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Abstract
An invariant domain preserving arbitrary Lagrangian-Eulerian method for solving non-
linear hyperbolic systems is developed. The numerical scheme is explicit in time and the 
approximation in space is done with continuous finite elements. The method is made invar-
iant domain preserving for the Euler equations using convex limiting and is tested on vari-
ous benchmarks.
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element method
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1  Introduction

An arbitrary Lagrangian-Eulerian (ALE) technique is developed in this paper in an attempt 
to combine the advantages of classical kinematic descriptions, and to minimize their draw-
backs as much as possible. The computational mesh given by an ALE formulation, allows 
us to handle greater distortions of the fluid with more precision than that obtained by a 
purely Eulerian formulation. In our previous work, Guermond et al. [7, 9], we investigated 
the artificial viscosity problem with hyperbolic systems using an ALE formulation, con-
tinuous finite elements and explicit time stepping. In this work, we propose a first-order 
artificial viscosity that does not depend on any ad hoc parameters and that leads to precise 
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invariant domain properties and entropy inequalities. Combining a low-order method with 
an entropy consistent high-order method via a convex limiting process, we describe a high-
order method that preserves the invariant domains.

We consider the following hyperbolic system in conservative form:

where the dependent variable u is ℝm-valued, the flux is f ∈ C1(ℝm;ℝm×d) , and u0 is any 
admissible initial data. For simplicity in the presentation of the theoretical results, we con-
sider periodic boundary conditions or assume that u0 is constant outside a compact set. 
Some examples of well-known equations that can be written in this general form are the 
Euler equations, shallow water equations, and Burgers’ equation.

The main objective of this paper is to present a simplified version of our high-order 
ALE schemes for Euler equations, mainly focusing on the computational aspects and key 
features of the ALE motion description and omitting the details of the precise mathemat-
ical formulation necessary to rigorously demonstrate the properties of the methods. For 
this reason, this paper describes in details the algorithm and the implementation of our 
high-order invariant domain preserving method in a finite element code. One of the key 
issues in the definition of the ALE motion is the mesh optimization process. We solve it in 
two stages: (i) high-order reconstruction of the Lagrangian velocity; (ii) smoothing of the 
mesh. The smoothing stage is driven by information provided by a simulation. We define 
a blending parameter to smooth the mesh using an adaptation of the method proposed by 
Loubère et al. [11] which has also been used by other research groups (see, e.g., Boscheri 
and Balsara [1], Boscheri et al. [2]). There are other ways to approximate the ALE move-
ment, where the ALE velocity is defined not only using the velocity of the fluid, but also 
more information from the simulation, such as the gradients of the variables or shock posi-
tions, see e.g., Dobrev et al. [4], Zhao et al. [15], but we do not explore this direction in 
this paper. One novelty here, with respect to Guermond et al. [7, 9], is that we present new 
numerical tests in which we compare results obtained using ALE and Eulerian formula-
tions of our high-order scheme.

The remainder of this paper is organized as follows. The ALE motion and its approxi-
mation are described in details in Sect.  2. Specifically, we present the main difference 
between purely Lagrangian and ALE descriptions and describe the finite element spaces 
used to approximate the ALE motion as well as our method of computing the ALE veloc-
ity. To compute the ALE velocity, we reconstruct the approximation of the Lagrangian 
velocity and then apply a smoothing procedure. The general ALE scheme is introduced in 
Sect. 3, where the low-order invariant domain preserving method and the high-order (pos-
sibly invariant domain violating) method are briefly described. The convex limiting tech-
nique, whose purpose is to make the high-order method invariant domain preserving, is 
described in Sect. 4. The new ALE method is illustrated numerically in Sect. 5 on various 
benchmark problems and compared with the same method in Eulerian coordinates.

