2.23

Communications on Applied Mathematics and Computation

1 3

is not feasible. We therefore formulate this as Assumption 1 in the proof below. In our
numerical tests, we found that this was true for the L1 and L∞ norms.

Theorem 1 Let Assumption 1 below hold true. Consider the MUSCL-Trap scheme given by
(4), but assume that slopes are computed by means of an unlimited forward difference quo-
tient. Let 0 < 𝜆 ⩽ 1 be independent of � . Then the scheme is second-order accurate with
respect to the norm used in Assumption 1 for the linear advection equation for the model
problem in Fig. 1d model problem for sufficiently smooth initial data s0.

Proof For the proof, we use an idea that goes back to Wendroff and White [41], and which
has also been used to show second-order accuracy of the h-box method [8]. Assume that
we are able to construct a grid function with cell averages w̄n

i
 such that (i) the new grid

function w̄n
i
 is sufficiently close to s̄n

i
 and (ii) the one step error is of third order for all cells.

To be precise, w̄n
i
 is supposed to satisfy

Assumption 1 We assume that the MUSCL-Trap scheme is stable with respect to the
norm ‖ ⋅ ‖ in the following sense: there holds

for the error propagation.

For the error grid function En = Sn − w̄n there holds by linearity of Φ,

From Assumption 1 and assumption (8b), we can conclude

with N =
T

Δt
 and Δt = O(h) . In other words, we have “normal” error accumulation with

respect to the new solution w̄n . Together with property (8a) we get by means of the triangle
inequality

which implies global, second-order convergence with respect to the true solution s̄.
It remains to find such a suitable grid function w̄n . We note that this is the essence of

this proof.
Case � = 1 . We first consider the case of a uniform mesh. The main error source that

we like to examine is the switch in time stepping. Note though that different to (7), we

(8a)(i) w̄n
i
= s̄n

i
+O(h2), ∀ i, n,

(8b)(ii) |L(w̄n, w̄n+1)i| = O(h3), ∀ i, n.

‖Φ(Sn−1 − w̄n−1, Sn − w̄n)‖ ⩽ ‖Sn−1 − w̄n−1‖ +O(h3), ∀ 1 ⩽ n ⩽ N

Sn − w̄n = Φ(Sn−1, Sn) − w̄n = Φ(En−1 + w̄n−1,En + w̄n) − w̄n

= Φ(En−1,En) + Φ(w̄n−1, w̄n) − w̄n = Φ(En−1,En) + L(w̄n−1, w̄n).

‖SN − w̄N‖ ⩽ ‖Φ(SN−1 − w̄N−1, SN − w̄N)‖ + ‖L(w̄N−1, w̄N)‖
⩽ ‖SN−1 − w̄N−1‖ +O(h3) ⩽ ‖S0 − w̄0‖ + T

Δt
O(h3) = O(h2)

‖SN − s̄N‖ ⩽ ‖SN − w̄N‖ + ‖w̄N − s̄N‖ = O(h2) +O(h2) = O(h2),

 Communications on Applied Mathematics and Computation

1 3

now assume that forward differences are used. Therefore, the actual error terms look
slightly different and are given by

We define

A direct computation then shows L(�n, �n+1)0 = O(h3) as well as

This implies by linearity

Therefore, assumptions (8a) and (8b) are satisfied.
Case 𝛼 < 1 . In this case we need to address all four error sources. First, a direct compu-

tation shows that for forward differences there holds with � =
1+�

2

Note in particular that for this setup, the one step error on the small cell is surprisingly of
third order as errors cancel nicely. We define

with

This results in L(�n, �n+1)0 = O(h3) as well as in

which implies the claim.

L(s̄n, s̄n+1)−1 = −
1

4
𝜆3h2sxx(t

n, x−1) +O(h3), L(s̄n, s̄n+1)0 = O(h3),

L(s̄n, s̄n+1)1 =
1

4
𝜆3h2sxx(t

n, x1) +O(h3).

(9)w̄n
i
= s̄n

i
+ 𝛾n

i
with 𝛾n

i
=

{
−

1

2
𝜆2h2sn

xx
(tn, x0) for i = 0,

0 otherwise.

L(�n, �n+1)−1 = −
�

2
�n
0
+O(h3), L(�n, �n+1)1 =

�

2
�n
0
+O(h3).

L(w̄n, w̄n+1)i = O(h3), ∀ i.

(10a)L(s̄n, s̄n+1)−1 =
𝜆

4

(
−𝜆2 + (1 − 𝛽) −

1

2𝛽

1

6
(𝛼2 − 1)

)
h2sn

xx
(tn, x−1) +O(h3),

(10b)L(s̄n, s̄n+1)0 = O(h3),

(10c)L(s̄n, s̄n+1)1 =
𝜆

4

(
𝜆2 + (𝛽 − 1) +

1

2𝛽

1

6
(𝛼2 − 1)

)
h2sn

xx
(tn, x1) +O(h3).

(11)w̄n
i
= s̄n

i
+ 𝛾n

i
with 𝛾n

i
=

{
𝛾n
0

for i = 0,

0 otherwise

(12)�n
0
=

�

2

(
−�2 + (1 − �) −

1

2�

1

6
(�2 − 1)

)
h2sn

xx
(tn, x0).

L(�n, �n+1)−1 = −
�

2�
�n
0
+O(h3), L(�n, �n+1)1 =

�

2�
�n
0
+O(h3),

Communications on Applied Mathematics and Computation

1 3

Remark 3 The advantage of forward differences compared to central differences lies in
the reduced coupling of cells. For central differences, we have not been able to find suit-
able coefficients �n when using periodic boundary conditions. But the numerical results in
Sect. 2.1.2 imply that the same order of convergence holds true when one employs central
differences instead of forward ones.

Remark 4 We note that we addressed two different error sources in this proof: the error
caused by the switch in the time stepping scheme and the error caused by the irregular
length of the cut cell. The reason that the former error does not accumulate is simply that
we make an error of size − �3

4
h2sxx(t

n, x−1) on cell −1 and an error of size �
3

4
h2sxx(t

n, x1) on
cell 1. In other words, the error that we made on cell −1 cancels to leading order with the
error that we make two cells later.

Finally, we verify our results numerically. We repeat Test 2 using forward difference
quotients but this time we compare our discrete solution Sn

i
 to our new grid function w̄

given by (11) and (12). The result is given in Table 3 and shows the expected conver-
gence rates.

