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Abstract
A fully discrete energy stability analysis is carried out for linear advection-diffusion prob-
lems discretized by generalized upwind summation-by-parts   (upwind gSBP) schemes in 
space and implicit-explicit Runge-Kutta  (IMEX-RK) schemes in time. Hereby, advection 
terms are discretized explicitly, while diffusion terms are solved implicitly. In this context, 
specific combinations of space and time discretizations enjoy enhanced stability proper-
ties. In fact, if the first- and second-derivative upwind gSBP operators fulfill a compatibil-
ity condition, the allowable time step size is independent of grid refinement, although the 
advective terms are discretized explicitly. In one space dimension it is shown that upwind 
gSBP schemes represent a general framework including standard discontinuous Galerkin   
(DG) schemes on a global level. While previous work for DG schemes has demonstrated 
that the combination of upwind advection fluxes and the central-type first Bassi-Rebay   
(BR1) scheme for diffusion does not allow for grid-independent stable time steps, the cur-
rent work shows that central advection fluxes are compatible with BR1 regarding enhanced 
stability of IMEX time stepping. Furthermore, unlike previous discrete energy stability 
investigations for DG schemes, the present analysis is based on the discrete energy pro-
vided by the corresponding SBP norm matrix and yields time step restrictions independ-
ent of the discretization order in space, since no finite-element-type inverse constants are 
involved. Numerical experiments are provided confirming these theoretical findings.
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1 Introduction

Advection-diffusion problems describe a wide range of phenomena arising due to the combina-
tion of two different physical processes, i.e., advective transport of a quantity due to a given 
velocity field and movement of particles from areas of higher to lower concentration. For 
instance, advection-diffusion equations arise as a model for the time evolution of chemical or 
biological species in a flowing medium. If the resulting partial differential equations are discre-
tized on refined spatial grids, the presence of diffusion fluxes usually generates increasingly stiff 
problems. Particularly, explicit time discretization of semi-discrete advection-diffusion prob-
lems often results in an increasingly severe grid-dependent time step restriction since the time 
step Δt scales with the grid length scale Δx as Δt = O(Δx2) . However, purely implicit time 
discretization requires the solution of large nonlinear systems of equations. Therefore, hybrid 
time integration schemes such as implicit-explicit (IMEX) methods have frequently been con-
sidered. Hereby, a common approach is to discretize the advective terms explicitly, while the 
diffusion terms are treated implicitly, see, e.g., [4, 5, 9, 37]. The additional complexity of a par-
tially implicit treatment is justified by the observation that even though many applications con-
tain nonlinear advection terms, the diffusion terms are often linear, only demanding the iterative 
solution of linear algebraic systems which are positive definite, symmetric, and sparse. In addi-
tion, the nonlinear systems resulting from potentially nonlinear diffusion terms are generally 
more efficient to solve than those arising from nonlinear advection terms.

While this approach alleviates the extremely restrictive time step scaling for the diffu-
sion terms, it does not a priori dispose of the classical CFL-type time step restriction of 
the form Δt = O(Δx) due to the explicit time discretization of the advection terms. How-
ever, for specific combinations of space and time discretizations, enhanced stability proper-
ties may be achieved. For instance, Calvo et al.  [9] designed specific IMEX Runge-Kutta 
(IMEX-RK) methods which guarantee grid-independent time step restrictions of the form 
Δt = O(c∕a2) for Fourier spatial discretizations, where a and c denote the advection and 
diffusion coefficients, respectively. Wang et al.  [38] proved a similar unconditional L2-sta-
bility result in the context of spatial discretization by the discontinuous Galerkin   (DG)   
[12] method applied to linear advection-diffusion equations, with an extension to nonlinear 
problems in  [39] and to the multi-dimensional case in  [40]. Hereby, diffusion terms were 
discretized by the local discontinuous Galerkin  (LDG) scheme   [11]. In   [27], an exten-
sion was provided for DG methods in one space dimension incorporating a larger class of 
diffusion schemes, namely, the (�,�) family   [20, 21] of diffusion discretizations which 
also includes the Bassi-Rebay schemes  [6, 7]. Furthermore, Fu and Shu  [14] proved the 
grid-independent L2-stability for the discretization of the diffusion terms by the embedded 
DG method and in  [41], the direct DG method was considered. A related approach which 
provides the unconditional stability even if part of the problem is discretized explicitly was 
taken in [32, 33] designing unconditionally stable IMEX linear multistep schemes, where 
both the IMEX splitting and the employed multistep schemes fulfill specific properties.

In this work, upwind generalized summation-by-parts (gSBP) space discretizations 
for advection-diffusion problems will be considered with respect to the combination 
with IMEX time integration and regarding stable time step choices. These upwind gSBP 
schemes do not necessarily provide a replacement for the DG space discretization, but 
rather a broader framework.

This general framework of SBP schemes provides structure-preserving spatial discre-
tizations also including DG type methods. SBP operators fulfill a mimetic property, in 
particular mimicking the analytical concept of integration-by-parts. Originally, discrete 
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derivative operators with an SBP property have been introduced for finite difference 
schemes for various types of PDEs including advection-diffusion equations and the lin-
earized compressible Navier-Stokes equations, see [10, 19, 25, 31, 35, 36]. Extensions 
of the SBP methodology have been provided for tensor-product grids on curvilinear 
elements [29] as well as for the general multidimensional case [18] including simplex 
elements. Via L2 energy estimates, the spatial SBP operators automatically yield sta-
ble semi-discrete schemes for periodic solutions of a broad class of linear equations. 
In addition, they have substantially profited from a combination with weakly enforced 
boundary conditions, most prominently using simultaneous approximation terms (SATs) 
which were first developed in [10]. More recent investigations also focus on SBP opera-
tors within various popular classes of numerical schemes, e.g., finite volume schemes 
on unstructured dual grids [24], DG schemes with Legendre-Gauss-Lobatto nodes [15], 
DG schemes on Legendre-Gauss nodes both in one space dimension and on tensor-prod-
uct grids [26], and flux-reconstruction schemes [28]. In fact, the definition in [30] allows 
to derive gSBP properties for nodal DG schemes in one space dimension on arbitrary 
nodal sets, as long as their corresponding quadrature rule is sufficiently exact to mimic 
integration-by-parts at the discrete level. An extension of the SBP framework departing 
from their central character was originally proposed by Mattsson [23], where upwind 
SBP schemes of finite difference type were constructed. These schemes consist of dual-
pair SBP operators with non-central difference stencils. The incorporated upwind dif-
ferencing leads to a built-in artificial dissipation in the semi-discrete energy analysis of 
periodic problems and has been used to construct upwind SBP schemes based on flux 
splitting for the shallow water equations in [22] and for general scalar hyperbolic con-
servation laws in [34].

Connections between nodal DG schemes and SBP methods have mainly fostered the 
discretization of conservation laws in the skew-symmetric form to preserve secondary 
quantities and to move towards semi-discrete energy or entropy stability results. In this 
context, the SBP properties of cellwise DG discretizations at the local level of one ele-
ment represent the key aspect. In this work, emphasis is put on the global formulation of 
DG schemes in one space dimension which may be regarded as upwind gSBP schemes 
for a family of numerical flux functions ranging from upwind to central ones. In addi-
tion, we will take advantage of the connection to upwind gSBP schemes to improve the 
fully discrete stability estimates pertaining to DG and upwind gSBP schemes combined 
with the IMEX time integration.

While discretizing advection terms with a DG scheme is straightforward, various 
approaches to discretize diffusion terms have been introduced in the literature, since 
the discretization of higher order spatial derivatives is less natural. Either specially 
designed penalty terms are introduced as in [2, 8] or the advection-diffusion equation 
is rewritten into a system of first-order equations using auxillary variables for the solu-
tion derivatives as in [3, 6, 7, 11]. The first method by Bassi and Rebay [6], termed the 
BR1 scheme, has actually been the first extension of the DG scheme to the compress-
ible Navier-Stokes equations. It is based on rewriting the viscous terms into a larger, 
extended first-order degenerate system of PDEs with the gradient as a new unknown. 
After this reformulation, the standard DG approach is applied to the extended system 
which necessitates to prescribe two types of numerical fluxes. Hereby, the BR1 scheme 
is the simplest approach, using arithmetic means for both types of fluxes. Cockburn and 
Shu [11] analyzed various methods based on the reformulation into a first-order PDE 
and derived conditions on the numerical fluxes to guarantee the stability, the conver-
gence, and a suboptimal error estimate of order N when using an approximation space 
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of polynomial degree N. The analysis shows the sub-optimal convergence of the BR1 
scheme for odd N, while the choice of alternating numerical fluxes usually associated 
with the LDG scheme by Cockburn and Shu [11] leads to the optimal convergence of 
order N + 1 . Being simple to code, parameter-free, and generic for nonlinear viscous 
fluxes and arbitrary grids, the BR1 scheme is still very popular and satisfies certain 
structural properties. In fact, in [17], the neutral behaviour of BR1 with respect to arti-
ficial dissipation over element interfaces and the resulting stability for the compressible 
Navier-Stokes equations has been proven.

The energy stability analysis in [27] for linear advection-diffusion problems discretized 
by the DG scheme in space using a (�,�) diffusion discretization has shown that the sim-
ple BR1 approach coupled with upwind fluxes for advection does not inherit the enhanced 
stability properties in the case of IMEX time integration. In this regard, this current work 
provides a remedy, since the DG scheme based on BR1 fluxes may be regarded as a spe-
cific second-derivative upwind gSBP scheme compatible with central fluxes for advection. 
Furthermore, unlike previous discrete energy stability investigations for DG schemes, the 
present analysis is based on the discrete energy provided by the corresponding SBP norm 
matrix and yields time step restrictions independent of the discretization order in space, 
since no FE type inverse constants are involved.