2 � ALE Motion and Its Approximation

We consider an ALE motion XA ∶ ℝd ×ℝ+ → ℝd as a uniformly Lipschitz mapping, and 
define the spatial description of the associated velocity as

(1)
{

�tu + ∇⋅f (u) = 0, (x, t) ∈ ℝd×ℝ+,

u(x, 0) = u0(x), x ∈ ℝd,
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where XA,t ∶ ℝd → ℝd, XA,t(x) ∶= XA(x, t) . In the notation used herein, the subindex A 
stands for arbitrary.

Remark 1  Arbitrary Lagrangian Eulerian vs. Lagrangian motion (Fig. 1). To illustrate the 
differences between ALE and Lagrangian descriptions, we consider the transport equation

where � is the velocity of the fluid.
By computing the time derivative of u along the characteristic curves of the Lagrangian 

motion, we get

If we discretize (4) using the explicit Euler method, we obtain

where xi = X(�, ti), i = n, n + 1 ; that means that the solution is translated along the charac-
teristic curves.

By writing the material derivative along the characteristic curves of the ALE motion, 
we get

Therefore, using the explicit Euler method, we obtain

(2)�A(x, t) ∶= �tXA(X
−1
A,t
(x), t),

(3)
{

�tu + � ⋅ ∇u = 0 for (x, t) ∈ ℝd×ℝ+,

u(x, 0) = u0(x) for x ∈ ℝd,

(4)
du

dt
(X(�, t), t) =

�u

�t
(X(�, t), t) + �(X(�, t), t) ⋅ ∇u(X(�, t), t) = 0.

un+1(xn+1) = un(xn),

(5)
du

dt
(XA(�, t), t) =

�u

�t
(XA(�, t), t) + �A(XA(�, t), t) ⋅ ∇u(XA(�, t), t)

=(�A − �)(XA(�, t), t) ⋅ ∇u(XA(�, t), t).

(6)un+1(xn+1) = un(xn) + Δt(�A(x
n) − �(xn)) ⋅ ∇un(xn),

Ω
X(·, t)

˜Ω(t)

ξ

ΩA(t)

XA(·, t)

x = XA(ξ, t)

x̃ = X(ξ, t)

Ψ

Fig. 1   Description of an ALE motion and its relation with the Lagrangian motion of a body
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where Xn+1
A

(�) = xn+1 . The new solution is the solution at the previous time step moved 
along the characteristics plus a correction term due to the difference between the ALE 
velocity and the fluid velocity.

2.1 � Geometric Finite Elements and Mesh

We now present the discrete setting of the ALE motion. Let T n

h
 , h > 0 , n = 0, 1,⋯ ,N be a 

sequence of shape-regular matching meshes, where T 0
h

 denotes the initial mesh and T n

h
 is 

the deformed mesh by means of the user-defined ALE motion at time tn . Given mesh T n

h
 , 

we denote by Dn the computational domain generated by T n

h
 . To simplify the presentation, 

we assume that our meshes are formed by triangles in the case of two space dimensions 
and tetrahedra in the case of three space dimensions. In Guermond et al. [7], a more gen-
eral setting for the configuration of the meshes that can be used was described.

We introduce the reference Lagrangian finite element (K̂, P̂geo, Σ̂geo) , where K̂ is the 
reference element, P̂geo is the reference polynomial space, and Σ̂geo is the set of linear 
forms that define the degrees of freedom. We denote by {âi}i∈{1∶Ngeo} and {�̂geo

i
}i∈{1∶Ngeo} 

the Lagrange nodes of K̂ and the associated Lagrange shape functions, respectively, where 
N

geo ∶= dim P̂geo . Let {ai}i∈{1∶Vgeo} be the collection of all Lagrange nodes of mesh T n
h

 and 
let �geo ∶ T

n

h
×{1∶Ngeo} ⟶ {1∶Vgeo} be the geometric connectivity array (assumed to be 

independent of the time). Then the geometric transformation Tn

K
∶ K̂ → K ∈ T

n

h
 is defined 

by

We now define the finite-dimensional spaces based on the geometric Lagrange finite 
elements

and the following vector-valued spaces which we use to represent the ALE motion:

By considering the approximate ALE motion mapping Xn,n+1

A
∶ Dn → Dn+1 as a function of 

Pgeo(T n
h
) , we can write

That is, the approximate ALE motion is fully described by the position of geometric 
Lagrange nodes at time tn+1 : an+1

i
∶= X

n,n+1

A
(an

i
).