2.2 New Variants of Mixed Explicit‑Implicit Schemes

Our theoretical and numerical considerations above imply that the mixed scheme
MUSCL-Trap is second-order accurate in one dimension, despite only having a second-
order one step error. The numerical results in two dimensions though for MUSCL-Trap
presented in [34] showed convergence rates between 1.3 and 1.6 measured in the L∞
norm. This implies that in two dimensions the error does accumulate to some extent.
Therefore, we cannot expect to be able to find a new grid function w̄n with properties (i)
and (ii) in two dimensions.

In order to find a scheme with a third-order one step error, we would need to address
all four error sources. As error sources (ii)(a)–(c) are very difficult to examine in two
dimensions (due to varying sizes and shapes of cut cells) and are generally shared by
most cut cell schemes, we focus here on the error caused by switching the time stepping
scheme. Further, we expect the error for switching the time stepping scheme to have a
very different effect in one dimension and two dimensions: in one dimension, charac-
teristics are typically set up in a way that an error caused by switching from explicit to
implicit is followed very briefly afterward by an error caused by switching from implicit

Table 3 Result of Test 2: error
for MUSCL-Trap using forward
difference quotients for the
model problem shown in Fig. 4

The new grid function w̄ given by (11) is used for initialization and
error computation

Final time h L1 error Order L∞ error Order

One step error 1/160 1.74E−06 – 5.23E−06 –
1/320 2.24E−07 2.95 6.29E−07 3.06
1/640 2.85E−08 2.98 8.21E−08 2.94

One period
error

1/160 3.74E−04 – 5.90E−04 –
1/320 9.28E−05 2.01 1.46E−04 2.02
1/640 2.32E−05 2.00 3.71E−05 1.98

 Communications on Applied Mathematics and Computation

1 3

back to explicit. In two dimensions, however, see the setup of the ramp test below in
Fig. 6, this effect of switching back and forth might not be there. Instead there can be
characteristics that mainly go through transition cells.

2.2.1 Developing Mixed Time Stepping Schemes with Better Transition Error

We will discuss the issue of reducing the error by switching the time stepping scheme in a
sightly more general setting. For finite volume schemes, one typically uses the conservative
update formula

with Fi±1∕2 being an appropriate approximation to the flux at the edge xi±1∕2 during the time
step. In the case of the linear advection (1) (with WLOG u = 1), we try to approximate

To only focus on the temporal error, we will reinterpret time stepping schemes as quadra-
ture formulae for approximating the integral in (14), assuming that we know all values at
the edges x = xi±1∕2 that we need. To give an example: using explicit Euler in time would
correspond to approximating Ftrue

i+1∕2
 by the point evaluation s(tn, xi+1∕2) . For MUSCL and

Trapezoidal time stepping we have the following results.

• MUSCL: the corresponding time stepping scheme is the explicit midpoint rule, which cor-
responds to the following approximation of Ftrue

i+1∕2
 :

 This results in

• Trapezoidal: the Trapezoidal time stepping scheme approximates Ftrue
i+1∕2

 by

 This results in the error

Therefore, assuming that the reconstruction in space is done sufficiently accurately, when
using Trapezoidal rule time stepping, we approximate Ftrue

i+1∕2
 with an error of O(Δt2) . How-

ever, when we use Trapezoidal on both edges, we make to leading order the same (systematic)
error for the approximation of Ftrue

i−1∕2
 . When applying the update formula (13), the leading

order error term cancels and there holds

(13)Sn+1
i

= Sn
i
−

Δt

h

(
Fi+1∕2 − Fi−1∕2

)

(14)Ftrue
i+1∕2

=
1

Δt ∫
tn+1

tn

s(t, xi+1∕2) dt.

F
(M)

i+1∕2
= s(tn, xi+1∕2) +

Δt

2
st(t

n, xi+1∕2).

Ftrue
i+1∕2

− F
(M)

i+1∕2
=

Δt2

6
stt(t

n, xi+1∕2) +O(Δt3).

F
(T)

i+1∕2
=

1

2

[
s(tn, xi+1∕2) + s(tn+1, xi+1∕2)

]
.

Ftrue
i+1∕2

− F
(T)

i+1∕2
= −

Δt2

12
stt(t

n, xi+1∕2) +O(Δt3).

Communications on Applied Mathematics and Computation

1 3

Therefore, for h = O(Δt) , we get an error of order O(Δt3) (for the time approximation).
However, if we use the explicit midpoint rule (=̂ MUSCL) for Fi−1∕2 and Trapezoidal time
stepping for Fi+1∕2 , we get

This is the transition error that we saw before.
Note that these considerations have another important implication: the seemingly easiest

way to improve the transition error that we observed for MUSCL-Trap would be to just
keep MUSCL and use a third-order implicit scheme. Or to keep the Trapezoidal time step-
ping scheme and upgrade the explicit time stepping scheme to third order. However, both
versions would not show the result one hoped for. The easiest way to see this is by combin-
ing, for example, the MUSCL flux F(M)

i−1∕2
 with the true flux Ftrue

i+1∕2
 . Then, when applying the

conservative update formula (13), we would be left with an error of O(Δt2) despite the
scheme being apparently more accurate than when applying MUSCL fluxes on both edges.

Therefore, the two options to get a scheme with a third-order one step error (with respect
to the time error) are to (a) either use both an explicit and an implicit time stepping scheme
that approximate Ftrue

i±1∕2
 with third order or (b) to find a combination of a second-order

explicit and a second-order implicit time stepping scheme such that the leading order error
terms match.

Besides approach (a) being more expensive, third-order time stepping schemes also
typically involve several stages, which makes the coupling very complicated. We therefore
follow approach (b): we fix the implicit Trapezoidal rule and look for a new explicit time
stepping scheme. We will consider two different modifications of the MUSCL scheme.

2.2.2 The MUSCLmod‑Trap Scheme

The first approach is to change the MUSCL scheme given in (2) to use

The idea is to account for the error term Δt
4
stt(t

n, x1+1∕2) that we saw above when switching
between Trapezoidal and explicit midpoint rule but the details slightly vary as we generally
do not have the exact values on the edges. The precise formulation simply comes out of
the error analysis for combining MUSCL with Trapezoidal. The truncation error analysis
shows that

• using MUSCLmod on an equidistant mesh as fully explicit scheme, there holds
L(s

n+1

i
) = O(h3);

• using MUSCLmod in a mixed MUSCLmod-Trap scheme (with � = 1), there holds
L(s

n+1

i
) = O(h3).