This paper is organized as follows. Section 2 introduces the properties of first- and 
second-derivative upwind gSBP operators and reviews their connection to DG schemes 
on the global level. Furthermore, some properties and estimates required for the fully 
discrete stability analysis are provided. In Sect. 3, an energy stability analysis based on 
the discrete energy defined by the associated upwind gSBP norm matrix is carried out for 
first- and second-order IMEX-RK time integrators combined with upwind gSBP schemes 
of arbitrary order in space. Numerical results verifying the conducted theoretical analysis 
are presented in Sect. 4. Finally, Sect. 5 contains a conclusion and an outlook on future 
work.

2  Discontinuous Space Discretization of the Linear advection‑diffusion 
Equation

Throughout this work, we consider the linear advection-diffusion equation:

with the advective velocity a > 0 and the diffusion coefficient c > 0 , supplemented by the 
periodic initial condition u(x, 0) = u0(x) in L2(�) and periodic boundary conditions.

For space discretization, the spatial domain � = (xa, xb) is partitioned into cells 
Ii = (xi, xi+1) , i = 1,⋯ ,K with x1 = xa, xK+1 = xb . We consider quasi-uniform grids with 
cell lengths Δxi = xi+1 − xi satisfying Δxi

Δx
⩾ � ∈ ℝ+ for Δx = maxi Δxi under grid refine-

ment Δx → 0 . On the closure Ī of the reference interval I = (−1, 1) , a nodal set of solu-
tion points is specified and transferred to each grid cell, not necessarily including the cell 
boundaries in the nodal set. Furthermore, the discontinuities space discretization allows for 
a discontinuous representation of the semi-discrete solution at cell interfaces.

(1)ut + aux = cuxx, (x, t) ∈ (xa, xb) × (0, T)
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2.1  Discontinuous Galerkin (DG) Formulation

DG schemes allow for piece-wise smooth approximate solutions with potential discontinui-
ties across element interfaces. Due to its flexibility and generality, the DG scheme is a pop-
ular numerical method in a variety of applications. The main advantages are its local con-
servation property, an arbitrarily high order of accuracy, and superconvergence capabilities. 
Dispensing with global continuity of the approximate solution, the DG approach results in 
relatively compact stencils which greatly facilitates both hp-adaptivity of the method and 
its implementation in parallel hardware environment. The DG scheme is built upon a vari-
ational formulation of the advection-diffusion equation. The basis functions and test func-
tions used to define the DG scheme in one space dimension are taken from the finite ele-
ment space Vh = {v ∈ L2(�) | v|Ii ∈ P

N(Ii), ∀i = 1,⋯ ,K} , for the spatial domain 
� = (xa, xb) =

⋃K

i=1
Ii , where PN(Ii) denotes the space of polynomial functions on Ii of 

degree at most N. As usual in DG schemes, the functions in Vh may be discontinuous across 
element boundaries.

For the discretization of diffusion terms, the PDE  (1) will be reformulated as a first-order 
system of equations. Thus, the structure of the corresponding DG scheme is similar to the case 
of purely hyperbolic problems. The DG formulation for the linear diffusion equation will then 
be given in Sect.  2.2.2. To formulate the DG scheme in matrix-vector notation similar to SBP 
schemes, it is sufficient to consider a scalar hyperbolic conservation law in one space dimen-
sion given by

The DG scheme constructs an approximation uh of u which is piecewise continuous of the 
form

using polynomial basis functions Li
j
∈ P

N
(
Ii
)
 . Here, nodal DG schemes are considered, 

where the basis functions are the Lagrange polynomials corresponding to a set of solu-
tion points 𝜉𝜈 ∈ Ī, 𝜈 = 1,⋯ ,N + 1 which are the nodes �k of a suitable quadrature rule 
on the closure of the reference cell (−1, 1) . We assume that the quadrature rule is sym-
metric and exact for polynomials of degree 2N − 1 and denote the corresponding weights 
by �� , � = 1,⋯ ,N + 1 . More precisely, we consider the Lagrange polynomials defined by 
Li
j
(Λi(��)) = ��j , where ��j denotes the Kronecker delta and Λi transforms the reference cell 

I to the specific sub-interval Ii , i.e., Λi(�) = �
xi+1−xi

2
+

xi+xi+1

2
.

The DG scheme in a weak form, obtained by multiplying (2) by a test function Li
k
 , integrat-

ing in space over a cell Ii, and applying partial integration, is given by

with f ∗
i
= f ∗

(
ui−1
h

(xi, t), u
i
h
(xi, t)

)
 denoting the values of a consistent numerical flux function 

f ∗ evaluated at the left- and right-hand side limits of uh at the cell boundaries xi and the flux 
polynomial fh(x, t)�Ii =

∑N+1

j=1
f (ui

j
)Li

j
(x) , based on the pointwise values ui

j
= uh

(
Λi(�j), t

)
.

(2)
�

�t
u(x, t) +

�

�x
f (u(x, t)) = 0, (x, t) ∈ (xa, xb) × (0, T).

(3)uh(x, t)|Ii = ui
h
(x, t) =

N+1∑
j=1

ui
j
(t)Li

j
(x)

(4)
d

dt ∫Ii

uhL
i
k
dx + f ∗

i
Li
k
(xi) − f ∗

i+1
Li
k
(xi+1) − ∫Ii

fh
dLi

k

dx
dx = 0
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The integrals in (4), are then solved numerically by the chosen quadrature rule which 
exactly evaluates the last integral due to the degree of exactness.

The DG scheme in a strong from is obtained by a second partial integration of  (4) resulting 
in the variational formulation

Using the matrix-vector notation as shown, e.g., in  [1, 26], (5) rewrites in a simpler form 
when transformed to the reference cell I. For this purpose, we define the matrices M̂ and Ŝ 
by

where Lk∶ Ī → ℝ are the Lagrange polynomials corresponding to the quadrature nodes �k . 
From the Lagrange interpolation property Lj(�l) = �jl , we directly obtain

hence M̂ is diagonal. Using the solution vector ui and the vector of flux values fi,

as well as the transformation of fh(x, t)|Ii to the reference cell by f i
h
(�, t) =

∑N+1

j=1
f (ui

j
)Lj(�) , 

the abbreviations f ∗,i(1) = f ∗
i+1

 and f ∗,i(−1) = f ∗
i
 and the collection of the basis functions 

in the vector valued function L(�) = (L1(�),⋯ , LN+1(�))
T , (5) is equivalent to the matrix-

vector formulation

see  [1, 26]. By definition, the matrix M̂ is invertible. Multiplying by the inverse of M̂ , we 
obtain the final matrix-vector formulation of the DG scheme

where the entries of D̂ = M̂
−1
Ŝ can be derived from (6) and are given by D̂jk = L�

k
(�j).

Remark 1 It is worth noting that the matrix D̂ provides a local first-derivative gSBP opera-
tor on a specific DG cell, see, e.g.,  [26], but outsources the interface fluxes to be dealt with 
similar to the weak boundary treatment of SATs. In contrast, the next section investigates 
the upwind gSBP structure of the global DG scheme including the presence of numerical 
fluxes on cell interfaces.

(5)
d

dt ∫Ii

uhL
i
k
dx + ∫Ii

�fh
�x

Li
k
dx =

[
f ∗
i
− f i

h
(xi)

]
Li
k
(xi) −

[
f ∗
i+1

− f i
h
(xi+1)

]
Li
k
(xi+1).

M̂jk =
∑
l

�lLj(�l)Lk(�l) = M̂kj ≈ ∫
1

−1

LjLkd�,

Ŝjk =
∑
l

�lLj(�l)L
�
k
(�l) = ∫

1

−1

LjL
�
k
d�,

(6)M̂jk = �j�jk, Ŝjk = �jL
�
k
(�j),

ui = (ui
1
,⋯ , ui

N+1
)T with ui

j
= uh

(
Λi(�j), t

)
,

fi = (f i
1
,⋯ , f i

N+1
)T with f i

j
= f (ui

j
),

Δxi

2
M̂

dui

dt
+ Ŝ fi =

[(
f i
h
− f ∗,i

)
L
]1
−1
,

(7)
Δxi

2

dui

dt
+ D̂ fi = M̂

−1[(
f i
h
− f ∗,i

)
L
]1
−1
,
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2.2  Upwind gSBP Space Discretization

Upwind SBP schemes, first derived in  [23], are a class of finite difference methods which 
combine the structure-preserving properties of SBP derivative operators with artificial dis-
sipation by choosing upwind directions. These schemes consist of dual-pair SBP opera-
tors with non-central difference stencils which lead to a built-in artificial dissipation when 
combined with flux splitting. While traditionally, SBP schemes were set up on equidistant 
grid points, we will consider generalized versions in this work on non-uniform nodal sets 
not necessarily containing boundary points which have been termed gSBP schemes. These 
schemes may be further modified by including upwind stencils, resulting in upwind gSBP 
schemes which will be considered in this work. The common goal of schemes within the 
SBP framework is to transfer continuous energy estimates to the semi-discrete level. For 
instance, considering solutions u(x, t) of the linear advection equation:

subject to the homogeneous boundary condition u(xa, t) = 0 , the continuous energy estimate

can be proven. By the SBP property, this estimate may be transferred to the spatial dis-
cretization. The corresponding operators approximate the first derivative �

�x
 in (8) and are 

based on a set of grid points {xi}1⩽i⩽M ⊂ [𝛼, 𝛽] called a nodal set. On this nodal set, approx-
imate solutions of (8) are given by time-dependent solution vectors

and ux in (8) is replaced by the term D−u , utilizing an upwind gSBP operator D− as defined 
below.

