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Abstract
A novel numerical scheme to solve two coupled systems of conservation laws is intro-
duced. The scheme is derived based on a relaxation approach and does not require informa-
tion on the Lax curves of the coupled systems, which simplifies the computation of suit-
able coupling data. The coupling condition for the underlying relaxation system plays a 
crucial role as it determines the behaviour of the scheme in the zero relaxation limit. The 
role of this condition is discussed, a consistency concept with respect to the original prob-
lem is introduced, the well-posedness is analyzed and explicit, nodal Riemann solvers are 
provided. Based on a case study considering the p-system of gas dynamics, a strategy for 
the design of the relaxation coupling condition within the new scheme is provided.

Keywords Coupled conservation laws · Hyperbolic systems · Finite-volume schemes · 
Coupling conditions · Relaxation system

Mathematics Subject Classification 35L65 · 35R02 · 65M08

1 Introduction

Coupled systems of hyperbolic conservation or balance laws have been discussed in the 
mathematical literature to address various modelling questions, e.g., regarding two-phase 
dynamics, multi-scale processes and networks, see, e.g., [12]. The mathematical treatment 
of interface coupling has been motivated by boundary value problems [2, 16, 25, 31, 32] 
or by applications to traffic flow on road networks [19, 29], or gas dynamics in large-scale 
pipelines [5, 6, 14, 53]. It has been further expanded into a well-posedness result for cou-
pled general gas dynamics, see, e.g., [20, 21, 41]. Usually the coupling is imposed at a 

 * Niklas Kolbe 
 kolbe@igpm.rwth-aachen.de

 Michael Herty 
 herty@igpm.rwth-aachen.de

 Siegfried Müller 
 mueller@igpm.rwth-aachen.de

1 Institute of Geometry and Applied Mathematics, RWTH Aachen University, Templergraben 55, 
Aachen 52062, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s42967-023-00306-5&domain=pdf
http://orcid.org/0000-0003-0319-8748


 Communications on Applied Mathematics and Computation

1 3

single spatial interface point as it has been done, e.g., to model production systems [23] 
and blood flow through systems of blood vessels [27] to mention only a few.

A main challenge has been the derivation of well-posed initial boundary value prob-
lems for coupled dynamics out of physically (or problem) induced conditions, see [12] for 
a recent review. A well-known technique by now is the analytical concept of (half-)Rie-
mann problems [39] or solvers [28]. Moreover, the use of wave-front-tracking techniques 
yields well-posed coupled problems for a variety of mathematical fluid-type models, see, 
e.g., [11, 40]. This analytical tool has given rise to the Riemann solver (RS) based numeri-
cal methods, which have been proposed, e.g., in [31, 40] and since then extended towards 
high-order methods [4, 8, 13, 51]. Some high-order methods rely on the linearization of 
the imposed conditions such that the Lax curves are obtained trivially, see, e.g., [4, 9]. 
We focus here on finite-volume schemes—finite-element based approaches, such as [26], 
require a different treatment of coupling conditions. Linearization techniques and Roe-
type schemes have been used to avoid the explicit computation of eigenvalues in two-phase 
problems, see, e.g., [7]. A linearization of the nonlinear dynamics at the coupling point is 
also at the core of an implicit (in space) numerical scheme [47]. Recently, using projection 
of the fluxes in the direction normal to the interface an extension of these techniques to the 
multi-dimensional case has been introduced in [38]. A related problem is given by con-
servation laws with discontinuous flux at a single point in space. This problem has appli-
cations, for instance, in porous media [30], sedimentation processes [15, 24], traffic flow 
[40] or in supply chain models [35]. In the scalar, one-dimensional case, if conservation of 
mass and a modified entropy condition across the interface are imposed, solutions are con-
structed [1] and numerically approximated [3, 50]. A numerical approximation based on 
relaxation [44] of (scalar) discontinuous fluxes has been proposed in [45]. These schemes, 
however, rely on analytical expression of Lax curves, which limits those techniques, e.g., 
when treating phenomena like the multi-phase flow. In various cases such curves are not 
available [33, 34] or not explicitly given [52].

In this work, a new approach is introduced that does not rely on Lax curves at the inter-
face. Therefore, building on our prior work on scalar equations on networks [36], the non-
linear systems are rewritten in the relaxation form proposed in [44]. Due to the linearity of 
the relaxed systems, the Lax curves are linearly spanned by the constant eigenvectors of the 
flux matrix. Based on the reformulation, we derive an explicit scheme for coupled systems 
of conservation laws by taking a discretization to the zero relaxation limit as suggested 
also in [44]. The considered coupling differs from the one in [22, 43], where a relaxation 
system is coupled to a relaxed system. A related approach has been followed in [10], where 
a kinetic relaxation model governs the coupling conditions. Another alternative is the con-
struction of vanishing viscosity solutions, addressed in the schemes in [46, 55], that avoids 
the use of Lax curves at the expense of formally treating parabolic systems. The system 
case that is discussed here requires a detailed analysis of the modified coupling condition 
imposed to the relaxation formulation, which we will consider.

The outline of this manuscript is as follows: in Sect. 2, we introduce the relaxation form 
for coupled systems of hyperbolic systems as well as a consistency concept for the corre-
sponding coupling condition. In Sect. 3, we discuss suitable RSs of the coupled problem, 
discuss their well-posedness, and provide an explicit form for the case of linear coupling 
conditions. Section 4 is concerned with the construction of a finite-volume scheme for the 
coupled problem. In Sect. 5, we consider the p-system of gas dynamics in a case study and 
conduct numerical experiments for different choices of the relaxation coupling condition 
and then conclude providing a general strategy for the construction of this condition.
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2  The Coupled Relaxation System

We consider a coupled system of hyperbolic conservation laws on the real line of the form 

with the vector valued state variable U(t, x) ∈ ℝ
n , and flux functions F

1
,F

2
∶ ℝ

n
→ ℝ

n . At 
the interface located at x = 0 , a transition between the two flux functions takes place, and 
we impose the coupling condition

assuming a suitable mapping Ψ
U
∶ ℝ

n ×ℝ
n
→ ℝ

m for m ∈ ℕ . To obtain a well-posed prob-
lem, a sufficiently large number of suitable conditions are required and thus m depends on 
the given flux functions. Moreover, we assume initial data given by the vector valued func-
tion U0(x) , which is compatible with the coupling condition (2).

The relaxation system [44] was introduced as a dissipative approximation of a hyperbolic 
system, recovering the original system in the so-called relaxation limit. In this work, we use 
it as a tool to derive coupling information giving rise to a new method. The relaxation system 
corresponding to (1) employs the auxiliary state variable V(t, x) ∈ ℝ

n and the relaxation rate 
𝜀 > 0 and reads 

where A1 and A2 denote diagonal n × n matrices with positive diagonal entries ai
j
 for 

j = 1,⋯ ,N and i = 1, 2 . These matrices satisfy the subcharacteristic condition

for all U. This condition has been derived in [49] using the asymptotic analysis. Here, 
DFi(U) refers to the Jacobian of Fi in U and the inequality indicates positive semi-definite-
ness. We note that both U and V depend on � . Introducing the vector Q = (U,V) , we close 
system (3) using the relaxation coupling condition

for a mapping Ψ
Q
∶ ℝ

2n ×ℝ
2n

→ ℝ
l , where l ∈ ℕ . The particular choice of ΨQ and m for 

given ΨU is discussed in the following parts of this paper. Initial data for the relaxation sys-
tem are derived from the original initial data by setting Q0 = (U0,V0) such that

and the compatibility of the initial data Q0 with the coupling condition (5) is assumed.

