
Vol.:(0123456789)

Communications on Applied Mathematics and Computation (2022) 4:945–985
https://doi.org/10.1007/s42967-021-00166-x

1 3

ORIGINAL PAPER

Von Neumann Stability Analysis of DG‑Like and PNPM‑Like 
Schemes for PDEs with Globally Curl‑Preserving Evolution 
of Vector Fields

Dinshaw S. Balsara1 · Roger Käppeli2

Received: 11 April 2021 / Revised: 23 August 2021 / Accepted: 25 August 2021 /  
Published online: 19 January 2022 
© The Author(s) 2022

Abstract
This paper examines a class of involution-constrained PDEs where some part of the PDE 
system evolves a vector field whose curl remains zero or grows in proportion to specified 
source terms. Such PDEs are referred to as curl-free or curl-preserving, respectively. They 
arise very frequently in equations for hyperelasticity and compressible multiphase flow, in 
certain formulations of general relativity and in the numerical solution of Schrödinger’s 
equation. Experience has shown that if nothing special is done to account for the curl-
preserving vector field, it can blow up in a finite amount of simulation time. In this paper, 
we catalogue a class of DG-like schemes for such PDEs. To retain the globally curl-free 
or curl-preserving constraints, the components of the vector field, as well as their higher 
moments, must be collocated at the edges of the mesh. They are updated using potentials 
collocated at the vertices of the mesh. The resulting schemes: (i) do not blow up even after 
very long integration times, (ii) do not need any special cleaning treatment, (iii) can oper-
ate with large explicit timesteps, (iv) do not require the solution of an elliptic system and 
(v) can be extended to higher orders using DG-like methods. The methods rely on a spe-
cial curl-preserving reconstruction and they also rely on multidimensional upwinding. The 
Galerkin projection, highly crucial to the design of a DG method, is now conducted at the 
edges of the mesh and yields a weak form update that uses potentials obtained at the verti-
ces of the mesh with the help of a multidimensional Riemann solver. A von Neumann sta-
bility analysis of the curl-preserving methods is conducted and the limiting CFL numbers 
of this entire family of methods are catalogued in this work. The stability analysis confirms 
that with the increasing order of accuracy, our novel curl-free methods have superlative 
phase accuracy while substantially reducing dissipation. We also show that PNPM-like 
methods, which only evolve the lower moments while reconstructing the higher moments, 
retain much of the excellent wave propagation characteristics of the DG-like methods while 
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offering a much larger CFL number and lower computational complexity. The quadratic 
energy preservation of these methods is also shown to be excellent, especially at higher 
orders. The methods are also shown to be curl-preserving over long integration times.

Keywords PDEs · Numerical schemes · Mimetic · Discontinuous Galerkin

Mathematics Subject Classification 35XX · 35FXX · 35LXX · 35QXX

1 Introduction

Novel PDEs, important to science and engineering problems are routinely discovered. 
Many of those PDE systems have involution constraints whose deeper study leads to 
mimetic numerical solution strategies that retain greater fidelity with the physics of those 
systems. While involution constraints can come in many forms, the last couple of years 
have seen the emergence of novel classes of PDEs that place constraints on the evolution 
of the curl of a vector field. The structure of the evolutionary equation for the vector field 
of interest is such that it either keeps the curl of the vector field zero, or evolves it in pro-
portion to certain source terms. The former PDEs are referred to as curl-free whereas the 
latter class of PDEs are referred to as curl-preserving. Many of the hyperbolic systems 
resulting from the Godunov-Peshkov-Romenski (GPR) formulation for hyperelasticity and 
compressible multiphase flow with and without surface tension have such curl-preserving 
update equations (Godunov and Romenski [32], Romenski [40], Romenski et  al. [41], 
Peshkov and Romenski [37, 38], Dumbser et  al. [27, 30, 31], Schmidmayer et  al. [42]). 
The equations of general relativity, when cast in the FO-CCZ4 formulation, also have such 
a structure (Alic et al. [1, 2], Brown et al. [18], Dumbser et al. [29], Dumbser et al. [28]). 
Similarly, it has recently become possible to recast Schrödinger’s equation in first-order 
hyperbolic form, and the time-evolution of this very important equation also has curl-pre-
serving constraints (Dhaouadi et al. [25], Busto et al. [19]).

A motivating PDE system would help the reader a lot here. Let us take a simple exam-
ple involving a fluid with thermal conduction in the GPR formulation. Let us denote the 
density by � , the fluid velocity by � , the fluid pressure by P , the fluid temperature by T  , the 
internal thermal energy density by e , the total energy density by E ≡ e + ��2

/
2 , the ther-

mal impulse by a vector � , the heat flux by a vector � , and the thermal stress by the second 
rank tensor � . The equations for a fluid with thermal conduction can be written as

(1a)
��

�t
+ ∇ ⋅ (��) = 0,

(1b)
𝜕(𝜌�)

𝜕t
+ ∇ ⋅ (𝜌�⊗ � + P� + �) = 0,

(1c)
�E

�t
+ ∇ ⋅ ((E + P)� + � ⋅ � + �) = 0,

(1d)��

�t
+ ∇(� ⋅ � + T) − � × (∇ × �) = −

�T

�
�.
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The identity matrix is denoted by � in the above equations. To complete our description 
of the above system, we also mention the constitutive relation for the thermal stress tensor 
�ij = �c2

h
JiJj and another constitutive relation for the thermal conduction vector qi = �Tc2

h
Ji . 

Here ch denotes the hyperbolic speed of heat waves, i.e., the second sound. The first three 
of the four equations in Eq. (1) above are the equations for mass, momentum, and energy 
conservation for a fluid, with additional contributions from the thermal conduction vector, 
� , and the thermal stress tensor, � . The fourth equation in Eq. (1) is a novel contribution 
from the GPR formulation, see (Romenski [40]).

Now focusing on Eq. (1d), let us consider the limit where the relaxation time is very 
large, so that the source term is irrelevant. Since the vector field � starts off curl-free, it is 
easy to see that it remains so by considering the remaining two parts of that equation. The 
first part of the update equation, given by ∇(� ⋅ � + T) , is just the gradient of a scalar. Since 
the curl of a gradient is zero, the first term will not contribute to the curl if none is present 
initially. The second part of the update equation, given by � × (∇ × �) , will also be zero if 
the vector � is initially curl-free. We see, therefore, that the vector field � stays curl-free 
if it is initially curl-free in the limit of substantially large value of the relaxation time. Of 
course, when the relaxation time cannot be ignored, the curl of the vector field does indeed 
evolve in response to the presence of the stiff source term −�T �∕� . It is important to real-
ize that if the fourth equation in Eq. (1) does not have a consistent discretization, then the 
curl of the vector field � will only be specified by the accuracy of the numerical method. As 
a result, even for regions of the flow that should have no thermal conduction, there will at 
least be a small amount of thermal conduction. This affects the fidelity of the method and 
its results. For this particular PDE system, Balsara et al. [12] showed via direct comparison 
that a curl-preserving formulation produces desirable results whereas a direct zone-cen-
tered collocation of variables does not. The curl-preserving formulation did not require the 
inclusion of any additional equations and was able to operate with a robust CFL.

To consider another system, Dumbser et al. [28] analyzed the FO-CCZ4 formulation of 
general relativity and showed that it has a large number of equations that look like Eq. (1d). 
The full PDE system is too large to detail here. They showed that zone-centered discre-
tizations simply blow up and found that the only way to mitigate the build-up of circula-
tion in a zone-centered context consisted of adding one extra generalized Lagrange multi-
plier (GLM) system that evolved an additional vector field and another GLM system that 
evolved an additional scalar field for each and every equation that looks like Eq. (1d). This 
more than doubles the computational cost along with an imperfect mitigation. Further-
more, the mitigation requires the GLM fields to propagate at speeds that are two or three 
times larger than the other signal speeds in the problem. As a result, the timestep is reduced 
by a factor of two or three. Through the description of the above two PDE systems, we see 
the importance of a consistent, curl-preserving discretization and evolution strategy.

A detailed description of a curl-preserving, finite volume scheme is also provided in 
Section III.5 of Balsara et al. [12]. The implementation consists of a zone-centered recon-
struction of the fluid variables in Eqs. (1a), (1b), (1c) and a curl-preserving reconstruction 
of the vector field in Eq. (1d). This gives us higher-order spatial accuracy, followed by the 
application of one-dimensional and two-dimensional Riemann problems at the faces and 
vertices of the mesh giving us upwinding. Well-known strong stability-preserving Runge-
Kutta time stepping then provides higher-order temporal accuracy.

We see, therefore, that many useful PDE systemshave a curl-preserving involution. The 
simplest example of such a PDE can be written as
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Here � is the vector field of interest and � is some specified velocity field. By “ � ” we gener-
ically denote other variables that might be part of a larger set of equations to which Eq. (2) 
belongs. As a result, the potential � ≡ � ⋅ � + �(�) can also depend on other variables and 
the source term �(�, �) depends on “ � ” as well as “ � ”. By setting the source term “ � ” to 
zero and taking the curl of the above equation, it is easy to see that if we initially have 
(∇ × �) = 0 , then the structure of the above equation retains (∇ × �) = 0 for all time; in 
other words, the evolution of the vector field � is curl-free. If the above equation has a non-
zero source term, the evolution of the vector field � would be curl-preserving. In principle, 
any curl-preserving scheme should be able to reach the curl-free limit as the importance of 
the source term goes to zero. For the purpose of this study, it is adequate to study curl-free 
evolution of vector fields because the inclusion or exclusion of the source term does not 
change the discussion that follows. In other words, the inclusion of source terms requires a 
separate study of how stiff terms are included in the time-evolution of any hyperbolic PDE, 
and that is not the point of focus for this paper. Equation (2) shows up quite frequently as a 
part of many of the hyperbolic systems mentioned before. When Eq. (2) appears in larger 
systems, it is usually the source of many numerical difficulties.

Equation (2) and the larger systems that include it cannot be evolved with a traditional 
higher-order Godunov methodology, even when we have accounted for non-conservative 
products. Indeed, Dumbser et al. [28] have shown that if a classical higher-order Godunov 
scheme is applied to Eq. (2), the solution blows up rapidly. The blow-up manifests itself 
as an explosive increase in the curl of the vector field when the simulation is run over 
long periods of time; please see Fig. 5 of Dumbser et al. [28] which shows the explosive 
blow-up of the curl of the vector field. The blow-up occurs even when the source terms are 
zero, indicating that the source terms are not the cause of the difficulty. The problem is not 
specific to the PDE system considered in that paper because as shown in Boscheri et al. 
[17], a simple model system based on Eq. (2) will also blow up if treated with a classical 
higher-order Godunov scheme. A GLM-based cleaning procedure has been developed in 
Dumbser et al. [28] for suppressing the fictitious numerical build up of the circulation, but 
it requires greatly increasing the signal speed that is used in the cleaning equations and also 
adds many more vector fields than necessary. Indeed, Dumbser et al. [28] in their study of 
a general relativistic system had to use signal speeds in their GLM-style approach that were 
substantially larger than the speed of light. It is unusual to introduce superluminal signal 
speeds in a theory that is based on recognizing the speed of light as the maximal signal 
speed. As a result, GLM cleaning-based schemes force a very strong reduction in timestep, 
inconsistent with our notions of how the timestep should evolve in a higher-order Godunov 
scheme. Boscheri et al. [17] obtained curl constraint-preservation but only at the expense of 
solving an elliptic PDE system at every timestep. Furthermore, the method was restricted 
to second order of accuracy. This too is inconsistent with our notion that a higher-order 
Godunov scheme should be time-explicit, easy to solve, and extensible to all higher orders.