Definition 1 A pair of difference operators denoted by D+ and D− , both approximating the 
first derivative �

�x
 on an interval (�, �) , are called upwind gSBP operators of degree q if 

 i. the matrices D+ and D− provide accurate approximations to �
�x

 of degree q, i.e., 

where xk =
(
xk
1
,⋯ , xk

M

)T is the representation of the monomials xk on the grid 
points;

 ii. there exists a positive definite symmetric matrix M , also called a norm matrix, such that 

where B is a boundary operator of the form B = t� t
T
�
− t� t

T
�
 , with boundary interpo-

lation provided by tT
�
xl = �l and tT

�
xl = � l for 0 ⩽ l ⩽ r with r ⩾ q;

 iii. integration by parts is mimicked by the property 

 iv. as an additional stability constraint, the symmetric matrix 

(8)ut + aux = 0, a > 0, (x, t) ∈ (𝛼, 𝛽) × (0, T)

(9)
d

dt
‖u(x, t)‖2

L2(�,�)
+ au2(�, t) = 0

u(t) = (u1(t),⋯ , uM(t))
T ≈ (u(x1, t),⋯ , u(xM , t))

T,

D±xk = kxk−1, 0 ⩽ k ⩽ q,

(10)D− = M−1
(
Q− +

1

2
B
)

and D+ = M−1
(
Q+ +

1

2
B
)
,

(11)Q+ + (Q−)T = 0 ;



 Communications on Applied Mathematics and Computation

1 3

is negative semi-definite.

Remark 2 Some remarks on the modifications with respect to classical SBP operators and 
on naming conventions are in order. 

 i. Due to the generalization provided by gSBP schemes beyond the traditional case of 
equidistant grid points including the boundary points � and � , the boundary operators 
of gSBP schemes extend the traditional boundary operator B = diag(−1, 0,⋯ , 0, 1) 
to the given nodal set.

 ii. In the case C = 0 , we have D− = D+ which is denoted a classical gSBP operator, since 
it does not feature any upwind directions.

 iii. Upwind gSBP operators based on diagonal norm matrices M are denoted diagonal-
norm upwind SBP operators.

The motivation for using upwind gSBP operators is the additional artificial damping 
introduced by enforcing the negative semi-definiteness of the matrix C in   (12). We will 
illustrate this property of an upwind gSBP scheme in comparison with classical gSBP 
schemes in the following example.

Considering the spatial discretization of the linear advection equation  (8) via an upwind 
gSBP scheme, we use the operator D− , whereas for a < 0 , the operator D+ would be 
applied. We obtain

where the right-hand side of the above equation contains the required simultaneous-approx-
imation-term (SAT), dealing with the boundary condition at the left boundary. Thereby, the 
corresponding SAT parameter � ∈ ℝ is specified, such that a discrete energy estimate is 
fulfilled which mimics the continuous case, e.g., as in estimate (15).

Multiplying (13) from the left by uTM and adding the transpose now yields

Using the upwind gSBP properties (11) and (12), we have

and, therefore, setting u� = tT
�
u,

For � ⩽ −
a

2
 , the time evolution of the discrete energy may now be estimated by

(12)C ∶=
1

2

(
Q+ −Q−

)
=

1

2

(
Q+ +

(
Q+

)T)
= −

1

2

(
Q− + (Q−)T

)

(13)
du

dt
+ aD− u = �M−1t�t

T
�
u,

(14)2uTM
du

dt
+ auT

(
MD− + (D−)TM

)
u = 2�u2

�
, u� = tT

�
u.

MD− + (D−)TM = Q− + (Q−)T + B = −2C + B,

d

dt
‖u‖2

M
+ a(u2

�
− u2

�
) = 2�u2

�
+ 2uTCu.

(15)
d

dt
‖u‖2

M
+ au2

�
⩽ 2uTCu ⩽ 0,
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where the term containing the negative semi-definite matrix C introduces additional arti-
ficial dissipation compared to the continuous estimate (9), and this additional dissipation 
vanishes for classical gSBP operators without upwind character, since C = 0 in this case.

The upwind gSBP framework also enables the construction of second-derivative opera-
tors of the form

which approximate the second derivative �
2

�x2
.

2.2.1  Global DG Discretization of Advective Terms in Upwind SBP Framework

While the elementwise DG discretization of the linear advection equation results in a clas-
sical gSBP scheme on each grid cell, the corresponding global DG formulation over all 
grid cells results in its upwind variant. The classical SBP properties of element-wise 
1D-DG schemes on general nodal sets are by now well-known, see, e.g., [15, 26, 28, 31]. 
In fact, the cellwise formulation (7) represents a gSBP scheme with the first-derivative 

gSBP operator D̂ = M̂
−1
S which approximates the continuous derivative �

��
 to degree 

q = N and the degree of B is r = q = N , see [26, Lemma 1].
The boundary operator B is given by B = [LLT]1

−1
 , hence, for a single cell (xi, xi+1) , we 

set � = xi, � = xi+1 and obtain t� = L(−1) and t� = L(1).
Next, we consider the global DG formulation over all grid cells. According to (7), on 

interior cells Ii, i = 2,⋯ ,K − 1 , the cell-wise DG scheme in matrix-vector formulation 
applied to the linear advection equation (8), with the positive advection velocity a > 0 , is 
given by

Hereby, a suitable numerical flux function (au)∗,i is employed, where (au)∗,i(−1) = (au)∗
i
 

and (au)∗,i(1) = (au)∗
i+1

 with

Therefore, the choice of numerical flux functions ranges between the central flux for � = 0 
and the upwind flux for � =

1

2
 . Using the SAT boundary treatment with the SAT parameter 

� , the scheme on the left boundary cell is given by

while on the rightmost DG cell with outgoing information through the right boundary, we 
have

(16)

{
D

−
2
= D

+
D

− = M
−1(−(D−)TMD

− + BD
−),

D
+
2
= D

−
D

+ = M
−1(−(D+)TMD

+ + BD
+),

(17)
Δxi

2

dui

dt
+ aD̂ ui = M̂

−1[(
aui

h
− (au)∗,i

)
L
]1
−1
, i = 2,⋯ ,K − 1.

(18)(au)∗
i
= a

(
1

2
+ �

)
ui−1
h

(1) + a
(
1

2
− �

)
ui
h
(−1), � ∈

[
0,

1

2

]
.

(19)
Δx1

2

du1

dt
+ aD̂ u1 = M̂

−1(
au1

h
(1) − (au)∗

2

)
L(1) + �M̂

−1
L(−1)L(−1)Tu1,

(20)
ΔxK

2

duK

dt
+ aD̂ uK = −M̂

−1(
auK

h
(−1) − (au)∗

K

)
L(−1).
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We now rewrite the global DG discretization on the computational domain � as an upwind 
gSBP scheme which includes the interactions of degrees of freedom on adjacent cells. 
Under this assumption, we may rewrite (17) as

with the global nodal DG solution vector given by u = (u1,⋯ , uK)T and the extended SATs 

SAT =
(
SAT T

1
, 0,⋯ , 0

)T , where SAT
1
=

2�

Δx1
M̂

−1
L(−1)L(−1)Tu1.

Now, the global DG derivative operator D− is a block tridiagonal matrix with blocks 
corresponding to each DG element and its left and right adjacent cells. More precisely, we 
have

Proposition 1 The global DG derivative operator D− = D−(�) in (21) is of the block tridi-
agonal form

where the repeating blocks corresponding to interior cells and the left and right boundary 
blocks are given by

where D̂ denotes the cellwise first-derivative gSBP operator of the DG scheme (7).

Proof The evaluation of the numerical flux function at an interface given in (18) may be 
rewritten as

and the evaluation of the flux function aui
h
 at cell boundaries is obtained as

The desired block structure is obtained by inserting these contributions into (17) for inte-
rior DG cells and into (19) and (20) for boundary DG cells. Hereby, we account for the 
dependencies of the degrees of freedom on cell i only on ui, ui−1 , and ui+1 and set up the 
blocks accordingly.

(21)
du

dt
+ aD− u = SAT ,

D −(�) =

⎛⎜⎜⎜⎜⎝

2

Δx1
2

Δx2

⋱
2

ΔxK

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝

A lb(�) A 12(�)

A 21(�) A 11(�) A 12(�)

⋱ ⋱ ⋱

A 21(�) A 11(�) A 12(�)

A 21(�) A rb(�)

⎞⎟⎟⎟⎟⎠
,

A 11(�) = D̂ −
(
1

2
− �

)
M̂

−1
L(1)L(1)T +

(
1

2
+ �

)
M̂

−1
L(−1)L(−1)T,

A 12(�) =
(
1

2
− �

)
M̂

−1
L(1)L(−1)T,

A 21(�) = −
(
1

2
+ �

)
M̂

−1
L(−1)L(1)T,

A lb(�) = D̂ −
(
1

2
− �

)
M̂

−1
L(1)L(1)T,

A rb(�) = D̂ +
(
1

2
+ �

)
M̂

−1
L(−1)L(−1)T,

(au)∗
i
= a

(
1

2
+ �

)
L(1)Tui−1 + a

(
1

2
− �

)
L(−1)Tui

aui
h
(±1) = aL(±1)Tui.
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The specific form of D− allows us to show that the dual pair 
{
D−,D+

}
 with D− = D−(�) 

and a suitably constructed dual operator D+ satisfy the upwind gSBP properties specified 
in Definition 1 with � = xa and � = xb.

Theorem 1 The dual pair of discrete derivative operators

is a dual pair of diagonal-norm upwind gSBP operators with respect to the global diagonal 
norm matrix

and the generalized boundary operator

with Bl = −L(−1)L(−1)T and Br = L(1)L(1)T.