∂tU + ∂xF1(U) = 0, (t, x) ∈ (0,∞)× (−∞, 0), (1a)
∂tU + ∂xF2(U) = 0, (t, x) ∈ (0,∞)× (0,∞) (1b)

(2)ΨU(U(t, 0−),U(t, 0+)) = 0 for a.e. t > 0,

∂tU + ∂xV = 0, (t, x) ∈ (0,∞)× R\{0}, (3a)

∂tV +A1 ∂xU =
1
ε
(F1(U)− V ), (t, x) ∈ (0,∞)× (−∞, 0), (3b)

∂tV +A2 ∂xU =
1
ε
(F2(U)− V ), (t, x) ∈ (0,∞)× (0,∞), (3c)

(4)Ai − (DFi(U))2 ⩾ 0, i = 1, 2

(5)ΨQ(Q(t, 0
−),Q(t, 0+)) = 0 for a.e. t > 0

(6)V0(x) = F1(U
0(x)), if x < 0, V0(x) = F2(U

0(x)), if x > 0,
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It is well known that the uncoupled relaxation system recovers the original system of 
conservation laws as well as V = F(U) as � tends to zero. We are interested in this relaxa-
tion limit at the interface as � → 0.

2.1  Continuous Relaxation Limit

The fact that the uncoupled relaxation system tends to a system of conservation laws in the 
relaxation limit, see [44], raises the question how the coupled systems and, in particular, 
the coupling conditions (2) and (5) relate. Here we address this question using the asymp-
totic analysis and suppose that the solution Q = (U,V) of the coupled relaxation system (3) 
endowed with the coupling condition  (5) can be written in terms of a Chapman-Enskog 
expansion [17], i.e.,

As a solution of the relaxation system in the limit � → 0 on both half-axes, the state 
Q̃0 = (Ũ0, Ṽ0) has the property

and Ũ0 is a solution to the system of conservation laws on both half-axes. If we assume that 
ΨQ is continuously differentiable, we obtain due to the Taylor expansion

and, in particular, in the limit � → 0 , we have

This observation motivates the following consistency condition.

Definition 1 The coupled relaxation system (3) is consistent with the coupled system of con-
servation laws (1), iff for a.e. t > 0 , the corresponding coupling conditions (5) and (2) satisfy

Assuming a smaller number of conditions for the system of conservation laws than for 
the relaxation system, i.e., m < l , this definition implies that consistency requires redun-
dancies occurring in the relaxation limit due to (5).

3  Riemann Solvers (RSs) for the Coupled Relaxation System

In this section, we consider RSs for the coupled relaxation system, which identify coupling 
data that both solve a half-Riemann problem and satisfy the coupling condition. They are 
an integral component of the finite-volume schemes introduced in Sect. 4. We introduce 
the concept in Sect. 3.1, discuss their well-posedness with respect to the coupling condition 

(7)Q = Q̃0 +

∞∑
k=1

𝜀kQ̃k.

(8)Ṽ0(t, x) = F1(Ũ
0(t, x)), if x < 0, Ṽ0(t, x) = F2(Ũ

0(t, x)), if x > 0,

(9)ΨQ(Q(t, 0
−),Q(t, 0+)) = ΨQ

(
Q̃0(t, 0−), Q̃0(t, 0+)

)
+O(𝜀),

(10)ΨQ

(
Q̃0(t, 0−), Q̃0(t, 0+)

)
= 0.

(11)

ΨU

(
U(t, 0−),U(t, 0+)

)
= 0, iff ΨQ

((
U(t, 0−)

F1(U(t, 0−))

)
,

(
U(t, 0+)

F2

(
U(t, 0+)

)
))

= 0.
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in Sect. 3.2, derive an explicit form in the linear case in Sect. 3.3 and study their behaviour 
in the relaxation limit in Sect. 3.4.

3.1  The Half‑Riemann Problem

A finite-volume scheme for a coupled problem such as  (3), requires suitable coupling/
boundary data, which is obtained by solving a half-Riemann problem [25]. Later we will 
introduce the concept of RSs, which identify coupling data that both solve the half-Rie-
mann problem and satisfy a coupling condition.

To discuss the half-Riemann problem in system  (3), we require information about its 
Lax curves. The relaxation system can be rewritten on both half-axes ( i = 1 , if left, and 
i = 2 , if right) as

where Si ∈ ℝ
2n×2n refers to the diagonalizable block matrix

By taking the root of each diagonal entry in Ai , we obtain 
√
Ai , which is invertible and 

satisfies 
√
Ai

√
Ai = Ai . The decomposition (13) shows that the eigenvalues of the system 

are given by

The columns of the matrix Ri include the (right) eigenvectors of the system that can be 
segmented as

so that R−
i
∈ ℝ

2n×n includes the eigenvectors corresponding to the negative eigenvalues and 
R+
i
∈ ℝ

2n×n the ones corresponding to the positive eigenvalues. Analogously, we define the 
left eigenvectors as the rows of the matrix

which can again be split with respect to the signs of the corresponding eigenvalues into the 
matrices L−

i
 , L+

i
∈ ℝ

n×2n . The characteristic variables of the system are

(12)�
t
Q + S

i
�
x
Q =

1

�

(
0

F
i
(U) − V

)
,

(13)

S
i
=

�
0 I

A
i
0

�
=

�
−(

√
A
i
)−1 (

√
A
i
)−1

I I

��
−
√
A
i

0

0
√
A
i

�⎛⎜⎜⎝

−
1

2

√
A
i

1

2
I

1

2

√
A
i

1

2
I

⎞⎟⎟⎠
=∶ R

i
Λ

i
R
−1
i
.

(14)�j = −
√

ai
j
, �n+j =

√
ai
j

for j = 1,⋯ , n.

(15)R
i
=

�
−(

√
A
i
)−1 (

√
A
i
)−1

I I

�
=∶

�
R
−
i
R
+
i

�
,

(16)L
i
∶= R

−1
i

=

�
−

1

2

√
A
i

1

2
I

1

2

√
A
i

1

2
I

�
=

�
L
−
i

L
+
i

�
,



 Communications on Applied Mathematics and Computation

1 3

Starting from a state Q∗
0
= (U∗

0
,V∗

0
)T , the Lax curves of the systems are lines in the state 

space given by 

for j = 1,⋯ , n with ej ∈ ℝ
2n denoting the j-th unit vector and the parameter �±

j
∈ ℝ . 

Moreover, we define the set 

which includes all states that connect to Q∗
0
 by Lax curves with negative speeds, i.e., 

L�1
,⋯ ,L�n

 . Conversely, the set of states connecting to Q∗
0
 by Lax curves with positive 

speeds, i.e., L�n+1
,⋯ ,L�2n

 , is

Note that for the following discussion, the Lax curves with negative speeds L�1
,⋯ ,L�n

 
in  (19) as well as L− in  (18) are defined for the relaxation system on the left half-axis, 
whereas the Lax curves with positive speeds L�n+1

,⋯ ,L�2n
 and L+ are defined for the 

relaxation system on the right half-axis.
We consider a situation, where we are given discrete data next to the coupling interface 

from a finite-volume scheme. We refer to this so-called trace data by Q−
0
= (U−

0
,V−

0
) left from 

the interface and Q+
0
= (U+

0
,V+

0
) right from the interface, respectively. We denote boundary/

coupling data for the left half-axis (−∞, 0) by Q
R
= (U

R
,V

R
) . Analogously, we denote cou-

pling/boundary data for the right half-axis (0,∞) by QL = (UL,VL) . If QR and QL constitute a 
solution of the half-Riemann problem, they need to satisfy

An RS for the relaxation system  (3) corresponding to the coupling condition  (5) is a 
mapping

that assigns coupling data satisfying the coupling condition and solving the half-Riemann 
problem to given trace data. It is defined by condition (20) and

for the coupling function introduced in  (5). We note that the well-posedness of the RS 
depends on the coupling condition. The relation between traces, coupling data and cou-
pling condition in the relaxation system is illustrated in Fig. 1.

(17)
�
W−

i

W+
i

�
∶= R−1

i
Q =

1

2

�
V −

√
AiU

V +
√
AiU

�
.