(
Ftrue
i+1∕2

− Ftrue
i−1∕2

)
−
(
F
(T)

i+1∕2
− F

(T)

i−1∕2

)

= −
Δt2

12
stt(t

n, xi+1∕2) +
Δt2

12
stt(t

n, xi−1∕2) +O(Δt3) = O(Δt2h) +O(Δt3).

(
Ftrue
i+1∕2

− Ftrue
i−1∕2

)
−
(
F
(T)

i+1∕2
− F

(M)

i−1∕2

)

= −
Δt2

12
stt(t

n, xi+1∕2) −
Δt2

6
stt(t

n, xi−1∕2) +O(Δt3) = O(Δt2).

F
n+1∕2,Mmod

i+1∕2
= u

(
Sn
i
+ (1 − �)Sn

i,x

h

2
−

1

4
�(1 − �)h2Sn

i,xx

)
.

 Communications on Applied Mathematics and Computation

1 3

A von Neumann stability analysis for the new MUSCL version shows a CFL condition of
0 < 𝜆 ⩽ 1.

In Table 4 we show the result for the new mixed MUSCLmod-Trap scheme for Test
2, but using � = 1 , i.e., we switch the time stepping between explicit and implicit at the
corresponding cells but do that on an equidistant mesh to avoid error sources (ii)(a)–(c).
As expected we observe third order for the one step error and second error for the error at
time T. We use a standard second-order accurate difference quotient to evaluate the second
derivatives.

2.2.3 The MPRKC‑Trap Scheme

For the second variant, consider the explicit Trapezoidal rule, also known as the standard
second-order SSP RK (strong stability preserving Runge-Kutta) scheme [20], and given by
(for the ODE yt = g(y(t)))

If we compare that with the implicit Trapezoidal rule, we see that there is a O(Δt2) differ-
ence due to using a second-order predictor step y(1) instead of yn+1 . Therefore, to get an
explicit scheme that matches the leading order error term of F(T)

i+1∕2
 up to third order, we

need to replace the predictor step (computation of y(1)), which currently uses explicit Euler,
by a more accurate predictor. We choose the explicit midpoint rule for this purpose.
Together with a suitable space discretization (the new predictor step will correspond to the
MUSCL scheme), this results in a new explicit finite volume scheme, which we will pre-
sent now. Note that by construction this new scheme will show a third-order one step tran-
sition error when coupled to (implicit) Trapezoidal time stepping with slope
reconstruction.

The new explicit scheme, which we call MPRKC (for MUSCL Predictor RK Corrector)
scheme, is given by

 with

y(1) = yn + Δtg(yn), yn+1 = yn +
Δt

2

[
g(yn) + g(y(1))

]
.

(15a)S
(1)

i
= Sn

i
−

Δt

h

(
F
n+1∕2,M

i+1∕2
− F

n+1∕2,M

i+1∕2

)
,

(15b)Sn+1
i

= Sn
i
−

Δt

h

(
F
n+1∕2,ET

i+1∕2
− F

n+1∕2,ET

i−1∕2

)

Table 4 Result of Test 2: error
for MUSCLmod-Trap for the
model problem in Fig. 1d model
problem � = 1 (i.e., equidistant
mesh but including change in
time stepping scheme)

Final time h L1 error Order L∞ error Order

One step
error

1/160 9.06E−07 – 6.65E−06 –
1/320 1.18E−07 2.95 8.21E−07 3.02
1/640 1.49E−08 2.98 1.05E−07 2.96

One period
error

1/160 1.79E−04 – 2.78E−04 –
1/320 4.51E−05 1.99 6.94E−05 2.00
1/640 1.13E−05 2.00 1.73E−05 2.00

Communications on Applied Mathematics and Computation

1 3

Remark 5 In terms of cost, the new scheme is roughly twice as expensive as MUSCL for
taking one time step. Compared to using the standard second-order SSP RK scheme with
slope reconstruction in space, the cost is roughly the same. We just exploit the information
from the slope reconstruction in stage 1 more carefully.

Lemma 1 The scheme (15)–(16) is linearly stable for the linear advection equation (1) on
an equidistant mesh under the CFL condition 0 < 𝜆 ⩽ 1.

Proof The claim follows by means of a von Neumann stability analysis. We analytically
deduce a very lengthy and complicated expression for the amplification factor |G| (not
given here). We then verify numerically that |G| ⩽ 1 if and only if 0 < 𝜆 ⩽ 1.

We combine the explicit MPRKC scheme with the implicit Trapezoidal scheme (3) using
flux bounding, resulting in MPRKC-Trap. This is sketched in Fig. 5. Due to MPRKC being
a two-stage scheme, the implicit region has become bigger compared to MUSCL-Trap. The
results for the mixed scheme on an equidistant mesh with � = 1 but with switching the scheme
as indicated in Test 2 are shown in Table 5. As expected, the one step error converges with the
third order and the error at time T with the second order.

3 Mixed Explicit‑Implicit Schemes in Two Dimensions

In the following we will discuss mixed explicit-implicit schemes in two dimensions: we
will first briefly introduce the two dimensions version of the MUSCL-Trap scheme as pre-
sented in [34] and examine its error. Then, we will introduce variants of MUSCLmod-Trap
and MPRKC-Trap in two dimensions. We will conclude with a comparison of the resulting
schemes for both a fully Cartesian mesh and a cut cell mesh.

3.1 The MUSCL‑Trap Scheme

In two dimensions, we solve the linear advection equation

(16)F
n+1∕2,ET

i+1∕2
=

u

2

(
Sn
i
+ Sn

i,x

h

2
+ S

(1)

i
+ S

(1)

i,x

h

2

)
.

Table 5 Result of Test 2: error
for MPRKC-Trap for the model
problem in Fig. 1d model
problem � = 1 (i.e., equidistant
mesh but including change in
time stepping scheme)

Final time h L1 error Order L∞ error Order

One step error 1/160 8.45E−07 – 2.10E−06 –
1/320 1.07E−07 2.98 2.59E−07 3.01
1/640 1.36E−08 2.98 3.32E−08 2.97

One period
error

1/160 1.81E−04 – 2.79E−04 –
1/320 4.52E−05 2.00 6.95E−05 2.01
1/640 1.13e−05 2.00 1.73e−05 2.00

 Communications on Applied Mathematics and Computation

1 3

Here, s(t, x, y) denotes a scalar field. For simplicity, we will only consider a constant
velocity field, i.e., u and v are assumed to be constant. This is sufficient to show our main
findings.

