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Abstract
The solution of time-dependent hyperbolic conservation  laws on cut cell meshes causes 
the small cell problem: standard schemes are not stable on the arbitrarily small cut cells if 
an explicit time stepping scheme is used and the time step size is chosen based on the size 
of the background cells. In May and Berger (J Sci Comput 71: 919–943, 2017), the mixed 
explicit-implicit approach in general and MUSCL-Trap (monotonic upwind scheme for con-
servation laws and trapezoidal scheme) in particular have been introduced to solve this prob-
lem by using implicit time stepping on the cut cells. Theoretical and numerical results have 
indicated that this might lead to a loss in accuracy when switching between the explicit and 
implicit time stepping. In this contribution, we examine this in more detail and will prove in 
one dimension that the specific combination MUSCL-Trap of an explicit second-order and 
an implicit second-order scheme results in a fully second-order mixed scheme. As this result 
is unlikely to hold in two dimensions, we also introduce two new versions of mixed explicit-
implicit schemes based on exchanging the explicit scheme. We present numerical tests in two 
dimensions where we compare the new versions with the original MUSCL-Trap scheme.

Keywords Cartesian cut cell method · Finite volume scheme · Embedded boundary grid · 
Mixed explicit-implicit · Truncation error · Error accumulation

Mathematics Subject Classification 65M08 · 65M12 · 76M12 · 35L65

1 Introduction

Cartesian embedded boundary meshes for computing flow problems involving complex 
geometries have become very popular as mesh generation is fully automatic and fairly 
cheap: the geometry is simply cut out of Cartesian background cells. This results in cut 
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cells where the object intersects the background mesh. Cut cells can have various shapes 
and can in particular be arbitrarily small. This causes various issues when standard meth-
ods are used to solve partial differential equations (PDEs) on these meshes. The specific 
issue depends on the kind of PDE to be solved.

In the context of time-dependent hyperbolic conservation laws the main issue is what 
is referred to as the small cell problem: typically, explicit time stepping schemes are 
used. By the CFL condition the time step size is coupled to the size of the cells. One 
wants to choose the time step based on the size of the larger background cells and use 
the same time step on the arbitrarily small cut cells. For standard schemes, this approach 
causes the values on the small cut cells to explode.

One approach to solve this issue is to use cell merging or cell agglomeration, see, 
e.g., [26, 38, 40]. In that approach cut cells that are too small are merged/combined with 
neighboring cells, which eliminates the problem. The downside is that the complexity 
is moved back into the mesh generation process. The alternative is to develop algorith-
mic solution approaches to overcome the small cell problem. Two very well-established 
approaches are the flux redistribution method [10, 12] and the h-box method [7, 8, 21]. 
More recent approaches include the dimensionally split approach [19, 25], the extension 
of the active flux method to cut cells [22], and the state redistribution scheme (SRD) 
[6]. All of these schemes are based on finite volume approaches (if one counts the active 
flux method as a finite volume scheme). A few years ago, the development of algorith-
mic solution approaches in the context of discontinuous Galerkin (DG) methods has 
started. Existing solution approaches here are the DoD stabilization [14, 35], the exten-
sion of the ghost penalty stabilization [9] to time-dependent first-order hyperbolic prob-
lems [16, 17], as well as the extension of the SRD scheme to a DG setting [18].

In this contribution we will consider the mixed explicit implicit scheme in more detail, 
which was introduced by May and Berger [30, 33, 34] in the context of a finite volume 
setting to overcome the small cell problem. The idea is quite simple: cut cells are treated 
implicitly for stability but cells away from the cut cells use a standard explicit time stepping 
scheme to keep the cost low. The switch happens by means of flux bounding. The authors 
combined a second-order explicit scheme with a second-order implicit scheme. Numerical 
experiments [34] have shown that the resulting mixed scheme converges with second order 
in the L1 norm. In the L∞ norm, one numerically sees full second order in one dimension 
but in two and three dimensions orders between 1 and 2 were observed.

In this contribution we want to examine the error behavior of the mixed explicit-implicit 
scheme in more detail and also test possible cures. In one dimension, we will first analyze 
the one step error and then show that the mixed scheme indeed converges with second 
order. As numerical results indicate that we will not be able to prove the same result in 
higher dimensions, we will then introduce two new versions of the mixed explicit-implicit 
scheme with an improved transition error. These will be designed so that on a Cartesian 
mesh the transition between explicit and implicit time stepping has a third-order one step 
error. We will include results from a test involving cut cells to see whether this increases 
the overall accuracy of the scheme. Some of the material presented here has been part of 
the master thesis of Laakmann [27].

The idea of combining explicit and implicit time stepping to gain stability has been used 
by other authors as well and has in particular become more popular in recent years, see, 
e.g., [13, 15, 37, 39] and the references cited therein. Here, we will focus on the approach 
as introduced in [30, 34] in the context of cut cells. We note though that this approach can 
easily be extended to other problem settings as well. Recently, it has been applied in the 
context of two phase flow problems: if one uses a sharp interface method, then the creation 
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of new phases (nucleation or cavitation) results in the creation of new tiny cells. In [36], 
the newly created tiny cells have successfully been treated with the first-order version of 
the mixed explicit-implicit scheme, extended to the isothermal Euler equations.

This contribution is structured as follows: in Sect. 2, we focus on the situation in one 
dimension. We introduce the mixed explicit-implicit MUSCL-Trap (monotonic upwind 
scheme for conservation laws and trapezoidal scheme) as used in [34] and examine its 
error. We then present two different variants of the mixed explicit-implicit scheme, which 
have a reduced transition error compared to the original scheme. In Sect. 3, we extend the 
considerations to two dimensions. We first formulate the new variants in two dimensions 
and then compare the three schemes numerically. We conclude with an outlook in Sect. 4.

2  Mixed Explicit‑Implicit Schemes in One Dimension

We consider the linear advection equation

with initial data s(t0, ⋅) = s0 . The standard model mesh for developing cut cell schemes in 
one dimension is shown in Fig. 1: an equidistant mesh with mesh width h contains one cell 
of length �h , labeled as cell 0, in the middle. Here, � ∈ (0, 1] denotes the volume fraction—
the ratio of the small cell to full cell volume.

2.1  The MUSCL‑Trap Scheme

The idea behind mixed explicit-implicit schemes for cut cell meshes as used in [30, 33, 
34] is to employ an implicit scheme on the cut cell 0 for stability. Away from the cut cell 
an explicit scheme is used to keep the cost low. In [34], May and Berger developed what 
we will refer to as MUSCL-Trap, the combination of the explicit MUSCL and the implicit 
Trapezoidal scheme by means of flux bounding.

MUSCL [11, 28] is a common explicit finite volume scheme. The scheme is second-
order accurate in space and time. In one dimension, the MUSCL for the linear advection 
(1) on an equidistant grid is given by

with Sn
i,x

≈ �xs(t
n, xi) , computed using central difference gradients and a standard slope lim-

iter [29], with CFL number � =
uΔt

h
 . The scheme is stable for 0 < 𝜆 ⩽ 1 and would there-

fore become unstable on the cell 0 for 𝛼 < 1.
The implicit Trapezoidal rule in time in combination with a suitable slope reconstruc-

tion in space is given by 

(1)s(t, x)t + us(t, x)x = 0, u > 0 constant

(2)Sn+1
i

= Sn
i
−

Δt

h

(
F
n+1∕2,M

i+1∕2
− F

n+1∕2,M

i−1∕2

)
, F

n+1∕2,M

i+1∕2
= u

(
Sn
i
+ (1 − �)Sn

i,x

h

2

)

Fig. 1  One-dimensional model problem: equidistant grid with one small cell of length �h labeled as cell 0
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 for a non-equidistant mesh with cells of length hi.
In [30, 34], May and Berger examined various ways for combining an explicit scheme 

with an implicit scheme and found flux bounding to be the best way. The idea is illustrated 
in Fig. 2. One first updates all Cartesian cells that are not direct neighbors of the cut cell 
using the explicit scheme, see Fig. 2a. In a second step, one updates the value on cells −1 , 
0, 1 comparing Fig. 2b. Here, cell 0 is treated fully implicitly to guarantee the stability on 
the small cut cell, indicated by the light blue edges. The cells −1 and 1 are transition cells: 
when updating cell −2 in Step (i) with the fully explicit scheme, one assumed that a certain 
amount of mass, represented by Fn+1∕2,M

−3∕2
 , has left cell −2 . For the full scheme to be con-

servative, one needs to ensure that the mass arrives in cell −1 . This is achieved by reusing 
the explicit flux for the edge −3∕2 in Step (ii). Note that transition cells employ both 
explicit and implicit fluxes. Cut cells are treated fully implicitly, and Cartesian cells that 
are not neighbors of cut cells are treated fully explicitly. Flux bounding is set up in a sym-
metric manner, i.e., it does not distinguish between u > 0 and u < 0 , allowing the extension 
to more general problems, such as Euler equations [36]. Flux bounding has the following 
properties. 