In Balsara et al. [12] we first realized that the constrained evolution mandated by Eq. (2) 
requires a special treatment. Two innovations were introduced in that paper. First, a curl-
constraint preserving reconstruction was proposed which requires us to start with a vector 
field whose components are collocated at the edges of the mesh, and are indeed aligned 
with the edge directions. Second, it was realized that a multidimensional Riemann solver 
that is invoked at the vertices of the mesh can indeed give us stabilization through multi-
dimensional upwinding. Coupled with strong stability preserving Runge-Kutta (SSP-RK) 

(2)
��

�t
+ ∇(� ⋅ � + �(�)) − � × (∇ × �) = �(�, �).
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timestepping (Shu and Osher [44, 45], Shu [43], Spiteri and Ruuth [46, 47], Gottlieb et al. 
[33]), we obtained a robust finite volume-based numerical scheme. As a result, both ingre-
dients in the design of a higher-order Godunov scheme—i.e., the reconstruction as well as 
the Riemann solver—had to be fundamentally rethought when dealing with Eq. (2). These 
two ingredients proved highly beneficial because Balsara et  al. [12] were able to obtain 
stable finite volume-like schemes for systems that used Eq. (2) which: (i) did not blow up 
even after very long integration times, (ii) did not need any GLM-style cleaning with its 
deleterious side-effect of needing very high signal speeds, (iii) could operate with large 
explicit timesteps, (iv) did not require the solution of an elliptic system and (v) could be 
extended to higher orders using WENO-like methods. The WENO-like methods draw on 
ideas from weighted essentially non-oscillatory schemes (Jiang and Shu [35], Balsara and 
Shu [15], Balsara et al. [9]). As a result, Balsara et al. [12] were able to integrate non-linear 
hybridization into their novel curl-preserving reconstruction, thus making the curl-preserv-
ing reconstruction suitable for use with higher-order Godunov schemes.

In Balsara et al. [12] curl-preserving WENO-like methods were developed for evolving 
systems that used Eq. (2). We called such methods WENO-like because the reconstruction 
used many insights from WENO schemes, while being substantially different from tradi-
tional, finite volume-based WENO schemes. Recall that a conservation law has a flux form 
ensuring that the integrated conserved variables in any zone (or connected set of zones) 
evolve in response to the fluxes at the boundary of that volume. This telescoping property 
for the fluxes gives the discrete version of the conservation law a globally conservative 
property. In an entirely analogous fashion, the curl-free schemes presented in Balsara et al. 
[12] are such that the discrete circulation evaluated over the edges of any face (or collec-
tion of faces) depends only on the potentials at the vertices of that facial area. In that sense, 
the schemes developed in Balsara et al. [12] are globally curl-preserving because they have 
a telescoping property on the potentials. In that paper, we also presented a von Neumann 
stability analysis of WENO-like globally curl-preserving schemes, showing that with the 
increasing order of accuracy the schemes became progressively less dissipative and their 
dispersion error was also reduced. But it is well-known (Reed and Hill [39], Cockburn 
and Shu [22–24], Cockburn et al. [20, 21], Liu et al. [36], Zhang and Shu [48]) that finite 
volume DG schemes have superior wave propagation properties relative to finite volume 
WENO schemes of comparable order. In their study of DG-like schemes for magnetohy-
drodynamics and Maxwell’s equations that have one or more constrained, divergence-pre-
serving vector fields, Balsara and Käppeli [10, 11] found a similar trend, and that trend 
was numerically confirmed by Hazra et  al. [34] and Balsara et  al. [13]. We may, there-
fore, expect that curl-preserving DG-like schemes for Eq. (2) should have wave propaga-
tion characteristics that are substantially better than curl-preserving WENO-like schemes 
for Eq. (2) at comparable orders of accuracy. This paper, therefore, has the following three 
goals.

i) The first goal of this paper is to lay out the conceptual foundations for DG-like schemes 
that preserve the global curl constraint. Recall that a classical DG scheme starts with 
zone-centered mean values for the flow and endows it with higher moments. These 
higher moments are then evolved in time by a classical DG scheme. The time evolu-
tion of the higher moments is performed consistently with the governing equations. In 
an exactly analogous fashion, the globally curl-free DG-like schemes start with edge-
centered components. These components are then endowed with higher moments whose 
time-evolution is carried out consistently with the governing equations.
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ii) The second goal of this paper is to conduct a von Neumann stability analysis of the 
newly-obtained curl-free DG-like schemes. We use this stability analysis to find the 
maximum CFL number that is available at all orders up to the fourth order. We also use 
the stability analysis to show that our new class of DG-like schemes have superior wave 
propagation characteristics. The curl of a vector field only manifests itself in two or three 
dimensions. As a result, our von Neumann stability analysis is also two-dimensional. 
Because the stability analysis is multidimensional by necessity, it is not technically 
feasible to extend it to very high orders. The computer algebra systems that we use for 
this stability analysis cannot be pushed beyond fourth order.

iii) Dumbser et al. [26] proposed PNPM schemes where all the modes that are up to Nth 
degree were evolved while all the higher modes up to Mth degree are reconstructed. The 
PNPM schemes had the great advantage that they displayed wave propagation proper-
ties almost as good as classical DG schemes of comparable order while permitting 
substantially larger timesteps. Balsara and Käppeli [10, 11] found a similar trend in their 
study of divergence-preserving PNPM-like schemes. Therefore, the third goal of this 
paper is to analyze PNPM-like schemes that are globally curl-preserving. We intend to 
show that such PNPM-like schemes are competitive with their DG-like counterparts at 
comparable order of accuracy. We also intend to show that the maximum CFL number 
of PNPM-like schemes is much larger than that of DG-like schemes.

In this paper we analyze Eq. (2) with �(�) = 0 and �(�, �) = 0 . A constant velocity “ � ” 
is specified. The plan of the paper is as follows. Section 2 introduces a DG-like formulation 
for a curl-preserving model equation. Section 3 provides the essential ideas behind curl-
free and curl-preserving reconstruction while pointing the reader to further literature. Sec-
tion 4 presents the von Neumann stability analysis. Section 5 presents results from the von 
Neumann analysis of globally curl-free DG-like schemes. Section 6 presents some numeri-
cal results to show that the proposed schemes meet their order of accuracy. Section 7 pre-
sents conclusions.

2  DG‑Like Formulation for the Curl‑Preserving Model Equation

Let us consider Eq. (2) to understand its physics, thereby leading us to a curl-preserving 
DG-like formulation for that equation. Let us first consider Eq.  (2) in its curl-free form 
(i.e., with ∇ × � = 0 ) since the curl has to be kept mathematically zero in that limit. Since 
we are considering a minimalist system, we can also take �(�) = 0 because we are ignor-
ing any further PDEs in the system. We write the vector components in two-dimensions as 
� = (Jx, Jy) and assume a constant velocity � =

(
vx, vy

)
 , so that the dot product becomes 

� ⋅ � = vxJx + vyJy . The equations that we have to solve can be written as

Using the constraint in each of the two equations, they can be written as
(3)

�Jx

�t
+

�(vxJx + vyJy)

�x
= 0;

�Jy

�t
+

�(vxJx + vyJy)

�y
= 0 with the constraint

�Jy

�x
−

�Jx

�y
= 0.

(4)
�Jx

�t
+ vx

�Jx

�x
+ vy

�Jx

�y
= 0;

�Jy

�t
+ vx

�Jy

�x
+ vy

�Jy

�y
= 0.
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In other words, Eq. (4) tells us that we should be able to advect two components of a 
vector field. However, importantly, we should be able to carry out this advection of the vec-
tor field in a fashion that preserves the curl-free aspect of the vector field over each zone. 
We can only carry out such an advection if the component Jx is collocated at the x-edges of 
the mesh and the component Jy is collocated at the y-edges of the mesh. Furthermore, the 
potential, vxJx + vyJy , should be collocated at the vertices of the mesh, as shown in Fig. 1. 
Furthermore, Eq. (4) shows us that the potential should be obtained via multidimensional 
upwinding at the vertices of the mesh. For this simple example, multidimensional upwind-
ing can be enforced visually depending on the direction of the velocity field. For example, 
Fig. 1 shows the multidimensionally upwinded potentials, when both components of the 
velocity are positive. On a mesh with zone sizes Δx and Δy in the x- and y-directions, 
the curl-free update equations at the first order (with positive velocity components) can be 
written as

Fig. 1  The components of the curl-free vector field around the four zones centered around (i, j), (i − 1, j), 
(i − 1, j − 1), and (i, j − 1). A first order curl-free reconstruction is used in this figure; though the use of a 
higher order reconstruction of the vector field is also possible. The multidimensionally upwinded potentials 
at the vertices of the zone (i, j) are also shown for the situation where both components of the velocity are 
positive. Again, while the potentials are shown explicitly for the first order case in the figure, a higher order 
reconstruction will yield more accurate potentials at the vertices of the mesh



952 Communications on Applied Mathematics and Computation (2022) 4:945–985

1 3

Equation (5) shows us that the collocation described in Fig. 1 is crucial for maintaining 
a curl-free update and it will have to be built into our curl-free DG-like scheme. The use of 
identical potentials at each vertex of the mesh allows us to claim that the discrete version of 
the curl-free constraint

is preserved forever for each and every zone of the mesh. In other words, the update equa-
tions are globally curl-free. Equation (5) also shows us the importance of multidimensional 
upwinding providing a unique potential at each vertex of the mesh. To prove that Eq. (6) 
follows from Eq. (5) at all orders of accuracy, please write out equations like Eq. (5) for 
J
y

i+1∕2,j
 , Jy

i−1∕2,j
 , Jx

i,j+1∕2
 and Jx

i,j−1∕2
 in Fig. 1. Please write the equations out in terms of the 

potentials �i+1∕2,j+1∕2 , �i−1∕2,j+1∕2 , �i+1∕2,j−1∕2 ,  and �i−1∕2,j−1∕2 shown at the vertices in 
Fig. 1. Notice that these potentials can be made as accurate as we desire by the use of a 
higher-order reconstruction of the vector field. The pairwise cancellation will show that 
Eq. (6) is satisfied at all orders—in other words, we have a mimetic scheme. More gener-
ally, when Eq. (2) is incorporated into a larger PDE system, the multidimensional Riemann 
solver (Balsara [3–6], Balsara et al. [8], Balsara and Dumbser [7], Balsara et al. [16], Bal-
sara and Nkonga [14]) provides us with multidimensional upwinding consistent with the 
waves propagating in all directions.

The process of designing a higher-order DG-like scheme consists of endowing the primal 
variables with higher-order moments and then evolving those moments consistently with 
the governing equations. Consider the zone (i, j) in Fig. 1. We center the coordinates at the 
zone center so that the two-dimensional zone has extent 

[
−Δx∕2,Δx∕2

]
×
[
−Δy∕2,Δy∕2

]
 . 