In the numerical simulations presented at the end of this paper, we use triangles and 
Pgeo(T n

h
) is one of the following polynomial spaces: ℙi, i = 1, 2, 4.

2.2 � Approximation of the ALE Motion

Although the ALE motion of the mesh, or equivalently the ALE velocity field, is user-
defined, we give in this section some details on how we compute the ALE velocity which 

(7)Tn
K
(̂x) =

∑
i∈{1∶Ngeo}

an
�geo(K,i)

�̂
geo

i
(̂x).

(8)P
geo(T n

h
) ∶= {v ∈ C

0(Dn;ℝ)|v|K◦Tn

K
∈ P̂

geo,∀K ∈ T
n

h
}

(9)P
geo(T n

h
) ∶= [Pgeo(T n

h
)]d.

(10)X
n,n+1

A
(x) =

∑
i∈{1∶Vgeo}

X
n,n+1

A
(an

i
)�

geo,n

i
(x), x ∈ Dn.
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may be useful to the reader. All the numerical results presented in this paper have been 
obtained using the techniques described below.

We compute the new position of the geometric Lagrange nodes of the mesh using an 
explicit Euler step, that is

where vn
A
 is the approximate ALE velocity at time tn and Δt ∶= tn+1 − tn is the time step.

We implement the calculation of the ALE velocity vn
A
 in two stages: reconstruction and 

smoothing of the ALE velocity. A brief description of the two stages is as follows.

2.2.1 � Reconstruction of the ALE Velocity

One of the motivations for using ALE methods in compressible hydrodynamics is that by 
making the mesh motion as close as possible to the actual fluid motion, one can significantly 
reduce the effects of the artificial viscosity. Hence, at each time tn , the approximate solution 
of the hyperbolic system should be used to reconstruct the fluid velocity, the ALE velocity 
should be defined from that. Let vn be the approximated velocity of the fluid obtained by solv-
ing our hyperbolic system. The easiest way to define the ALE velocity is vn

A
= vn which make 

the scheme Lagrangian. However, if we use low-order finite elements to solve our system, vn
A
 , 

and therefore Xn,n+1

A
 , would be also in a low-order space and would not represent well smooth 

mesh motions with vorticity. It has been reported in the literature and is also our experience 
that using higher-order polynomials to represent the mesh motion limits the risks of mesh 
entangling and, in the case of vortical motions, postpones the time when the mesh eventu-
ally entangles. To illustrate this observation, we solve an isentropic vortex problem1 where the 
analytical velocity is known, and we move the mesh using two different approximations of this 
velocity: piecewise linear and piecewise quadratic. In Fig. 2, we plot the mesh at the instant 

(11)Xn,n+1(an
i
) = an+1

i
= an

i
+ Δtvn

A
(an

i
),

Fig. 2   Isentropic vortex. Meshes plotted at the instant before collapsing. Left panel: mesh at t = 1.81 
obtained using vn ∈ ℙ1 ; right panel: mesh at t = 3.48 using vn ∈ ℙ4

1  In Sect. 5.1 the analytical solution of the isentropic vortex problem is described.
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before collapsing, which occurs at t = 1.81 when using linear polynomial approximation of 
the velocity and at t = 3.48 when using high-order (quadratic) polynomial approximation of 
the velocity.