As an explicit scheme, an unsplit, two-dimensional MUSCL scheme [2] is used. For
brevity reasons, we will not present the details here. We note though that this MUSCL
scheme uses corner-coupling to capture proper dependencies in two dimensions and
is therefore stable under the CFL condition 0 < 𝜈 ⩽ 1 in combination with the time step
computation

Flux bounding is used to couple the explicit MUSCL scheme with an implicit scheme.
The idea is sketched in the left graphic of Fig. 6. Full Cartesian cells that are edge neigh-
bors of cut cells are marked as transition cells. Cut cells are treated fully implicit. There-
fore, fluxes between cut cells and transition cells use an implicit scheme. All remaining
fluxes, in particular fluxes between two transition cells, use an explicit scheme.

This results in the following two-step algorithm, which is analogous to the one
dimension situation: given Sn

ij
 ,

(17)st + usx + vsy = 0.

(18)Δt = �min

(
Δx

|u| ,
Δy

|v|
)
.

Fig. 5 The new MPRKC-Trap scheme: we compute S(1)
i

 using the MUSCL scheme for cells i ⩽ −2 and i ⩾ 2
as sketched in Fig. 2a. Then we compute the explicit flux Fn+1∕2,ET given by (16) for all edges marked in
green and update the fully explicitly treated cells i ⩽ −4 and i ⩾ 4 . We combine this using flux bounding
with an implicit treatment (edges marked in light blue) of cells −3,⋯ , 3 . Note that now cells −3 and 3 cor-
respond to the transition cells

Fig. 6 Switching between schemes in two dimensions: cut cells are marked by pink color. Implicit fluxes
are marked by a bold, red line, explicit fluxes by blue. Left: MUSCL-Trap: “Transition” cells (marked with
“T”) are full Cartesian cells that share an edge with a cut cell. Right: MPRKC-Trap: the shaded cells corre-
sponds to the layer of cells closest to the embedded object that can be updated using the MUSCL predictor
step. Transition cells (marked with “T”) have been shifted by two cell layers compared to MUSCL-Trap

Communications on Applied Mathematics and Computation

1 3

 (i) compute all explicit fluxes using the MUSCL scheme and update all fully explicitly
treated cells to Sn+1

ij
;

 (ii) compute all implicit fluxes and update cut cells and transition cells to Sn+1
ij

.

As an implicit scheme, Trapezoidal time stepping in combination with a least squares
formulation for slope reconstruction in space [3, 32] is used. On Cartesian cells that are
not transition cells standard central differences are used for slope reconstruction. No
limiting is applied.

We note that on cut cells, one reconstructs to the midpoint of the cut cell edges, not
to the midpoint of the Cartesian edges. To be more precise, the update on a cut cell is
given by

where �ij ∈ (0, 1) is the volume fraction and

Here (xi+1∕2,j, yi+1∕2,j) denotes the location of the edge midpoint of face (i + 1∕2, j) , (xij, yij)
denotes the centroid of cut cell (i, j), and Sij,x and Sij,y refer to the reconstructed unlimited
x- and y-slopes respectively in cell (i, j). Further, �i+1∕2,j ∈ [0, 1] represents the area frac-
tion of cut cell edge (i + 1∕2, j) compared to a full Cartesian edge. The fluxes Gn+1∕2,T

i,j+1∕2
 are

defined analogously. This concludes the brief description of the MUSCL-Trap scheme.
More details can be found in [34].

Remark 6 (Cost of MUSCL-Trap) In each time step, one needs to solve an implicit system
that couples the cut cells and transitions cells. Since cut cells occur only at the bound-
ary of the embedded object, the size of this system is one dimension lower than the over-
all number of cells. In two dimensions on a Cartesian grid with N cells in each direction,
one expects O(N) unknowns in the implicit system. Therefore, using this mixed explicit-
implicit approach is significantly cheaper than using an implicit scheme everywhere.

In [34], May and Berger presented numerical results for the (unlimited) MUSCL-
Trap scheme in two dimensions. The L1 error converged with second order. The L∞ error
however showed convergence rates between 1.3 and 1.6. This is not in line with the
second-order accuracy that we saw in one dimension. Newer results with DG codes on
cut cell meshes for piecewise linear polynomials however have also showed reduced
convergence rates in the L∞ norm of 1.5–1.6 [14, 18]. This raises the general question
of whether we can expect to see full second-order convergence in the L∞ norm on two
dimensional cut cell meshes at all but this is the goal.

In the following we want to examine the accuracy of the scheme in two dimensions
more closely than done in [34]. Here, we will focus on the error caused by switching the
time stepping scheme. Due to the complexity of cut cells in two dimensions, our exami-
nation will be mostly based on numerical experiments.

(19)Sn+1
ij

= Sn
ij
−

Δt

�ijΔxΔy

(
F
n+1∕2,T

i+1∕2,j
− F

n+1∕2,T

i−1∕2,j
+ G

n+1∕2,T

i,j+1∕2
− G

n+1∕2,T

i,j−1∕2

)
,

F
n+1∕2,T

i+1∕2,j
=

1

2
u𝛽i+1∕2,jΔy(S

n
i+1∕2,j

+ Sn+1
i+1∕2,j

),

Sn
i+1∕2,j

=

{
Sn
ij
+ (xi+1∕2,j − xij)S

n
ij,x

+ (yi+1∕2,j − yij)S
n
ij,y

if u > 0,

Sn
i+1,j

+ (xi+1∕2,j − xi+1,j)S
n
i+1,j,x

+ (yi+1∕2,j − yi+1,j)S
n
i+1,j,y

if u < 0.

 Communications on Applied Mathematics and Computation

1 3

Remark 7 For our numerical tests in two dimensions, we use the code setup from [34] as
the starting point: our implementation is based on BoxLib [4], a library for massively par-
allel AMR applications. For the generation of the cut cells, we use patchCubes, a vari-
ant of the cubes mesh generator that is part of the Cart3D package [1, 24]. The solution
of the resulting implicit system is done using umfpack [23].

3.1.1 The Transition Error for MUSCL‑Trap (in Absence of Cut Cells)

We would like to examine the time stepping transition error in the absence of error sources (ii)
(a)–(c) caused by the irregularity of the cut cells. Therefore, we consider the test setup shown
in Fig. 7: we create a setup where we switch between explicit and implicit time stepping but
all cells are full Cartesian cells. As on a Cartesian mesh error sources (ii)(a)–(c) drop out, the
remaining error should be dominated by the switch from MUSCL to Trapezoidal.