At the right y-edge and the top x-edge of the zone we assert the moments up to fourth order 
as

In a DG-like scheme, the modes in Eq. (7) become time-evolutionary. If only the linear 
part of Eq.  (7) is retained, we get a second-order DG-like scheme; if the quadratic part 
of Eq. (7) is retained, we get a third-order DG-like scheme; if all the terms of Eq. (7) are 
retained, we get a fourth-order DG-like scheme. Equation (7) makes it easy to see the trial 
functions that are asserted in each of the mesh edges. We will use test functions identi-
cal to the trial functions. Let us first write the Galerkin projection in the abstract and then 

(5)

⎧
⎪⎪⎨⎪⎪⎩

�Jx
i,j+1∕2

�t
+

�
vxJx

i,j+1∕2
+ vyJ

y

i+1∕2,j

�
−
�
vxJx

i−1,j+1∕2
+ vyJ

y

i−1∕2,j

�

Δx
= 0;

�J
y

i+1∕2,j

�t
+

�
vxJx

i,j+1∕2
+ vyJ

y

i+1∕2,j

�
−
�
vxJx

i,j−1∕2
+ vyJ

y

i+1∕2,j−1

�

Δy
= 0.

(6)
J
y

i+1∕2,j
− J

y

i−1∕2,j

Δx
−

Jx
i,j+1∕2

− Jx
i,j−1∕2

Δy
= 0

(7)

⎧⎪⎪⎨⎪⎪⎩

Jy(y, t) = J
y

0
(t) + Jy

y
(t)

�
y

Δy

�
+ Jy

yy
(t)

��
y

Δy

�2

−
1

12

�
+ Jy

yyy
(t)

��
y

Δy

�3

−
3

20

�
y

Δy

��
;

Jx(x, t) = Jx
0
(t) + Jx

x
(t)
�

x

Δx

�
+ Jx

xx
(t)

��
x

Δx

�2

−
1

12

�
+ Jx

xxx
(t)

��
x

Δx

�3

−
3

20

�
x

Δx

��
.
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specialize it to Eq. (7). It is useful to realize that a traditional finite volume DG method is 
derived from a Gauss’ law-based vector identity

From the one-dimensional gradients involved in Eq.  (3) we realize that the DG-like 
methods that we seek depend on the product rule for derivatives applied one-dimension-
ally. In other words, we rely on the identity

In the above equation, “ � ” is a test function at the mesh edges. Applying the above 
identity to the y-component of Eq. (2) we can make the Galerkin projection in the y-edge of 
the mesh as follows:

Here �(y) is a test function at the y-edge of Fig. 1. Similarly, applying the above identity 
to the x-component of Eq. (2) we get

There is not much going on in Eqs. (8) and (9) other than an integration by parts along 
with a one-dimensional Galerkin projection. However, in the next paragraph we interpret 
the above two equations to bring out the physics of the situation.

Equation  (8) allows us to write the update equations for the evolutionary modes of 
Jy(y, t) as

∇ ⋅ (� �) = � ∇ ⋅ � + � ⋅ ∇� .

�(��)

�x
= �

��

�x
+ �

��

�x
.

(8)

�

�t

(
∫

Δy∕2

y=−Δy∕2

�(y)Jy(y, t)dy

)
+ �(y = Δy∕2)�(y = Δy∕2) − �(y = −Δy∕2)�(y = −Δy∕2)

− ∫
Δy∕2

y=−Δy∕2

�
�
(y)�(y)dy + ∫

Δy∕2

y=−Δy∕2

�(y)vx(∇ × �)zdy = ∫
Δy∕2

y=−Δy∕2

�(y)Sy(�, �)dy.

(9)

�

�t

(
∫

Δx∕2

x=−Δx∕2

�(x)Jx(x, t)dx

)
+ �(x = Δx∕2)�(x = Δx∕2) − �(x = −Δx∕2)�(x = −Δx∕2)

− ∫
Δx∕2

x=−Δx∕2

�
�

(x)�(x)dx − ∫
Δx∕2

x=−Δx∕2

�(x)vy(∇ × �)zdx = ∫
Δx∕2

x=−Δx∕2

�(x)Sx(�, �)dx.

(10a)

dJ
y

0
(t)

dt
+

1

Δy

[
�∗∗(y = Δy∕2) − �∗∗(y = −Δy∕2)

]
+
⟨
vx(∇ × �)z

⟩
=
⟨
Sy(�

∗, �∗)
⟩
,

(10b)

1

12

dJ
y
y(t)

dt
+

1

2Δy

�
�∗∗(y = Δy∕2) + �∗∗(y = −Δy∕2)

�
−

1

Δy
⟨�∗(y)⟩

+

��
y

Δy

�
vx(∇ × �)z

�
=

��
y

Δy

�
Sy(�

∗, �∗)

�
,



954 Communications on Applied Mathematics and Computation (2022) 4:945–985

1 3

The angled brackets, 〈〉, represent line integrated averages of sufficiently high order 
within a y-edge (and later, similarly, for the x-edge). The potentials �∗∗ with the double star 
superscripts denote the potentials obtained at the mesh vertices using a multidimensional 
Riemann solver. The potentials �∗(y) with the single star superscripts denote potentials 
obtained by the application of one-dimensional Riemann solvers at the y-edge of the 
desired zone. These one-dimensional Riemann solvers may be invoked at multiple quadra-
ture points at the y-edge so that the terms ⟨�∗(y)⟩ and 

⟨(
y

Δy

)
�∗(y)

⟩
 are accurately evalu-

ated. The source terms have a similar interpretation so that the �∗ and �∗ variables in 
Sy(�

∗, �∗) are obtained from one-dimensional Riemann solvers. We see from Eq. (10a) that 
the update of the mean value, Jy

0
(t) , will be curl-preserving and approach curl-free evolu-

tion in the limit where the source term tends to zero. Equations (10b)–(10d) show the same 
type of body terms that arise in a classical DG scheme due to the integration by parts with 
a test function with the key difference that they are now applied to the edges of the mesh. 
The terms involving (∇ × �)z in Eq. (10) also have a special interpretation. These terms are 
exactly zero when the evolution is curl-free. When the evolution is only curl-preserving, 
these terms will be proportional to the discrete circulation around the zone, but only if a 
curl-preserving reconstruction from Balsara et al. [16] is used. From each of the two sides 
of a two-dimensional mesh, we can obtain terms that provide (∇ × �)z . The resulting ⟨
vx(∇ × �)z

⟩
 in Eq.  (10a) is therefore an arithmetic average of the curl evaluated from 

either side of that edge. We make analogous interpretations for the terms with (∇ × �)z in 
Eqs. (10b)–(10d).

Equation  (9) allows us to write the update equations for the evolutionary modes of 
Jx(x, t) as

(10c)

1

180

dJ
y
yy(t)

dt
+

1

6Δy

[
�∗∗(y = Δy∕2) − �∗∗(y = −Δy∕2)
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2

Δy

⟨(
y
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)
�∗(y)

⟩

+

⟨((
y

Δy

)2

−
1

12

)
vx(∇ × �)z

⟩
=

⟨((
y

Δy

)2

−
1

12

)
Sy(�

∗, �∗)

⟩
,

(10d)
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dt
+
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20Δy
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)
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⟩
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−
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(
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))
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y

Δy
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−
3
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(
y

Δy

))
Sy(�

∗, �∗)

⟩
.
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�
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�
−
�
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�
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(11b)
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The interpretation of the terms in Eq.  (11) mirrors that of Eq.  (10). In Eq.  (11), the 
angled brackets, 〈〉, represent line integrated averages of sufficiently high order within the 
x-edge.

In this work, we are interested in analyzing curl-free evolution, with the result that all 
terms with (∇ × �)z , Sx(�∗, �∗) and Sy(�∗, �∗) can be set to zero in Eqs. (10) and (11). With-
out the support of a larger PDE system, it is not possible to specify the source terms. Nev-
ertheless, it is important for the reader to understand what a curl-preserving reconstruction 
is. We illustrate the same for the simplest of cases in the next section.

3  Curl‑Preserving Reconstruction

Equations  (10) and (11) show that we need a reconstruction strategy within a zone that 
matches the vector components and their higher moments in the edges of the mesh. This 
is needed because we want the scheme to be globally curl-preserving. Consequently, each 
edge, as seen by its abutting zones, will have the same component of the vector field as 
well as its higher moments. Equation (2), as well as Eqs. (10) and (11) show that when the 
discrete circulation evaluated around a zone is small, it should make proportionately small 
contributions to the edges via the (∇ × �)z-dependent terms. In other words, the curl of 
the reconstructed vector field should match the discrete circulation (evaluated around each 
zone) as well as its higher moments. Figure 2 shows us an example of how this works in 
two dimensions and at second order. In Balsara et al. [12] we have presented two and three-
dimensional versions of such a reconstruction strategy at several orders. Here we just show 
some details for the second-order case so that the reader may appreciate the core ideas as 
they are presented in one self-contained place.

Consider the vector field that is shown in Fig.  2. We consider the zone to be a unit 
square spanning 

[
−1∕2, 1∕2

]
×
[
−1∕2, 1∕2

]
 . The modes at the left and right y-edges are 

given by

The modes in the bottom and top x-edges are given by

We can write the equations of a vector field which matches the values of the compo-
nents and their linear variation within each edge as follows:

(11c)

1

180

dJx
xx
(t)

dt
+

1

6Δx

[
�∗∗(x = Δx∕2) − �∗∗(x = −Δx∕2)

]
−

2
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⟨(
x

Δx

)
�∗(x)

⟩

−

⟨((
x

Δx

)2

−
1

12

)
vy(∇ × �)z

⟩
=

⟨((
x

Δx

)2

−
1

12

)
Sx(�

∗, �∗)

⟩
,

(11d)

1
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dJx
xxx
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dt
+

1

20Δx

[
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−
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x
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−
1

20

)
�∗(x)

⟩

−

⟨((
x

Δx

)3

−
3

20

(
x

Δx

))
vy(∇ × �)z

⟩
=

⟨((
x

Δx

)3

−
3

20

(
x

Δx

))
Sx(�

∗, �∗)

⟩
.
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+
(
ΔyJ

1
y

)
y and J2
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(
ΔyJ

2
y

)
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1
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)
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2
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Note that the coefficients ayy and bxx are needed for curl constraint satisfaction. The dis-
crete circulation within the zone of interest is given by 

[
J1
x
− J2

x
+ J2

y
− J1

y

]
 , with the result 

that we can obtain the higher modes of that variable up to linear variation and write it as

Notice that if the discrete circulation 
[
J1
x
− J2

x
+ J2

y
− J1

y

]
 is zero, its variation will also be 

zero, so that we get 
(
ΔxR

z
)
 and 

(
ΔyR

z
)
 as zero values. If the discrete circulation [

J1
x
− J2

x
+ J2

y
− J1

y

]
 is small, its variation as represented by 

(
ΔxR

z
)
 and 

(
ΔyR

z
)
 will also be 

proportionately small. We want to fix the coefficients ayy and bxx so that the curl of the vec-
tor field in Eq. (14) exactly matches Eq. (15). This is obtained by setting

This shows that the reconstructed vector field in Eq.  (14) has been reconstructed in 
curl-preserving fashion. Therefore, the growth of the curl in Eqs. (10) and (11) is perfectly 
well-controlled and consistent with the PDE in Eq.  (2). Furthermore, when the discrete 
circulation is exactly zero, the (∇ × �)z-dependent terms in Eqs.  (10) and (11) contribute 

(14)

⎧⎪⎨⎪⎩

Jx(x, y) =
�
J1
x
+
�
ΔxJ

1
x

�
x
��1

2
− y

�
+
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�
x
��1

2
+ y

�
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�
1 − 4y2

�
;

Jy(x, y) =
�
J1
y
+
�
ΔyJ

1
y

�
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��

1

2
− x

�
+
�
J2
y
+
�
ΔyJ

2
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�
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��

1

2
+ x

�
+ bxx

�
1 − 4x2

�
.