Proof We define the matrices Q− and Q+ in (10) by

Next, we show that Q− and Q+ satisfy the SBP property (11), i.e., that the dual operator D+ 
is chosen properly. We have

where Q+ + (Q−)T = 0 , since the block representation given in Proposition 1 yields

(22)D− = D −(�) , D+ = D −(−�)

M = diag

(
Δx1

2
M̂,⋯ ,

ΔxK

2
M̂

)
,

Bglob = diag
(
Bl, 0,⋯ , 0, Br

)

Q− = MD−(�) −
1

2
Bglob,

Q+ = MD+(�) −
1

2
Bglob, D+(�) = D−(−�).

Q+ + (Q−)T = MD−(−�) + (D−(�))TM − Bglob

=

⎛⎜⎜⎜⎜⎝

Q lb Q 12

Q 21 Q 11 Q 12

⋱ ⋱ ⋱

Q 21 Q 11 Q 12

Q 21 Q rb

⎞⎟⎟⎟⎟⎠
,

Q 11 = M̂A11(−�) + AT
11
(�)M̂ = M̂ D̂ + D̂

T
M̂ − L(1)L(1)T + L(−1)L(−1)T

= M̂ D̂ + D̂
T
M̂ − B = 0,

Q lb = M̂Alb(−�) + AT
lb
(�)M̂ − Bl = M̂ D̂ + D̂

T
M̂ − L(1)L(1)T + L(−1)L(−1)T = 0,

Q rb = M̂Arb(−�) + AT
rb
(�)M̂ − Br = M̂ D̂ + D̂

T
M̂ + L(−1)L(−1)T − L(1)L(1)T = 0,

Q 12 = M̂A12(−�) + AT
21
(�)M̂ =

(
1

2
+ �

)
L(1)L(−1)T −

(
1

2
+ �

)
L(1)L(−1)T = 0,

Q 21 = M̂A21(−�) + AT
12
(�)M̂ = −

(
1

2
− �

)
L(−1)L(1)T +

(
1

2
− �

)
L(−1)L(1)T = 0.
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It remains to show the stability constraint (12), i.e., to show that

is negative semi-definite. We have

with

Hence, we obtain

i.e., C is negative semi-definite.

The following remark provides additional insight into the upwind gSBP character of the 
global DG formulation with numerical fluxes ranging from upwind to central fluxes.

Remark 3 Since D+(�) = D−(−�) , we note that 

 i. the dual operator D+ arises naturally from the DG scheme applied to the linear advec-
tion equation with the negative advection velocity a < 0 , and

 ii. for � = 0 , the global DG operator D = D−(0) = D+(0) is a classical diagonal-norm 
gSBP operator with global central character.

(23)C =
1

2

(
Q+ −Q−

)
=

1

2
M(D−(−�) − D−(�))

C =

⎛
⎜⎜⎜⎜⎝

C lb C 12

C 21 C 11 C 12

⋱ ⋱ ⋱

C 21 C 11 C 12

C 21 C rb

⎞
⎟⎟⎟⎟⎠

C 11 =
1

2

(
M̂A11(−�) − M̂A11(�)

)
= −�

(
L(1)L(1)T + L(−1)L(−1)T

)
,

C lb =
1

2

(
M̂Alb(−�) − M̂Alb(�)

)
= −�L(1)L(1)T ,

C rb =
1

2

(
M̂Arb(−�) − M̂Arb(�)

)
= −�L(−1)L(−1)T ,

C 12 =
1

2

(
M̂A12(−�) − M̂A12(�)

)
= �L(1)L(−1)T ,

C 21 =
1

2

(
M̂A21(−�) − M̂A21(�)

)
= �L(−1)L(1)T = C T

12
.

uTCu = (u1)TC lb u
1 +

K−1∑
i=2

(ui)TC 11 u
i + (uK)TC rb u

K + 2

K−1∑
i=1

(ui)TC 12 u
i+1

= −�

(
(u1

h
(1))2 +

K−1∑
i=2

(
(ui

h
(−1))2 + (ui

h
(1))2

)
+ (uK

h
(−1))2 − 2

K−1∑
i=1

ui
h
(1)ui+1

h
(−1)

)

= −�

K−1∑
i=1

(
ui+1
h

(−1) − ui
h
(1)

)2
⩽ 0,
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Periodic first-derivative upwind gSBP operators
Since the energy stability analysis in Sect.  3 regarding fully discrete IMEX upwind 

gSBP schemes is carried out for periodic advection-diffusion problems, the correspond-
ing semi-discretization of (1) by upwind gSBP operators is devoid of SATs and periodic 
upwind gSBP operators are required which are of a slightly modified form, given by

The construction of these periodic global discrete derivative operators is only based on 
the interior cell discretization (17). Therefore, they use the same building blocks given in 
Proposition 1 except for the absence of the boundary blocks Alb(�),Arb(�).

2.2.2  Rewriting LDG and BR1 Schemes as Second‑Derivative Upwind SBP Operators

The upwind gSBP operators resulting from the DG discretization of the linear advection 
equation in one space dimension can be used to construct specific second-derivative opera-
tors. In particular, the construction (16) of second-derivative upwind gSBP operators by 
combining D−(�) and D+(�) is directly related the DG technique of rewriting diffusion 
equations into a first-order system using an auxiliary variable for the solution derivative as 
in [3, 6, 7, 11]. For the linear heat equation

this procedure provides the system

using an auxiliary variable q. For periodic boundary conditions, only the interior cell dis-
cretization (7) is relevant and the element-wise strong form DG semi-discretization yields

Regarding the specification of the numerical fluxes, at each element boundary, the left-
hand side and right-hand side values of a piecewise continuous function v are denoted 
by v− and v+ , respectively. The corresponding jump at element interfaces is denoted by 
[v] = v+ − v− and the arithmetic mean is given by {v} =

1

2
(v+ + v−) . The simplest choice 

for q∗ and u∗ is the BR1 scheme [6] given by the arithmetic means

(24)D−(�) =

⎛
⎜⎜⎜⎜⎝

2

Δx1
2

Δx2

⋱
2

ΔxK

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

A 11(�) A 12(�) A 21(�)

A 21(�) ⋱ ⋱

⋱ ⋱ A 12(�)

A 12(�) A 21(�) A 11(�)

⎞
⎟⎟⎟⎠
,

(25)D+(�) = D−(−�),

(26)D2(�) = D−(�)D +(�).

(27)ut = cuxx, (x, t) ∈ (x� , x�) × (0, T),

(28)ut = cqx, q = ux,

Δxi

2

dui

dt
= c D̂ qi − c M̂

−1[(
qi
h
− q∗,i

)
L
]1
−1

,

Δxi

2
qi = D̂ ui − M̂

−1[(
ui
h
− u∗,i

)
L
]1
−1
.
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Furthermore, the original LDG [11] yields a parameter-dependent family of diffusion 
fluxes

which, in one space dimension, contains the BR1 approach as a specific case with 
c11 = c12 = 0 . Commonly, LDG fluxes refer to the choice of alternating fluxes with 
c12 = ±1, c11 = 0 , which offers two different variants. One implementation is thus given 
by

the second variant is specified by

For the LDGa , the LDGb , and the BR1 schemes, the numerical fluxes q∗ and u∗ can now be 
written as

with �q =
1

2
, �u = −

1

2
 for LDGa , �q = −

1

2
, �u =

1

2
 for LDGb and �q = �u = 0 for BR1.

Due to the assumed periodic boundary conditions, we now use the periodic global upwind 
gSBP operators (24), (25), and (26) developed in Sect. 2.2.1.

Thus, the LDGa scheme can be rewritten as

where u =
(
u1,⋯ , uK

)T
, q =

(
q1,⋯ , qK

)T denote the global nodal solution vectors and 

the periodic upwind gSBP operator D− = D−
(
� =

1

2

)
 is taken from (24). Hence, for the 

LDGa scheme, we have

Analogously, for the LDGb variant we obtain

Both of these formulations correspond to true upwind gSBP operators approximating the 
second derivative as defined in (16). In contrast, for the BR1 scheme, we have

(29)q∗,BR1 = {q}, u∗,BR1 = {u}.

(30)q∗,LDG = {q} − c12[q] + c11[u], u∗,LDG = {u} + c12[u],

(31)q∗,LDGa = q−, u∗,LDGa = u+,

(32)q∗,LDGb = q+, u∗,LDGb = u−.

q∗ =
(
1

2
+ �q

)
q− +

(
1

2
− �q

)
q+,

u∗ =
(
1

2
+ �u

)
u− +

(
1

2
− �u

)
u+,

du

dt
= cD− q, q = D+ u,

LDG
a
∶
du

dt
= cD+

2
u = cD−D+ u.

LDG
b
∶
du

dt
= cD−

2
u = cD+D− u.

BR1∶
du

dt
= cD2 u = cDDu,
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where D = D−(� = 0) = D+(� = 0) is a classical first-derivative gSBP operator, as already 
mentioned in Remark 3. Thus, the BR1 scheme represents a second-derivative gSBP oper-
ator which is obtained by applying the first-derivative gSBP operator twice.

2.2.3  Preliminary Estimates for First‑ and Second‑Derivative Upwind gSBP Operators

The fully discrete stability analysis for IMEX upwind gSBP schemes in Sect. 3.1 and Sect. 3.2 
will be restricted to periodic problems and is based on the discrete energy norm induced by 
the diagonal positive definite norm matrix M . Defining the inner product

a discrete energy norm is given by

Furthermore, the Cauchy-Schwarz inequality

will be useful. As already mentioned, we assume periodic boundary conditions and the 
semi-discretization of the linear advection-diffusion equation (1) results in

based on the periodic upwind gSBP operators given in (24) and (26).
Using this notation, we have the following estimates and relations between the opera-

tors D± and D2 , which will be required for the subsequent discrete energy stability 
analysis.