For the theoretical considerations, we focus on the case of 45◦ and choose u = v = 1 and
Δx = Δy . The update on a transition cell is given by

A lengthy computation, which involves the usage of the equation st + sx + sy = 0 to re-
express derivatives, leads to the following formula for the one step error on transition cells:

Therefore, we expect in general a one step error of second order. For the special case
sxx = syy , we expect a third-order one step error (we confirmed this in numerical experi-
ments not shown here).

In numerical tests, see e.g., Test 3 below, we often observed (for a variety of angles)
that on a full Cartesian mesh, we have a second-order one step error in L∞ due to this

Sn+1
ij

= Sn
ij
−

Δt

ΔxΔy

(
F
n+1∕2,T

i+1∕2,j
− F

n+1∕2,M

i−1∕2,j
+ G

n+1∕2,M

i,j+1∕2
− G

n+1∕2,T

i,j−1∕2

)
.

L(s̄n, s̄n+1)ij =
1

4

(
Δt2 −

Δt3

h

)
sxx(t

n, xi, yj) −
1

4

(
Δt2 −

Δt3

h

)
syy(t

n, xi, yj) +O(Δt3).

Fig. 7 Setup for testing transition error in two dimensions: all cells are Cartesian cells but we simulate the
switch in time stepping. To do so, we intersect a Cartesian grid with a line with angle � . All cells cut by
this line (marked in pink) are treated as “fake” (as Cartesian) cut cells. All “fake” cut cell edges as well as
all edges of cells below the “fake” cut cells use the implicit scheme (marked in red). All remaining edges
(marked in blue), i.e., all edges of cells above the “fake” cut cells use the explicit scheme. The switch takes
place on the cells marked with a “T”

Communications on Applied Mathematics and Computation

1 3

transition—but that this transition error accumulates “only” to a scheme of order O(h1.5)
for the L∞ error at time T.

3.2 New Mixed Explicit‑Implicit Schemes

We now present the extensions of MUSCLmod-Trap and MPRKC-Trap to two dimensions.

3.2.1 The MUSCLmod‑Trap Scheme

To derive the new explicit MUSCLmod scheme, we essentially do a truncation error analysis
of the Trapezoidal rule and the MUSCL scheme on a mesh as shown in Fig. 7 and design
MUSCLmod to contain the second-order transition error terms. One needs to be a bit careful
in this computation as the original MUSCL scheme is based on an unsplit version, involving
corner coupling and a more evolved evaluation of transverse derivatives. This then results in
the following change of the reconstructed value SM,n+1∕2

i+1∕2,j
 (the approximation to the solution at

the midpoint of edge (i + 1∕2, j) at time tn+1∕2 used in the MUSCL scheme) for the case
u, v > 0

The second derivatives are computed using standard second-order difference quotients on
Cartesian cells away from cut cells. On transition cells we fit a quadratic polynomial to
compute them.

Numerical tests show for MUSCLmod as a fully explicit scheme on a Cartesian mesh
a third-order one step error and standard second-order accuracy at time T. The numerical
stability limit also seems to be very similar to the original unsplit MUSCL.

3.2.2 The MPRKC‑Trap Scheme

We now extend the explicit MPRKC scheme, given by (15)–(16) in one dimension, to two
dimensions. We use the unsplit MUSCL scheme described by Almgren et al. [2], which we
also use for the MUSCL-Trap scheme, to compute the predictor S(1) . Afterwards, we use the
two-dimensional analog of (16) for the computation of the fluxes Fn+1∕2,ET

i±1∕2,j
 and Gn+1∕2,ET

i,j±1∕2
.

The classic two-stage second-order SSP RK scheme in combination with central differ-
ences for Δx = Δy = h is stable with � ⩽ 1.0 under the CFL condition [7]

due to using a split approach. The new MPRKC scheme uses the unsplit MUSCL as the
predictor (instead of the split upwind scheme) but the split explicit Trapezoidal scheme as
the corrector. We therefore expect MPRKC to be at least as stable as the classic two-stage
second-order SSP RK scheme and to be in particular stable under the CFL condition (20).
We confirmed this in numerical tests.

Next, we briefly sketch the extension of the mixed MPRKC-Trap to two dimensions. If
we compare the one-dimensional sketches of MUSCL-Trap, see Fig. 2b, and MPRKC-Trap,

S
Mmod,n+1∕2

i+1∕2,j
= S

M,n+1∕2

i+1∕2,j
+

Δt2

4

(
u2Sn

ij,xx
+ 2uvSn

ij,xy

)
−

ΔtΔx

4

(
uSn

ij,xx
+ vSn

ij,xy

)
.

(20)Δt = �
h

|u| + |v|

 Communications on Applied Mathematics and Computation

1 3

see Fig. 5, we observe that the implicit zone has been extended by two cells. This holds
also true in two dimensions: given Sn

ij
 ,

 (i) compute explicit fluxes using the MUSCL scheme and update all cells that have been
treated fully explicitly by MUSCL-Trap to S(1)

ij
;

 (ii) use the predicted values S(1)
ij

 for taking the second step of the explicit MPRKC
scheme; due to slope reconstruction, this will “cost” two layers of cells; therefore,
the position of the transition cells has been shifted by two cell layers to the interior
of the flow domain, comparing Fig. 6;

 (iii) compute all implicit fluxes for the extended implicit zone; update cut cells, fully
implicitly treated implicit cells in the extended implicit zone, and transition cells to
Sn+1
ij

.

Note that the MPRKC-Trap scheme has been constructed to have a third-order one step
error on Cartesian meshes.

3.3 Numerical Results in Two Dimensions

We will consider two different tests in the following. We will first compare the various
mixed schemes on a mesh that contains only Cartesian cells. This is to confirm our analyti-
cal considerations above. Afterwards we will compare the mixed schemes on a mesh that
contains cut cells.

3.3.1 Test on Cartesian Mesh

Test 3 We consider the setup shown in Fig. 7. We set � = 30◦ . The Cartesian mesh is cho-
sen to cover [0, 1]2 with Δx = Δy and N denotes the number of Cartesian cells in one coor-
dinate direction, i.e., N =

1

Δx
 . The ramp starts at approximately x0 = 0.146 . We use as test

function s0 = 1 + exp(−120 ∗ ((x − 0.49)2 + (y − 0.20)2)) so that the peak of the Gauss-
ian aligns with where we switch the scheme. We choose the velocity field parallel to the
angle � , i.e., � = � , and set (u, v)T = (2, 2 tan(�)) . We use T = 0.15 . The initial data and
the solution at the final time are shown in Fig. 8. We use � = 0.8 . The time step Δt for the
mixed schemes involving MUSCL and MUSCLmod is computed using (18), for the mixed
scheme involving MPRKC we use (20). We compare MUSCL-Trap, MUSCLmod-Trap,
and MPRKC-Trap. We also include results using the explicit versions of the scheme every-
where (i.e., in that case we do not switch to an implicit scheme).