(15)Rz(x, y) =
[
J1
x
− J2

x
+ J2

y
− J1

y

]
+
(
ΔxR

z
)
x +

(
ΔyR

z
)
y.

(16)

bxx =
1

8

[
−
(
ΔxR

z
)
+
(
ΔxJ

1
x

)
−
(
ΔxJ

2
x

)]
; ayy =

1

8

[(
ΔyR

z
)
+
(
ΔyJ

1
y

)
−
(
ΔyJ

2
y

)]
.

Fig. 2  Collocation of vector components along the edges of a two-dimensional control volume. As evalu-
ated over the edges of the square element, the discrete circulation is fully specified. The mean value of the 
vector components and their linear variation are shown along each edge, in keeping with a second order 
accurate reconstruction scheme. The reconstruction problem for a curl-preserving reconstruction consists 
of obtaining a polynomial-based vector field that matches the specified mean circulation in the zone while 
simultaneously matching the edge values within each zone
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absolutely nothing. In other words, the curl-free limit is exactly retrieved by our choice of 
reconstruction and discretization.

We can use Eq.  (14) along with Eq.  (16) to write the reconstructed curl-preserving 
vector field in terms of an orthonormal set of modes that span the zone itself. Projecting 
Eq. (14) into an orthonormal basis made of tensor product Legendre polynomials, we get

Notice that Eq. (17) shows us that there is a transcription from the modes that we use in 
a curl-preserving DG-like scheme to the modes that we would use for a finite volume-based 
DG scheme. We see that the modes of a curl-preserving DG-like scheme just combine dif-
ferently, consistent with the constraints, to give us the modes in a traditional, finite volume-
based DG scheme. This ensures that the order property is always retained. Note though 
that curl constraint-preservation results in some higher-order modes in Eq. (17) that would 
not be present in a classical second-order finite volume-based DG scheme. Therefore, the 
reverse transcription, i.e., going from the modes of a finite volume-based DG scheme of a 
certain order to the modes of a curl-preserving DG-like scheme of the same order, does not 
hold. At second order, one cannot make much from this transcription because all the coef-
ficients in Eq. (17) are fully determined. However, as shown in Section II.4 of Balsara et al. 
[12], at fourth order and beyond, some of the modes of the higher-order curl-preserving 
reconstruction have to be obtained volumetrically while others are obtained from the edges 
of the mesh.

4  Von Neumann Stability Analysis of Curl‑Free DG Schemes: 
Second‑Order Example

The von Neumann stability analysis of a DG scheme can be performed in two different 
styles. The first is to convert the DG equations into a finite-difference-like form (Liu et al. 
[36], Zhang and Shu [48], Balsara and Käppeli [10]). The second approach is to identify 
the minimal number of modes, endow them with harmonic variation and then to directly 
carry out the stability analysis on the primal variables of the DG scheme (Balsara and Käp-
peli [11]). The latter approach works very well because it quickly allows us to identify the 
smallest number of variables that should be retained in a constraint-preserving DG scheme.

Here we describe the basic ingredients that go into carrying out a von Neumann stabil-
ity analysis for a second-order accurate curl-free DG-like scheme. Please focus on Fig. 3. 
In the right y-edge of the central zone we identify the modes Jy+

0
(t) and Jy+y (t) as the mean 

y-component of the vector field and its linear variation in the y-direction. Similarly, in the 
top x-edge of the central zone we identify the modes Jx+

0
(t) and Jx+

x
(t) as the mean x-com-

ponent of the vector field and its linear variation in the x-direction. In the spirit of a DG 
scheme, the modes are endowed with time-dependence. In the spirit of a harmonic vari-
ation, we assume rectangular zones of sizes Δx and Δy so that the Fourier modes vary as 
e−i(kxx+kyy) where the wave vector is given by 

(
kx, ky

)
 . In fact, we simplify even further by 

assuming square zones in most parts of this paper. Because we use Fourier modes in a von 
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Neumann stability analysis, the modes along the left y-edge are related to the modes along 
the right y-edge. Similarly, the modes along the bottom x-edge are related to the modes 
along the top x-edge. The relationship goes as follows

Figure 3 shows even further inter-relationships among the modes that reside along the 
edges once the Fourier modal variation is assumed. At first blush it would seem that each 
zone in Fig.  3 has four independent pieces of information given by Jy+

0
(t) , Jy+y (t) , Jx+

0
(t) 

and Jx+
x
(t) . However, because of the curl-free constraint, there are only three independent 

pieces of information. This becomes apparent when we use Eq. (18) to write the discrete 
curl-free condition in zone (i, j) of Fig. 3 as follows:

(18)

{
J
y−

0
(t) = J

y+

0
(t)e−ikxΔx; Jy−

y
(t) = Jy+

y
(t)e−ikxΔx;

Jx−
0
(t) = Jx+

0
(t)e−ikyΔy; Jx−

x
(t) = Jx+

x
(t)e−ikyΔy.

(19)

J
y+

0
(t) − J

y+

0
(t)e−ikxΔx

Δx
−

Jx+
0
(t) − Jx+

0
(t)e−ikyΔy

Δy
= 0 ⇔ Jx+

0
(t) = J

y+

0
(t)

Δy

Δx

1 − e−ikxΔx

1 − e−ikyΔy
.

e
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e

e
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i

i

Fig. 3  Relation of the facially collocated Fourier modes associated with the curl-free vector field with one 
another across the different mesh faces. These Fourier modes, and their analogues at all the other faces in 
the figure, are used for carrying out the von Neumann stability analysis
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As a result of Eq.  (19), the only independent variables in the von Neumann stability 
analysis of a second-order accurate, curl-free DG-like scheme are Jy+

0
(t) , Jy+y (t) and Jx+

x
(t) . 

This simplifies the analysis considerably.
Figure 3 shows how the facial modes at all the mesh faces are inter-related because of 

the Fourier modes and their spatial variation. As a result, the curl-free reconstruction of the 
vector field in each zone of Fig. 3 can be symbolically carried out using a computer algebra 
system. Equations (10a), (10b), and (11b) (in their curl-free forms) can then again be sym-
bolically expressed using the same computer algebra system. As a result, we obtain expres-
sions for the time rate of change of Jy+

0
(t) , Jy+y (t) , and Jx+

x
(t) that can be written in terms 

of Jy+
0
(t) , Jy+y (t) , and Jx+

x
(t) . In other words, we have reduced the problem of evaluating a 

single stage in the multistage RK-timestepping to the problem of obtaining a linear system 
of ODEs that look as follows:

The nine coefficients in the matrix shown in Eq.  (20) depend only on the wave num-
bers kx and ky , the velocities vx and vy , and the zone sizes Δx and Δy . They are explic-
itly given in Appendix A. We can also formally define the vector of unknowns as 
�(t) =

(
J
y+

0
(t), J

y+
y (t), Jx+

x
(t)

)T . As a result, Eq.  (20) can be formally written as 
�t�(t) = ��(t) , where “A” is the 3 × 3 matrix shown in Eq. (20).

We then discretize Eq. (20) in time with an explicit m-stage Runge-Kutta scheme having 
a timestep Δt of the form

Here “I” is the identity matrix. The expressions for the coefficients �i,k and �i,k can be found 
in Gottlieb et al. [33] and also Spiteri and Ruuth [46, 47]. Given the linearity of our DG 
scheme, we can write the time update as

Here “G” is known as the amplification matrix of the scheme. It depends on the coeffi-
cients of the Runge-Kutta scheme, on the timestep Δt and the matrix “A” from Eq. (20). 
For the second-order SSP-RK scheme we can write the amplification matrix as

Likewise, for the third-order SSP-RK scheme we can write the amplification matrix as
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In the next section, we will use this amplification matrix to devise our von Neumann 
stability analysis. This completes our description of the mathematics associated with the 
von Neumann stability analysis in second order. Higher orders can be done similarly.

5  Results from the von Neumann Stability Analysis of Globally 
Curl‑Free DG‑Like Schemes

By taking a close look at Eq.  (3) we realize that the von Neumann stability analysis 
depends on the angle that the velocity vector 

(
vx, vy

)
 makes with respect to the x-axis of 

the mesh. Furthermore, Eqs. (18) and (19) show us that the von Neumann stability analysis 
also depends on the angle that the wave vector 

(
kx, ky

)
 makes with respect to the veloc-

ity vector 
(
vx, vy

)
 . For this reason, the stability analysis depends on multiple parameters. 

Besides, owing to the fact that the curl only manifests itself in two or more dimensions, it 
has to be multidimensional. For all of these reasons, we have only been able to carry out a 
von Neumann stability analysis for curl-free WENO-like, PNPM-like and DG-like schemes 
up to fourth order of accuracy. However, we realize that such a stability analysis that is 
done in two dimensions and for a full scheme can give us a wealth of information, and that 
information is catalogued in the ensuing two sub-sections.

The first insight that we would like to extract from such a stability analysis is the maxi-
mal CFL number for which the scheme is stable. For Eq. (3) the Fourier modes are indeed 
propagating with the velocity vector; therefore, the velocity vector sets the signal speed. 
For each choice of the spatial accuracy, we can choose a temporal accuracy for our SSP-
RK scheme that is comparable or greater than the spatial accuracy. The upshot is that for 
each choice of the spatial and temporal accuracy, we can identify a maximal CFL number. 
Please realize that this involves sweeping through all velocities in two dimensions and for 
each choice of the velocity we have to sweep over all the wavenumbers that are permitted 
on the mesh. Stable CFL numbers are identified as the ones for which all possible wave 
vectors return an amplification matrix all of whose eigenvalues have an absolute value that 
is less than or equal to unity. Such a study of the maximal CFL number is documented in 
Sect. 5.1.

DG-like schemes can be very accurate, even when they are compared to their WENO-
like counterparts. But we need to visually appreciate that. For that reason, we choose 
velocity vectors that make angles of 0°, 15°, 30°, and 45° to the mesh. For each of those 
velocity vectors, we sweep through all possible angles that the wave vector can make with 
respect to the velocity. This allows us to visualize the dissipation and dispersion errors of 
the schemes that we analyze. This information is shown in Sect. 5.2.

5.1  Maximal CFL Numbers from Stability Analysis

We identify the CFL number in each of the two directions by Cx = vxΔt
/
Δx and 

Cy = vyΔt
/
Δy . For each CFL number in either of the two directions, we sweep over all 

possible wave numbers 
(
kxΔx, kyΔy

)
∈
[
−π∕2, π∕2

]
×
[
−π∕2, π∕2

]
 . Figure 4 shows a col-

orized plot of the eigenvector of the amplification matrix with the largest absolute value for 
second, third, and fourth-order curl-free DG-like schemes. The white polygons in Fig. 4 
identify the domain of stability for which the absolute value described above is less than 
or equal to unity. The white circles in Fig. 4 are the largest circles that can be inscribed in 
the polygons. The radii of those circles give us the largest effective CFL number that we 
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should use for each of those DG-like schemes. Figure 4 is intended to give us a glimpse of 
the process to find the largest effective CFL number that we can find from our von Neu-
mann stability analysis.