Lλj (Q
∗
0;σ

−
j ) = Q∗

0 − σ−
j (a1j )

−1/2 ej + σ−
j en+j , (18a)

Lλn+j
(Q∗

0;σ
+
j ) = Q∗

0 + σ+
j (a

2
j )

−1/2ej + σ+
j en+j (18b)

(19a)

L
−(Q∗

0
) ∶=

�
Q

∗
0
+ R

−
1
Σ−∶ Σ− ∈ ℝ

n
�
=

��
U

∗
0
− (

√
A
1
)−1Σ−

V
∗
0
+ Σ−

�
∶ Σ− ∈ ℝ

n

�
,

(19b)L
+(Q∗

0
) ∶=

�
Q

∗
0
+ R

+
2
Σ+∶ Σ+ ∈ ℝ

n
�
=

��
U

∗
0
+ (

√
A
2
)−1Σ+

V
∗
0
+ Σ+

�
∶ Σ+ ∈ ℝ

n

�
.

(20)QR ∈ L
−(Q−

0
) and QL ∈ L

+(Q+
0
).

(21)RS ∶ ℝ
2n×2n

→ ℝ
2n×2n, (Q−

0
,Q+

0
) ↦ (QR,QL),

(22)ΨQ(QR,QL) = 0
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3.2  Well‑Posedness

In this section, we assume general coupling conditions of the form (5) with l = 2n , i.e.,

To construct a corresponding RS, we aim to identify coupling data that not only satis-
fies (23) but also solves the half-Riemann problem (20). Condition (20) allows us to param-
eterize the coupling data as

using the notation

and thus to introduce the parametrized form of the coupling function

Given this parametrization, we can interpret the RS (21) for coupling condition (23) as a 
routine that first identifies Σ by solving the root problem Ψ̃Q(Σ;Q0) = 0 for given Q0 and 
then outputs the data QR(Σ;Q0) and QL(Σ;Q0) . It is well posed iff for any trace data Q0 
the equation Ψ̃Q(Σ;Q0) = 0 has a unique solution Σ = Ξ(Q0) . We state a result on its local 
regularity.

Lemma 1 Let ΨQ be continuously differentiable. Suppose that for a fixed Q0 ∈ ℝ
4n , there 

is a unique Σ ∈ ℝ
2n satisfying Ψ̃Q(Σ;Q0) = 0 and the Jacobian DΣΨ̃Q(Σ;Q0) is invertible. 

Then there is an open ball BQ0
⊂ ℝ

4n around Q0 such that the RS (21) with coupling con-
dition (23) is well defined and continuously differentiable for all Q̃0 = (Q̃−

0
, Q̃+

0
)T ∈ BQ0

.

Proof Due to the implicit function theorem, there are open balls BΣ and BQ0
 around Σ and 

Q0 , respectively, and a unique continuously differentiable mapping Ξ∶ BQ
0

→ BΣ such that

(23)Ψ
Q
(Q

R
,Q

L
) = 0, Ψ

Q
∶ ℝ

2n ×ℝ
2n

→ ℝ
2n
.

(24)QR(Σ;Q0) = Q−
0
+ R−

1
Σ−, QL(Σ;Q0) = Q+

0
+ R+

2
Σ+,

(25)Q0 =
(
Q−

0
,Q+

0

)
, Σ =

(
Σ−,Σ+

)
,

(26)Ψ̃
Q
(Σ;Q

0
) ∶= Ψ

Q
(Q

R
(Σ;Q

0
),Q

L
(Σ;Q

0
)), Ψ̃

Q
∶ℝ2n ×ℝ

4n
→ ℝ

2n
.

(27)Ψ̃Q(Σ̃; Q̃0) = 0, iff Σ̃ = Ξ(Q̃0)

x0

ΨQ(QR, QL) = 0

t

Q−
0

QR

Q+
0

QL

Lλ1(Q
−
0 )

Lλn
(Q−

0 ) Lλn+1(Q
+
0 )

Lλ2n(Q
+
0 )

Fig. 1  Wave structure of the coupled relaxation system in the x-t-plane. The left trace data Q−
0
 are connected to 

the coupling data Q
R
 by the Lax curves of negative speeds, i.e., L�

1

,⋯ ,L�
n

 and the outgoing trace data Q+
0
 are 

connected to the coupling data Q
L
 by the Lax curves of positive speeds, i.e., L�

n+1
,⋯ ,L�

2n

 . Coupling data on 
the incoming and outgoing edges are related by the coupling condition Ψ

Q
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for all Q̃0 ∈ BQ0
 and Σ̃ ∈ BΣ . The statement is obtained taking into account that the output 

of the RS (21) is uniquely given by QR(Ξ(Q̃0); Q̃0) and QL(Ξ(Q̃0); Q̃0) for all Q̃0 ∈ BQ0
.

A further result is obtained applying the contraction mapping theorem to a fixed 
point iteration of the form

with A(Q0) ∈ ℝ
2n×2n invertible.

Lemma 2 Let S ⊂ ℝ
4n and P ⊂ ℝ

2n denote open sets. Suppose that for any Q0 ∈ S , there is 
a regular matrix A(Q0) ∈ ℝ

2n×2n such that

for all Σ ∈ P and TQ0
 is Lipschitz continuous with the Lipschitz constant K < 1 . Then 

RS∶ S → ℝ
2n ×ℝ

2n defined through (20), (21), and (23) is well defined.

Proof For Q0 ∈ S , the function TQ0
(Σ) maps from P to P due to  (29) and is a contrac-

tion mapping as it is Lipschitz continuous with sufficiently small Lipschitz constant. Thus, 
by the contraction mapping theorem, the sequence (28) admits for any arbitrary Σ0 ∈ P a 
unique fixed point Σ̃ satisfying Ψ̃Q(Σ̃;Q0) = 0 . This implies the well-posedness of RSΨ̃Q

.

Remark 1 The Lipschitz continuity of TQ0
 in Lemma 2 is implied by the stronger condition

We note that Lemmas 1 and 2 allow to freely choose the vector norm in ℝn determining 
the induced matrix norm in Remark 1.

3.3  Linear Coupling Conditions

In this section, we discuss a special case of (23), namely affine linear coupling functions of 
the form

for BR,BL ∈ ℝ
2n×2n and P ∈ ℝ

2n . Under further conditions on the matrices, we can provide 
explicit formulas of the coupling data obtained by the corresponding RS (21). We intro-
duce the block matrices

satisfying R̃−Σ = R−
1
Σ− and R̃+Σ = R+

2
Σ+ assuming definition (25).

(28)Σn+1 = Σn − A(Q0)Ψ̃Q(Σ
n;Q0)

(29)TQ0
(Σ) = Σ − A(Q0)Ψ̃Q(Σ;Q0) ∈ P

(30)sup
Σ∈P

‖I − A(Q0)DΣΨ̃Q(Q0;Σ)‖ < 1.

(31)ΨQ(QR,QL) = BRQR − BLQL − P

(32)R̃− =
�
R−
1
0
�
=

�
−(

√
A1)

−1 0

I 0

�
, R̃+ =

�
0 R+

2

�
=

�
0 (

√
A2)

−1

0 I

�
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Proposition 1 Suppose the matrix BRR̃
− − BLR̃

+ is regular. Then the RS corresponding to 
the affine linear coupling function (31) is well defined and yields the output

where Σ is the unique solution of the linear system

Proof Using the parametrization (24), we rewrite the coupling condition as

which implies (34).

In case of block matrices, the system (34) can be solved using a block LU decomposition.

Remark 2 Suppose the matrices BR and BL are given in a block form as

with each block being a matrix in ℝn×n . The system matrix in (34) then takes the form

Suppose now that B11 and S ∶= B22 − B21(B11)−1B12 are regular, then the RS correspond-
ing to the coupling condition (31) is well defined and coupling data can be computed using 
the inverse system matrix

If B11 in Remark 2 is not regular, a block LU decomposition of B and an inverse matrix 
similar to (37) might still be computable after suitable rotation of the rows and columns.