Proposition 2 For the periodic upwind gSBP operators defined in (24), (25), and (26), and 
arbitrary nodal values u, v we have 

 i. dissipativity of −D− , i.e., 

      ii.  dissipativity of D2 , more precisely 

 iii. a Cauchy-Schwarz-type inequality 

(u, v)M = uTMv,

‖u‖M =
√
(u, u)M =

√
uTMu.

(u, v)M ⩽ ‖u‖M‖v‖M

du

dt
+ aD−u = cD2u,

(33)(D−u, u)M ⩾ 0;

(34)
(
D2u, v

)
M
= −

(
D+u,D+v

)
M
,

(35)
�
D2u, u

�
M
= −‖D+u‖2

M
⩽ 0;
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Proof First, making use of the periodicity, the upwind gSBP property (11) reduces to the 
equation:

leading to (D−)TM = −MD+ which we will frequently use in the following derivations.
Due to the symmetry of the inner product, we have

and the first assertion is thus proven by

Regarding the second assertion, we obtain  (34) by

and (35) directly follows. For  (36), we may rewrite

and the third assertion follows from the Cauchy-Schwarz inequality for the inner product 
(⋅, ⋅)M.

We will, furthermore, use the Young’s inequality in the form

for any constant C > 0 and any a, b ∈ ℝ.

3  IMEX Schemes for Advection‑Diffusion Problems

Implicit-explicit one-step time integration methods for advection-diffusion equations are gen-
erally based on partitioned Runge-Kutta schemes applied to a partitioned system of ordinary 
differential equations of the form

Hereby, different RK schemes, i.e., an explicit and an implicit one, are applied to the com-
ponents F1 and F2 of the split right-hand side.

(36)�(D−u, v)M� ⩽ ‖u‖M‖D+v‖M.

MD+ + (D−)TM = Q+ + (Q−)T = 0,

(D−u, u)M =
1

2

(
(D−u, u)M + (u,D−u)M

)
,

(D−u, u)M =
1

2

(
uT(Q−)Tu + uTQ−u

)
= −

1

2
uT

(
Q+ −Q−

)
u = −uTCu ⩾ 0.

(
D2u, v

)
M
=
(
D−D+u, v

)
M
= uT(D+)T(D−)TMv = −(D+u)TMD+v

= −
(
D+u,D+v

)
M
,

|(D−u, v)M| = |uT(D−)TMv| = |uTMD+v| = (
u,D+v

)
M

(37)|ab| ⩽ a2

4C
+ Cb2

(38)
du

dt
= F1(t,u) + F2(t,u).
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As in [4, 9] we consider (s + 1)-stage explicit Runge-Kutta methods coupled with implicit 
s-stage DIRK schemes, where the absissae c1, c2 of the explicit and implicit schemes, respec-

tively, fulfill c1 =
(

0

c2

)
 . The DIRK scheme is then recast into an (s + 1)-stage scheme as 

well by padding the first row and first column with zeros. We thus obtain the Butcher table

Applied to the system of ODEs (38), the IMEX-RK scheme then has the form

where un, un+1 denote the approximations at times tn and tn+1 = tn + Δt and u(i) are the inter-
mediate stage values corresponding to the intermediate times tn,i given by tn,i = tn + ciΔt 
with ci =

∑s

j=1
a1
ij
=
∑s

j=1
a2
ij
.

In [9], Calvo et al. derived necessary conditions on the coefficients of IMEX schemes 
of the above form to obtain a time step restriction of Δt = O(c∕a2) for advection-diffusion 
equations discretized by the Fourier method. These conditions are similar to L-stability and 
include a2

s+1,j
= b2

j
, j = 2,⋯ , s + 1 as a requirement for the implicit scheme.

In this work, for the L2-stability analysis of IMEX-DG schemes, we consider the follow-
ing first- and second-order IMEX schemes also used in [38].

First-order:

Second-order:

with � = 1 −
√
2

2
 and � = 1 −

1

2�
 , fulfilling the identity

In addition, some of the numerical experiments carried out in Sect. 4 utilize the third-order 
IMEX scheme taken from [9] which is given by

0 0 0

c2 a1
21

0 0 a2
22

c3 a1
31

a1
32

0 0 a2
32

a2
33

⋮ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮ ⋱ ⋱

cs+1 a1
s+1,1

a1
s+1,2

⋯ a1
s+1,s

0 0 a2
s+1,2

⋯ a2
s+1,s

a2
s+1,s+1

b1
1

b1
2

b1
2

⋯ b1
s+1

0 b2
2

b2
3

⋯ b2
s+1

(39)

⎧⎪⎨⎪⎩

u(1) = un,

u(i) = un + Δt
∑s+1

j=1
a1
ij
F1

�
tn,j, u(j)

�
+ Δt

∑s+1

j=1
a2
ij
F1

�
tn,j, u(j)

�
, i = 2,⋯ , s + 1,

un+1 = un + Δt
∑s+1

j=1
b1
j
F1

�
tn,j, u(j)

�
+ Δt

∑s+1

j=1
b2
j
F1

�
tn,j, u(j)

�
,

(40)
0 0 0 0 0

1 1 0 0 1

1 0 0 1

(41)

0 0 0 0 0 0 0

� � 0 0 0 � 0

1 � 1 − � 0 0 1 − � �

� 1 − � 0 0 1 − � �

� − � = 1.
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with

3.1  Stability Analysis for the First‑Order IMEX Scheme

In principle, the energy stability analysis for IMEX upwind gSBP schemes is similar 
to the L2-stability analysis carried out for LDG schemes in  [38] and for the (�,�)-fam-
ily in   [27]. The most significant difference of the current approach is the direct use 
of the discrete energy generated by the upwind gSBP norm matrix M instead of the 
usual L2-norm of the approximate solution. This leads to a very transparent energy 
estimate which is devoid of finite-element-type inverse constants and holds for upwind 
gSBP schemes of arbitrary order in space. In particular, the provided time step restric-
tion does not depend on the polynomial degree in space. For the applicability of the 
following stability analysis, compatibility of the first-derivative and second-derivative 
upwind gSBP operators in the sense that D2 = D−D+ is crucial.

Discretizing the linear advection-diffusion equation (1) with a > 0 by first- and sec-
ond-derivative upwind gSBP operators D− and D2 in space and the first-order IMEX 
scheme (40) as time integrator yields the fully discrete IMEX upwind gSBP scheme

Applying (⋅, ⋅)M on both sides of (43) with un+1 as the second argument, we get

Denoting u� = un+1 − un and using identities analogously to the derivation in [38] com-
bined with the estimate (33), we obtain

Inserting this into (44) and employing (35), (36), and finally the Young’s inequality (37), 
we have

(42)

0 0 0 0 0 0 0 0 0

� � 0 0 0 0 � 0 0
1+�

2

1+�

2
− a1 a1 0 0 0

1−�

2
� 0

1 0 1 − a2 a2 0 0 b1 b2 �

0 b1 b2 � 0 b1 b2 �

� ≈ 0.435 866 521 508 459 the middle root of 6x3 − 18x2 + 9x − 1,

b1 = − 1.5�2 + 4� − 0.25,

b2 =1.5�
2 − 5� + 1.25,

a1 = − 0.35,

a2 =
1∕3 − 2�2 − 2b2a1�

�(1 − �)
.

(43)un+1 = un − aΔtD−un + cΔtD2u
n+1.

(44)
(
un+1, un+1

)
M
=
(
un, un+1

)
M
− aΔt

(
D−un, un+1

)
M
+ cΔt

(
D2u

n+1, un+1
)
M
.

(
un+1 − un, un+1

)
M
=

1

2

(
un+1, un+1

)
M
+

1

2

(
u� , u�

)
M
−

1

2
(un, un)M,

−
(
D−un, un+1

)
M
=
(
D−u� , un+1

)
M
−
(
D−un+1, un+1

)
M
⩽
(
D−u� , un+1

)
M
.
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Summarizing the above findings we have the following theorem.

Theorem 2 If {D−,D+} is any dual pair of first-derivative upwind SBP operators with the 
norm matrix M and the second-derivative upwind SBP operator is chosen as D2 = D−D+ , 
then the fully discrete solution of the IMEX-upwind SBP scheme (43) satisfies the discrete 
energy stability of the form ‖un+1‖M ⩽ ‖un‖M if the time step is bounded by

It is worth noting that the assertion of Theorem  2 is quite general, since it also 
holds for the LDG diffusion scheme coupled with upwind fluxes for advection, i.e., the 
scheme analyzed in  [38]. In addition, the constant in the above time step restriction is 
specifically determined and is independent of the polynomial degree of the space dis-
cretization, since no detour through finite-element spaces for u and ux is required.

3.2  Stability Analysis for the Second‑Order IMEX Scheme

Discretizing the linear advection-diffusion equation (1) by upwind gSBP operators in space 
as in Sect. 3.1 and using the second-order IMEX time integrator (41) yields the fully discrete 
IMEX upwind gSBP scheme

Employing the discrete inner product (⋅, ⋅)M on both sides of (45) with u(n,1) as the second 
argument and on both sides of (46) with un+1 as the second argument, we have

where we have used � − � = 1 . Setting u�,1 = u(n,1) − un and u�,2 = un+1 − u(n,1) and adding 
(47) and (48), we obtain

1

2

�‖un+1‖2
M
− ‖un‖2

M

�
⩽ −

1

2
‖u�‖2

M
+ aΔt

�
D−u� , un+1

�
M
+ cΔt

�
D2u

n+1, un+1
�
M

⩽ −
1

2
‖u�‖2

M
+ aΔt‖u�‖M‖D+un+1‖M − cΔt‖D+un+1‖2

M

⩽ −
1

2
‖u�‖2

M
+

a2Δt

4c
‖u�‖2

M
+ cΔt‖D+un+1‖2

M
− cΔt‖D+un+1‖2

M

=

�
a2Δt

4c
−

1

2

�
‖u�‖2

M
.