Figure 4 corresponds to a situation where the order of temporal accuracy of our SSP-RK 
time stepping schemes indeed matched the spatial accuracy of the DG-like discretization. But 
we can use several possible SSP-RK schemes with each DG-like discretization, as long as 
the temporal accuracy is at least as large as the spatial accuracy. Table 1 shows the largest 
effective CFL number for a range of curl-free DG-like spatial discretizations and a range of 
temporal accuracies. In all cases, SSP-RK schemes were used for the temporal update. We 
see that for each scheme, an increasing temporal accuracy results in a larger effective CFL 
number, a result that conforms to the findings of Zhang and Shu [48] and Liu et al. [36].

Because we have erected the machinery of the von Neumann stability analysis, we 
can also use it to analyze the largest effective CFL number when other spatial discretiza-
tions are used. For example, when we retain only the time-evolution of the zeroth mode in 

Fig. 4  The domain of stability for a a second order in space and time curl-free DG-like scheme that uses 
SSK-RK2 timestepping, b a third order in space and time curl-free DG-like scheme that uses SSK-RK3 
timestepping, and c a fourth order in space and time curl-free DG-like scheme that uses SSP-RK(5,4) 
timestepping. The CFL numbers in the x- and y-directions are denoted by Cx and Cy, and the color coding 
shows the absolute value of the largest eigenvalue of the amplification matrix. The white polygon identifies 
the full domain of stability and the white circle identifies the largest circle that can be fit within the domain 
of stability. The radius of the white circle, therefore, gives us the maximal CFL number

Table 1  The largest effective 
CFL number for a range of 
curl-free DG-like spatial 
discretizations and a range of 
temporal accuracies

P = 0 P = 1 P = 2 P = 3

RK1 0.707 1 – – –
SSP-RK2 0.707 1 0.316 2 – –
SSP-RK3 0.888 4 0.390 6 0.206 9 –
SSP-RK(5,4) 1.549 5 0.636 7 0.340 1 0.214 3
In all cases, SSP-RK schemes were used for the temporal update

Table 2  The largest effective 
CFL number for a range of 
curl-free WENO-like spatial 
discretizations and a range of 
temporal accuracies

P0P0 P0P1 P0P2 P0P3

RK1 0.707 1 – – –
SSP-RK2 0.707 1 0.707 1 – –
SSP-RK3 0.888 4 0.831 8 1.150 7 –
SSP-RK(5,4) 1.549 5 1.225 2 1.485 9 1.304 0
In all cases, SSP-RK schemes were used for the temporal update
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Eqs. (10a) and (11a), we get a family of curl-free WENO-like schemes. For those schemes, 
all the higher modes, up to the desired order of accuracy, have to be reconstructed. Table 2 
shows the largest effective CFL number for a range of curl-free WENO-like spatial discre-
tizations and a range of temporal accuracies. In all cases, SSP-RK schemes were used for 
the temporal update. As expected, we see that the curl-free WENO-like schemes have CFL 
numbers much larger than the curl-free DG-like schemes.

Table 3 shows the largest effective CFL number for a range of curl-free P1PM-like spa-
tial discretizations and a range of temporal accuracies. In addition to retaining the time 
evolution of the modes in Eqs. (10a) and (11a), such schemes also evolve the first moments 
from Eqs. (10b) and (11b). As before, SSP-RK schemes were used for the temporal update. 
Comparing the CFL numbers from Table 3 to those from Tables 1 and 2, we see that curl-
free P1PM-like schemes give us CFL numbers that are somewhat smaller than those of 
their WENO counterparts but substantially larger than their DG counterparts. We will fur-
ther see in the next sub-section that P1PM-like schemes retain their first moments and that 
gives them dissipation and dispersion properties that are closer to their DG counterparts. 
The physical reason for that is because the linear mode retains most of the variation in the 
zone; consequently, much of the accuracy is retained. We, therefore, understand why curl-
free P1PM-like schemes retain an important utilitarian position in the full range of schemes 
studied here.

This completes our study of the CFL number of curl-free DG-like schemes and their cousins.

5.2  Dissipation and Dispersion Properties of DG and PNPM Schemes

We now wish to study the dissipation and dispersion properties of the curl-free WENO-
like, PNPM-like, and DG-like schemes. We will study these properties for second, third, 
and fourth order, so that we have a clear understanding of the improved wave propaga-
tion properties of these schemes with the increasing order. By the same token, we will 
also be able to inter-compare between the WENO-like, PNPM-like, and DG-like schemes. 
We expect that retaining more moments and evolving them consistently with the govern-
ing PDE, should give us schemes with improved wave propagation characteristics. For all 
the data shown in this sub-section, the temporal accuracy was made to match the spatial 
accuracy. While the von Neumann stability analysis for curl-free WENO-like schemes was 
already documented in Balsara et al. [12], we present it again here so that one can inter-
compare with the PNPM-like and DG-like schemes. The von Neumann stability analysis 
of the curl-free PNPM-like and DG-like schemes is being presented for the very first time 
here.

In each instance, we choose velocity vectors that make angles of 0°, 15°, 30°, and 45° 
to the mesh and use a CFL number that is 0.9 times the maximum shown in either Table 1 
or Table 2 or Table 3. We then let the wave number 

(
kx, ky

)
 sweep through all angles, from 

Table 3  The largest effective CFL number for a range of curl-free P1PM-like spatial discretizations and a 
range of temporal accuracies

P1P2 P1P3

SSP-RK3 0.390 3 –
SSP-RK(5,4) 0.626 0 0.679 9
In all cases, SSP-RK schemes were used for the temporal update
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−180◦ to +180◦ relative to the velocity vector 
(
vx, vy

)
 . For each of those angles, we plot out 

1 − |amplification factor| for the scheme. If this number is non-negative and close to zero, 
it indicates that the scheme has low dissipation. The phase of the amplification factor gives 
us a measure of the propagation speed of the waves. For each angle between the velocity 
vector and the wave number, we also plot out the error in the phase speed. As the wave-
length increases relative to the zone size, we expect the schemes to propagate waves with 
increasing accuracy. As a result, we consider wavelengths that are 5Δx , 10Δx , and 15Δx . 
In the next eight figures that follow, wavelengths of 5Δx are always shown with a blue 
color, wavelengths of 10Δx are always shown with a green color and wavelengths of 15Δx 
are always shown with a red color.

Figures 5, 6, and 7 show the wave propagation characteristics of curl-free WENO-like 
schemes at second, third and fourth order, respectively. We see that as we go from second 
to fourth order, the dissipation (as measured by 1 − |amplification factor| ) improves by an 
order of magnitude for each of the three wavelengths considered here. Similarly, as we 
go from second to fourth order, the phase error is also reduced by an order of magnitude. 
Table 4 shows the minimum of the absolute value of the amplification factor for all pos-
sible velocity directions and angles between the velocity and wave number vectors for curl-
free WENO-like schemes when we have waves with the wavelength 5Δx, 10Δx, and 15Δx. 
In the same table, we also show the maximum phase error for the similar situation and for 
the same wavelengths. In other words, Table 4 was extracted from Figs. 5, 6, and 7 and 
allows us to quantify the most significant aspect of those figures. Table 4, therefore, allows 
us to make an important practical decision. Say we want to carry out a simulation with 
WENO-like schemes we want to meet a target set of dissipation and dispersion properties, 
Table 4 shows us what our options are. We may indeed choose a lower order scheme and 
use a lot of zones to cover the characteristic wavelength in the simulation. But we see that 
we can also choose a higher-order scheme and use fewer zones to cover the characteristic 
wavelength in the simulation.

There is no second-order P1P1 scheme, because such a scheme would be identical to a 
second-order DG scheme. However, our study of CFL numbers has shown us that curl-free 
third-order P1P2-like and fourth-order P1P3-like schemes still retain a very robust CFL 
number. We, therefore, want to know whether such schemes have superior wave propaga-
tion characteristics relative to the WENO-like schemes that we studied in the previous par-
agraph. Figures 8 and 9 show the wave propagation characteristics of curl-free P1P2-like 

Table 4  The minimum of the absolute value of the amplification factor for all possible velocity directions 
and all angles between the velocity and wave number vectors for curl-free WENO-like schemes when we 
have waves with wavelength 5Δx, 10Δx, and 15Δx 

Min of |amplification factor| λ = 5Δx λ = 10Δx λ = 15Δx

WENO-O2 0.867 229 8 0.990 893 0 0.998 172 9
WENO-O3 0.745 507 4 0.978 762 8 0.995 567 1
WENO-O4 0.910 551 6 0.998 038 3 0.999 819 2

Max of phase error λ = 5Δx λ = 10Δx λ = 15Δx

WENO-O2 1.621 195 3E−01 5.597 617 2E−02 2.645 975 3E−02
WENO-O3 6.841 727 1E−02 5.454 241 1E−03 1.145 307 4E−03
WENO-O4 2.581 436 9E−02 1.004 673 7E−03 2.077 598 7E−04
We also show the maximum phase error for the same wavelengths
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Fig. 5  The wave propagation characteristics for curl-preserving second order WENO-like schemes. a–d one 
minus the absolute value of the amplification factor when the velocity vector makes angles of 0°, 15°, 30°, 
and 45° relative to the x-direction of the 2D mesh. e–h the phase error, again for the same angles. The 2D 
wave vector can make any angle relative to the 2D direction of velocity propagation, therefore, the ampli-
tude and phase information are shown w.r.t. the angle made between the velocity direction and the direction 
of the wave vector. In each plot, the blue curve refers to waves that span 5 cells per wavelength; the green 
curve refers to waves that span 10 cells per wavelength; the red curve refers to waves that span 15 waves per 
wavelength
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Fig. 6  The wave propagation characteristics for curl-preserving third order WENO-like schemes. a–d one minus 
the absolute value of the amplification factor when the velocity vector makes angles of 0°, 15°, 30°, and 45° rela-
tive to the x-direction of the 2D mesh. e–h the phase error, again for the same angles. The 2D wave vector can 
make any angle relative to the 2D direction of velocity propagation, therefore, the amplitude and phase information 
are shown w.r.t. the angle made between the velocity direction and the direction of the wave vector. In each plot, 
the blue curve refers to waves that span 5 cells per wavelength; the green curve refers to waves that span 10 cells 
per wavelength; the red curve refers to waves that span 15 waves per wavelength
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Fig. 7  The wave propagation characteristics for curl-preserving fourth order WENO-like schemes. a–d one minus 
the absolute value of the amplification factor when the velocity vector makes angles of 0°, 15°, 30° and 45°, rela-
tive to the x-direction of the 2D mesh. e–h the phase error, again for the same angles. The 2D wave vector can 
make any angle relative to the 2D direction of velocity propagation, therefore, the amplitude and phase information 
are shown w.r.t. the angle made between the velocity direction and the direction of the wave vector. In each plot, 
the blue curve refers to waves that span 5 cells per wavelength; the green curve refers to waves that span 10 cells 
per wavelength; the red curve refers to waves that span 15 waves per wavelength
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and P1P3-like schemes at third and fourth order, respectively. We should, therefore, com-
pare Fig. 8 to Fig. 6 because they both pertain to third-order schemes. Similarly, we should 
compare Fig. 9 to Fig. 7 because they both pertain to fourth-order schemes. The results are 
quite interesting. We see that Fig. 8 and Fig. 6 show comparable quality of wave propa-
gation indicating that at third order the advantages are minimal. This lack of significant 
improvement might have to do with the fact that SSP-RK3 time stepping has excessive sta-
bilization. Now let us turn to comparing Figs. 9 and 7. At fourth order, we do see that the 
P1P3-like scheme outperforms the WENO-O4 scheme by almost an order of magnitude. It 
shows the value of designing PNPM schemes as half-way houses between WENO and DG 
schemes. Table 5 shows the minimum of the absolute value of the amplification factor for 
all possible velocity directions and all angles between the velocity and wave number vec-
tors for curl-free PNPM-like schemes when we have waves with wavelength 5Δx, 10Δx, 
and 15Δx. In the same table, we also show the maximum phase error for a similar situation 
and for the same wavelengths. In other words, Table 5 was extracted from Figs. 8 and 9 
and allows us to quantify the most significant aspect of those figures. Again, Table 5 can 
help with practical decision-making. It shows us, for example, that fourth-order P1P3-like 
schemes do give us a substantial improvement over fourth-order WENO-like scheme while 
incurring only a modest increase in computational complexity.