Note that assuming the coupling condition (31), the relaxation system (5) is consistent 
(in the sense of Definition 1) with system (1), if ΨU(UR,UL) = 0 is equivalent to

Example 1 (Kirchhoff conditions) A canonical choice of coupling conditions for (3) is the 
ones due to Kirchhoff, which requires equality of the fluxes left and right from the inter-
face, in all equations of the system, i.e.,

(33)QR = Q−
0
+ R̃− Σ, QL = Q+

0
+ R̃+ Σ,

(34)
(
BRR̃

− − BLR̃
+
)
Σ = P + BLQ

+
0
− BRQ

−
0
.

0 = ΨQ(QR(Σ;Q0),QL(Σ;Q0)) = BR

(
Q−

0
+ R̃−Σ

)
− BL

(
Q+

0
+ R̃+Σ

)
− P,

(35)B
R
=

(
B11

R
B12

R

B21

R
B22

R

)
, B

L
=

(
B11

L
B12

L

B21

L
B22

L

)

(36)

B
R
R̃− − B

L
R̃+ =

�
B12

R
− B11

R
(
√
A
1
)−1 − B12

L
− B11

L
(
√
A
2
)−1

B22

R
− B21

R
(
√
A
1
)−1 − B22

L
− B21

L
(
√
A
2
)−1

�
=∶

�
B11 B12

B21 B22

�
= B.

(37)B−1 =

(
(B11)−1

(
I + B12S−1B21(B11)−1

)
− (B11)−1B12S−1

−SB21(B11)−1 S−1

)
.

(38)BR

(
UR

F1(UR)

)
− BL

(
UL

F2(UL)

)
− P = 0.

(39)ΨK
Q
(QR,QL) = S1QR − S2QL = 0.
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By choosing the diagonal entries sufficiently large (such that  (4) holds), we can achieve 
A1 = A2 =∶ A , which we assume in the following. Consequently, the quantities 
in (13), (17), and (19) are independent of the half-axis considered and we therefore neglect 
the index i. Since S is regular, the coupling condition (39) simplifies to

and thus the coupling function is of the form (31) for BR = BL = I and P = 0.
From (34), we obtain

and consequently the coupling data is given by

or equivalently, 

The relation between trace and coupling data inferred by  (20) and (40) therefore defines 
an RS with easy-to-compute coupling data. In general the coupling condition  (39) does 
not lead to the consistency with the original Kirchhoff coupling problem, in which (1) is 
endowed with the coupling condition

This is due to the lower n components in  (39) that in general impose additional condi-
tions in the relaxation limit. Instead concluding from  (38) the consistency requires that 
ΨU(U(t, 0−),U(t, 0+)) = 0 holds iff

3.4  Discrete Relaxation Limit

Similarly as for the continuous problem in Sect. 2.1, we can analyze the relaxation limit 
of the RS. Therefore, we assume that the trace data Q0 = (Q−

0
,Q+

0
) can be asymptotically 

expanded around the state Q0
0
=
(
Q

0,−

0
,Q

0,+

0

)
 as

(40)ΨK
Q
(QR,QL) = QR − QL = 0,

(
−Σ−

Σ+

)
=
(
R− R+

)−1
(Q−

0
− Q+

0
) =

(
L−

L+

)
(Q−

0
− Q+

0
),

QR = Q−
0
− R−L−(Q−

0
− Q+

0
), QR = Q+

0
+ R+L+(Q−

0
− Q+

0
),

UR = UL =
1
2
(U−

0 + U+
0 ) +

1
2
(
√
A)−1(V −

0 − V +
0 ), (41a)

VR = VL =
1
2
(V −

0 + V +
0 ) +

1
2

√
A(U−

0 − U+
0 ). (41b)

ΨK
U
(U(t, 0−),U(t, 0+)) = F1(U(t, 0−)) − F2(U(t, 0+)) = 0.

U(t, 0−) − U(t, 0+) = F1(U(t, 0−)) − F2(U(t, 0+)) = 0.

(42)Q−
0
= Q

0,−

0
+

∞∑
k=1

�kQ
k,−

0
, Q+

0
= Q

0,+

0
+

∞∑
k=1

�kQ
k,+

0
.
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Moreover, we assume in analogy to Lemma 1 that ΨQ is continuously differentiable and 
that for all Q0 there is a unique (Σ−(Q0),Σ

+(Q0)) = Σ ∈ ℝ
2n satisfying Ψ̃Q(Σ;Q0) = 0 and 

the Jacobian DΣΨ̃Q(Σ;Q0) is invertible. From the parametrization (24), we obtain

Due to the implicit function theorem, see the proof of Lemma 1, Σ− and Σ+ are continu-
ously differentiable functions in Q0 and by the Taylor expansion,

holds. Hence, we obtain by substitution in (43)

or, in different terms

Using a Taylor expansion of ΨQ , we further see that

and thus, in the limit � → 0 , the coupling data satisfy the coupling condition, i.e.,

4  The Central Scheme

We consider a discretization of the real line into uniform mesh cells Ij = (xj−1∕2, xj+1∕2) 
of width Δx with origin located at the cell interface x−1∕2 as indicated by Fig. 2. Further-
more, the time line is partitioned into the instances tn =

∑n

k=1
Δtn for some time increments 

Δtn > 0 , which for brevity we assume uniform and denote by Δt throughout this section. 
Let Qn

j
 , Un

j
 , and Vn

j
 denote piecewise constant numerical solutions of system (3) in terms of 

cell averages over cell Ij at time tn.

(43)QR(Σ;Q0) = Q−
0
+ R−

1
Σ−(Q0), QL(Σ;Q0) = Q+

0
+ R+

2
Σ+(Q0).

(44)Σ∓(Q0) = Σ∓(Q0
0
) +O(�)

(45)
QR(Σ;Q0) = Q

0,−

0
+ R−

1
Σ−

(
Q0

0

)
+O(�), QL(Σ;Q0) = Q

0,+

0
+ R+

2
Σ+

(
Q0

0

)
+O(�),

(46)RS(Q−
0
,Q+

0
) = RS

(
Q

0,−

0
,Q

0,+

0

)
+O(�).

ΨQ(QR(Σ(Q0);Q0),QL(Σ(Q0);Q0)) = ΨQ(QR(Σ(Q
0
0
);Q0

0
),QL(Σ(Q

0
0
);Q0

0
)) +O(�),

(47)ΨQ(QR(Σ(Q
0
0
);Q0

0
),QL(Σ(Q

0
0
);Q0

0
)) = 0.

x|
x−5/2

I−2

Q−2
|

x−3/2
I−1

Q−1 QR
|

x−1/2 = 0

QL

I0

Q0
|

x1/2
I1

Q1
|

x3/2

ΨQ(QR , QL ) = 0

∂tQ+ S1 ∂xQ =
1
ε

(
0

F1(U)− V

)
∂tQ+ S2 ∂xQ =

1
ε

(
0

F2(U)− V

)

Fig. 2  The relaxation system in the 1-to-1 coupling case on the discretized real line
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4.1  Relaxation Scheme

An asymptotic preserving scheme for the coupled relaxation system (3) and coupling con-
dition (5) is obtained by combining the first-order upwind discretization with an implicit-
explicit time discretization as in [36, 42]. The scheme takes the form 

where i = 1 , if j < 0 , and i = 2 , if j ⩾ 0 . We distinguish between incoming numerical 
fluxes from the left cell interface (indicated by a plus sign) and numerical fluxes outgoing 
through the right cell interface (indicated by a minus sign). Away from the coupling inter-
face, they are equal as we have 

for j ∈ ℤ⧵{0} and i chosen according to the sign of j as in (48). At the interface, the scheme 
is not necessarily conservative since the numerical fluxes are given by