 (i) It is conservative (by construction).
 (ii) It satisfies a TVD property in a suitable setting. May and Berger [34, Theorem 1] 

showed the TVD stability for a mixed scheme combining MUSCL (with the minmod 
limiter [29]) as an explicit scheme with implicit Euler and piecewise constant data 
as an implicit scheme for 0 < 𝜆 ⩽ 1 , independent of the size of � ∈ (0, 1].

 (ii) It has a natural extension to two and three dimensions (see Sect. 3 as well as [34]).

(3a)Sn+1
i

= Sn
i
−

Δt

hi

(
F
n+1∕2,T

i+1∕2
− F

n+1∕2,T

i−1∕2

)
,

(3b)F
n+1∕2,T

i+1∕2
=

u

2

(
Sn
i
+ Sn

i,x

hi

2
+ Sn+1

i
+ Sn+1

i,x

hi

2

)

Fig. 2  Flux bounding: first the cells away from the cut cell are updated using an explicit scheme (edges 
marked in green). Then the neighborhood of the cut cell is updated. The Cartesian neighbors of the cut 
cell are transition cells. The update on these cells employs both explicit fluxes (edges marked in green) and 
implicit fluxes (edges marked in light blue), see also [31] and [34, Fig. 6]
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This results in the following formulae for MUSCL-Trap in one dimension:

For the slope reconstruction on cells i ⩽ −2 and i ⩾ 2 unlimited central differences are 
used. On the cut cell 0 and the transition cells −1 and 1 a least squares approach is 
employed [5]. This extends in a straight-forward way to higher dimensions [3, 32]. Note 
that the least squares slope S1,x enters the computation of the MUSCL flux Fn+1∕2

3∕2
 . Except 

for this special case, only central difference slopes are used for the computation of MUSCL 
fluxes. Throughout this paper we will assume all slopes to be unlimited.

Remark 1 This contribution focuses on the accuracy of mixed schemes in general and the 
accuracy of MUSCL-Trap in particular. We will not discuss limiting here. For limiting on 
cut cells, see, e.g., [32].

2.1.1  The One Step Error of MUSCL‑Trap

The one step error of scheme (4) has roughly been analyzed in [31, 34]. We will do 
this here more thoroughly. Let the MUSCL-Trap scheme be given by Sn+1

i
= Φ(Sn, Sn+1)i 

with

with Fn+1∕2,X

i+1∕2
 representing Fn+1∕2,M

i+1∕2
 or Fn+1∕2,T

i+1∕2
 , depending on i. For the computation of the 

one step error, we replace the input arguments of Φi with the true cell averages at time tn 
and tn+1 , given by s̄n

i
 and s̄n+1

i
 , resulting in

Remark 2 The one step error L(s̄n, s̄n+1)i measures the error made in one time step tn → tn+1 
on cell i. Typically, i.e., on uniform meshes, the order of convergence of the one step error 
is one order higher than the overall order of the scheme.

The numerically observed convergence order of the one step error for a smooth test 
problem is summarized in Fig. 3. We observe a third-order one step error on cells that are 
sufficiently far away from the cut cell. These cells use the full MUSCL scheme on a uni-
form mesh. In the neighborhood of the cut cell, we observe a second-order one step error. 
This is due to the following four error sources.

(4)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Sn+1
−2

= Sn
−2

−
Δt

h

�
F
n+1∕2,M

−3∕2
− F

n+1∕2,M

−5∕2

�
(MUSCL),

Sn+1
−1

= Sn
−1

−
Δt

h

�
F
n+1∕2,T

−1∕2
− F

n+1∕2,M

−3∕2

�
(transition),

Sn+1
0

= Sn
0
−

Δt

�h

�
F
n+1∕2,T

1∕2
− F

n+1∕2,T

−1∕2

�
(Trapezoidal),

Sn+1
1

= Sn
1
−

Δt

h

�
F
n+1∕2,M

3∕2
− F

n+1∕2,T

1∕2

�
(transition),

Sn+1
2

= Sn
2
−

Δt

h

�
F
n+1∕2,M

5∕2
− F

n+1∕2,M

3∕2

�
(MUSCL).

(5)Φ(Sn, Sn+1)i = Sn
i
−

Δt

hi

[
F
n+1∕2,X

i+1∕2
(Sn, Sn+1) − F

n+1∕2,X

i−1∕2
(Sn, Sn+1)

]

(6)L(s̄n, s̄n+1)i = Φ(s̄n, s̄n+1)i − s̄n+1
i

.
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Error sources 

(i) The switch in the time stepping scheme between MUSCL and Trapezoidal rule results 
in an error term of size O(h2) . The examination of its propagation is one key aspect of 
this research.

(ii) The irregularity of the cut cell causes several errors if 𝛼 < 1:
(a) the slope reconstruction, which uses a least squares approach, is only of first order, 

resulting in second-order error terms that we summarize in aih2 for cell i (this is the 
only reason for the error of size O(h2) on cell 2);

(b) in the computation of the fluxes, we use the variable Sn
i
 (which is supposed to be an 

approximation to the cell average s̄n
i
 ) as the approximation to the point value s(tn, xi) ; 

this results in second-order error terms that we summarize in bih2;
(c) for a third-order one step error, we would need to use a quadratic reconstruction in space 

instead of a linear one; we summarize the resulting error terms on cell i in cih2.

We note that on an equidistant mesh, i.e., � = 1 , all error terms listed under (ii) reduce 
to third-order errors, partly due to cancellation effects with neighboring cells. Using this 
notation, we observe on cells −1 , 0, and 1 the following errors: 

Note that the error that we make when switching from MUSCL to Trapezoidal on cell −1 is 
to lead order the negative of the error that we make when switching back from Trapezoidal 
to MUSCL on cell 1.

2.1.2  Numerical Results for MUSCL‑Trap

In [34], the authors presented numerical results for the model problem shown in Fig.  1, 
which we will start with as well to keep the presentation mostly self-contained.

Test 1 Consider the model problem shown in Fig. 1. One cut cell is located in the inter-
val [0.5, 0.5 + �h] . The overall domain length is given by [0, 1 + �h] . Periodic boundary 
conditions are used. The test function is sin

(
2π(x+0.36)

1+�h

)
 , � = 10−4 , and the final time is 

T = 1 + �h so that the test function is back to its original position. The L1 error has been 

(7a)L(s̄n, s̄n+1)−1 =
1

4
(1 − 𝜆)𝜆2h2sxx(t

n, x−1) + a−1h
2 + b−1h

2 + c−1h
2 +O(h3),

(7b)L(s̄n, s̄n+1)0 = a0h
2 + b0h

2 + c0h
2 +O(h3),

(7c)L(s̄n, s̄n+1)1 = −
1

4
(1 − 𝜆)𝜆2h2sxx(t

n, x1) + a1h
2 + b1h

2 + c1h
2 +O(h3).