Fig. 8 Setup Test 3. Initial data (left) and solution at T = 0.15 (right) for MUSCLmod-Trap on a 256×256
mesh (only the zoom on the domain [0, 1] × [0, 0.6] is shown)

Communications on Applied Mathematics and Computation

1 3

In Fig. 9 we show the error after taking one time step, both in the L1 norm and in the
L∞ norm. As expected, all fully explicit versions show a third-order one step error. For the
mixed schemes, both new versions (MUSCLmod-Trap and MPRKC-Trap) show third order
in L∞ whereas MUSCL-Trap only converges with second order.

In Fig. 10 we show the error at time T. We observe second-order convergence for the
L1 norm for all six schemes. The error for MUSCL is smallest, followed by MUSCL-Trap.
For the error in the L∞ norm, all schemes except for MUSCL-Trap show second order.
MUSCL-Trap converges on the finest meshes with order 1.5. So there is some error accu-
mulation from the second-order one step error but we only seem to lose half an order. We
have observed an order of 1.5 for MUSCL-Trap on Cartesian meshes in several tests. In
terms of absolute error sizes, we observe the smallest errors for MUSCL, MUSCLmod,
and MUSCLmod-Trap, with them being essentially identical on the finest mesh.

3.3.2 Test on Cut Cell Mesh

Our discussion of the schemes in two dimensions so far has focused on the transition error
between the explicit and implicit schemes in the absence of cut cells. The goal was to
examine and eliminate error source (i) separately from error sources (ii)(a)–(c). We now
add cut cells again and conclude this contribution with a numerical comparison involv-
ing the following three schemes: MUSCL-Trap, MUSCLmod-Trap, and MPRKC-Trap.

Fig. 9 Results for Test 3. Error after one time step. Left: L1 error. Right: L∞ error

Fig. 10 Results for Test 3. Error at time T. Left: L1 error. Right: L∞ error

 Communications on Applied Mathematics and Computation

1 3

The goal is to examine whether the reduction of the transition error leads to more accurate
results and better convergence orders for the cut cell situation as well.

Test 4 We consider the ramp setup shown in Fig. 6. We again choose � = � . We will
consider 4 different angles for this test: 10◦ , 20◦ , 30◦ , and 40◦ . The setup is similar to
Test 3 with the main difference being that we now have cut cells along the ramp. The
Cartesian mesh is chosen to cover [0, 1]2 with Δx = Δy . We use as test function again
s0 = 1 + exp(−120 ∗ ((x − x0)

2 + (y − y0)
2)) . The starting point of the ramp and the center-

ing of the test function (x0, y0) vary for the different angles. They are chosen in such a way
that at the initial time, the cut cells are located around the peak, see, e.g., Fig. 11 for the
solution at the final time for ramp angle 30◦.

Besides the accuracy of the three different schemes, we also want to examine the effect
of the inaccurate slope reconstruction on cut cells and transition cells. Typically, we use the
least squares fit to construct gradients on cut cells and transition cells, see, e.g., [32], which
is only first-order accurate. As an easy way of obtaining slopes with higher accuracy, we
will also include results that use analytic slopes on cut cells and transition cells (together
with standard second-order slope reconstruction on Cartesian cells that are updated fully
explicitly). These will be marked with “ana” in the legend whereas “LS” implies that the
least squares slope reconstruction has been used.

The tests will focus on comparing the accuracy of the different schemes. In terms
of cost, for all schemes we need to solve implicit systems of size O(N) . The costs for
MUSCL-Trap and MUSCLmod-Trap are pretty comparable. MPRKC-Trap is somewhat
more expensive due to applying the explicit scheme twice, the potentially reduced time
step length caused by the different CFL conditions, and the extended implicit zone, which
is also reflected in somewhat longer running times.

In Fig. 11 we show the results for the error in the L1 norm for the 30◦ ramp. The results
for the other angles are very comparable. We observe second order convergence for all
schemes. Generally, using the original MUSCL scheme as an explicit scheme leads to
slightly smaller L1 errors for this test. We have also included results for versions of
MUSCL-Trap and MUSCLmod-Trap with an extended implicit zone, where the implicit
zone has been extended by two cells. These are marked as “ext2”. As a result the set of
implicitly treated cells is now the same as for MPRKC-Trap.

In Fig. 12 we present the results for the error in the L∞ norm for all 4 angles. Recall
that the test function was chosen such that we expect bigger errors on cut cells, which
is actually the case. It is very common for errors on cut cells in the L∞ norm to show

Fig. 11 Results for Test 4 for 30◦ ramp. Left: zoom on the solution at time T using MUSCL-Trap for
N = 512 . Right: L1 error for various schemes

Communications on Applied Mathematics and Computation

1 3

a zig-zag behavior. In Table 6 we therefore also present slopes that we get from fitting
straight lines through the data shown in Fig. 12 by means of a least squares approach.
While the details vary a bit for the different ramp angles, we can generally observe that

• when using the LS slopes, the three different schemes (MUSCL-Trap, MUSCLmod-
Trap, and MPRKC-Trap) show similar absolute errors and also similar convergence
orders (with the exception of the 40◦ ramp). Having improved the transition error does
not result in smaller errors overall for this test;

• using analytic slopes reduces the error (in terms of its size) significantly, with factors
varying between 4 and 10;

• for MPRKC-Trap, using analytic slopes instead of LS slopes improves the convergence
orders, within a range of 0.15–0.42;

• for MUSCL-Trap and MUSCLmod-Trap, we do not see significant improvement in
convergence orders when using analytic slopes instead of LS slopes. For extending the

Fig. 12 Results for Test 4. Error in L∞ norm. Convergence orders are given in Table 6

Table 6 Result of Test 4:
convergence orders for errors in
L
∞ norm, computed as a least

squares fit for data shown in
Fig. 12

Method 10◦ 20◦ 30◦ 40◦

MUSCL_Trap_LS 1.36 1.29 1.23 1.42
MUSCLmod_Trap_LS 1.33 1.32 1.29 1.37
MPRKC_Trap_LS 1.33 1.35 1.30 1.31
MUSCL_Trap_ana 1.41 1.32 1.22 1.34
MUSCLmod_Trap_ana 1.39 1.31 1.22 1.37
MPRKC_Trap_ana 1.53 1.50 1.54 1.73
MUSCL_Trap_ana2 1.50 1.37 1.24 1.44
MUSCLmod_Trap_ana2 1.53 1.43 1.28 1.42

 Communications on Applied Mathematics and Computation

1 3

implicit zone by two cell layers, we do see significant improvement for the angles 10◦
and 20◦ degrees but not for the higher ones;

• we observe the highest convergence orders for MPRKC-Trap with analytic slopes. In
terms of error sizes it is very comparable though with MUSCL-Trap and MUSCLmod-
Trap when using analytic slopes and an extended implicit zone.