The discrete coupling data employed in the numerical fluxes  (49c)–(49f) are obtained 
applying the RS from Sect. 3 to the cell averages adjacent to the interface, i.e.,

4.2  Relaxed Scheme

In this section, using the asymptotic analysis as done in Sects.  2.1 and  3.4, we consider 
the relaxation limit of the relaxation scheme. The cell averages Un

j
 and Vn

j
 occurring in the 

schemes above depend on the relaxation rate � . We assume that for all j and n, they can be 

Un+1
j = Un

j − ∆t

∆x

(
Fn,−
j+1/2 − Fn,+

j−1/2

)
, (48a)

V n+1
j = V n

j − ∆t

∆x

(
Gn,−

j+1/2 −Gn,+
j−1/2

)
+

∆t

ε
Fi(Un+1

j )− V n+1
j

)
, (48b)

Fn,+
j−1/2 = Fn,−

j−1/2 =
1
2
(V n

j−1 + V n
j )− 1

2

√
Ai(Un

j − Un
j−1), (49a)

Gn,+
j−1/2 = Gn,−

j−1/2 =
1
2
Ai(Un

j−1 + Un
j )−

1
2

√
Ai(V n

j − V n
j−1) (49b)

Fn,−
−1/2 =

1
2
(V n

−1 + V n
R )− 1

2

√
A1(Un

R − Un
−1), (49c)

Fn,+
−1/2 =

1
2
(V n

L + V n
0 )− 1

2

√
A2(Un

0 − Un
L ), (49d)

Gn,−
−1/2 =

1
2
A1(Un

−1 + Un
R )−

1
2

√
A1(V n

R − V n
−1), (49e)

Gn,+
−1/2 =

1
2
A2(Un

L + Un
0 )−

1
2

√
A2(V n

0 − V n
L ). (49f)

(50)RS((Un
−1
,Vn

−1
), (Un

0
,Vn

0
)) =∶ ((Un

R
,Vn

R
), (Un

L
,Vn

L
)).
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asymptotically expanded around the zero relaxation states Un,0

j
 and Vn,0

j
 for sufficiently small 

relaxation rates as 

At first, we consider the relaxation limit away from the interface. We fix j ∈ ℤ⧵{−1, 0} 
and choose i according to the sign of j as in (48), and then substitute the expansions (51) 
into (48b). After the Taylor expansion, we obtain

where DFi denotes the Jacobian of Fi , and Gn,∓,0

j−1∕2
 = Gn,∓,0

j−1∕2

(
(Un,0

j−1
,U

n,0

j−1
), (Un,0

j
,U

n,0

j
)
)
 , the 

numerical flux equivalents to (49b) at the zero relaxation state. Due to the expansion

we obtain by multiplication in (52)

Substituting now the asymptotic expansion (51) into (48a) and taking into account (54), we 
obtain

where the numerical fluxes take the form

In the relaxation limit, the O(�) terms in  (54) and (55) vanish, which gives rise to the 
relaxed scheme on both half-axes.

Next, we investigate the relaxation limit at the interface. We assume that in case of the 
asymptotic expansion (51), the RS (21) satisfies

for some mapping

In Sect. 3.4, we have shown that under suitable conditions on ΨQ condition (57) holds for 
RS0 = RS , i.e., the coupling in the limit is determined by the original RS . We note, how-
ever, that in general RS0 may not necessarily be a RS in the sense, it was introduced in 
Sect. 3.1.

Un
j = Un,0

j + εUn,1
j +O(ε2), (51a)

V n
j = V n,0

j + εV n,1
j +O(ε2). (51b)

(52)
V
n+1,0

j

(
1 +

Δt

�

)
= V

n,0

j
−

Δt

Δx

(
G

n,+,0

j+1∕2
− G

n,−,0

j−1∕2

)

+
Δt

�

(
Fi(U

n+1,0

j
) + �DFi(U

n+1,0

j
) Un+1,1

j
− �V

n,1

j

)
+O(�),

(53)
(
1 +

Δt

�

)−1

=
�

� + Δt
=

�

Δt
+O(�2),

(54)V
n+1,0

j
= Fi(U

n+1,0

j
) +O(�) for all n ∈ ℕ0.

(55)U
n+1,0

j
= U

n,0

j
−

Δt

Δx

(
F
n,+,0

j+1∕2
− F

n,−,0

j−1∕2

)
+O(�),

(56)F
n,+,0

j−1∕2
= F

n,−,0

j−1∕2
=

1

2
(Fi(U

n,0

j−1
) + Fi(U

n,0

j
)) −

1

2

√
Ai(U

n,0

j
− U

n,0

j−1
).

(57)RS((Un
−1
,Vn

−1
), (Un

0
,Vn

0
)) = RS0((U

n,0

−1
,V

n,0

−1
), (Un,0

0
,V

n,0

0
)) +O(�)

RS
0
∶ ℝ

2n ×ℝ
2n

→ ℝ
2n ×ℝ

2n
.
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Condition (57) allows us to define the limit coupling data

and therefore also the interface fluxes 

Combining these fluxes with the above arguments and using assumption  (57), it is now 
straightforward to show that (54) and (55) also hold for j = −1 and j = 0 . Eventually, we 
take the relaxation limit � → 0 , drop the index 0 and obtain the coupled relaxed or central 
scheme for system (3) and coupling condition (5) in the relaxation limit, which reads 

and employs the numerical fluxes

for j ∈ ℤ⧵{0} and i chosen according to the sign of j. At the interface, we have

where the variables Vn
R
= Vn

R
(Un

−1
,Un

0
) , Vn

L
= Vn

L
(Un

−1
,Un

0
) depend only on the cell averages 

of the state variable next to the interface as part of the coupling data

Remark 3 Suppose that ΨQ is continuously differentiable, for all Q0 , there is a unique 
Σ ∈ ℝ

n satisfying Ψ̃Q(Σ;Q0) = 0 and the Jacobian DΣΨ̃Q(Σ;Q0) is invertible. Then follow-
ing from Sect. 3.4, the RS for the coupling condition (23) is well defined and RS0∶= RS 
satisfies (57) and defines a limit scheme.

(58)RS0((U
n,0

−1
,V

n,0

−1
), (Un,0

0
,V

n,0

0
)) =∶ ((Un,0

R
,V

n,0

R
), (Un,0

L
,V

n,0

L
)),

Fn,−,0
−1/2 =

1
2
(V n,0

−1 + V n,0
R )− 1

2

√
A1(U

n,0
R − Un,0

−1 ), (59a)

Fn,+,0
−1/2 =

1
2
(V n,0

L + V n,0
0 )− 1

2

√
A2(U

n,0
0 − Un,0

L ), (59b)

Gn,−,0
−1/2 =

1
2
A1(U

n,0
−1 + Un,0

R )− 1
2

√
A1(V

n,0
R − V n,0

−1 ), (59c)

Gn,+,0
−1/2 =

1
2
A2(U

n,0
L + Un,0

0 )− 1
2

√
A2(V

n,0
0 − V n,0

L ). (59d)

(60a)Un+1
j

= Un
j
−

Δt

Δx

(
H

n,−

j+1∕2
− H

n,+

j−1∕2

)
for all j ∈ ℤ,

(60b)H
n,+

j−1∕2
= H

n,−

j−1∕2
=

1

2
(Fi(U

n
j−1

) + Fi(U
n
j
)) −

1

2

√
Ai(U

n
j
− Un

j−1
)

(60c)H
n,−

−1∕2
=

1

2
(F1(U

n
−1
) + Vn

R
) −

1

2

√
A1(U

n
R
− Un

−1
),

(60d)H
n,+

−1∕2
=

1

2
(Vn

L
+ F2(U

n
0
)) −

1

2

√
A2(U

n
0
− Un

L
),

(60e)RS0((U
n
−1
,F1(U

n
−1
)), (Un

0
,F2(U

n
0
))) =∶ ((Un

R
,Vn

R
), (Un

L
,Vn

L
)).
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Example 2 If Kirchhoff conditions are assumed for ΨQ together with A1 = A2 = A as 
discussed in Example 1, we can substitute the explicit formulas of the coupling data and 
obtain a conservative scheme of the form (60a) with the numerical fluxes

This follows from generalizing the scalar approach in [36] to the system case.