Fig. 3  The one step error |L(s̄n, s̄n+1)
i
| for the MUSCL-Trap scheme for i = −3,⋯ , 3



Communications on Applied Mathematics and Computation 

1 3

normalized to account for the changing domain length. We solve st + sx = 0 with � = 0.8 , 
independent of � . The results for the one step error and the error at time T are shown in 
Table 1.

For the one step error in the L∞ norm we observe second-order convergence, as 
expected. The third-order convergence in the L1 norm can be explained by a simple count-
ing argument: let M denote the number of Cartesian cells. Then, there are M−3 cells (out 
of M+1 total cells) with an error of size O(h3) and only four cells with an error of size 
O(h2) . This results in the third-order convergence in the L1 norm.

The results for the error at time T are more surprising: we observe full second-order 
convergence in the L1 and L∞ norms despite the one step error only converging with second 
order in L∞ . However, there is a reasonable explanation for this behavior. Let us consider 
error accumulation from a Lagrangian view point: let us fix one cell, e.g., the cell that con-
tains the peak of the sine curve, put a tracer there, and follow the tracer during the simula-
tion. If we assume that our scheme is stable (and that error propagates with norm smaller/
equal than 1), the error at time T essentially corresponds to the sum of all the one step 
errors of all the cells that our tracer has passed. Given that most cells have a one step error 
of third order and that there are only four isolated cells with a one step error of second 
order, this consideration actually implies to expect a second-order error on all cells at time 
T. This is consistent with the numerical results.

This consideration motivates the following new test, Test 2, which we expect to be more 
challenging: instead of using only one cut cell, we double the number of cut cells as we 
have the grid size h . Then, the number of cells with one step error O(h2) increases with 
O(

1

h
) and should affect the convergence order at time T.

Test 2 The test setup is shown in Fig. 4. We use K = 40 and L = 4 on the coarsest 
mesh. The overall domain length is given by [0, 1 + 4�h0] with h0 denoting the coarsest 
mesh (in our case h0 =

1

160
 ). Different to Test 1, the domain length stays constant. The 

Table 1  Result of Test 1: 
MUSCL-Trap for the model 
problem in Fig. 1

Final time h L1 error Order L∞ error Order

1 step error 1/160 2.95E−06 – 5.52E−04 –
1/320 3.65E−07 3.01 1.36E−04 2.02
1/640 4.55E−08 3.01 3.36E−05 2.01

1 period error 1/160 5.68E−05 – 3.51E−04 –
1/320 1.48E−05 1.94 7.41E−05 2.24
1/640 3.77E−06 1.97 1.77E−05 2.07

Fig. 4  New one-dimensional model problem: the grid consists of L blocks with K + 1 cells that each con-
tains K cells of length H (here H = h,

h

2
,
h

4
 ) and one cut cell of length �H in the middle. When the mesh is 

refined by a factor of 2, we keep K (and � ) fixed but double L. Analogous to Fig. 1, we refer to cut cells as 
(cells of type) 0, to the left Cartesian neighbors of cut cells as (cells of type) −1 , and to the right Cartesian 
neighbor as (cells of type) 1
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test function is sin
(

2π(x+0.36)

1+4�h0

)
 , � = 10−4 , and T = 1 + 4�h0 so that the test function is 

back to its original position. The results for the one step error and the error at time T are 
shown in Table 2.

Despite the one step error being only of second order in both the L1 and L∞ norms, 
the error after one period also converges with second order both in L1 and L∞ . This 
behavior of the error accumulation behaving differently on non-uniform meshes has 
been observed and analyzed before [41]. We will follow the proof from [41] to show 
the second order accuracy for MUSCL-Trap in Theorem 1. Similar ideas have also been 
used to show the second order accuracy of the h-box method [8].

Different to Test 1, we observe for the one step error measured in the L1 norm, a 
convergence order of 2 (compared to 3 before). This can be explained as follows: let 
ei = Sn

i
− s̄n

i
 denote the error on cell i, let K+1 be the number of cells per block, and let 

there be L blocks. As before, M denotes the total number of Cartesian cells. This implies 
M + L = L ⋅ (K + 1) . Then, the L1 error can be computed as (with c denoting a generic 
constant)

Using L =
M

K
 and M = O(

1

h
) , we get

Therefore, for keeping K (the number of cells per block) fixed, we get an L1 error of O(h2) . 
This theoretical consideration coincides with our numerical observation. Note that in Test 
1, K is increased with O(

1

h
) , explaining the better convergence rate of 3 in the L1 norm for 

the one step error.

2.1.3  Proof for MUSCL‑Trap Being Second‑Order Accurate

For the proof of second-order convergence, we require the stability of the method. 
Examining this stability mathematically is very challenging due to using a non-uniform 
mesh and a mixed scheme. Applying, for example, the von Neumann stability analysis 

∑
cells

hi ⋅ |ei| =
∑

normal
cells

h ⋅O(h3) +
∑
cells

−1, 1, 2

h ⋅O(h2) +
∑
cell 0

�h ⋅O(h2)

= (M − 3L) ⋅ ch4 + 3L ⋅ ch3 + L ⋅ �ch3.

∑
cells

hi ⋅ |ei| =
(
1 −

3

K

)
⋅ ch3 + 3

1

K
⋅ ch2 +

1

K
⋅ �ch2.

Table 2  Result of Test 2: error 
for MUSCL-Trap for the model 
problem shown in Fig. 4

Final time h L1 error Order L∞ error Order

One step error 1/160 7.81E−06 – 6.86E−04 –
1/320 2.22E−06 1.82 1.67E−04 2.04
1/640 5.40E−07 2.04 4.31E−05 1.95

One period 
error

1/160 4.76E−05 – 5.10E−04 –
1/320 1.15E−05 2.05 1.06E−04 2.27
1/640 2.90E−06 1.98 2.27E−05 2.23
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is not feasible. We therefore formulate this as Assumption 1 in the proof below. In our 
numerical tests, we found that this was true for the L1 and L∞ norms.

Theorem 1 Let Assumption 1 below hold true. Consider the MUSCL-Trap scheme given by 
(4), but assume that slopes are computed by means of an unlimited forward difference quo-
tient. Let 0 < 𝜆 ⩽ 1 be independent of � . Then the scheme is second-order accurate with 
respect to the norm used in Assumption 1 for the linear advection equation for the model 
problem in Fig. 1d model problem for sufficiently smooth initial data s0.

Proof For the proof, we use an idea that goes back to Wendroff and White [41], and which 
has also been used to show second-order accuracy of the h-box method [8]. Assume that 
we are able to construct a grid function with cell averages w̄n

i
 such that (i) the new grid 

function w̄n
i
 is sufficiently close to s̄n

i
 and (ii) the one step error is of third order for all cells. 

To be precise, w̄n
i
 is supposed to satisfy 

Assumption 1 We assume that the MUSCL-Trap scheme is stable with respect to the 
norm ‖ ⋅ ‖ in the following sense: there holds

for the error propagation.

For the error grid function En = Sn − w̄n there holds by linearity of Φ,

From Assumption 1 and assumption (8b), we can conclude

with N =
T

Δt
 and Δt = O(h) . In other words, we have “normal” error accumulation with 

respect to the new solution w̄n . Together with property (8a) we get by means of the triangle 
inequality

which implies global, second-order convergence with respect to the true solution s̄.
It remains to find such a suitable grid function w̄n . We note that this is the essence of 

this proof.
Case � = 1 . We first consider the case of a uniform mesh. The main error source that 

we like to examine is the switch in time stepping. Note though that different to (7), we 

(8a)(i) w̄n
i
= s̄n

i
+O(h2), ∀ i, n,

(8b)(ii) |L(w̄n, w̄n+1)i| = O(h3), ∀ i, n.