To sum it up, despite the improved transition error, we do not see a significantly improved
convergence order or significantly smaller errors for the new versions MUSCLmod-Trap
and MPRKC-Trap. Using analytic slopes leads to significantly smaller error sizes but not
necessarily significantly improved convergence orders for this test.

4 Conclusions and Future Plans

In this contribution, we analyzed the accuracy of the mixed explicit implicit scheme con-
sisting of MUSCL as an explicit scheme and the Trapezoidal rule with slope reconstruc-
tion as an implicit scheme. For the one step error, we identified several second-order error
sources linked to the irregular size of the cut cells as well as a second-order transition error
when switching from explicit to implicit schemes. For linear advection in one dimension,
we can show that these errors do not accumulate in the usual way and that the resulting
scheme is second-order accurate.

This is not the case in two dimensions. We therefore introduced two new mixed schemes,
MUSCLmod-Trap and MPRKC-Trap, with improved transition errors that are based on
exchanging the explicit scheme. Using the mixed scheme on a fully Cartesian mesh led
to improved convergence orders in two dimensions. When using these new schemes on a
test involving cut cells however there was no significant difference from using the original
MUSCL-Trap. Using analytic slopes led to a slight improvement of convergence orders and
a significant improvement in the actual error size. Note though that the improved conver-
gence orders are not that different from the newer results with DG codes on cut cell meshes
for piecewise linear polynomials, which show reduced convergence orders in the L∞ norm
of 1.5 to 1.6 [14, 18] as well. So maybe it is too much to aim for a full second order in L∞
for the ramp test.

More intensive numerical tests are needed to make a definite statement. It currently
seems that it might only pay off to reduce the transition error if also the other error sources
(caused by the irregularity of the cut cells) are taken care of. The first step would be to
upgrade the slope reconstruction on cut cells and neighbors of cut cells to second order.
This can be achieved by fitting quadratic polynomials. Our initial attempts of implement-
ing this have led to irritating results. It is currently not clear whether there is a bug in the
implementation or whether there is some kind of weird interaction going on with the solu-
tions necessary for the implicit time stepping. We currently use an approximate Newton
scheme for that with the approximate Jacobian being based on a first-order discretization.

Funding Open access funding provided by Uppsala University.

Compliance with Ethical Standards

Conflict of Interest On behalf of all authors, the corresponding author states that there is no conflict of inter-
est.

Communications on Applied Mathematics and Computation

1 3

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Aftosmis, M.J., Berger, M.J., Melton, J.E.: Robust and efficient Cartesian mesh generation for compo-
nent-based geometry. AIAA J. 36(6), 952–960 (1998)

 2. Almgren, A.S., Bell, J.B., Szymczak, W.G.: A numerical method for the incompressible Navier-Stokes
equations based on an approximate projection. SIAM J. Sci. Comput. 17(2), 358–369 (1996)

 3. Barth, T.J.: A 3-D least-squares upwind Euler solver for unstructured meshes. In: Napolitano, M.,
Sabetta, F. (eds.) Thirteenth International Conference on Numerical Methods in Fluid Dynamics. Lec-
ture Notes in Physics, vol. 414, pp. 240–244. Springer, Berlin, Heidelberg, New York (2005)

 4. Bell, J.B.B. et al.: BoxLib User’s Guide. Technical report, CCSE, Lawrence Berkeley National Labora-
tory (2012). https:// ccse. lbl. gov/ BoxLib/ BoxLi bUser sGuide. pdf

 5. Berger, M., Aftosmis, M.J., Murman, S.M.: Analysis of slope limiters on irregular grids. In: 43rd
AIAA Aerospace Sciences Meeting, Reno, NV. AIAA 2005-0490 (2005)

 6. Berger, M., Giuliani, A.: A state redistribution algorithm for finite volume schemes on cut cell meshes.
J. Comput. Phys. 428, 1–34 (2021)

 7. Berger, M.J., Helzel, C.: A simplified h-box method for embedded boundary grids. SIAM J. Sci. Com-
put. 34, 861–888 (2012)

 8. Berger, M.J., Helzel, C., LeVeque, R.: H-box method for the approximation of hyperbolic conservation
laws on irregular grids. SIAM J. Numer. Anal. 41, 893–918 (2003)

 9. Burman, E.: Ghost penalty. C. R. Math. Acad. Sci. Paris 348(21), 1217–1220 (2010)
 10. Chern, I.-L., Colella, P.: A Conservative Front Tracking Method for Hyperbolic Conservation Laws.

Technical report. Lawrence Livermore National Laboratory, Livermore, CA (1987)
 11. Colella, P.: A direct Eulerian MUSCL scheme for gas dynamics. SIAM J. Sci. Stat. Comput. 6, 104–

117 (1985)
 12. Colella, P., Graves, D.T., Keen, B.J., Modiano, D.: A Cartesian grid embedded boundary method for

hyperbolic conservation laws. J. Comput. Phys. 211(1), 347–366 (2006)
 13. Collins, J.P., Colella, P., Glaz, H.M.: An implicit-explicit Eulerian Godunov scheme for compressible

flow. J. Comput. Phys. 116(2), 195–211 (1995)
 14. Engwer, C., May, S., Nüßing, A., Streitbürger, F.: A stabilized DG cut cell method for discretizing the

linear transport equation. SIAM J. Sci. Comput. 42(6), 3677–3703 (2020)
 15. Frolkovič, P., Krišková, S., Rohová, M., Žeravý, M.: Semi-implicit methods for advection equations

with explicit forms of numerical solution. Jpn. J. Ind. Appl. Math. 39, 843–867 (2022)
 16. Fu, P., Frachon, T., Kreiss, G., Zahedi, S.: High order discontinuous cut finite element methods for

linear hyperbolic conservation laws with an interface. J. Sci. Comput. 90, 84 (2022)
 17. Fu, P., Kreiss, G.: High order cut discontinuous Galerkin methods for hyperbolic conservation laws in

one space dimension. SIAM J. Sci. Comput. 43(4), 2404–2424 (2021)
 18. Giuliani, A.: A two-dimensional stabilized discontinuous Galerkin method on curvilinear embedded

boundary grids. J. Sci. Comput. 44, 389–415 (2022)
 19. Gokhale, N., Nikiforakis, N., Klein, R.: A dimensionally split Cartesian cut cell method for hyperbolic

conservation laws. J. Comput. Phys. 364, 186–208 (2018)
 20. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67, 73–85