Reconstructing a high-order field from a low-order representation is a problem that has 
been thoroughly investigated in the computer graphics literature. We propose to reconstruct 
the ALE velocity from vn using an algorithm called the butterfly subdivision algorithm, ini-
tially described in Dyn et al. [5] for surface reconstruction. We refer the reader to our previous 
work [9] for more details on how this algorithm is used to reconstruct the ALE velocity.

Once the velocity is reconstructed, we compute the new position of the mesh nodes using

where vn
Lag

∈ Pgeo(T n
h
) is the reconstructed velocity. The notation Lag is used to indicate that 

nodes are moved following the fluid motion as no mesh smoothing is applied yet.

2.2.2 � Smoothing of the ALE Velocity (Maintaining the Connectivity)

When the fluid undergoes large deformations, for instance, when a vortex or a shock wave 
is formed, a purely Lagrangian algorithm can experience a loss of accuracy or the mesh will 
eventually tangle. Therefore, it is not possible to describe the computational domain motion 
without doing remeshing operations. One way to avoid this breakdown is to use in the algo-
rithm an ALE velocity which is a smoothed version of the Lagrangian velocity.

We propose a method that involves blending the Lagrangian velocity using an averag-
ing technique. The blending is done through a parameter that controls the local deformation 
of the cells; the definition of this parameter is inspired by a technique proposed by Loubére 
et al. [11]. From the Lagrangian motion given by (12), we compute an averaged version an+1

i,Sm
 

as follows:

where i ∈ V
geo , and I(i) denotes the collection of indices of the neighboring nodes of i. 

This smoothing technique is not sufficient to avoid mesh tangling when the fluid motion 
is complex; a more sophisticated curvilinear mesh smoothing is a topic of our ongoing 
research. Finally, the actual position of the geometric nodes is defined by

where �i ∈ [0, 1] is a blending parameter.
To define the blending parameter, we first construct first the Jacobian matrix of the map-

ping x ↦ x + Δtvn
Lag

(x) in each cell K ∈ T
n

h
 by �|K(x) ∶= � + Δt∇vn

Lag
(x) . Then, we compute 

the right Cauchy-Green strain tensor � |�
K
�|K and the two eigenvalues �1,K(ani ) , �2,K(a

n
i
) at all 

the geometric Lagrange nodes an
i
∈ K , with the convention �1,K(ani ) ⩽ �2,K(a

n
i
) . We define 

T
i
∶= {K ∈ T

n

h
| an

i
∈ K} for all i ∈ V

geo , and compute the blending parameter as follows:

(12)an+1
i,Lag

= an
i
+ Δtvn

Lag
(an

i
),

(13)an+1
i,Sm

∶=
1

card(I(i)) − 1

∑
j∈I(i),j≠i

an+1
j,Lag

,

(14)an+1
i

∶= �ia
n+1
i,Lag

+ (1 − �i)a
n+1
i,Sm

,

(15)�n
i
∶=

(
card(Ti)

−1
∑
K∈Ti

�1,K(a
n
i
)∕�2,K(a

n
i
)

) 1

s

,
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where s ∈ ℕ . In each application, we will specify this natural number, which can be larger 
if we want our ALE motion to be closer to the Lagrangian motion. Finally, after the two 
stages, the ALE motion is given by

and the ALE velocity of the geometric nodes is given by

3 � ALE Scheme

We describe in this section two ALE approximations of (1). One is invariant domain preserv-
ing and entropy satisfying, while the other is at least second-order accurate in space but may 
violate the invariant domain property. We use continuous finite elements and explicit time 
stepping.

If � is a weak solution of the hyperbolic system (1), then the following result that we dem-
onstrated in Guermond et al. [7] is the main motivation for the ALE formulation.

Lemma 1  The following identity holds in the distribution sense (in time) over the interval 
[0, t∗] for every function � ∈ C0

0
(ℝd;ℝ):

where �(x, t) ∶= �(X−1
A,t
(x)).