‖Φ(Sn−1 − w̄n−1, Sn − w̄n)‖ ⩽ ‖Sn−1 − w̄n−1‖ +O(h3), ∀ 1 ⩽ n ⩽ N

Sn − w̄n = Φ(Sn−1, Sn) − w̄n = Φ(En−1 + w̄n−1,En + w̄n) − w̄n

= Φ(En−1,En) + Φ(w̄n−1, w̄n) − w̄n = Φ(En−1,En) + L(w̄n−1, w̄n).

‖SN − w̄N‖ ⩽ ‖Φ(SN−1 − w̄N−1, SN − w̄N)‖ + ‖L(w̄N−1, w̄N)‖
⩽ ‖SN−1 − w̄N−1‖ +O(h3) ⩽ ‖S0 − w̄0‖ + T

Δt
O(h3) = O(h2)

‖SN − s̄N‖ ⩽ ‖SN − w̄N‖ + ‖w̄N − s̄N‖ = O(h2) +O(h2) = O(h2),
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now assume that forward differences are used. Therefore, the actual error terms look 
slightly different and are given by

We define

A direct computation then shows L(�n, �n+1)0 = O(h3) as well as

This implies by linearity

Therefore, assumptions (8a) and (8b) are satisfied.
Case 𝛼 < 1 . In this case we need to address all four error sources. First, a direct compu-

tation shows that for forward differences there holds with � =
1+�

2

Note in particular that for this setup, the one step error on the small cell is surprisingly of 
third order as errors cancel nicely. We define

with

This results in L(�n, �n+1)0 = O(h3) as well as in

which implies the claim.

L(s̄n, s̄n+1)−1 = −
1

4
𝜆3h2sxx(t

n, x−1) +O(h3), L(s̄n, s̄n+1)0 = O(h3),

L(s̄n, s̄n+1)1 =
1

4
𝜆3h2sxx(t

n, x1) +O(h3).

(9)w̄n
i
= s̄n

i
+ 𝛾n

i
with 𝛾n

i
=

{
−

1

2
𝜆2h2sn

xx
(tn, x0) for i = 0,

0 otherwise.

L(�n, �n+1)−1 = −
�

2
�n
0
+O(h3), L(�n, �n+1)1 =

�

2
�n
0
+O(h3).

L(w̄n, w̄n+1)i = O(h3), ∀ i.

(10a)L(s̄n, s̄n+1)−1 =
𝜆

4

(
−𝜆2 + (1 − 𝛽) −

1

2𝛽

1

6
(𝛼2 − 1)

)
h2sn

xx
(tn, x−1) +O(h3),

(10b)L(s̄n, s̄n+1)0 = O(h3),

(10c)L(s̄n, s̄n+1)1 =
𝜆

4

(
𝜆2 + (𝛽 − 1) +

1

2𝛽

1

6
(𝛼2 − 1)

)
h2sn

xx
(tn, x1) +O(h3).

(11)w̄n
i
= s̄n

i
+ 𝛾n

i
with 𝛾n

i
=

{
𝛾n
0

for i = 0,

0 otherwise

(12)�n
0
=

�

2

(
−�2 + (1 − �) −

1

2�

1

6
(�2 − 1)

)
h2sn

xx
(tn, x0).

L(�n, �n+1)−1 = −
�

2�
�n
0
+O(h3), L(�n, �n+1)1 =

�

2�
�n
0
+O(h3),
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Remark 3 The advantage of forward differences compared to central differences lies in 
the reduced coupling of cells. For central differences, we have not been able to find suit-
able coefficients �n when using periodic boundary conditions. But the numerical results in 
Sect. 2.1.2 imply that the same order of convergence holds true when one employs central 
differences instead of forward ones.

Remark 4 We note that we addressed two different error sources in this proof: the error 
caused by the switch in the time stepping scheme and the error caused by the irregular 
length of the cut cell. The reason that the former error does not accumulate is simply that 
we make an error of size − �3

4
h2sxx(t

n, x−1) on cell −1 and an error of size �
3

4
h2sxx(t

n, x1) on 
cell 1. In other words, the error that we made on cell −1 cancels to leading order with the 
error that we make two cells later.

Finally, we verify our results numerically. We repeat Test 2 using forward difference 
quotients but this time we compare our discrete solution Sn

i
 to our new grid function w̄ 

given by (11) and (12). The result is given in Table 3 and shows the expected conver-
gence rates.

2.2  New Variants of Mixed Explicit‑Implicit Schemes

Our theoretical and numerical considerations above imply that the mixed scheme 
MUSCL-Trap is second-order accurate in one dimension, despite only having a second-
order one step error. The numerical results in two dimensions though for MUSCL-Trap 
presented in [34] showed convergence rates between 1.3 and 1.6 measured in the L∞ 
norm. This implies that in two dimensions the error does accumulate to some extent. 
Therefore, we cannot expect to be able to find a new grid function w̄n with properties (i) 
and (ii) in two dimensions.

In order to find a scheme with a third-order one step error, we would need to address 
all four error sources. As error sources (ii)(a)–(c) are very difficult to examine in two 
dimensions (due to varying sizes and shapes of cut cells) and are generally shared by 
most cut cell schemes, we focus here on the error caused by switching the time stepping 
scheme. Further, we expect the error for switching the time stepping scheme to have a 
very different effect in one dimension and two dimensions: in one dimension, charac-
teristics are typically set up in a way that an error caused by switching from explicit to 
implicit is followed very briefly afterward by an error caused by switching from implicit 

Table 3  Result of Test 2: error 
for MUSCL-Trap using forward 
difference quotients for the 
model problem shown in Fig. 4

The new grid function w̄ given by (11) is used for initialization and 
error computation

Final time h L1 error Order L∞ error Order

One step error 1/160 1.74E−06 – 5.23E−06 –
1/320 2.24E−07 2.95 6.29E−07 3.06
1/640 2.85E−08 2.98 8.21E−08 2.94

One period 
error

1/160 3.74E−04 – 5.90E−04 –
1/320 9.28E−05 2.01 1.46E−04 2.02
1/640 2.32E−05 2.00 3.71E−05 1.98
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back to explicit. In two dimensions, however, see the setup of the ramp test below in 
Fig. 6, this effect of switching back and forth might not be there. Instead there can be 
characteristics that mainly go through transition cells.

2.2.1  Developing Mixed Time Stepping Schemes with Better Transition Error

We will discuss the issue of reducing the error by switching the time stepping scheme in a 
sightly more general setting. For finite volume schemes, one typically uses the conservative 
update formula

with Fi±1∕2 being an appropriate approximation to the flux at the edge xi±1∕2 during the time 
step. In the case of the linear advection (1) (with WLOG u = 1 ), we try to approximate

To only focus on the temporal error, we will reinterpret time stepping schemes as quadra-
ture formulae for approximating the integral in (14), assuming that we know all values at 
the edges x = xi±1∕2 that we need. To give an example: using explicit Euler in time would 
correspond to approximating Ftrue

i+1∕2
 by the point evaluation s(tn, xi+1∕2) . For MUSCL and 

Trapezoidal time stepping we have the following results.

• MUSCL: the corresponding time stepping scheme is the explicit midpoint rule, which cor-
responds to the following approximation of Ftrue

i+1∕2
 : 

 This results in 

• Trapezoidal: the Trapezoidal time stepping scheme approximates Ftrue
i+1∕2

 by 

 This results in the error 

Therefore, assuming that the reconstruction in space is done sufficiently accurately, when 
using Trapezoidal rule time stepping, we approximate Ftrue

i+1∕2
 with an error of O(Δt2) . How-

ever, when we use Trapezoidal on both edges, we make to leading order the same (systematic) 
error for the approximation of Ftrue

i−1∕2
 . When applying the update formula (13), the leading 

order error term cancels and there holds

(13)Sn+1
i

= Sn
i
−

Δt

h

(
Fi+1∕2 − Fi−1∕2

)

(14)Ftrue
i+1∕2

=
1

Δt ∫
tn+1

tn

s(t, xi+1∕2) dt.