(1998)
 21. Helzel, C., Berger, M.J., LeVeque, R.: A high-resolution rotated grid method for conservation laws

with embedded geometries. SIAM J. Sci. Comput. 26, 785–809 (2005)
 22. Helzel, C., Kerkmann, D.: An active flux method for cut cell grids. In: Klöfkorn, R., Keilegavlen, E.,

Radu, A.F., Fuhrmann, J. (eds.) Finite Volumes for Complex Applications IX—Methods, Theoretical
Aspects, Examples, pp. 507–515. Springer, Cham, Switzerland (2020)

 23. http:// facul ty. cse. tamu. edu/ davis/ suite sparse. html
 24. http:// people. nas. nasa. gov/ ~aftos mis/ cart3d/

http://creativecommons.org/licenses/by/4.0/
https://ccse.lbl.gov/BoxLib/BoxLibUsersGuide.pdf
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://people.nas.nasa.gov/%7eaftosmis/cart3d/

 Communications on Applied Mathematics and Computation

1 3

 25. Klein, R., Bates, K.R., Nikiforakis, N.: Well-balanced compressible cut-cell simulation of atmospheric
flow. Philos. Trans. Roy. Soc. A 367, 4559–4575 (2009)

 26. Krivodonova, L., Qin, R.: A discontinuous Galerkin method for solutions of the Euler equations on
Cartesian grids with embedded geometries. J. Comput. Sci. 4(1/2), 24–35 (2013)

 27. Laakmann, F.: Finite-Volumen-Methode zur Lösung von Hyperbolischen Erhaltungsgleichungen auf
Eingebetteten Geometrien. Master’s thesis, TU Dortmund (2018)

 28. Leer, B.: Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov’s
methods. J. Comput. Phys. 32, 101–136 (1979)

 29. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cam-
bridge, UK (2002)

 30. May, S.: Embedded Boundary Methods for Flow in Complex Geometries. PhD thesis, Courant Insti-
tute of Mathematical Sciences, New York University (2013)

 31. May, S.: Time-dependent conservation laws on cut cell meshes and the small cell problem. In:
Klöfkorn, R., Keilegavlen, E., Radu, A.F., Fuhrmann, J. (eds.) Finite Volumes for Complex Applica-
tions IX—Methods, Theoretical Aspects, Examples, pp. 39–53. Springer, Cham, Switzerland (2020)

 32. May, S., Berger, M.J.: Two-dimensional slope limiters for finite volume schemes on non-coordinate-
aligned meshes. SIAM J. Sci. Comput. 35, 2163–2187 (2013)

 33. May, S., Berger, M.J.: A mixed explicit implicit time stepping scheme for Cartesian embedded bound-
ary meshes. In: Fuhrmann, J., Ohlberger, M., Rohde, C. (eds.) Finite Volumes for Complex Applica-
tions VII—Methods and Theoretical Aspects, pp. 393–400. Springer, Cham, Heidelberg, New York,
Dordrecht, London (2014)

 34. May, S., Berger, M.J.: An explicit implicit scheme for cut cells in embedded boundary meshes. J. Sci.
Comput. 71, 919–943 (2017)

 35. May, S., Streitbürger, F.: DoD stabilization for non-linear hyperbolic conservation laws on cut cell
meshes in one dimension. Appl. Math. Comput. 419, 126854 (2022)

 36. May, S., Thein, F.: Explicit implicit domain splitting for two phase flows with phase transition. Phys.
Fluids 35, 016108 (2023)

 37. Mikula, K., Ohlberger, M., Urbán, J.: Inflow-implicit/outflow-explicit finite volume methods for solv-
ing advection equations. Appl. Numer. Math. 85, 16–37 (2014)

 38. Müller, B., Krämer-Eis, S., Kummer, F., Oberlack, M.: A high-order discontinuous Galerkin method
for compressible flows with immersed boundaries. Int. J. Numer. Methods Eng. 110(1), 3–30 (2016)

 39. Muscat, L., Puigt, G., Montagnac, M., Brenner, P.: A coupled implicit-explicit time integration method
for compressible unsteady flows. J. Comput. Phys. 398, 108883 (2019)

 40. Quirk, J.J.: An alternative to unstructured grids for computing gas dynamic flows around arbitrarily
complex two-dimensional bodies. Comput. Fluids 23(1), 125–142 (1994). https:// doi. org/ 10. 1016/
0045- 7930(94) 90031-0

 41. Wendroff, B., White, A.B.: A supraconvergent scheme for nonlinear hyperbolic systems. Comput.
Math. Appl. 18(8), 761–767 (1989)

https://doi.org/10.1016/0045-7930(94)90031-0
https://doi.org/10.1016/0045-7930(94)90031-0

	Accuracy Analysis for Explicit-Implicit Finite Volume Schemes on Cut Cell Meshes
	Abstract
	1 Introduction
	2 Mixed Explicit-Implicit Schemes in One Dimension
	2.1 The MUSCL-Trap Scheme
	2.1.1 The One Step Error of MUSCL-Trap
	2.1.2 Numerical Results for MUSCL-Trap
	2.1.3 Proof for MUSCL-Trap Being Second-Order Accurate

	2.2 New Variants of Mixed Explicit-Implicit Schemes
	2.2.1 Developing Mixed Time Stepping Schemes with Better Transition Error
	2.2.2 The MUSCLmod-Trap Scheme
	2.2.3 The MPRKC-Trap Scheme

	3 Mixed Explicit-Implicit Schemes in Two Dimensions
	3.1 The MUSCL-Trap Scheme
	3.1.1 The Transition Error for MUSCL-Trap (in Absence of Cut Cells)

	3.2 New Mixed Explicit-Implicit Schemes
	3.2.1 The MUSCLmod-Trap Scheme
	3.2.2 The MPRKC-Trap Scheme

	3.3 Numerical Results in Two Dimensions
	3.3.1 Test on Cartesian Mesh
	3.3.2 Test on Cut Cell Mesh

	4 Conclusions and Future Plans
	References