While they have the smallest CFL numbers, DG-like schemes hold out the promise of 
almost spectral-like accuracy with increasing order of accuracy; for finite volume-based 
approaches this is now viewed as an accepted fact. We are now in a position to test that 
contention as it pertains to curl-free DG-like schemes. Figures  10, 11, and 12 show the 
wave propagation characteristics of curl-free DG-like schemes at second, third, and fourth 
order, respectively. With increasing order, the curl-free DG-like schemes do show signifi-
cant improvement when inter-compared amongst themselves. Let us, therefore, compare 
across algorithms since we have all the data concatenated in one place. Figure 10 should 
be compared to Fig. 5. Figure 11 should be compared to Figs. 6 and 8. Figure 12 should be 
compared to Figs. 7 and 9. We see that the wave propagation characteristics of the second-
order DG-like scheme are entirely competitive with the wave propagation characteristics of 
the fourth-order WENO-like scheme. The fourth-order DG-like scheme is also somewhat 
superior to the fourth-order P1P3-like scheme, but please recall that this comes with a sub-
stantial increase in programming complexity and a decrease in the CFL number. Table 6 
shows the minimum of the absolute value of the amplification factor for all possible veloc-
ity directions and all angles between the velocity and wave number vectors for curl-free 

Table 5  The minimum of the absolute value of the amplification factor for all possible velocity directions 
and all angles between the velocity and wave number vectors for curl-free PNPM-like schemes for waves 
with wavelength 5Δx, 10Δx, and 15Δx 

We also show the maximum phase error for the same wavelengths

Min of |amplification 
factor|

λ = 5Δx λ = 10Δx λ = 15Δx

P1P2 0.986 983 0 0.999 072 2 0.999 811 8
P1P3 0.994 354 9 0.999 891 3 0.999 989 8

Max of phase error λ = 5Δx λ = 10Δx λ = 15Δx

P1P2 5.200 135 1E−03 3.197 237 9E−04 6.493 185 6E−05
P1P3 1.122 064 2E−03 1.477 350 8E−04 3.295 251 5E−05
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Fig. 8  The wave propagation characteristics for curl-preserving third order P1P2-like schemes. a–d one 
minus the absolute value of the amplification factor when the velocity vector makes angles of 0°, 15°, 30°, 
and 45° relative to the x-direction of the 2D mesh. e–h the phase error, again for the same angles. The 2D 
wave vector can make any angle relative to the 2D direction of velocity propagation, therefore, the ampli-
tude and phase information are shown w.r.t. the angle made between the velocity direction and the direction 
of the wave vector. In each plot, the blue curve refers to waves that span 5 cells per wavelength; the green 
curve refers to waves that span 10 cells per wavelength; the red curve refers to waves that span 15 waves per 
wavelength
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Fig. 9  The wave propagation characteristics for curl-preserving fourth order P1P3-like schemes. a–d one 
minus the absolute value of the amplification factor when the velocity vector makes angles of 0°, 15°, 30°, 
and 45° relative to the x-direction of the 2D mesh. e–h the phase error, again for the same angles. The 2D 
wave vector can make any angle relative to the 2D direction of velocity propagation, therefore, the ampli-
tude and phase information are shown w.r.t. the angle made between the velocity direction and the direction 
of the wave vector. In each plot, the blue curve refers to waves that span 5 cells per wavelength; the green 
curve refers to waves that span 10 cells per wavelength; the red curve refers to waves that span 15 waves per 
wavelength
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DG-like schemes when we have waves with wavelength 5Δx, 10Δx, and 15Δx. In the same 
table, we also show the maximum phase error for a similar situation and for the same wave-
lengths. In other words, Table 6 was extracted from Figs. 10, 11, and 12 and allows us to 
quantify the most significant aspect of those figures. We see that the dissipation and dis-
persion characteristics of the curl-free DG-like schemes that we have designed are indeed 
excellent. Comparing Tables 5 and 6 we also see that the curl-free PNPM-like schemes are 
not far behind. Therefore, DG-like schemes are the go-to scheme when superlative per-
formance is the only driving consideration. However, if one wants lower computational 
complexity and more robust timesteps, the PNPM-like schemes also present themselves as 
attractive choices.

While this section has been focused on curl-free methods, we point out that curl-pre-
serving methods only require a few additional terms in Eqs.  (10) and (11) compared to 
curl-free schemes. Without an underlying fluid-dynamical PDE system that supplies addi-
tional terms like density, velocity, and temperature, it is not possible to obtain the source 
terms and other types of terms which would make Eq. (2) curl-preserving instead of curl-
free. Furthermore, computer algebra systems are just not adept enough to support a more 
extensive stability analysis for larger PDE systems. For these reasons, the analysis pre-
sented here is focused on curl-free methods, but the insights developed here will extend to 
all curl-preserving methods.

6  Numerical Results

In this section, we present numerical experiments confirming that the developed curl-free 
DG schemes reach their expected design accuracies. Results for all the DG-like (PNPN) 
and PNPM (P0PN for WENO-like and P1PN for HWENO-like) up to fourth order are 
reported for two smooth test problems. All the tests are run with 95% of the maximal CFL 
number (Tables 1, 2, 3) of the respective scheme.

Table 6  The minimum of the absolute value of the amplification factor for all possible velocity directions 
and all angles between the velocity and wave number vectors for curl-free DG-like schemes when we have 
waves with wavelength 5Δx, 10Δx, and 15Δx 

We also show the maximum phase error for the same wavelengths

Min of |amplification factor| λ = 5Δx λ = 10Δx λ = 15Δx

DG P = 1 0.988 938 3 0.999 153 4 0.999 825 1
DG P = 2 0.993 718 9 0.999 556 5 0.999 910 5
DG P = 3 0.999 463 3 0.999 989 7 0.999 999 1

Max of phase error λ = 5Δx λ = 10Δx λ = 15Δx

DG P = 1 3.034 481 3E−02 6.420 087 7E−03 2.737 861 6E−03
DG P = 2 7.607 727 1E−03 5.194 247 2E−04 1.041 523 8E−04
DG P = 3 3.254 652 1E−03 2.512 749 9E−04 5.180 446 8E−05
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Fig. 10  The wave propagation characteristics for curl-preserving second order DG-like schemes. a–d one 
minus the absolute value of the amplification factor when the velocity vector makes angles of 0°, 15°, 30°, 
and 45°, relative to the x-direction of the 2D mesh. e–h the phase error, again for the same angles. The 2D 
wave vector can make any angle relative to the 2D direction of velocity propagation, therefore, the ampli-
tude and phase information are shown w.r.t. the angle made between the velocity direction and the direction 
of the wave vector. In each plot, the blue curve refers to waves that span 5 cells per wavelength; the green 
curve refers to waves that span 10 cells per wavelength; the red curve refers to waves that span 15 waves per 
wavelength
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6.1  Plane‑Wave Test Problem

The first test problem is the propagation of a plane wave in a Cartesian domain of 
size 

[
−1∕2, 1∕2

]2 with periodic boundaries. The plane wave is advected with veloc-
ity vx = vy = 1 diagonally through the domain. The curl-free field � is initialized from a 
potential

where we set kx = ky =2π. The x- and y-field components of the curl-free field are then 
given by

The setup is run up to time tf = 1 , by which time the plane wave has propagated once 
through the domain, and the accuracy of the schemes is evaluated. Moreover, we also show 
the preservation of the quadratic field energy (J2

x
+ J2

y
)∕2 highlighting the dissipation char-

acteristics of the schemes.
Table 7 shows the L1 and L∞ errors at the final time for the PNPN (N = 1, 2, 3) DG-like 

schemes for resolutions from 8 × 8 up to 64 × 64. Table 8 shows the convergence analysis 
of the P0PN (N = 1, 2, 3) WENO-like schemes. Table 9 shows the convergence analysis of 
the P1PN (N = 1, 2, 3) HWENO-like schemes. The tables also catalogue the final quadratic 
energy as a fraction of the initial quadratic energy. We observe that all schemes reach their 
design accuracy. We also take note of the improved quadratic field energy preservation 
with increasing order of accuracy. Note that we did nothing special in the scheme to ensure 
that quadratic field energy is conserved; as a result, the rather good preservation of quad-
ratic energy is entirely a consequence of the accuracy of the method. This is especially true 
for the DG-like schemes which preserve quadratic energy very well especially as the reso-
lution is increased. The WENO-like schemes show slightly inferior energy preservation 
characteristics. However, the latter allow much larger time steps due to their larger allowed 
CFL numbers. The HWENO-like schemes show nearly the same quadratic energy preser-
vation properties as the DG-like schemes and, furthermore, allow larger time steps similar 
to the WENO-like schemes. Consequently, we see that the HWENO-like schemes may be 
viewed as an efficient compromise between the extreme accuracy of the DG-like schemes 
and the much larger time steps of the WENO-like schemes.

6.2  Vortex Test Problem

The second test problem consists of the advection of a localized curl-free vortex simi-
lar to the magnetic vortex for the induction equation. The Cartesian domain extents are 
[−10, 10]2 with periodic boundary condition. The vortex is initialized from a potential

 where r =
√
x2 + y2 . This results in a field given by

�(x, y) = cos(kxx + kyy),

Jx =
��

�x
and Jy =

��

�y
.