3.1 � Approximating Finite Elements

The construction of the approximate solution of (1) is based on a reference finite element 
{(K̂, P̂, Σ̂)} . It is important to note that P̂geo and P̂ are different objects. (K̂, P̂geo, Σ̂geo) is a 
Lagrange element but (K̂, P̂, Σ̂) may not be; it may for instance be a Bernstein-Bezier finite 
element, see for example Lai and Schumaker [10, Chap. 2] or another modal finite element. 
In our code, we use Lagrange finite elements; specifically we always take P̂ = ℙ1 but we use 
P̂geo = ℙk with k ∈ {1, 2, 4}.

The shape functions of the reference element are denoted by {�̂i}i∈N  . Given T n

h
 , we define 

P(T n

h
) ∶= {v ∈ C

0(Dn;ℝ) | v|K◦Tn

K
∈ P̂, ∀K ∈ T

n

h
} and introduce the vector-valued spaces

The global shape functions in P(T n

h
) are denoted by {�n

i
}i∈V . Recall that these functions 

form a basis of P(T n

h
) . We denote by � ∶ N×T n

h
⟶ V the connectivity array associated 

with the global shape functions {�n
i
}i∈V . This array, which we assume to be independent of 

n, is defined such that �n
�(i,K)

(x) = �̂i((T
n
K
)−1(x)) , for all i ∈ N  and for all K ∈ T

n

h
 . For any 

i ∈ V , I(i) is the collection of indices of the shape functions whose support has a nontrivial 
intersection with the shape function �i ; that is, we set I(i) = {j ∈ V | |supp(�n

i
�n
j
)| ≠ 0} 

(16)X
n,n+1

A
(x) =

∑
i∈Vgeo

an+1
i

�n
i
(x),

(17)vn
A
(an

i
) = (an+1

i
− an

i
)∕Δt.

(18)𝜕t ∫
ℝd

�(x, t)𝜑(x, t)dx = ∫
ℝd

∇⋅(�(x, t)⊗ �A − � (�))𝜑(x, t)dx,

(19)P
m
(T n

h
) ∶= [P(T n

h
)]m, and P

d
(T n

h
) ∶= [P(T n

h
)]d.
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where for any measurable set E ⊂ Dn , |E| denotes the measure of E. Henceforth we call the 
connectivity graph of P(T n

h
) , the graph (V, E) where the vertices are all members of V , and 

the edges are pairs (i,  j) in V2 such that (i,  j) is in E iff j ∈ I(i) and i ∈ I(j) . Notice that, 
actually, j ∈ I(i) iff i ∈ I(j) . The connectivity graph does not depend on n, since we 
assumed that the connectivity array � ∶ N×T n

h
⟶ V does not depend on n.

The solution of (1) is approximated in P
m
(T n

h
) , so we can write

3.2 � Generic Algorithm

We introduce in this section a generic algorithm to obtain un+1
n

 , the approximate solution 
of (1) at time tn+1 . This algorithm was introduced in Guermond et al. [7] and was sightly 
modified in Guermond et al. [9] to allow the ALE velocity to be represented with a poly-
nomial degree much higher than that used to approximate the solution of (1). A detailed 
description of this method and its conservation properties can be found in those references; 
here we describe only the main steps of the method.

Let (�0
i
)i∈V be the approximation of the mass of the shape functions at time t0 defined 

by �0
i
∶= ∫

D0 �
0
i
(x) dx . Let uh0 ∶=

∑
i∈V �

0
i
�0
i
∈ Pm(T

0
h
) be a reasonable approximation of 

the initial data u0 , and let (�n
i
)i∈V be the approximations of the mass of the shape functions 

at time tn . If N is the number of time steps, for each n ∈ {0, 1,⋯ ,N} , we do the following 
steps. 

(i)	 Compute the ALE velocity vn
A

 . This can be done following the stages described in 
Sect. 2.2.

(ii)	 Move the mesh: an+1
i

= an
i
+ Δtvn

A
(an

i
).

