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The underlying fields of this special issue of CAMC include mathematical modeling 
through evolutionary partial differential equations (PDEs), advanced high-order non-lin-
ear numerical methods for their approximation and applications in various engineering 
branches, in physics, biology and medicine, to name but a few. Of special interest are math-
ematical models based on systems of hyperbolic balance laws, including stiff source terms. 
From the numerical point of view, such systems of PDEs are very challenging. This is par-
ticularly so on the assumption that numerical algorithms will be of high order of accuracy 
in both space and time for smooth solutions. This is because high-order methods are able 
to compute solutions with small errors much more efficiently (lower CPU cost) than low-
order methods on very fine meshes, by orders of magnitude in fact. However, in the pres-
ence of discontinuities, or even large gradients, high-order methods must be non-linear, in 
the sense of Godunov’s theorem. Such non-linear methods must reconcile two contradic-
tory requirements, namely high order of accuracy for both smooth solutions and absence 
of, or much reduced, spurious oscillations for discontinuous solutions. Moreover, the pres-
ence of source terms in the PDEs poses additional challenges to the design of non-linear 
high-order methods. If such source terms are stiff, then reconciling high order of accuracy 
and stiffness becomes even more challenging.

Two major classes of high-order, non-linear numerical methods exist, namely semi-dis-
crete and fully discrete methods. Semi-discrete methods separate space and time discretiza-
tions. The spatial discretization makes use of non-linear spatial reconstruction, examples 
of which are ENO and WENO methods; see Jiang and Shu [12]. The time discretization 
tackles the solution of systems of ordinary differential equations (ODEs) in time, for which 
non-linear ODE solvers such as TVD Runge-Kutta schemes are often used; see Harten 
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et  al. [11] and Jiang and Shu [12]. The class of fully discrete methods discretizes space 
and time simultaneously. A representative class of very high-order non-linear fully discrete 
methods is the ADER methodology introduced by Toro and collaborators in [18]. ADER 
methods require a non-linear spatial reconstruction procedure and the solution of the gen-
eralized Riemann problem to compute a high-order intercell numerical flux. If source 
terms are present, the corresponding numerical source is computed from a space-time vol-
ume integral evaluated on a time-evolved reconstruction polynomial within the volume. 
Various versions of the ADER approach exist, depending on the method employed to solve 
the GRP. Major advances of the ADER methodology are due to Titarev et al. [17, 19], and 
Dumbser et  al. [6–8]. Both semi-discrete and fully discrete methods have finite-volume 
and discontinuous Galerkin finite-element versions. The above-described approaches are 
the main numerical methodologies at the bases of the European Workshop on High Order 
NOnlinear numerical Methods for evolutionary PDEs: theory and applications (HONOM), 
since its beginning back in 2005.

This focused issue of CAMC contains works that were presented in the European 
Workshop on HONOM 2019 that was held at Escuela Técnica Superior de Ingenieros de 
Minas y Energía, Universidad Politécnica de Madrid, Spain in April 1–5, 2019. The aim of 
this conference was to present new research in the field of high-order numerical methods 
applied to mathematical models based on PDEs to simulate a wide range of physical phe-
nomena. Most of the papers included in this focused issue cover different topics in the field 
of numerical methods for evolutionary PDEs.

• In [2], continuous Galerkin methods for hyperbolic problems are studied.
• Neural networks applied to shock detection are presented in [1].
• A semi-Lagrangian solver for 3D free surface flows is introduced in [4].
• Multidimensional hyperbolic conservation laws are treated in [3].
• The paper [16] deals with the entropy split method.
• Advances in high-order discontinuous Galerkin schemes are presented in [15].
• Low Mach number IMEX schemes are described in [21].
• In [14], high-order finite-volume schemes with adaptive stencil construction are intro-

duced.
• The paper [20] deals with the high-order ADER-AENO reconstruction.
• In [5], the modeling of phase-change problems is presented.
• In [9], well-balanced schemes for sediment transport are introduced.
• Second-order ALE schemes are described in [10].
• Two-phase oil-water movement is studied in [13].
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