Δt ⩽
2c

a2
.

(45)u(n,1) = un + Δt�
(
−aD−un + cD2u

(n,1)
)
,

(46)
un+1 =un − Δt

(
�aD−un + (1 − �)aD−u(n,1)

)

+ Δt
(
(1 − �)cD2u

(n,1) + �cD2u
n+1

)
.

(47)(u(n,1) − un, u(n,1))M = −a�Δt
(
D−un, u(n,1)

)
M
+ c�Δt

(
D2u

(n,1), u(n,1)
)
M
,

(48)
(un+1 − u(n,1), un+1)M = aΔt

((
D−un, un+1

)
M
− (1 − �)

(
D−u(n,1), un+1

)
M

)

+ cΔt
(
(1 − 2�)

(
D2u

(n,1), un+1
)
M
+ �

(
D2u

n+1, un+1
)
M

)
,
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with

and via (35),

Furthermore, R2 fulfills

with

since S =

(
3

4
�

1

2
− �

1

2
− �

3

4
�

)
 can be proven positive definite for � = 1 −

√
2

2
 and we have

Using (33), (36), we can, furthermore, bound R1 by

since for the parameter � = 1 −
√
2

2
 , the inequalities � + 3

2�
⩽

11

2
 and �

6
+

(1−�)2

22
⩽

1

4
 hold.

Inserting the estimates for R1 and R2 into (49), we obtain the following theorem.

Theorem 3 If {D−,D+} is any dual pair of first-derivative upwind SBP operators with the 
norm matrix M and the second-derivative upwind SBP operator is chosen as D2 = D−D+ , 
then the fully discrete solution of the IMEX-upwind SBP schemes (45), (46) satisfies the 
discrete energy stability of the form ‖un+1‖M ⩽ ‖un‖M if the time step is bounded by

(49)
1

2

�‖un+1‖2 − ‖un‖2 + ‖u�,1‖2 + ‖u�,2‖2� = Δt(R1 + R2)

R1 = − a�
(
D−un, u(n,1)

)
M
+ a

(
D−un, un+1

)
M
− a(1 − �)

(
D−u(n,1), un+1

)
M

= − a�
((
D−u(n,1), u(n,1)

)
M
−
(
D−u�,1, u(n,1)

)
M

)
− a(1 − �)

(
D−un+1, un+1

)
M

− a
(
D−u�,1, un+1

)
M
+ a(1 − �)

(
D−u�,2, un+1

)
M
,

R2 = −c
�
�‖D+u(n,1)‖2

M
+ (1 − 2�)

�
D+u(n,1),D+un+1

�
M
+ �‖D+un+1‖2

M

�
.

R2 = S −
1

4
c�
�‖D+u(n,1)‖2

M
+ ‖D+un+1‖2

M

�

S = −c
�
3

4
�‖D+u(n,1)‖2

M
+ (1 − 2�)

�
D+u(n,1),D+un+1

�
M
+

3

4
�‖D+un+1‖2

M

�
⩽ 0

S = −cwT(S⊗M)w with w =

(
D+u(n,1)

D+un+1

)
.

R1 ⩽ a
�‖u�,1‖M

�
�‖D+u(n,1)‖M + ‖D+un+1‖M

�
+ (1 − �)‖u�,2‖M‖D+un+1‖M

�

⩽
a2

c

��
� +

3

2�

�
‖u�,1‖2

M
+

11

2
‖u�,2‖2

M

�
+ c

�

4
‖D+u(n,1)‖2

M

+ c

�
�

6
+

(1 − �)2

22

�
‖D+un+1‖2

M

⩽
11

2

a2

c

�‖u�,1‖2
M
+ ‖u�,2‖2

M

�
+

1

4
�c
�‖D+u(n,1)‖2

M
+ ‖D+un+1‖2

M

�
,

Δt ⩽
c

11a2
.
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4  Numerical Results

In this section, the stability and accuracy of IMEX upwind gSBP schemes are compared 
with respect to different combinations of the first-derivative and second-derivative upwind 
gSBP operators. All upwind gSBP operators in this section are based on uniform grids and 
the Legendre-Gauss-Lobatto quadrature rule.

Table 1  Stability of IMEX upwind gSBP schemes (43), (45), and (46) depending on 
(
�
���

, �
����

)
 . Values of 

� =
a
2

c
Δtmax , where Δtmax is the maximum time step ensuring a non-increasing discrete energy

N K a = c = 0.1 a = 0.2, c = 0.01

Upwind gSBP discretization 
(
�
���

, �
����

)
(

1

2
,
1

2

) (
1

2
, 0

) (
1

4
,
1

4

)
(0, 0)

(
1

2
,
1

2

) (
1

2
, 0

) (
1

4
,
1

4

)
(0, 0)

First-order IMEX time integration
1 20 + 3.3E−01 + + 2.1 2.0 2.1 2.0

40 + 1.6E−01 + + 2.0 2.0 2.0 2.0
80 + 7.9E−02 + + 2.0 1.6 2.0 2.0
160 + 3.9E−02 + + 2.0 7.9E−01 2.0 2.0
320 + 2.0E−02 + + 2.0 3.9E−01 2.0 2.0

2 20 + 1.5E−01 + + 2.0 2.0 2.0 2.0
40 + 7.8E−02 + + 2.0 1.3 2.0 2.0
80 + 3.9E−02 + + 2.0 6.7E−01 2.0 2.0
160 + 1.9E−02 + + 2.0 3.5E−01 2.0 2.0
320 + 9.8E−03 + + 2.0 1.8e−01 2.0 2.0

3 20 + 1.0E−01 + + 2.0 1.5 2.0 2.0
40 + 5.2E−02 + + 2.0 8.3E−01 2.0 2.0
80 + 2.6E−02 + + 2.0 4.6E−01 2.0 2.0
160 + 1.3E−02 + + 2.0 2.4E−01 2.0 2.0
320 + 6.5E−03 + + 2.0 1.2E−01 2.0 2.0

Second-order IMEX time integration
1 20 2.4 3.2E−01 1.5 2.4 6.6 6.3 6.5 5.1

40 2.4 1.6E−01 2.4 2.4 3.5 3.1 3.7 3.3
80 2.4 7.9E−02 2.4 2.4 2.0 1.6 2.1 2.1
160 2.4 3.9E−02 2.4 2.4 1.4 7.8E−01 1.5 1.4
320 2.4 2.0E−02 2.4 2.4 1.5 3.9E−01 1.4 1.4

2 20 2.4 1.3E−01 2.4 2.4 2.9 2.3 3.1 2.8
40 2.4 7.1E−02 2.4 2.4 1.9 1.2 1.9 1.8
80 2.4 3.7E−02 2.4 2.4 1.7 6.0E−01 1.5 1.4
160 2.4 1.9E−02 2.4 2.4 1.4 3.1E−01 1.5 1.4
320 2.4 9.6E−03 2.4 2.4 1.4 1.6E−01 1.4 1.4

3 20 2.4 9.1E−02 2.4 2.4 2.2 1.3 2.1 1.9
40 2.4 4.8E−02 2.4 2.4 1.8 6.8E−01 1.6 1.4
80 2.4 2.5E−02 2.4 2.4 1.4 3.6E−01 1.4 1.4
160 2.4 1.3E−02 2.4 2.4 1.4 2.0E−01 1.4 1.4
320 2.4 6.5E−02 2.4 2.4 1.4 1.1E−01 1.4 1.4
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4.1  Numerical Study on Time Step Restrictions

We consider the exact solution

of the linear advection-diffusion equation (1) in the interval (xa, xb) = (−π, π) . The advec-
tion-diffusion problem is discretized in space by different upwind gSBP operators on uni-
form grids using a number of N + 1 Legendre-Gauss-Lobatto nodes on each grid cell. The 
implemented upwind gSBP operators are specified by the parameters �

���
 and �

����
 , respec-

tively, where we choose D− = D−(� = �
���

) and D2 = D−(�
����

)D+(�
����

) . Thus, for 
�
���

= �
����

 , the first-derivative and second-derivative operators are compatible in the 
sense of Theorems 2 and 3. For instance, the choice 

(
�
���

, �
����

)
=
(

1

2
,
1

2

)
 represents 

upwind advection fluxes paired with LDG diffusion fluxes, while 
(
�
���

, �
����

)
= (0, 0) 

denotes the pairing of central advection fluxes with the BR1 diffusion scheme. The first-
order IMEX scheme  (40) and the second-order IMEX scheme  (41) are then used to dis-
cretize advection terms explicitly and diffusion terms implicitly in time. From the theoreti-
cal analysis, we expect the schemes to be stable for time steps Δt ⩽ �

c

a2
 , where � is some 

constant independent of grid refinement.
For different advection and diffusion parameters a and c, Table  1 lists the maximum 

stable time steps obtained by the IMEX schemes of first- and second-order coupled with 
upwind gSBP operators using N ⩽ 3 . In the numerical setup, we successively double the 
number of cells K and compute the numerical solution until the final time T = 1 000 is 
reached. The maximum stable time step Δtmax is determined as the maximum time step for 

(50)u(x, t) = e−ct sin(x − at)

Table 2  Values of � =
a
2

c
Δtmax for IMEX upwind gSBP schemes using the third-order IMEX method  (42)

N K a = c = 0.1 a = 0.2, c = 0.01

Upwind gSBP discretization 
(
�
���

, �
����

)
(

1

2
,
1

2

) (
1

2
, 0

) (
1

4
,
1

4

)
(0, 0)