5  Case Study: the p‑System

In this section, we apply the developed approach to a problem arising in gas transportation 
networks considered in [38]. Motivated by recent significant increases of gas-fired elec-
trical generation in parts of the USA, see, e.g., [56], the modelling of high-pressure gas 
transportation networks needs to account for the influence of gas-fired power generators. 
The gas flow through pipelines has been effectively modelled using the compressible Euler 
equations [14]. Neglecting temperature dynamics, the p-system is used as a simplified 
model of gas dynamics, see, e.g., [37], given by 

and accounting for the conservation of density � and momentum �v . As closure for the sys-
tem, we impose the �-law for the pressure function

with parameters 𝛼 > 0 and 𝛾 > 0 . To account for the gas-fired power generation, we con-
sider (62) on both real half-axes coupled at an interface located at x = 0 in analogy to (1). 
In this setting, a gas turbine acting as the power generator is assumed at the interface. The 
impact of the turbine on the gas network is modeled by conditions that leave the pressure 
of the transmitted gas constant but account for a loss in momentum [18], giving rise to the 
coupling conditions 

which govern the coupling function ΨU . In condition (63a), the parameter E ⩽ 0 controls 
the mass outtake due to the turbine. As the density � is assumed nonnegative, we note that 
condition (63b), imposing continuity of the pressure at the interface, is equivalent to

(61)H
n,+

j−1∕2
= H

n,−

j−1∕2
=

⎧⎪⎨⎪⎩

1

2
(F1(U

n
j−1

) + F1(U
n
j
)) −

1

2

√
A(Un

j
− Un

j−1
), if j < 0,

1

2
(F1(U

n
−1
) + F2(U

n
0
)) −

1

2

√
A(Un

0
− Un

−1
), if j = 0,

1

2
(F2(U

n
j−1

) + F2(U
n
j
)) −

1

2

√
A(Un

j
− Un

j−1
), if j > 0.

(62a)�t� + �x(�v) = 0,

(62b)�t(�v) + �x(�v
2 + p(�)) = 0,

(62c)p(�) = ���

(63a)�RvR = �LvL + E,

(63b)p(�R) = p(�L),

(64)�R = �L.
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5.1  Relaxation Form

Introducing the two auxiliary scalar variables V1 , V2 and the relaxation rate � , the relaxation 
system corresponding to the coupled p-system (62) takes the form 

As system (62) also its relaxation variant (65) is imposed on both real half-axes coupled at 
an interface located at x = 0 . Compared to the general relaxation form (3), the parameters 
a
j

i
 are chosen independent of both the half-axis and the system component and set to the 

square of the maximal speed of sound, i.e.,

This choice is motivated by the fact that 
√
p�(�) is a good approximation for the maximal 

eigenvalue of the p-system. In vector form, system (65) uses the variables U = (�, �v) and 
V = (V1,V2) and the matrix A = aI.

We are interested in identifying a suitable coupling function ΨQ for the coupled 
relaxation system (65). The implied condition should be such that in the limit � → 0 , the 
dynamics of the original coupled p-system given by (62) and (63) are attained. At first, 
we look at linear coupling conditions of the type 

for �1 , �2 ∈ {0, 1} . As approach 1 motivated from  (63a) and  (64), we consider the case 
�1 = 1 and �2 = 0 . The conditions (66c) (with �2 = 0 ) and (66d) for the auxiliary variable 
V have been chosen assuming continuity of the auxiliary variable. Noting that in the relaxa-
tion limit, it holds V1 = �v , the jump condition  (63a) can also be implemented in  (66c). 
This motivates our approach 2, for which we choose �1 = 0 and �2 = 1 . Our approach 3 
combines the two former ones by setting �1 = �2 = 1.

By our analysis in Sect.  2.1 and the linearity of the coupling approaches 1–3, the 
auxiliary variables satisfy in the relaxation limit

This limit condition shows that both our first and second coupling approaches for sys-
tem (65) lead to a contradiction in (66b) and (66c) in the relaxation limit due to �1 ≠ �2 . 

∂tρ+ ∂x(V1) = 0, (65a)
∂t(ρv) + ∂x(V2) = 0, (65b)

∂tV1 + a∂xρ =
1
ε
(ρv − V1), (65c)

∂tV2 + a∂x(ρv) =
1
ε
(ρv2 + p(ρ)− V2). (65d)

a = max
�∈[0,�max]

p�(�).

ρR = ρL, (66a)
ρRvR = ρLvL + β1E, (66b)
V1R = V1L + β2E, (66c)
V2R = V2L (66d)

(67)V1R = �RvR, V1L = �LvL, V2R = �R(vR)
2 + p(�R), V2L = �L(vL)

2 + p(�L).
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Our third approach corrects this. However, due to (66d), this approach as well as the two 
former ones impose a condition in the limit that is not implied by the original coupling 
condition  (63). In more details, this additional condition imposes vR = vL , whenever 
�RvR = �LvL ≠ 0 . Consequently, our three coupling approaches within  (66) cannot lead 
to consistency of the relaxation system  (66) with the p-system  (62) and coupling condi-
tion (63) in the sense of Definition 1.

We aim to design a coupling condition that leads to consistency by taking our third 
approach as a starting point and deriving a suitable replacement for condition  (66d). 
Therefore, we assume (63a), (64) as well as �R = �L ≠ 0 and find

This motivates the new condition

which together with  (66a),  (66b),  (66c) and �1 = �2 = 1 determines our fourth coupling 
approach. By construction, the relaxation system  (66) under this condition is consistent 
with the coupled p-system given by  (62) and  (63). Unlike the previous approaches, this 
condition is nonlinear.

5.2  Riemann Solvers (RSs)

In this section, we analyze the RSs for the different coupling conditions considered in Sect. 5.1 
and provide explicit forms for the implied coupling data.

Coupling approaches 1–3 The first three coupling conditions given by (66) and different 
choices for �1 and �2 fit into the linear framework discussed in Sect. 3.3 and correspond to

in the coupling function  (31). To compute the coupling data from the RS, we conclude 
from Remark 2 that the system matrix in (34) is of the form

from which we determine the parameters Σ− and Σ+ as

Here PU = (0, �1E) and PV = (�2E, 0) consist of the upper two and lower two entries in P, 
respectively. The trace data has the form

(68)

�Rv
2
R
+ p(�R) =

�2
R
v2
R

�R
+ p(�R) =

(�LvL + E)2

�R
+ p(�L) = �Lv

2
L
+ p(�L) + E

2�LvL + E

�L
.

(69)V2R = V2L + E
2�LvL + E

�L
,

(70)BR = I, BL = I, P =
(
0, �1E, �2E, 0

)T

(71)B ∶= B
R
R̃− − B

L
R̃+ = −

�
(
√
A)−1 (

√
A)−1

−I I

�
= −

⎛
⎜⎜⎝

1

2

√
A −

1

2
I

1

2

√
A

1

2
I

⎞⎟⎟⎠

−1

,

(72)

�
Σ−

Σ+

�
= B−1(P + Q+

0
− Q−

0
), Σ∓ = −

1

2

√
A(PU + U+

0
− U−

0
) ±

1

2
(PV + V+

0
− V−

0
).
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Eventually, the coupling data, for which we assume a notation analogue to (73), are given 
by (33) implying 

Due to Remark  3, which applies here since ΨQ is affine linear, the coupling data in the 
relaxation limit are determined by the same RS as in case of 𝜀 > 0 . Thus, the data (74) also 
satisfies the coupling condition (66) in the limit � → 0.