�(x, y) = e
1

2
(1−r2),

� = ∇� = −e
1

2
(1−r2)[x, y]T.
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Fig. 11  The wave propagation characteristics for curl-preserving third order DG-like schemes. a–d one 
minus the absolute value of the amplification factor when the velocity vector makes angles of 0°, 15°, 30°, 
and 45° relative to the x-direction of the 2D mesh. e–h the phase error, again for the same angles. The 2D 
wave vector can make any angle relative to the 2D direction of velocity propagation, therefore, the ampli-
tude and phase information are shown w.r.t. the angle made between the velocity direction and the direction 
of the wave vector. In each plot, the blue curve refers to waves that span 5 cells per wavelength; the green 
curve refers to waves that span 10 cells per wavelength; the red curve refers to waves that span 15 waves per 
wavelength
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Fig. 12  The wave propagation characteristics for curl-preserving fourth order DG-like schemes. a–d one 
minus the absolute value of the amplification factor when the velocity vector makes angles of 0°, 15°, 30°, 
and 45° relative to the x-direction of the 2D mesh. e–h the phase error, again for the same angles. The 2D 
wave vector can make any angle relative to the 2D direction of velocity propagation, therefore, the ampli-
tude and phase information are shown w.r.t. the angle made between the velocity direction and the direction 
of the wave vector. In each plot, the blue curve refers to waves that span 5 cells per wavelength; the green 
curve refers to waves that span 10 cells per wavelength; the red curve refers to waves that span 15 waves per 
wavelength
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The advection velocity is set to vx = vy = 1 . The problem is simulated for the time 
tf = 20 , by which point the vortex was advected once through the square domain in the 
diagonal direction till it returns to its initial position. At final time point, we measure 
the accuracy in the L1 and L∞ errors norms. Moreover, we also show the preservation of 
the quadratic field energy (J2

x
+ J2

y
)∕2 highlighting the dissipation characteristics of the 

schemes.
Table 10 shows the L1 and L∞ errors at the final time for the PNPN (N = 1, 2, 3) RKDG-

like schemes for resolutions from 16 × 16 up to 256 × 256. Table 11 shows the convergence 
analysis of the P0PN (N = 1, 2, 3) WENO-like schemes. Table 12 shows the convergence 
analysis of the P1PN (N = 1, 2, 3) HWENO-like schemes. The tables also catalogue the 
final quadratic energy as a fraction of the initial quadratic energy. We observe that all 
schemes reach their design accuracy on the chosen mesh resolutions, even for this highly 
spatially localized vortex. Note that much of the field variation is confined around a circle 
with unit radius, corresponding to one-tenth of the computational domain. We find that 
the presented schemes concurrently have quadratic energy preservation with, nevertheless, 
excellent accuracy.

As before, we did nothing special in the scheme to ensure that the quadratic field energy 
is conserved. Consequently, the rather good preservation of quadratic energy is entirely 
a consequence of the accuracy of the method. For the quadratic field energy, we observe 
similar trends to the plane wave test problem. To further highlight the point, Fig. 13 shows 
the quadratic field energy preservation characteristics from Tables 10, 11, and 12, graphi-
cally. Each panel shows all the available schemes up to fourth order of accuracy. Figure 13a 
underlines that the curl-free DG-like schemes show excellent energy-preserving proper-
ties with increasing order of accuracy. In Fig. 13b, we observe again that the energy pre-
serving properties of the curl-free WENO-like schemes are somewhat inferior in the pre-
asymptotic regime. However, the improving trend with increasing order of accuracy is also 
clearly visible. In Fig. 13c, we see that the curl-free P1PN-like schemes share almost the 
same preservation properties as the curl-free DG-like schemes. The latter fact, and their 
substantially larger allowed CFL numbers (hence, time steps), highlight again that the 
P1PN-like schemes are very efficient curl constraint-preserving methods that share desir-
able qualities from both full DG-like and WENO-like schemes.

Lastly, we also catalogue that the schemes designed here are curl-preserving and can 
indeed reach the curl-free limit even when they are integrated for long simulation times. 
Dumbser et al. [28] have shown that if a classical higher-order Godunov scheme is applied 
to Eq. (2), the numerical instability manifests itself as an explosive increase in the discrete 
circulation when the simulation is run over long periods of time; see [28, Fig. 5]. There-
fore, we would like to demonstrate that the discrete circulation is held down to machine 
precision when the simulation is run for a long period of time when we use the methods 
designed here. We would indeed like to go one step further and plot out the time series 
of the maximum pointwise error in the curl of J. In other words, we know that the vec-
tor field is a polynomial, see Eq. (14) or Eq. (17) for instance, so that we can evaluate the 
pointwise curl at any point within a zone (because the polynomials are differentiable). We 
then choose 2 × 2, 3 × 3, or 4 × 4 uniformly spaced points that are internal to each zone at 
second, third, and fourth orders respectively. We then evaluate the maximum of the abso-
lute value of the curl at each and every internal point for all the zones on the mesh and we 
plot this maximum value as a function of time. Let us ask why this demonstration matters? 
We see from Eqs. (10) and (11) that in a curl-preserving scheme we will also need terms 
like 

⟨
vx(∇ × �)z

⟩
 and 

⟨
vy(∇ × �)z

⟩
 , and other terms like it, at the edges of the mesh. These 

have to be evaluated from either side of the edge that is being considered. Therefore, when 
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we approach the curl-free limit, a curl-preserving scheme should naturally obtain curl-free 
evolution. This demonstration that the maximum pointwise error in the curl of J remains 
close to machine zero over long simulation times guarantees that such a limit is met.

To show that the curl remains close to machine zero at all points on the mesh even dur-
ing long-time integration, we have run the vortex problem on a 64 × 64 zone mesh to a final 
time of 200. This time corresponds to the vortex making ten passages through the periodic 
computational domain. Figure 14 shows the maximum pointwise error of the curl of J as a 
function of time for a 64 × 64 zone run of the vortex problem. Figure 14a shows the evolu-
tion of the maximum pointwise curl as a function of time for the second, third, and fourth 
order curl-free DG-like schemes. Figure 14b shows the evolution of the maximum point-
wise curl as a function of time for the third and fourth order curl-free P1PN-like schemes. 
Figure 14c shows the evolution of the maximum pointwise curl as a function of time for 
the second, third, and fourth order curl-free WENO-like schemes. The figure shows that 
all our curl-preserving schemes can preserve the curl constraint up to machine accuracy in 
simulations that are run for long integration times.

7  Conclusions

Novel classes of PDEs have recently emerged and the physics of the PDEs requires keeping 
strict control of the curl of one or more vector fields. The PDEs are hyperbolic systems of 
great interest to science and engineering. Many of the hyperbolic systems resulting from 
the GPR formulation for hyperelasticity and compressible multiphase flow with and with-
out surface tension have curl-preserving update equations (Godunov and Romenski [32], 
Romenski [40], Romenski et al. [41], Peshkov and Romenski [37, 38], Dumbser et al. [27, 
30, 31], Schmidmayer et al. [42]). The equations of general relativity, when cast in the FO-
CCZ4 formulation, also have such a structure (Alic et al. [1, 2], Brown et al. [18], Dumbser 
et al. [28, 29]). Similarly, it has recently become possible to recast Schrödinger’s equation 
in first-order hyperbolic form, and the time-evolution of this important equation also has 
curl-preserving constraints (Dhaouadi et al. [25], Busto et al. [19]). Experience has shown 
that if nothing special is done to account for the curl-preserving vector field, it can blow up 
in a finite amount of simulation time (Dumbser et al. [28]).

Prior work has shown that classical zone-centered Godunov methods can be adapted to 
such systems only if a GLM-type cleaning approach is included to suppress the build up of 
circulation on the mesh (Dumbser et al. [28]). The two-fold problem with this approach is 
as follows: (i) we often get a very large system of Lagrange multipliers that are not part of 
the original PDE system and (ii) the signal speed with which the Lagrange multipliers have 
to be advected often exceeds the physical signal speed in the problem by a substantial mar-
gin. Another alternative is to solve an elliptical system at every timestep (Boscheri et al. 
[17]), which makes each timestep very expensive. In Balsara et al. [12] we first presented 
curl-preserving WENO-like methods that overcame both of the above-mentioned limita-
tions. The methods were based on inventing a novel globally curl-preserving reconstruc-
tion strategy that reconstructs the vector field over the zone’s volume using the components 
of the vector field that were collocated at the edges of the mesh. Non-linear hybridization, 
via WENO methods, was seamlessly built into the curl-preserving reconstruction strat-
egy. These edge-centered components were updated using multidimensionally upwinded 
potentials that were collocated at the vertices of the mesh. Multidimensional Riemann 
solvers, designed by the first author, provided the requisite multidimensional upwinding. 
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The resulting highly stable finite volume-like schemes for curl-preserving systems had the 
following desirable properties. (i) They did not blow up even after very long integration 
times. (ii) They did not need GLM-style cleaning with very high signal speeds. (iii) They 
could operate with large explicit timesteps. (iv) They did not require the solution of an 

Table 7  Accuracy analysis (plane wave test) of the PNPN (N = 1,2,3) DG-like schemes

The total quadratic energy on the mesh as a fraction of its initial value is also shown

P1P1 L1 error L1 accuracy L∞ error L∞ accuracy Total quadratic energy

8 × 8 1.054E+00 – 1.710E+00 – 0.767 072 144 659 713
16 × 16 1.959E−01 2.43 3.041E−01 2.49 0.963 508 927 621 496
32 × 32 3.642E−02 2.43 5.699E−02 2.42 0.995 169 598 723 023
64 × 64 7.897E−03 2.21 1.240E−02 2.20 0.999 386 133 084 480

P2P2 L1 error L1 accuracy L∞ error L∞ accuracy Total quadratic energy

8 × 8 8.529E−01 – 1.335E+00 – 0.798 900 332 986 684
16 × 16 1.229E−01 2.79 1.931E−01 2.79 0.969 506 454 484 418
32 × 32 1.584E−02 2.96 2.488E−02 2.96 0.996 044 633 506 995
64 × 64 1.993E−03 2.99 3.130E−03 2.99 0.999 501 861 659 339

P3P3 L1 error L1 accuracy L∞ error L∞ accuracy Total quadratic energy

8 × 8 1.150E−01 – 1.711E−01 – 0.982 433 477 747 556
16 × 16 8.007E−03 3.84 1.235E−02 3.79 0.999 160 570 223 597
32 × 32 5.131E−04 3.96 8.082E−04 3.93 0.999 961 937 114 448
64 × 64 3.256E−05 3.98 5.115E−05 3.98 0.999 998 147 852 102

Table 8  Accuracy analysis (plane wave test) of the P0PN (N = 1,2,3) WENO-like schemes

The total quadratic energy on the mesh as a fraction of its initial value is also shown

P0P1 L1 error L1 accuracy L∞ error L∞ accuracy Total quadratic energy

8 × 8 4.993E+00 – 6.970E+00 – 0.147 331 805 631 007
16 × 16 1.687E+00 1.57 3.081E+00 1.18 0.672 786 308 056 742
32 × 32 7.354E−01 1.20 1.342E+00 1.20 0.961 889 800 888 593
64 × 64 1.939E−01 1.92 5.060E−01 1.41 0.996 184 224 345 619

P0P2 L1 error L1 accuracy L∞ error L∞ accuracy Total quadratic energy

8 × 8 2.377E+00 – 3.458E+00 – 0.493 454 736 716 243
16 × 16 3.817E−01 2.64 5.868E−01 2.56 0.906 990 382 419 879
32 × 32 5.000E−02 2.93 7.805E−02 2.91 0.987 543 393 334 568
64 × 64 6.291E−03 2.99 9.866E−03 2.98 0.998 428 021 784 668

P0P3 L1 error L1 accuracy L∞ error L∞ accuracy Total quadratic energy

8 × 8 5.523E−01 – 9.562E−01 – 0.863 259 629 337 563
16 × 16 1.244E−02 5.47 3.046E−02 4.97 0.996 553 938 792 429
32 × 32 3.951E−04 4.98 8.497E−04 5.16 0.999 902 248 490 279
64 × 64 1.387E−05 4.83 2.503E−05 5.09 0.999 997 008 920 715
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elliptic system. And (v) they could be extended to higher orders while incorporating non-
linear hybridization using WENO-like methods. It is, therefore, desirable to invent DG-like 
and PNPM-like variants of these WENO-like schemes so that they can inherit the same 
desirable features—such a task is fulfilled in this paper.