(
1

2
,
1

2

) (
1

2
, 0

) (
1

4
,
1

4

)
(0, 0)

1 20 5.9 3.6E−01 5.9 5.9 7.5 7.0 10.1 11.1
40 5.9 1.8E−01 5.9 5.9 4.1 3.5 6.4 7.2
80 5.9 8.7E−02 5.9 5.9 2.6 1.7 3.9 5.5
160 5.9 4.3E−02 5.9 5.9 2.4 8.6E−01 2.6 5.1
320 5.9 2.2E−02 5.9 5.9 5.2 4.3E−01 2.6 5.0

2 20 5.9 1.4E−01 5.9 5.9 3.4 2.6 5.0 6.4
40 5.9 6.9E−02 5.9 5.9 2.1 1.3 3.1 5.2
80 5.9 3.5E−02 5.9 5.9 2.1 6.5E−01 2.4 5.0
160 5.9 1.8E−02 5.9 5.9 4.6 3.3E−01 2.7 4.9
320 5.9 8.9E−03 5.9 5.9 5.0 1.7E−01 5.0 4.9

3 20 5.9 8.1E−02 5.9 5.9 2.3 1.4 3.2 5.4
40 5.9 4.1E−02 5.9 5.9 1.8 7.3E−01 2.5 5.0
80 5.9 2.1E−02 5.9 5.9 3.9 3.7E−01 2.2 5.0
160 5.9 1.0E−02 5.9 5.9 4.8 1.9E−01 4.2 5.0
320 5.9 5.2E−03 5.9 5.9 5.0 9.9E−02 5.0 5.0
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which the discrete energy norm (u, u)M of the numerical solution is non-increasing and the 
corresponding values of � =

a2

c
Δtmax are listed. An entry of + indicates that arbitrarily large 

time steps may be chosen without increasing the discrete energy in time.
As predicted by the theoretical analysis, for all schemes using compatible first-deriva-

tive and second-derivative upwind gSBP operators with �
���

= �
����

 , the maximum admis-
sible time step is bounded from below under grid refinement. The precise bound varies 
for different advection-diffusion parameters a, c but fulfills the theoretically predicted time 
step restriction as long as the compatibility condition is fulfilled. Moreover, the different 
schemes possess nearly the same time step bounds under the same setup with respect to 
the parameters a, c and the chosen IMEX scheme. Regarding the enhanced IMEX stability 
property, the time step bound is lower for second-order IMEX time integration as predicted 
by the theoretical analysis.

On the other hand, as already noted in [27], the choice of 
(
�
���

, �
����

)
=
(

1

2
, 0
)
 repre-

senting the BR1 diffusion scheme paired upwind advection fluxes does not admit grid-
independent time step sizes, in accordance with the theoretical analysis with only covers 
the case �

���
= �

����
 as already stated. Instead, we observe admissible time steps of 

� = O(Δx) , analogous to the time step restrictions for explicitly discretized advection equa-
tions. Replacing the upwind advection fluxes by central fluxes is compatible with the BR1 
scheme and yields the enhanced IMEX stability which can also be observed in the results 
of Table 1.

Regarding higher order time discretization, Table  2 lists the corresponding maximum 
time steps � ensuring a non-increasing discrete energy when combining the previously con-
sidered spatial upwind gSBP schemes for N ⩽ 3 with the third-order IMEX scheme  (42). 
Although the theoretical analysis in Sect.  3 only covers the first-order and second-order 
IMEX schemes (40) and (41), respectively, an analogous stability behavior can be observed 
for the third-order IMEX scheme. In addition, for this setup, compatible first- and second-
derivative upwind gSBP operators yield the enhanced IMEX stability, while for the combi-
nation of upwind advection fluxes with BR1 diffusion, i.e., 

(
�
���

, �
����

)
=
(

1

2
, 0
)
 , the clas-

sical CFL condition for the pure advection equation needs to be enforced.

4.2  Numerical Study on Accuracy of IMEX Upwind gSBP Schemes

In this section, we determine the experimental order of convergence (EOC) of specific 
IMEX upwind gSBP schemes, particularly for coarse time grids. Regarding the designed 
spatial and temporal order of the schemes, we study the cases N ⩽ 3 and utilize the IMEX 
schemes of the second order  (41) and the third order  (42).

First, we reconsider the decreasing exact solution  (50) of the linear advection-diffusion 
equation (1). Table  3 lists the L2-errors and the derived EOC for the various schemes 
applied to this problem. Here, we compute the numeral solution for two different parameter 
sets of a = c = 0.1 and a = 1, c = 0.1 until the final time T = 10 and use time steps 
Δt = �Δx for different constants � as indicated in the table. In most cases, the predicted 
convergence rate is experimentally confirmed as the minimum of the expected orders in 
space and time. One exception is the poor performance in the case of 

(
�
���

, �
����

)
=
(

1

2
, 0
)
 , 

i.e., upwind advection fluxes paired with the BR1 diffusion scheme as this choice suffers 
from the predicted loss of enhanced IMEX stability for larger time steps, particularly in the 
third-order case. A second exception is the case of 

(
�
���

, �
����

)
= (0, 0) , which yields a 
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stable scheme but is subject to order reduction regarding the formally second-order scheme. 
As a matter of fact, this type of order reduction is a known phenomenon which is promi-
nent in DG schemes employing numerical fluxes of central type in the case of odd polyno-
mial degrees, also observed for the central-type kinetic energy preserving numerical fluxes 
for the compressible fluid flow, e.g., in  [16, 26].

Furthermore, as in [38], we now supplement the linear advection-diffusion equation (1) 
by a source term, i.e., we consider the modified advection-diffusion problem

Table 3  Accuracy comparison of IMEX upwind gSBP schemes for the exponentially decreasing solution   
(50). Computations carried out until the final time T = 10

(a, c),Δt K Upwind gSBP discretization 
(
�
���

, �
����

)
(

1

2
,
1

2

) (
1

2
, 0

) (
1

4
,
1

4

)
(0, 0)

L
2-error EOC L

2-error EOC L
2-error EOC L

2-error EOC

Second-order IMEX upwind gSBP schemes
a = 0.1

c = 0.1

N = 1

Δt = 25Δx

20 1.01E−01 – 1.73E−01 – 1.01E−01 – 1.46E−01 –
40 2.31E−02 2.13 – – 2.37E−02 2.09 5.07E−02 1.53
80 6.42E−03 1.85 – – 6.60E−03 1.84 2.27E−02 1.16
160 1.55E−03 2.05 – – 1.60E−03 2.04 1.09E−02 1.06
320 3.81E−04 2.02 – – 3.96E−04 2.01 5.40E−03 1.01

a = 0.1

c = 0.1

N = 1

Δt = 5Δx

20 2.10E−02 – 1.68E−02 – 2.27E−02 – 8.62E−02 –
40 5.72E−03 1.88 4.41E−03 1.93 7.28E−03 1.64 4.31E−02 1.00
80 1.49E−03 1.94 1.12E−03 1.98 2.06E−03 1.82 2.15E−02 1.00
160 3.82E−04 1.96 2.81E−04 1.99 5.49E−04 1.91 1.08e−02 0.99
320 9.68E−05 1.98 7.04E−05 2.00 1.42E−04 1.95 5.39E−03 1.00

a = 1

c = 0.1

N = 1

Δt = 0.5Δx

20 7.93E−02 – 7.66E−02 – 7.21E−02 – 5.61E−02 –
40 2.03E−02 1.97 2.01E−02 1.93 1.98E−02 1.86 2.79E−02 1.01
80 5.12E−03 1.99 5.10E−03 1.98 5.06E−03 1.97 1.39E−02 1.01
160 1.29E−03 1.99 1.28E−03 1.99 1.29E−03 1.97 6.97E−03 1.00
320 3.25E−04 1.99 3.20E−04 2.00 3.31E−04 1.96 3.48E−03 1.00

Third-order IMEX upwind gSBP schemes
a = 0.1

c = 0.1

N = 2

Δt = 5Δx

20 4.40E−04 – 3.70E−04 – 3.93E−04 – 3.80E−04 –
40 6.12E−05 2.85 5.06E−05 2.87 5.36E−05 2.87 5.04E−05 2.91
80 7.90e−06 2.95 6.54E−06 2.95 6.92E−06 2.95 6.56E−06 2.94
160 1.02E−06 2.95 1.17E−05 – 8.90E−07 2.96 8.40E−07 2.97
320 1.28E−07 2.99 – – 1.12E−07 2.99 1.06E−07 2.99

a = 1

c = 0.1

N = 2

Δt = 0.5Δx

20 6.13E−04 – – – 6.33E−04 – 6.74E−04 –
40 7.94E−05 2.95 – – 8.08E−05 2.97 8.34E−05 3.01
80 1.05E−05 2.92 – – 1.04E−05 2.96 1.05E−05 2.99
160 1.37E−06 2.94 – – 1.33E−06 2.97 1.32E−06 2.99
320 1.76E−07 2.96 – – 1.68E−07 2.98 1.65E−07 3.00



Communications on Applied Mathematics and Computation 

1 3

The source term is set to g(x, t) = ect(2c sin x + cos x) to provide the exact solution 
u(x, t) = ect sin x , which is exponentially growing in time.

Computations are carried out for a diffusion parameter of c = 0.1 until the final time 
T = 10 with time steps Δt = �Δx with � as indicated in Table  4. Again, the antici-
pated order of convergence is reached in all setups with two exceptions. Analogously 
to the exponentially decreasing solution, order reduction occurs for the central scheme (
�
���

, �
����

)
= (0, 0) for N = 1 . Furthermore, the pairing of upwind advection with BR1 

diffusion replicates the loss of the enhanced IMEX stability for all but the first time step 
choice in Table 4.