(iii)	 Approximate the ALE velocity, wn ∶= Πh(w
n) ∈ Pd(Th) , where Πh ∶ P

geo

d
(Th) → Pd(Th) 

is the Lagrange interpolation operator. We henceforth set wn

h
=

N∑
i=1

�n

i
�n

i
∈ P

d
(T n

h
).

(iv)	 Update the mass matrix 

As explained in Guermond et al. [7, Sect. 4.4.2], to be able to use higher-order SSP 
time stepping techniques and be both conservative and invariant domain preserving, we 
define �n+1

i
 by approximating the identity �t ∫D(t) �i(x, t) dx = ∫

D(t)
�i(x, t)∇⋅w

n(x) dx 
(which is a consequence of Liouville’s theorem), with the forward Euler method to 
get (21).

(v)	 Compute un+1
h

 using 

 where 

(20)�(x, tn) ≈ un
h
(x) ∶=

V∑
i=1

�n
i
�n
i
(x),∀x ∈ Dn.

(21)�n+1
i

= �n
i
+ Δt ∫Dn

�n
i
(x)∇⋅wn(x) dx.

(22)
�n+1

i
�n+1

i
−�n

i
�n

i

Δt
+

∑
j∈I(i)

(f (�n
j
) − �n

j
⊗�n

j
)⋅cn

ij
− dn

ij
(�n

j
− �n

i
) = 0,
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and dn
ij
 is an artificial viscosity for the pair of degrees of freedom (i, j), that is clearly 

defined in Sects.  3.3 and  3.4. We call dn
ij
 the graph viscosity since this coefficient 

only involves the connectivity graph of P(T n

h
) . We henceforth assume that dn

ij
= 0 if 

j ∉ I(i) and 

Notice that dn
ii
 does not really need to be defined for (24) to make sense; this quantity 

is nevertheless introduced to shorten the definition of the CFL number.

Remark 2  Recall that the initialization is done by setting �0
i
∶= ∫

D0 �
0
i
(x) dx . At this point 

we assume again that the user-defined ALE velocity field wn is reasonable or that Δt is 
small enough that �n+1

i
 is positive.

Remark 3  In (22), �n+1
i

�n+1
i

−�n
i
�n

i

Δt
 is the forward Euler approximation of the left-hand 

side in (18). Notice that we have replaced the consistent mass matrix by the approxi-
mate lumped mass matrix to approximate the time derivative. The expression ∑

j∈I(i)(�
n
j
⊗�n

j
− � (�n

j
)) ⋅ cn

ij
 is just the Galerkin approximation of the right-hand side of 

(18).

3.3 � First‑Order Viscosity: GMS‑GV Method

We define in this section the artificial graph viscosity that makes the method described in 
the previous section to be invariant domain preserving and entropy satisfying. The method 
is called GMS-GV because it is based on the guaranteed maximum speed (GMS) and first-
order graph viscosity (GV); see Guermond and Popov [6], Guermond et al. [7, 8].

We consider the 1D Riemann problem:

where gn
j
(v) ∶= f (v) − v⊗�n

j
 and nn

ij
= cn

ij
∕‖cn

ij
‖l2 . The following quantity is an upper 

bound on the extreme left and right wave speeds in (25):

We now set

The following theorem was proved by Guermond et al. [7]:

Theorem 1  Let n > 0 and �L,n+1

i
 be given by (21) and (23) with the viscosity given by (26). 

Then, the total mass 
∑

i∈{1∶V} �
n+1
i

�n+1
i

 is conserved. Provided that Δt is small enough that 
�n+1

i
> 0 and (1 − 2Δt

�n+1
i

|dL,n
ii
|) ⩾ 0 , the following properties are satisfied.