F
(M)

i+1∕2
= s(tn, xi+1∕2) +

Δt

2
st(t

n, xi+1∕2).

Ftrue
i+1∕2

− F
(M)

i+1∕2
=

Δt2

6
stt(t

n, xi+1∕2) +O(Δt3).

F
(T)

i+1∕2
=

1

2

[
s(tn, xi+1∕2) + s(tn+1, xi+1∕2)

]
.

Ftrue
i+1∕2

− F
(T)

i+1∕2
= −

Δt2

12
stt(t

n, xi+1∕2) +O(Δt3).
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Therefore, for h = O(Δt) , we get an error of order O(Δt3) (for the time approximation). 
However, if we use the explicit midpoint rule ( =̂ MUSCL) for Fi−1∕2 and Trapezoidal time 
stepping for Fi+1∕2 , we get

This is the transition error that we saw before.
Note that these considerations have another important implication: the seemingly easiest 

way to improve the transition error that we observed for MUSCL-Trap would be to just 
keep MUSCL and use a third-order implicit scheme. Or to keep the Trapezoidal time step-
ping scheme and upgrade the explicit time stepping scheme to third order. However, both 
versions would not show the result one hoped for. The easiest way to see this is by combin-
ing, for example, the MUSCL flux F(M)

i−1∕2
 with the true flux Ftrue

i+1∕2
 . Then, when applying the 

conservative update formula (13), we would be left with an error of O(Δt2) despite the 
scheme being apparently more accurate than when applying MUSCL fluxes on both edges.

Therefore, the two options to get a scheme with a third-order one step error (with respect 
to the time error) are to (a) either use both an explicit and an implicit time stepping scheme 
that approximate Ftrue

i±1∕2
 with third order or (b) to find a combination of a second-order 

explicit and a second-order implicit time stepping scheme such that the leading order error 
terms match.

Besides approach (a) being more expensive, third-order time stepping schemes also 
typically involve several stages, which makes the coupling very complicated. We therefore 
follow approach (b): we fix the implicit Trapezoidal rule and look for a new explicit time 
stepping scheme. We will consider two different modifications of the MUSCL scheme.

2.2.2  The MUSCLmod‑Trap Scheme

The first approach is to change the MUSCL scheme given in (2) to use

The idea is to account for the error term Δt
4
stt(t

n, x1+1∕2) that we saw above when switching 
between Trapezoidal and explicit midpoint rule but the details slightly vary as we generally 
do not have the exact values on the edges. The precise formulation simply comes out of 
the error analysis for combining MUSCL with Trapezoidal. The truncation error analysis 
shows that

• using MUSCLmod on an equidistant mesh as fully explicit scheme, there holds 
L(s

n+1

i
) = O(h3);

• using MUSCLmod in a mixed MUSCLmod-Trap scheme (with � = 1 ), there holds 
L(s

n+1

i
) = O(h3).

(
Ftrue
i+1∕2

− Ftrue
i−1∕2

)
−
(
F
(T)

i+1∕2
− F

(T)

i−1∕2

)

= −
Δt2

12
stt(t

n, xi+1∕2) +
Δt2

12
stt(t

n, xi−1∕2) +O(Δt3) = O(Δt2h) +O(Δt3).

(
Ftrue
i+1∕2

− Ftrue
i−1∕2

)
−
(
F
(T)

i+1∕2
− F

(M)

i−1∕2

)

= −
Δt2

12
stt(t

n, xi+1∕2) −
Δt2

6
stt(t

n, xi−1∕2) +O(Δt3) = O(Δt2).

F
n+1∕2,Mmod

i+1∕2
= u

(
Sn
i
+ (1 − �)Sn

i,x

h

2
−

1

4
�(1 − �)h2Sn

i,xx

)
.
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A von Neumann stability analysis for the new MUSCL version shows a CFL condition of 
0 < 𝜆 ⩽ 1.

In Table  4 we show the result for the new mixed MUSCLmod-Trap scheme for Test 
2, but using � = 1 , i.e., we switch the time stepping between explicit and implicit at the 
corresponding cells but do that on an equidistant mesh to avoid error sources (ii)(a)–(c). 
As expected we observe third order for the one step error and second error for the error at 
time T. We use a standard second-order accurate difference quotient to evaluate the second 
derivatives.

2.2.3  The MPRKC‑Trap Scheme

For the second variant, consider the explicit Trapezoidal rule, also known as the standard 
second-order SSP RK (strong stability preserving Runge-Kutta) scheme [20], and given by 
(for the ODE yt = g(y(t)))

If we compare that with the implicit Trapezoidal rule, we see that there is a O(Δt2) differ-
ence due to using a second-order predictor step y(1) instead of yn+1 . Therefore, to get an 
explicit scheme that matches the leading order error term of F(T)

i+1∕2
 up to third order, we 

need to replace the predictor step (computation of y(1) ), which currently uses explicit Euler, 
by a more accurate predictor. We choose the explicit midpoint rule for this purpose. 
Together with a suitable space discretization (the new predictor step will correspond to the 
MUSCL scheme), this results in a new explicit finite volume scheme, which we will pre-
sent now. Note that by construction this new scheme will show a third-order one step tran-
sition error when coupled to (implicit) Trapezoidal time stepping with slope 
reconstruction.

The new explicit scheme, which we call MPRKC (for MUSCL Predictor RK Corrector) 
scheme, is given by 

 with

y(1) = yn + Δtg(yn), yn+1 = yn +
Δt

2

[
g(yn) + g(y(1))

]
.

(15a)S
(1)

i
= Sn

i
−

Δt

h

(
F
n+1∕2,M

i+1∕2
− F

n+1∕2,M

i+1∕2

)
,

(15b)Sn+1
i

= Sn
i
−

Δt

h

(
F
n+1∕2,ET

i+1∕2
− F

n+1∕2,ET

i−1∕2

)

Table 4  Result of Test 2: error 
for MUSCLmod-Trap for the 
model problem in Fig. 1d model 
problem � = 1 (i.e., equidistant 
mesh but including change in 
time stepping scheme)

Final time h L1 error Order L∞ error Order

One step 
error

1/160 9.06E−07 – 6.65E−06 –
1/320 1.18E−07 2.95 8.21E−07 3.02
1/640 1.49E−08 2.98 1.05E−07 2.96

One period 
error

1/160 1.79E−04 – 2.78E−04 –
1/320 4.51E−05 1.99 6.94E−05 2.00
1/640 1.13E−05 2.00 1.73E−05 2.00
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Remark 5 In terms of cost, the new scheme is roughly twice as expensive as MUSCL for 
taking one time step. Compared to using the standard second-order SSP RK scheme with 
slope reconstruction in space, the cost is roughly the same. We just exploit the information 
from the slope reconstruction in stage 1 more carefully.

Lemma 1 The scheme (15)–(16) is linearly stable for the linear advection equation (1) on 
an equidistant mesh under the CFL condition 0 < 𝜆 ⩽ 1.

Proof The claim follows by means of a von Neumann stability analysis. We analytically 
deduce a very lengthy and complicated expression for the amplification factor |G| (not 
given here). We then verify numerically that |G| ⩽ 1 if and only if 0 < 𝜆 ⩽ 1.

We combine the explicit MPRKC scheme with the implicit Trapezoidal scheme (3) using 
flux bounding, resulting in MPRKC-Trap. This is sketched in Fig. 5. Due to MPRKC being 
a two-stage scheme, the implicit region has become bigger compared to MUSCL-Trap. The 
results for the mixed scheme on an equidistant mesh with � = 1 but with switching the scheme 
as indicated in Test 2 are shown in Table 5. As expected, the one step error converges with the 
third order and the error at time T with the second order.

3  Mixed Explicit‑Implicit Schemes in Two Dimensions

In the following we will discuss mixed explicit-implicit schemes in two dimensions: we 
will first briefly introduce the two dimensions version of the MUSCL-Trap scheme as pre-
sented in [34] and examine its error. Then, we will introduce variants of MUSCLmod-Trap 
and MPRKC-Trap in two dimensions. We will conclude with a comparison of the resulting 
schemes for both a fully Cartesian mesh and a cut cell mesh.