4.3  Numerical Results for the Viscous Burgers’ Equation

Finally, we study the behavior of IMEX upwind gSBP schemes with respect to the viscous 
Burgers’ equation

as a prototype containing nonlinear convective terms, supplemented by the initial condition

and periodic boundary conditions. Figure 1 shows the initial solution as well as the numer-
ical solution for c = 0.1 at a given output time T. Two different upwind gSBP schemes with 
N = 2 are employed within the following semi-discrete formulation of the viscous Burgers’ 
equation,

with the vector of flux values f = 1

2
u2 and the matrix C as in (12). This semi-discrete form 

is similar to the one used in [34] for the inviscid Burgers’ equation but is based on the 
equation in a conservative form instead of the skew-symmetric formulation employed in   
[34]. If D− is constructed from a DG scheme using upwind advection fluxes, the semi-dis-
cretization (52) is equivalent to the use of global Lax-Friedrichs (LF) fluxes for the nonlin-
ear convective term and will be labeled accordingly. If D− is constructed from central 
fluxes, we have C = 0 and thus obtain a central discretization of the inviscid fluxes. For 
time integration, the second-order IMEX scheme (41) is applied with a time step size of 
Δt = 0.1 . This same time step is used on two different grids with K = 50 and K = 100 ele-
ments, respectively. First, we compute approximate solutions with the upwind gSBP 
scheme consisting of BR1 diffusion paired with global LF fluxes, i.e., the first of the above 
mentioned variants for D− . Since for linear advection, global LF fluxes reduce to upwind 
fluxes, the global LF fluxes can be viewed as a generalization of upwind fluxes to the non-
linear case. For this setup, the simulations needs to be stopped at T = 1.8 and T = 1 due to 
the expected lack of the stability, as shown in the top row of Fig. 1. These results indicate 
that also for nonlinear problems, a pairing of the BR1 scheme with upwind-type fluxes 

(51)
{

ut + ux = cuxx + g(x, t), (x, t) ∈ (−π, π) × (0,T) ,

u(x, 0) = sin x, x ∈ (−π, π).

ut(x, t) +
(
1

2
u2(x, t)

)
x
= cuxx(x, t), c = 0.1,

u(x, 0) = u0(x) = sin x, x ∈ [−π, π]

(52)
du

dt
+

�
D+ + D−

2

�
f − ‖u‖∞M−1Cu = cD2u
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might be less favorable in terms of the stability in the context of IMEX advection-diffusion 
splitting. A remedy is provided in the bottom row of Fig. 1 using central fluxes together 
with BR1. The corresponding stable numerical solution is shown at output time T = 2 . 
This solution is visually indistinguishable from a reference solution computed on a fine 

grid of K = 1 000 elements using the upwind gSBP scheme defined by (�
���

, �
����

)
=

(
1

2
,
1

2

)
 

and N = 3 combined with third-order IMEX time integration using a small time step of 

Δt = 0.01 . In addition, refining the grid does not necessitate choosing smaller time steps 
for this combination of central first-derivative and second-derivative gSBP operators.

Table 4  Accuracy comparison of IMEX upwind gSBP schemes for the exponentially growing solution (51) 
with c = 0.1 . Computations carried out until the final time T = 10

N,Δt K Upwind gSBP discretization 
(
�
���

, �
����

)
(

1

2
,
1

2

) (
1

2
, 0

) (
1

4
,
1

4

)
(0, 0)

L
2-error EOC L

2-error EOC L
2-error EOC L

2-error EOC

Second-order IMEX time integration
N = 1

Δt = Δx
20 9.24E−02 – 1.62E−01 – 1.44E−01 – 8.25E−01 –
40 2.24E−02 2.04 4.01E−02 2.01 2.54E−02 2.50 4.14E−01 0.99
80 6.42E−03 1.80 1.01E−02 1.99 5.79E−03 2.13 2.07E−01 1.00
160 1.87E−03 1.78 2.53E−03 2.00 2.13E−03 1.44 1.04E−01 0.99
320 5.17E−04 1.85 6.37E−04 1.99 7.14E−04 1.58 5.18E−02 1.01

N = 2

Δt = 0.5Δx
20 6.72E−04 – – – 1.10E−03 – 1.87E−03 –
40 1.61E−04 2.06 – – 1.90E−04 2.53 2.39E−04 2.97
80 3.42E−05 2.23 – – 3.24E−05 2.55 3.35E−05 2.83
160 6.37E−06 2.42 – – 5.83E−06 2.47 5.70E−06 2.56
320 1.28E−06 2.32 – – 1.22E−06 2.26 1.20E−06 2.25

N = 3

Δt = 0.3Δx
20 1.04E−04 – – – 1.03E−04 – 2.54E−04 –
40 2.57E−05 2.02 – – 2.57E−05 2.00 3.87E−05 2.71
80 6.43E−06 2.00 – – 6.43E−06 2.00 7.37E−06 2.39
160 1.61E−06 2.00 – – 1.61E−06 2.00 1.67E−06 2.14
320 4.02E−07 2.00 – – 4.02E−07 2.00 4.06E−07 2.04

Third-order IMEX time integration
N = 2

Δt = 0.5Δx

20 5.55E−04 – – – 1.04E−03 – 1.83E−03 –
40 1.41E−04 1.98 – – 1.74E−04 2.58 2.26E−04 3.02
80 2.90E−05 2.28 – – 2.68E−05 2.70 2.81E−05 3.01
160 4.52E−06 2.68 – – 3.72E−06 2.85 3.51E−06 3.00
320 6.27E−07 2.85 – – 4.89E−07 2.93 4.39E−07 3.00

N = 3

Δt = 0.3Δx

20 1.74E−05 – – – 1.46E−05 – 2.32E−04 –
40 1.82E−06 3.26 – – 1.63E−06 3.16 2.90E−05 3.00
80 1.65E−07 3.46 – – 2.00E−07 3.03 3.62E−06 3.00
160 1.47E−08 3.49 – – 1.84E−08 3.44 4.53E−07 3.00
320 1.49E−09 3.30 – – 1.71E−09 3.43 5.66E−08 3.00
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5  Conclusion and Outlook

The current fully discrete energy stability analysis for linear advection-diffusion prob-
lems discretized by upwind gSBP schemes in space and IMEX-RK schemes in time 
based on advection-diffusion IMEX splitting demonstrates that if the employed upwind 
gSBP operators are chosen to fulfill D2 = D−D+ , the allowable time step size is inde-
pendent of grid refinement, although the advective terms are discretized explicitly. In 
one space dimension, upwind gSBP schemes represent a general framework including 
standard DG schemes, thus the present results also hold for the LDG scheme combined 
with upwind advection fluxes. Furthermore, the analysis in this work is based on the 
discrete energy provided by the corresponding SBP norm matrix and does not involve 
inverse constants depending on the discretization order in space; therefore, the resulting 
time step bound is independent of the polynomial degree of the approximate solution. 
While previous work for DG schemes has demonstrated that the combination of upwind 
advection fluxes with the BR1 diffusion scheme does not provide the unconditional sta-
bility in the sense of grid-independent time step restrictions, the current work shows 
that central advection fluxes are compatible with BR1. However, for this kind of over-
all central scheme, additional artificial dissipation might be necessary for discontinuous 

Fig. 1  Third-order IMEX upwind gSBP approximation of the viscous Burgers’ equation until the final time 
T = 2 using BR1 diffusion fluxes ( �

����
= 0 ) and upwind fluxes for advection ( �

���
=

1

2
 , top row) compared 

to central fluxes ( �
���

= 0 , bottom row)
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initial conditions and in the nonlinear convection-dominated case. These additional arti-
ficial dissipation terms could again be discretized either implicitly or explicitly within 
an IMEX approach. The numerical results for the nonlinear viscous Burgers’ equation 
in this work indicate that a compatible pairing of first-derivative and second-derivative 
upwind gSBP operators is also required for nonlinear conservation laws with dissipa-
tive terms, if the enhanced IMEX stability is desired. This should be investigated more 
closely with respect to a discrete energy analysis which might require skew-symmetric 
formulations as in   [13, 34] instead of the divergence form of the given conservation 
law.

Although the focus of this work is restricted to one-dimensional advection-diffusion 
problems, the presented theoretical results on the enhanced IMEX stability can be car-
ried over to spatial discretizations in higher dimensions as long as the upwind gSBP 
property is fulfilled and the corresponding first-derivative and second-derivative oper-
ators are compatible. This extension relies on the availability of such upwind gSBP 
operators on structured or unstructured meshes. While structured meshes can be dealt 
with using tensor-product grids, multi-dimensional generalized SBP operators on sim-
plex meshes have been constructed in  [18]. These gSBP operators fulfill a multi-dimen-
sional analog of the properties in Definition 1 with C = 0 , i.e., without upwind dissipa-
tion. Considering for instance a two-dimensional linear advection-diffusion problem of 
the form

subject to periodic boundary conditions, space discretization may be carried out by first-
derivative upwind gSBP operators D−

x
 and D−

y
 discretizing �

�x
 and �

�y
 , respectively, and com-

patible second-order derivative operators D2,x = D−
x
D+

x
 and D2,y = D−

y
D+

y
 . Due to the 

upwind gSBP property (11), Proposition 2 then extends to the two-dimensional case and 
the extension of the stability results of Theorems 2 and 3 is only technical, since it involves 
an additive decomposition into the terms in x- and y-directions. The construction of differ-
ent multi-dimensional upwind gSBP operators with C ≠ 0 and their application and com-
parison in the context of practically relevant multi-dimensional advection-diffusion prob-
lems seems to be a promising approach for future exploration. This investigation would 
also profit from a comparison of the upwind gSBP approach to the multi-dimensional 
IMEX-LDG schemes considered in  [40].
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