Coupling approach 4 We next consider our fourth coupling approach, which introduc-
ing the notation gV (UL) = E(0, (2�LvL + E)∕�L)

T can be written as

To obtain coupling data, we substitute the parametrization (24) and obtain

From the first two components of (76), we get

which substituted into the components three and four in (76) yields

Using the notation Σ+ = (�+
1
, �+

2
)T , we note that the first component of  (78) determines 

�+
1
 , which in turn substituted into the second component of (78) determines �+

2
 . Eventually 

Σ− is obtained from (77) and therefore an RS for approach four is defined. By the verified 
well-posedness of the RS and the differentiability of the corresponding coupling function, 
Remark 3 also applies to our fourth coupling approach and thus the above procedure also 
determines suitable coupling data in the relaxation limit.

(73)Q
∓
0
=

(
U

∓
0

V
∓
0

)
=
(
�∓
0
�∓
0
v
∓
0
V
∓
1,0

V
∓
2,0

)T
.

UR =
1
2
(U−

0 + U+
0 + PU )− 1

2
(
√
A)−1(V +

0 − V −
0 + PV ), (74a)

UL =
1
2
(U−

0 + U+
0 − PU )− 1

2
(
√
A)−1(V +

0 − V −
0 + PV ), (74b)

VR =
1
2

√
A(U−

0 − U+
0 − PU ) +

1
2
(V +

0 + V −
0 + PV ), (74c)

VL =
1
2

√
A(U−

0 − U+
0 − PU ) +

1
2
(V +

0 + V −
0 − PV ). (74d)

(75)
(
UR

VR

)
=

(
UL

VL

)
+

(
PU

PV

)
+

(
0

gV (UL)

)
.

(76)

�
−(

√
A)−1

I

�
Σ− −

�
(
√
A)−1

I

�
Σ+ −

�
0

gV (U+
0
+ (

√
A)−1Σ+)

�
=

�
U+

0
− U−

0
+ PU

V+
0
− V−

0
+ PV

�
.

(77)Σ− =
√
A(U−

0
− U+

0
− PU) − Σ+,

(78)−2Σ+ +
√
A(U−

0
− U+

0
− PU) − gV (U+

0
+ (

√
A)−1Σ+) = V+

0
− V−

0
+ PV .
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5.3  Numerical Experiments

We consider a numerical test case modified from [54, Sect.  5.2.1] employing constant 
initial data �0 = �0v0 = 1 and pressure given by p(�) = 146 820.4� . As computational 
domain, we choose [−200, 200] and impose homogeneous Neumann boundary conditions. 
The mass outtake at the interface is assumed time-dependent and given by

A reference solution for the coupled p-system (62) and coupling condition (63) has been 
precomputed on a very fine grid consisting of 12 800 cells using an RS for the original 
problem developed in [54].

We employ the central scheme introduced in Sect. 4.2 to numerically compute solu-
tions for system (65) in the limit � → 0 for the different coupling approaches considered 
in Sect. 5.1. For a numerical example demonstrating that the solution of the relaxation 
scheme converges to the one of the central scheme in the relaxation limit, we refer to 
[48]. In the numerical computations, we employ 1 000 uniform mesh cells and time 
increments chosen according to the CFL condition

and the Courant number CFL = 0.9 . Numerical results are presented in terms of the den-
sity, momentum, and pressure at the time instances t = 0.071 6 , 0.286 4, and 0.55.

In Fig.  3, we show results obtained by the first coupling approach given by  (66), 
�1 = 1 and �2 = 0 . In the numerical results, we see a peak in the density, momentum, 
and pressure forming and vanishing at the interface as time evolves. Comparing to the 
reference solution, this coupling condition imposed to the coupled relaxation system 
clearly cannot yield the solution of the original coupled p-system (62).

(79)E(t) =

{
min{0.6t, 3t}, if 0 ⩽ t < 0.3,

max{0,−3t + 1.5}, if t ⩾ 0.3.

(80)Δt = CFL
Δx√
a
,

ρ

t = 0.071 6 t = 0.286 4

−1.0

−0.5

0
·10−3 + 1

t = 0.55

ρ
v

0.8
1.0
1.2

−200−100 0 100 200
x

p

−200−100 0 100 200
x

−200−100 0 100 200

0
−50
−100

+146 820

x

Fig. 3  Numerical solution for system (65) in the relaxation limit using coupling approach 1 given by (66), 
�
1
= 1 and �

2
= 0 (black line) compared to the reference solution (red dashed line). Peaks appear at the 

interface ( x = 0 ). The coupled relaxed scheme on 1 000 mesh cells with CFL = 0.9 has been used
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Figure 4 shows the numerical solution in case of the second coupling approach given 
by  (66), �1 = 0 and �2 = 1 . Whilst this solution qualitatively coincides with the refer-
ence solution for x ≠ 0 , it exhibits layer artefacts at the interface at the time instances 
0.071 6 and 0.286 4.

Eventually, numerical results for the third coupling approach given by  (66) and 
�1 = �2 = 1 are shown in Fig. 5. Using this condition, the solution of the coupled relax-
ation system qualitatively matches the one of the original system  (62) with coupling 
condition  (63). This indicates that the intrinsic contradiction in the relaxation limit 
between  (66b) and  (66c) in both coupling approaches 1 and 2 due to �1 ≠ �2 deterio-
rates the quality of the relaxation approach as an approximation of the original problem. 

ρ

t = 0.071 6 t = 0.286 4

0
−0.5
−1.0

·10−3 + 1

t = 0.55

ρ
v

0.8
1.0
1.2

−200−100 0 100 200
x

p

−200−100 0 100 200
x

−200−100 0 100 200

0
−75
−150

+146 820

x

Fig. 4  Numerical solution for system (65) in the relaxation limit using coupling approach 2 given by (66), 
�
1
= 0 and �

2
= 1 (black line) compared to the reference solution (red dashed line). Artefacts at the inter-

face ( x = 0 ) are visible. The coupled relaxed scheme on 1 000 mesh cells with CFL = 0.9 has been used

ρ

t = 0.071 6 t = 0.286 4

0
·10−3 + 1

t = 0.55

ρ
v

0.8
1.0
1.2

−200−100 0 100 200
x

p

−200−100 0 100 200
x

−200−100 0 100 200

0
−75
−150

+146 820

x

Fig. 5  Numerical solution for system  (65) in the relaxation limit using coupling approach  3 (solid line) 
given by (66) and �

1
= �

2
= 1 and 4 (dotted line) given by (66a), (66b), (66c), (69) and �

1
= �

2
= 1 . The 

coupled relaxed scheme on 1 000 mesh cells with CFL = 0.9 has been used. Except for a jump of small 
magnitude occurring in approach 3 at the interface, both solutions are indistinguishable
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We note hence, that consistency of the relaxation approach  (65) to system  (62) as we 
have verified for our fourth coupling approach has not been necessary to achieve an 
accurate numerical solution. This is presumably due to the small magnitude of the addi-
tional term E(2�LvL + E)∕�L in (69) that has been added in the fourth coupling approach, 
which compared to the magnitude of V2R and V2 L is smaller by a factor of 10−6 . A mag-
nification at the interface of the solution corresponding to approach 3 reveals a jump of 
low magnitude not present in the reference solution. The solution for the fourth cou-
pling approach given by (66a), (66b), (66c), (69) and �1 = �2 = 1 also shown in Fig. 5 
and being qualitatively almost similar to the one of coupling approach 3 does not exhibit 
this artefact and is indistinguishable from the reference solution.