3.1  The MUSCL‑Trap Scheme

In two dimensions, we solve the linear advection equation

(16)F
n+1∕2,ET

i+1∕2
=

u

2

(
Sn
i
+ Sn

i,x

h

2
+ S

(1)

i
+ S

(1)

i,x

h

2

)
.

Table 5  Result of Test 2: error 
for MPRKC-Trap for the model 
problem in Fig. 1d model 
problem � = 1 (i.e., equidistant 
mesh but including change in 
time stepping scheme)

Final time h L1 error Order L∞ error Order

One step error 1/160 8.45E−07 – 2.10E−06 –
1/320 1.07E−07 2.98 2.59E−07 3.01
1/640 1.36E−08 2.98 3.32E−08 2.97

One period 
error

1/160 1.81E−04 – 2.79E−04 –
1/320 4.52E−05 2.00 6.95E−05 2.01
1/640 1.13e−05 2.00 1.73e−05 2.00



 Communications on Applied Mathematics and Computation

1 3

Here, s(t,  x,  y) denotes a scalar field. For simplicity, we will only consider a constant 
velocity field, i.e., u and v are assumed to be constant. This is sufficient to show our main 
findings.

As an explicit scheme, an unsplit, two-dimensional MUSCL scheme [2] is used. For 
brevity reasons, we will not present the details here. We note though that this MUSCL 
scheme uses corner-coupling to capture proper dependencies in two dimensions and 
is therefore stable under the CFL condition 0 < 𝜈 ⩽ 1 in combination with the time step 
computation

Flux bounding is used to couple the explicit MUSCL scheme with an implicit scheme. 
The idea is sketched in the left graphic of Fig. 6. Full Cartesian cells that are edge neigh-
bors of cut cells are marked as transition cells. Cut cells are treated fully implicit. There-
fore, fluxes between cut cells and transition cells use an implicit scheme. All remaining 
fluxes, in particular fluxes between two transition cells, use an explicit scheme.

This results in the following two-step algorithm, which is analogous to the one 
dimension situation: given Sn

ij
 , 

(17)st + usx + vsy = 0.

(18)Δt = �min

(
Δx

|u| ,
Δy

|v|
)
.

Fig. 5  The new MPRKC-Trap scheme: we compute S(1)
i

 using the MUSCL scheme for cells i ⩽ −2 and i ⩾ 2 
as sketched in Fig. 2a. Then we compute the explicit flux Fn+1∕2,ET given by (16) for all edges marked in 
green and update the fully explicitly treated cells i ⩽ −4 and i ⩾ 4 . We combine this using flux bounding 
with an implicit treatment (edges marked in light blue) of cells −3,⋯ , 3 . Note that now cells −3 and 3 cor-
respond to the transition cells

Fig. 6  Switching between schemes in two dimensions: cut cells are marked by pink color. Implicit fluxes 
are marked by a bold, red line, explicit fluxes by blue. Left: MUSCL-Trap:  “Transition” cells (marked with 
“T”) are full Cartesian cells that share an edge with a cut cell. Right: MPRKC-Trap: the shaded cells corre-
sponds to the layer of cells closest to the embedded object that can be updated using the MUSCL predictor 
step. Transition cells (marked with “T”) have been shifted by two cell layers compared to MUSCL-Trap
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 (i) compute all explicit fluxes using the MUSCL scheme and update all fully explicitly 
treated cells to Sn+1

ij
;

 (ii) compute all implicit fluxes and update cut cells and transition cells to Sn+1
ij

.

As an implicit scheme, Trapezoidal time stepping in combination with a least squares 
formulation for slope reconstruction in space [3, 32] is used. On Cartesian cells that are 
not transition cells standard central differences are used for slope reconstruction. No 
limiting is applied.

We note that on cut cells, one reconstructs to the midpoint of the cut cell edges, not 
to the midpoint of the Cartesian edges. To be more precise, the update on a cut cell is 
given by

where �ij ∈ (0, 1) is the volume fraction and

Here (xi+1∕2,j, yi+1∕2,j) denotes the location of the edge midpoint of face (i + 1∕2, j) , (xij, yij) 
denotes the centroid of cut cell (i, j), and Sij,x and Sij,y refer to the reconstructed unlimited 
x- and y-slopes respectively in cell (i, j). Further, �i+1∕2,j ∈ [0, 1] represents the area frac-
tion of cut cell edge (i + 1∕2, j) compared to a full Cartesian edge. The fluxes Gn+1∕2,T

i,j+1∕2
 are 

defined analogously. This concludes the brief description of the MUSCL-Trap scheme. 
More details can be found in [34].

Remark 6 (Cost of MUSCL-Trap) In each time step, one needs to solve an implicit system 
that couples the cut cells and transitions cells. Since cut cells occur only at the bound-
ary of the embedded object, the size of this system is one dimension lower than the over-
all number of cells. In two dimensions on a Cartesian grid with N cells in each direction, 
one expects O(N) unknowns in the implicit system. Therefore, using this mixed explicit-
implicit approach is significantly cheaper than using an implicit scheme everywhere.

In [34], May and Berger presented numerical results for the (unlimited) MUSCL-
Trap scheme in two dimensions. The L1 error converged with second order. The L∞ error 
however showed convergence rates between 1.3 and 1.6. This is not in line with the 
second-order accuracy that we saw in one dimension. Newer results with DG codes on 
cut cell meshes for piecewise linear polynomials however have also showed reduced 
convergence rates in the L∞ norm of 1.5–1.6 [14, 18]. This raises the general question 
of whether we can expect to see full second-order convergence in the L∞ norm on two 
dimensional cut cell meshes at all but this is the goal.

In the following we want to examine the accuracy of the scheme in two dimensions 
more closely than done in [34]. Here, we will focus on the error caused by switching the 
time stepping scheme. Due to the complexity of cut cells in two dimensions, our exami-
nation will be mostly based on numerical experiments.

(19)Sn+1
ij

= Sn
ij
−

Δt

�ijΔxΔy

(
F
n+1∕2,T

i+1∕2,j
− F

n+1∕2,T

i−1∕2,j
+ G

n+1∕2,T

i,j+1∕2
− G

n+1∕2,T

i,j−1∕2

)
,

F
n+1∕2,T

i+1∕2,j
=

1

2
u𝛽i+1∕2,jΔy(S

n
i+1∕2,j

+ Sn+1
i+1∕2,j

),

Sn
i+1∕2,j

=

{
Sn
ij
+ (xi+1∕2,j − xij)S

n
ij,x

+ (yi+1∕2,j − yij)S
n
ij,y

if u > 0,

Sn
i+1,j

+ (xi+1∕2,j − xi+1,j)S
n
i+1,j,x

+ (yi+1∕2,j − yi+1,j)S
n
i+1,j,y

if u < 0.
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Remark 7 For our numerical tests in two dimensions, we use the code setup from [34] as 
the starting point: our implementation is based on BoxLib [4], a library for massively par-
allel AMR applications. For the generation of the cut cells, we use patchCubes, a vari-
ant of the cubes mesh generator that is part of the Cart3D package [1, 24]. The solution 
of the resulting implicit system is done using umfpack [23].

3.1.1  The Transition Error for MUSCL‑Trap (in Absence of Cut Cells)

We would like to examine the time stepping transition error in the absence of error sources (ii)
(a)–(c) caused by the irregularity of the cut cells. Therefore, we consider the test setup shown 
in Fig. 7: we create a setup where we switch between explicit and implicit time stepping but 
all cells are full Cartesian cells. As on a Cartesian mesh error sources (ii)(a)–(c) drop out, the 
remaining error should be dominated by the switch from MUSCL to Trapezoidal.