Since we know that DG and PNPM schemes provide more accurate alternatives to 
WENO schemes, it becomes interesting to design curl-free and curl-preserving variants of 
the such schemes. In this paper, we present for the very first time, globally curl-preserving 

Table 9  Accuracy analysis (plane wave test) of the P1PN (N = 2, 3) HWENO-like schemes

The total quadratic energy on the mesh as a fraction of its initial value is also shown

P1P2 L1 error L1 accuracy L∞ error L∞ accuracy Total quadratic energy

8 × 8 8.478E−01 – 1.254E+00 – 0.800 179 565 838 325
16 × 16 1.244E−01 2.77 1.918E−01 2.71 0.969 170 286 097 292
32 × 32 1.628E−02 2.93 2.546E−02 2.91 0.995 933 787 552 492
64 × 64 2.065E−03 2.98 3.239E−03 2.97 0.999 483 905 512 296

P1P3 L1 error L1 accuracy L∞ error L∞ accuracy Total quadratic energy

8 × 8 2.331E−01 – 3.870E−01 – 0.942 799 109 295 127
16 × 16 1.341E−02 4.12 2.090E−02 4.21 0.997 772 917 919 100
32 × 32 7.612E−04 4.14 1.183E−03 4.14 0.999 927 383 586 396
64 × 64 4.600E−05 4.05 7.202E−05 4.04 0.999 997 714 221 129

Table 10  Accuracy analysis (vortex test) of the PNPN (N = 1, 2, 3) DG-like schemes

The total quadratic energy on the mesh as a fraction of its initial value is also shown

P1P1 L1 error L1 accuracy L∞ error L∞ accuracy Total quadratic energy

16 × 16 3.960E−02 – 1.296E+00 – 0.244 138 062 854 683
32 × 32 1.937E−02 1.03 9.775E−01 0.41 0.584 068 951 760 809
64 × 64 4.780E−03 2.02 3.237E−01 1.59 0.887 813 286 147 527
128 × 128 8.569E−04 2.48 6.715E−02 2.27 0.982 478 078 399 363
256 × 256 1.678E−04 2.35 1.243E−02 2.43 0.997 712 794 953 464

P2P2 L1 error L1 accuracy L∞ error L∞ accuracy Total quadratic energy

16 × 16 3.813E−02 – 1.017E+00 – 0.449 340 807 458 768
32 × 32 1.535E−02 1.31 6.368E−01 0.67 0.743 031 482 000 765
64 × 64 3.249E−03 2.24 1.748E−01 1.87 0.938 198 337 740 548
128 × 128 4.658E−04 2.80 2.755E−02 2.67 0.990 782 650 850 455
256 × 256 5.981E−05 2.96 3.601E−03 2.94 0.998 809 736 688 618

P3P3 L1 error L1 accuracy L∞ error L∞ accuracy Total quadratic energy

16 × 16 1.672E−02 – 5.812E−01 – 0.837 642 154 450 034
32 × 32 2.898E−03 2.53 1.281E−01 2.18 0.980 766 190 163 135
64 × 64 2.427E−04 3.58 1.200E−02 3.42 0.999 051 579 122 300
128 × 128 1.607E−05 3.92 8.047E−04 3.90 0.999 964 537 681 624
256 × 256 1.019E−06 3.98 5.100E−05 3.98 0.999 998 674 687 398
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DG-like and PNPM-like schemes that share the beneficial traits of the globally curl-pre-
serving WENO-like schemes designed by Balsara et al. [12]. The higher moments of the 
vector components that live in the edges of the mesh are, therefore, endowed with time-
evolution that is consistent with the governing equations. This is accomplished by mak-
ing a Galerkin projection within each edge that results in a weak form of update equation 

Table 11  Accuracy analysis (vortex test) of the P0PN (N = 1, 2, 3) WENO-like schemes

The total quadratic energy on the mesh as a fraction of its initial value is also shown

P0P1 L1 error L1 accuracy L∞ error L∞ accuracy Total quadratic energy

16 × 16 4.396E−02 – 1.408E+00 – 0.016 052 344 223 764
32 × 32 3.955E−02 0.15 1.771E+00 − 0.33 0.060 627 418 657 843
64 × 64 2.399E−02 0.72 1.357E+00 0.38 0.274 789 236 132 377
128 × 128 7.655E−03 1.65 5.670E−01 1.26 0.773 714 109 741 705
256 × 256 1.988E−03 1.94 1.543E−01 1.88 0.979 590 328 058 657

P0P2 L1 error L1 accuracy L∞ error L∞ accuracy Total quadratic energy

16 × 16 4.036E−02 – 1.418E+00 – 0.014 812 755 301 855
32 × 32 3.251E−02 0.31 1.671E+00 − 0.24 0.113 246 493 972 690
64 × 64 1.018E−02 1.67 6.669E−01 1.32 0.692 818 242 056 277
128 × 128 1.995E−03 2.35 1.484E−01 2.17 0.942 819 902 537 954
256 × 256 2.689E−04 2.89 2.108E−02 2.82 0.992 210 030 651 288

P0P3 L1 error L1 accuracy L∞ error L∞ accuracy Total quadratic energy

16 × 16 3.903E−02 – 1.409E+00 – 0.042 648 512 931 034
32 × 32 1.931E−02 1.02 1.087E+00 0.37 0.483 958 370 120 984
64 × 64 1.940E−03 3.31 1.397E−01 2.96 0.953 798 557 685 217
128 × 128 8.435E−05 4.52 5.971E−03 4.55 0.998 754 807 116 245
256 × 256 4.283E−06 4.30 2.492E−04 4.58 0.999 964 258 479 139

Table 12  Accuracy analysis (vortex test) of the P1PN (N = 2, 3) HWENO-like schemes

The total quadratic energy on the mesh as a fraction of its initial value is also shown

P1P2 L1 error L1 accuracy L∞ error L∞ accuracy Total quadratic energy

16 × 16 3.629E−02 – 1.172E+00 – 0.288 607 282 457 506
32 × 32 1.563E−02 1.21 7.317E−01 0.68 0.675 080 995 909 535
64 × 64 3.281E−03 2.25 1.797E−01 2.03 0.932 780 213 745 329
128 × 128 4.730E−04 2.79 2.774E−02 2.70 0.990 441 076 783 871
256 × 256 6.101E−05 2.95 3.655E−03 2.92 0.998 771 733 291 638

P1P3 L1 error L1 accuracy L∞ error L∞ accuracy Total quadratic energy

16 × 16 2.919E−02 – 1.055E+00 – 0.346 983 109 358 981
32 × 32 7.340E−03 1.99 3.727E−01 1.50 0.872 263 471 054 451
64 × 64 5.285E−04 3.80 3.912E−02 3.25 0.992 401 678 126 276
128 × 128 2.700E−05 4.29 1.909E−03 4.36 0.999 731 098 030 406
256 × 256 1.514E−06 4.16 9.190E−05 4.38 0.999 991 386 714 680
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for the higher-order edge-centered moments. The update utilizes the multidimensionally 
upwinded potentials at the vertices of the mesh. Such update equations have been docu-
mented in Sect. 2 for the model Eq.  (2) and some nuances of the curl-preserving recon-
struction, and how it relates to traditional DG schemes, are highlighted in Sect. 3.

It is well-known that zone-centered DG schemes have wave propagation characteris-
tics superior to zone-centered WENO schemes. Such a superior behavior can be revealed 
by conducting a von-Neumann stability analysis of either scheme and inter-comparing 
the results. It is, therefore, interesting to carry out a von Neumann stability analysis of 
our newly-developed globally curl-free and curl-preserving DG-like and PNPM-like 
schemes. In Sect.  4 we present details of our von Neumann stability analysis. To high-
light the curl-free aspect of the evolution, the analysis must absolutely be done in two or 
more dimensions. Therefore, our analysis is two-dimensional by its very design. By push-
ing the capabilities of computer algebra systems to the limits, we have been able to extend 
this two-dimensional curl-preserving von Neumann stability analysis up to fourth order of 
accuracy.

Section 5 shows the results of this von Neumann stability analysis. We present such an 
analysis for globally curl-free WENO-like, PNPM-like and DG-like schemes to facilitate 
inter-comparison. In Sect. 5.1 the limiting CFL numbers for all these schemes are derived 
and documented in Tables 1, 2, and 3. We find, unsurprisingly, that WENO-like schemes 
offer the largest CFL numbers while DG-like schemes restrict us to substantially smaller 

(a) (b)

(c)

Fig. 13  The quadratic field energy from the vortex problem preserved on the mesh at the final time point 
in the simulation as a function of mesh size. a the curl-free DG-like schemes, b the curl-free P1PN-like 
schemes, and c the curl-free WENO-like schemes
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CFL numbers. The PNPM-like schemes give us quite large CFL numbers at a much-
reduced computational complexity. In Sect. 5.2 we document the dissipation and disper-
sion properties of the same three schemes. We do this for waves with wavelengths 5, 10, 
and 15 times the zone size. For each family of schemes, the dissipation and dispersion 
properties do indeed improve with increasing order of accuracy, as expected. This is shown 
in the figures associated with Sect. 5.2 and also in Tables 4, 5, and 6. We find that WENO-
like schemes have dissipation and dispersion properties that are noticeably inferior to the 
DG-like schemes at the same order. However, we find that PNPM-like schemes have dissi-
pation and dispersion properties that approach those of DG-like schemes at the same order 
while offering substantially larger CFL numbers.

Section 6 presents numerical results, where we show that our methods meet their design 
accuracies. We also show that with increasing order of accuracy the methods become very 
good at preserving quadratic energy. This is a welcome result, because the methods were 
not intentionally designed to preserve quadratic energy; yet they seem to do a good job. 
When the evolution of the PDE is curl-free, our methods also hold down the discrete circu-
lation to machine accuracy over long integration times. The importance of this fact in the 
design of curl-preserving schemes is also discussed.

Fig. 14  The maximum pointwise error of the curl of J as a function of time for a 64 × 64 zone run of the 
vortex problem. a the evolution of the maximum pointwise curl as a function of time for the second, third, 
and fourth order curl-free DG-like schemes. b the evolution of the maximum pointwise curl as a function of 
time for the third and fourth order curl-free P1PN-like schemes. c the evolution of the maximum pointwise 
curl as a function of time for the second, third and fourth order curl-free WENO-like schemes. The figure 
shows that all our curl-preserving schemes can preserve the curl constraint up to machine accuracy
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This paper has laid the essential foundation for several novel globally curl constraint-
preserving methods and catalogued their many desirable properties. The next step would 
be to apply them to full PDE systems where their potential gains can be realized.

Appendix A

Here we explicitly provide the nine coefficients of the 3 × 3 matrix “A” in Eq. (20). This 
should enable the reader to cross-check her or his mathematics. The first row is given by

The second row is given by

The third row is given by
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This completes our description of the nine coefficients of the 3 × 3 matrix “A” in 
Eq. (20).
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