In Table 1, we present the L1 error for the considered coupling approaches after mesh 
refinement with respect to the reference solution along with the corresponding experi-
mental order of convergence (EOC)1. The numerical solutions used in the error compu-
tations have been computed using the reduced Courant number CFL = 0.1 to reduce the 

Table 1  Mesh convergence in L1 for the considered coupling approaches

First-order error convergence is only indicated for coupling approach 4

Cells Coupling 1 EOC Coupling 2 EOC Coupling 3 EOC Coupling 4 EOC

100 1.794 × 10
−1

1.604 × 10
−2

1.238 × 10
−2

1.236 × 10
−2

200 1.790 × 10
−1 0.00 8.495 × 10

−3 0.92 6.467 × 10
−3 0.94 6.449 × 10

−3 0.94
400 1.789 × 10

−1 0.00 4.404 × 10
−3 0.95 3.296 × 10

−3 0.97 3.247 × 10
−3 0.99

800 1.788 × 10
−1 0.00 2.451 × 10

−3 0.85 1.864 × 10
−3 0.82 1.691 × 10

−3 0.94
1 600 1.788 × 10

−1 0.00 1.425 × 10
−3 0.78 1.258 × 10

−3 0.57 8.447 × 10
−4 1.00

3 200 1.788 × 10
−1 0.00 1.064 × 10

−3 0.42 1.028 × 10
−3 0.29 4.122 × 10

−4 1.04

0 0.1 0.2 0.3 0.4 0.5
0

0.1
0.2
0.3

t

E
1

Coupling error concerning (63a)

0 0.1 0.2 0.3 0.4 0.5
0

2

4
·10−6

t

E
2

Coupling error concerning (64)

Coupling 1 Coupling 2 Coupling 3 Coupling 4

Fig. 6  Coupling errors E1 (left) and E2 (right) defined in (81) over the time interval [0, 0.55] for the four 
considered coupling approaches. Errors for numerical solutions computed by the central scheme on 1 000 
mesh cells using CFL = 0.9 are considered. Both coupling approaches 3 and 4 achieve significantly lower 
errors than approaches 1 and 2 concerning  (63a). Approach 4 reduces the error concerning  (64) over 
approaches 1–3

1 The EOC is computed by the formula EOC = log2(E1∕E2) with E1 and E2 denoting the error in two con-
secutive lines of the table.
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influence of temporal errors, which occur, in particular, due to the non-smoothness of the 
mass outtake  (79) with respect to time. In case of coupling approach 1, no grid conver-
gence is observed. Whilst in case of coupling approaches 3 and 4, the error decreases as the 
grid is refined the EOC reduces as higher grid resolutions are considered and the L1 error 
stagnates. Using coupling approach 4, continuous first-order convergence can be clearly 
observed.

To evaluate the approximation of the original coupling condition, we analyze the 
numerical solutions at the coupling interface. Comparing the mass loss at the interface 
between the numerical simulations shown in Figs. 3–5 and the reference solution over the 
time interval [0, 0.55] yields 1.8 × 10−1 for approach 1 and 2 × 10−5 for approaches 2–4. 
Also with respect to mass loss over time, no difference between the approaches 2–4 can be 
seen. Furthermore, we consider the coupling errors with respect to the original coupling 
conditions (63a) and (64) defined as

The coupling errors allow for an evaluation of the numerical solutions without reference 
solution. Using the numerical solutions by the central scheme over 1 000 mesh cells and 
employing the Courant number CFL = 0.9 , we present these errors over time in Fig.  6. 
In case of the error concerning the density condition  (64), the temporal errors follow 
the monotony of the mass outtake E . Approaches 4 and 1 here yield lower errors than 
approaches 2 and 3. Concerning the momentum condition (63a), both approaches 1 and 2 
yield coupling errors in the magnitude of the mass outtake and are clearly outperformed by 
approaches 3 and 4 both achieving similarly small errors.

(81)E1(tn) = ||(Un
−1

− Un
0
)2 − E||, E2(tn) = ||(Un

−1
− Un

0
)1
||.

Table 2  Mesh convergence of the coupling error L1(E1) over time for the considered coupling approaches

First-order error convergence for approaches 3 and 4 is indicated

Cells Coupling 1 EOC Coupling 2 EOC Coupling 3 EOC Coupling 4 EOC

100 9.00 × 10
−2

9.13 × 10
−2

1.25 × 10
−2

1.25 × 10
−2

200 9.00 × 10
−2 0.00 9.03 × 10

−2 0.02 6.27 × 10
−3 1.00 6.27 × 10

−3 1.01
400 9.00 × 10

−2 0.00 9.01 × 10
−2 0.00 3.13 × 10

−3 1.00 3.13 × 10
−3 1.01

800 9.00 × 10
−2 0.00 9.00 × 10

−2 0.00 1.57 × 10
−3 1.00 1.57 × 10

−3 1.00
1 600 9.00 × 10

−2 0.00 9.00 × 10
−2 0.00 7.84 × 10

−4 1.00 7.83 × 10
−4 1.00

Table 3  Mesh convergence of the coupling error L1(E2) over time for the considered coupling approaches

First-order error convergence is only indicated for approach 4

cells Coupling 1 EOC Coupling 2 EOC Coupling 3 EOC Coupling 4 EOC

100 3.13 × 10
−7

9.21 × 10
−7

1.23 × 10
−6 8.54 × 10

−8

200 3.08 × 10
−7 0.02 9.21 × 10

−7 0.00 1.23 × 10
−6 0.00 4.27 × 10

−8 1.00
400 3.07 × 10

−7 0.01 9.21 × 10
−7 0.00 1.23 × 10

−6 0.00 2.13 × 10
−8 1.00

800 3.07 × 10
−7 0.00 9.21 × 10

−7 0.00 1.23 × 10
−6 0.00 1.07 × 10

−8 1.00
1 600 3.06 × 10

−7 0.00 9.21 × 10
−7 0.00 1.23 × 10

−6 0.00 5.34 × 10
−9 1.00
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To investigate the scaling of the coupling errors with the mesh resolution, we compute 
numerical solutions for increasing numbers of mesh cells and consider the errors (81) in 
the discrete L1 norm over time, i.e.,

Table 2 shows the error L1(E1) for the considered coupling approaches after mesh refine-
ment along with the corresponding EOC. In case of coupling approaches 1 and 2, the errors 
are not significantly decreasing when refining the mesh. Conversely the mesh convergence 
of order one can be clearly observed for the coupling approaches 3 and 4.

The error L1(E2) after mesh refinement is presented in Table 3. In case of the linear cou-
pling approaches, no significant variation with the mesh resolution can be observed whilst 
the errors are of small magnitude. The convergence with respect to the mesh resolution is 
only observed in case of coupling approach 4 and consistency with the original problem. 
These results moreover justify the equivalence we require for the consistency in Defini-
tion 1, as an implication of the original coupling condition in coupling approach 3 has not 
been sufficient for the convergence at the interface whilst equivalence of ΨQ and ΨU at the 
relaxation limit in coupling approach 4 has resulted in the mesh convergence.

6  Conclusion

We have presented a novel framework to handle systems of conservation laws coupled at 
an interface using a relaxation approach. When systems of conservation laws are coupled, 
usually information on the Lax curves of the underlying systems as well as complex and 
error-prone computations are required to identify suitable coupling data. The relaxation 
approach avoids this complication by replacing the nonlinear systems of conservation laws 
by systems of linear balance laws. We have introduced RSs for the new approach, discussed 
their well-posedness and proposed a finite-volume scheme that can be generally applied to 
coupled hyperbolic problems.

The approach requires a suitable adjustment of the original coupling condition to 
account for the modified systems. Considering the p-system in a case study, we have 
illustrated how the choice of this condition affects the numerical solutions. Whilst accu-
rate results could be obtained using simple linear ad-hoc conditions, best results that also 
exhibit convergence at the interface have been achieved constructing a coupling condition 
both leading to a well-defined RS and being in the relaxation limit consistent with the orig-
inal coupling condition. Motivated by these results, we suggest the same strategy for the 
design of the relaxation coupling condition also for different coupled hyperbolic systems.
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