For the theoretical considerations, we focus on the case of 45◦ and choose u = v = 1 and 
Δx = Δy . The update on a transition cell is given by

A lengthy computation, which involves the usage of the equation st + sx + sy = 0 to re-
express derivatives, leads to the following formula for the one step error on transition cells:

Therefore, we expect in general a one step error of second order. For the special case 
sxx = syy , we expect a third-order one step error (we confirmed this in numerical experi-
ments not shown here).

In numerical tests, see e.g., Test 3 below, we often observed (for a variety of angles) 
that on a full Cartesian mesh, we have a second-order one step error in L∞ due to this 

Sn+1
ij

= Sn
ij
−

Δt

ΔxΔy

(
F
n+1∕2,T

i+1∕2,j
− F

n+1∕2,M

i−1∕2,j
+ G

n+1∕2,M

i,j+1∕2
− G

n+1∕2,T

i,j−1∕2

)
.

L(s̄n, s̄n+1)ij =
1

4

(
Δt2 −

Δt3

h

)
sxx(t

n, xi, yj) −
1

4

(
Δt2 −

Δt3

h

)
syy(t

n, xi, yj) +O(Δt3).

Fig. 7  Setup for testing transition error in two dimensions: all cells are Cartesian cells but we simulate the 
switch in time stepping. To do so, we intersect a Cartesian grid with a line with angle � . All cells cut by 
this line (marked in pink) are treated as “fake” (as Cartesian) cut cells. All “fake” cut cell edges as well as 
all edges of cells below the “fake” cut cells use the implicit scheme (marked in red). All remaining edges 
(marked in blue), i.e., all edges of cells above the “fake” cut cells use the explicit scheme. The switch takes 
place on the cells marked with a “T”
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transition—but that this transition error accumulates “only” to a scheme of order O(h1.5) 
for the L∞ error at time T.

3.2  New Mixed Explicit‑Implicit Schemes

We now present the extensions of MUSCLmod-Trap and MPRKC-Trap to two dimensions.

3.2.1  The MUSCLmod‑Trap Scheme

To derive the new explicit MUSCLmod scheme, we essentially do a truncation error analysis 
of the Trapezoidal rule and the MUSCL scheme on a mesh as shown in Fig. 7 and design 
MUSCLmod to contain the second-order transition error terms. One needs to be a bit careful 
in this computation as the original MUSCL scheme is based on an unsplit version, involving 
corner coupling and a more evolved evaluation of transverse derivatives. This then results in 
the following change of the reconstructed value SM,n+1∕2

i+1∕2,j
 (the approximation to the solution at 

the midpoint of edge (i + 1∕2, j) at time tn+1∕2 used in the MUSCL scheme) for the case 
u, v > 0

The second derivatives are computed using standard second-order difference quotients on 
Cartesian cells away from cut cells. On transition cells we fit a quadratic polynomial to 
compute them.

Numerical tests show for MUSCLmod as a fully explicit scheme on a Cartesian mesh 
a third-order one step error and standard second-order accuracy at time T. The numerical 
stability limit also seems to be very similar to the original unsplit MUSCL.

3.2.2  The MPRKC‑Trap Scheme

We now extend the explicit MPRKC scheme, given by (15)–(16) in one dimension, to two 
dimensions. We use the unsplit MUSCL scheme described by Almgren et al. [2], which we 
also use for the MUSCL-Trap scheme, to compute the predictor S(1) . Afterwards, we use the 
two-dimensional analog of (16) for the computation of the fluxes Fn+1∕2,ET

i±1∕2,j
 and Gn+1∕2,ET

i,j±1∕2
.

The classic two-stage second-order SSP RK scheme in combination with central differ-
ences for Δx = Δy = h is stable with � ⩽ 1.0 under the CFL condition [7]

due to using a split approach. The new MPRKC scheme uses the unsplit MUSCL as the 
predictor (instead of the split upwind scheme) but the split explicit Trapezoidal scheme as 
the corrector. We therefore expect MPRKC to be at least as stable as the classic two-stage 
second-order SSP RK scheme and to be in particular stable under the CFL condition (20). 
We confirmed this in numerical tests.

Next, we briefly sketch the extension of the mixed MPRKC-Trap to two dimensions. If 
we compare the one-dimensional sketches of MUSCL-Trap, see Fig. 2b, and MPRKC-Trap, 

S
Mmod,n+1∕2

i+1∕2,j
= S

M,n+1∕2

i+1∕2,j
+

Δt2

4

(
u2Sn

ij,xx
+ 2uvSn

ij,xy

)
−

ΔtΔx

4

(
uSn

ij,xx
+ vSn

ij,xy

)
.

(20)Δt = �
h

|u| + |v|
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see Fig. 5, we observe that the implicit zone has been extended by two cells. This holds 
also true in two dimensions: given Sn

ij
 , 

 (i) compute explicit fluxes using the MUSCL scheme and update all cells that have been 
treated fully explicitly by MUSCL-Trap to S(1)

ij
;

 (ii) use the predicted values S(1)
ij

 for taking the second step of the explicit MPRKC 
scheme; due to slope reconstruction, this will “cost” two layers of cells; therefore, 
the position of the transition cells has been shifted by two cell layers to the interior 
of the flow domain, comparing Fig. 6;

 (iii) compute all implicit fluxes for the extended implicit zone; update cut cells, fully 
implicitly treated implicit cells in the extended implicit zone, and transition cells to 
Sn+1
ij

.

Note that the MPRKC-Trap scheme has been constructed to have a third-order one step 
error on Cartesian meshes.

3.3  Numerical Results in Two Dimensions

We will consider two different tests in the following. We will first compare the various 
mixed schemes on a mesh that contains only Cartesian cells. This is to confirm our analyti-
cal considerations above. Afterwards we will compare the mixed schemes on a mesh that 
contains cut cells.

3.3.1  Test on Cartesian Mesh

Test 3 We consider the setup shown in Fig. 7. We set � = 30◦ . The Cartesian mesh is cho-
sen to cover [0, 1]2 with Δx = Δy and N denotes the number of Cartesian cells in one coor-
dinate direction, i.e., N =

1

Δx
 . The ramp starts at approximately x0 = 0.146 . We use as test 

function s0 = 1 + exp(−120 ∗ ((x − 0.49)2 + (y − 0.20)2)) so that the peak of the Gauss-
ian aligns with where we switch the scheme. We choose the velocity field parallel to the 
angle � , i.e., � = � , and set (u, v)T = (2, 2 tan(�)) . We use T = 0.15 . The initial data and 
the solution at the final time are shown in Fig. 8. We use � = 0.8 . The time step Δt for the 
mixed schemes involving MUSCL and MUSCLmod is computed using (18), for the mixed 
scheme involving MPRKC we use (20). We compare MUSCL-Trap, MUSCLmod-Trap, 
and MPRKC-Trap. We also include results using the explicit versions of the scheme every-
where (i.e., in that case we do not switch to an implicit scheme).

Fig. 8  Setup Test 3. Initial data (left) and solution at T = 0.15 (right) for MUSCLmod-Trap on a 256×256 
mesh (only the zoom on the domain [0, 1] × [0, 0.6] is shown)



Communications on Applied Mathematics and Computation 

1 3

In Fig. 9 we show the error after taking one time step, both in the L1 norm and in the 
L∞ norm. As expected, all fully explicit versions show a third-order one step error. For the 
mixed schemes, both new versions (MUSCLmod-Trap and MPRKC-Trap) show third order 
in L∞ whereas MUSCL-Trap only converges with second order.

In Fig. 10 we show the error at time T. We observe second-order convergence for the 
L1 norm for all six schemes. The error for MUSCL is smallest, followed by MUSCL-Trap. 
For the error in the L∞ norm, all schemes except for MUSCL-Trap show second order. 
MUSCL-Trap converges on the finest meshes with order 1.5. So there is some error accu-
mulation from the second-order one step error but we only seem to lose half an order. We 
have observed an order of 1.5 for MUSCL-Trap on Cartesian meshes in several tests. In 
terms of absolute error sizes, we observe the smallest errors for MUSCL, MUSCLmod, 
and MUSCLmod-Trap, with them being essentially identical on the finest mesh.

3.3.2  Test on Cut Cell Mesh

Our discussion of the schemes in two dimensions so far has focused on the transition error 
between the explicit and implicit schemes in the absence of cut cells. The goal was to 
examine and eliminate error source (i) separately from error sources (ii)(a)–(c). We now 
add cut cells again and conclude this contribution with a numerical comparison involv-
ing the following three schemes: MUSCL-Trap, MUSCLmod-Trap, and MPRKC-Trap. 

Fig. 9  Results for Test 3. Error after one time step. Left: L1 error. Right: L∞ error

Fig. 10  Results for Test 3. Error at time T. Left: L1 error. Right: L∞ error
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The goal is to examine whether the reduction of the transition error leads to more accurate 
results and better convergence orders for the cut cell situation as well.

Test 4 We consider the ramp setup shown in Fig. 6. We again choose � = � . We will 
consider 4 different angles for this test: 10◦ , 20◦ , 30◦ , and 40◦ . The setup is similar to 
Test 3 with the main difference being that we now have cut cells along the ramp. The 
Cartesian mesh is chosen to cover [0, 1]2 with Δx = Δy . We use as test function again 
s0 = 1 + exp(−120 ∗ ((x − x0)

2 + (y − y0)
2)) . The starting point of the ramp and the center-

ing of the test function (x0, y0) vary for the different angles. They are chosen in such a way 
that at the initial time, the cut cells are located around the peak, see, e.g., Fig. 11 for the 
solution at the final time for ramp angle 30◦.

Besides the accuracy of the three different schemes, we also want to examine the effect 
of the inaccurate slope reconstruction on cut cells and transition cells. Typically, we use the 
least squares fit to construct gradients on cut cells and transition cells, see, e.g., [32], which 
is only first-order accurate. As an easy way of obtaining slopes with higher accuracy, we 
will also include results that use analytic slopes on cut cells and transition cells (together 
with standard second-order slope reconstruction on Cartesian cells that are updated fully 
explicitly). These will be marked with “ana” in the legend whereas “LS” implies that the 
least squares slope reconstruction has been used.

The tests will focus on comparing the accuracy of the different schemes. In terms 
of cost, for all schemes we need to solve implicit systems of size O(N) . The costs for 
MUSCL-Trap and MUSCLmod-Trap are pretty comparable. MPRKC-Trap is somewhat 
more expensive due to applying the explicit scheme twice, the potentially reduced time 
step length caused by the different CFL conditions, and the extended implicit zone, which 
is also reflected in somewhat longer running times.

In Fig. 11 we show the results for the error in the L1 norm for the 30◦ ramp. The results 
for the other angles are very comparable. We observe second order convergence for all 
schemes. Generally, using the original MUSCL scheme as an explicit scheme leads to 
slightly smaller L1 errors for this test. We have also included results for versions of 
MUSCL-Trap and MUSCLmod-Trap with an extended implicit zone, where the implicit 
zone has been extended by two cells. These are marked as “ext2”. As a result the set of 
implicitly treated cells is now the same as for MPRKC-Trap.

In Fig. 12 we present the results for the error in the L∞ norm for all 4 angles. Recall 
that the test function was chosen such that we expect bigger errors on cut cells, which 
is actually the case. It is very common for errors on cut cells in the L∞ norm to show 

Fig. 11  Results for Test 4 for 30◦ ramp. Left: zoom on the solution at time T using MUSCL-Trap for 
N = 512 . Right: L1 error for various schemes
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a zig-zag behavior. In Table 6 we therefore also present slopes that we get from fitting 
straight lines through the data shown in Fig. 12 by means of a least squares approach. 
While the details vary a bit for the different ramp angles, we can generally observe that

• when using the LS slopes, the three different schemes (MUSCL-Trap, MUSCLmod-
Trap, and MPRKC-Trap) show similar absolute errors and also similar convergence 
orders (with the exception of the 40◦ ramp). Having improved the transition error does 
not result in smaller errors overall for this test;

• using analytic slopes reduces the error (in terms of its size) significantly, with factors 
varying between 4 and 10;

• for MPRKC-Trap, using analytic slopes instead of LS slopes improves the convergence 
orders, within a range of 0.15–0.42;

• for MUSCL-Trap and MUSCLmod-Trap, we do not see significant improvement in 
convergence orders when using analytic slopes instead of LS slopes. For extending the 

Fig. 12  Results for Test 4. Error in L∞ norm. Convergence orders are given in Table 6

Table 6  Result of Test 4: 
convergence orders for errors in 
L
∞ norm, computed as a least 

squares fit for data shown in 
Fig. 12

Method 10◦ 20◦ 30◦ 40◦

MUSCL_Trap_LS 1.36 1.29 1.23 1.42
MUSCLmod_Trap_LS 1.33 1.32 1.29 1.37
MPRKC_Trap_LS 1.33 1.35 1.30 1.31
MUSCL_Trap_ana 1.41 1.32 1.22 1.34
MUSCLmod_Trap_ana 1.39 1.31 1.22 1.37
MPRKC_Trap_ana 1.53 1.50 1.54 1.73
MUSCL_Trap_ana2 1.50 1.37 1.24 1.44
MUSCLmod_Trap_ana2 1.53 1.43 1.28 1.42
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implicit zone by two cell layers, we do see significant improvement for the angles 10◦ 
and 20◦ degrees but not for the higher ones;

• we observe the highest convergence orders for MPRKC-Trap with analytic slopes. In 
terms of error sizes it is very comparable though with MUSCL-Trap and MUSCLmod-
Trap when using analytic slopes and an extended implicit zone.

To sum it up, despite the improved transition error, we do not see a significantly improved 
convergence order or significantly smaller errors for the new versions MUSCLmod-Trap 
and MPRKC-Trap. Using analytic slopes leads to significantly smaller error sizes but not 
necessarily significantly improved convergence orders for this test.

4  Conclusions and Future Plans

In this contribution, we analyzed the accuracy of the mixed explicit implicit scheme con-
sisting of MUSCL as an explicit scheme and the Trapezoidal rule with slope reconstruc-
tion as an implicit scheme. For the one step error, we identified several second-order error 
sources linked to the irregular size of the cut cells as well as a second-order transition error 
when switching from explicit to implicit schemes. For linear advection in one dimension, 
we can show that these errors do not accumulate in the usual way and that the resulting 
scheme is second-order accurate.

This is not the case in two dimensions. We therefore introduced two new mixed schemes, 
MUSCLmod-Trap and MPRKC-Trap, with improved transition errors that are based on 
exchanging the explicit scheme. Using the mixed scheme on a fully Cartesian mesh led 
to improved convergence orders in two dimensions. When using these new schemes on a 
test involving cut cells however there was no significant difference from using the original 
MUSCL-Trap. Using analytic slopes led to a slight improvement of convergence orders and 
a significant improvement in the actual error size. Note though that the improved conver-
gence orders are not that different from the newer results with DG codes on cut cell meshes 
for piecewise linear polynomials, which show reduced convergence orders in the L∞ norm 
of 1.5 to 1.6 [14, 18] as well. So maybe it is too much to aim for a full second order in L∞ 
for the ramp test.

More intensive numerical tests are needed to make a definite statement. It currently 
seems that it might only pay off to reduce the transition error if also the other error sources 
(caused by the irregularity of the cut cells) are taken care of. The first step would be to 
upgrade the slope reconstruction on cut cells and neighbors of cut cells to second order. 
This can be achieved by fitting quadratic polynomials. Our initial attempts of implement-
ing this have led to irritating results. It is currently not clear whether there is a bug in the 
implementation or whether there is some kind of weird interaction going on with the solu-
tions necessary for the implicit time stepping. We currently use an approximate Newton 
scheme for that with the approximate Jacobian being based on a first-order discretization.
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