(23)cn
ij
∶= ∫Dn

∇�n
j
(x)�n

i
(x) dx,

(24)dn
ij
⩾ 0, if i ≠ j, dn

ij
= dn

ji
, and dn

ii
∶=

∑
j∈I(i)⧵{i}

−dn
ji
.

(25)𝜕tv + 𝜕x(g
n
j
(v)⋅nn

ij
) = 0, (x, t) ∈ ℝ×ℝ+, v(x, 0) =

{
�n

i
, if x < 0,

�n
j
, if x > 0,

�max(g
n
j
, nn

ij
,�n

i
,�n

j
) = max(|�L(f , nnij,�n

i
,�n

j
) −�n

j
⋅nn

ij
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	 (i)	 Local invariance: UL,n+1

i
∈ Conv{U(UL,n

i
,U

L,n

j
) | j ∈ I(Si)}.

	 (ii)	 Global invariance. Let A be a convex invariant set. Assume U0 ∈ A , then UL,n+1

i
∈ A 

for all n ⩾ 0 . The scheme preserves all the convex invariant sets.
	 (iii)	 Discrete entropy inequality for any entropy pair (�, q):

3.4 � Second‑Order Viscosity: GMS‑EV Method

We now describe a technique that is formally high-order accurate in space but may be 
invariant domain violating. Let (�(�),�(�)) be an entropy pair for the hyperbolic system. 
Then

is an entropy pair for the flux �(�) = f (�) − �⊗� . The relation

holds for � the exact solution of the hyperbolic system. We define the entropy commutator

which measures how well the approximate solution verifies the relation (28). From (29) 
we construct a normalized entropy residual Rn

i
∈ [0, 1] (see details in Guermond et al. [9, 

Sect. 3.4]) and the entropy viscosity (EV) is defined by

In view of this definition of the high-order viscosity, we call the method GMS-EV (guaran-
teed maximum speed entropy viscosity).

4 � Convex Limiting Technique: a Second‑Order Invariant Domain 
Preserving Scheme for Euler Equations

Some limitations must be applied to the high-order update, �H,n+1

i
 , given by (21) and (22) 

with the viscosity given by (30) to guarantee the preservation of the physical bounds and to 
be invariant domain preserving.

Given a convex invariant set B ⊂ A , and assuming that �n
i
∈ B,∀i ∈ V and some 

n ⩾ 0 , we explain in this section how to push back �H,n+1

i
 in the invariant domain using 

a convex limiting technique. For simplicity, we will give a brief overview of the limit-
ing strategy for Euler equations; the precise description of the method for a general 

1
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hyperbolic system and the rigorous mathematical framework can be seen in Guermond 
et al. [9]. We note that when the equation of state (EOS) implies finite compressibility 
of the fluid (like with the co-volume EOS), we can automatically enforce that with our 
method and this seems to be difficult with other formulations.

We start by estimating the difference �H,n

i
− �

L,n

i
 . This is done by subtracting (22), 

written with the high-order viscosity dH,n

ij
 , from (22), written with the low-order viscos-

ity dL,n
ij

 . We obtain

Defining �i ∶=
1

card(I(Sn
i
)) − 1

 , j ∈ I(Sn
i
)⧵{i} , we can write

where

The main objective of the limiting method is to find symmetric limiting parameters 
lij ∈ [0, 1] so that the new limited solution

satisfies the expected bounds.
The following lemma proved in Guermond et al. [8, Lem. 4.4] is the workhorse of the 

limiting technique that we propose.

Lemma 2  Let B ⊂ ℝm and Ψ ∈ C0(B;ℝ) be such that {v ∈ B | Ψ(v) ⩾ 0} is convex ( Ψ qua-
siconcave functional). Let i ∈ I  and j ∈ I(i) . Assume that �L,n+1

i
∈ B and Ψ(�L,n+1

i
) > 0 , 

then there is a unique li
j
∈ [0, 1] defined by

such that

Now we apply this result to limit the high-order scheme to solve Euler equations with 
an ideal gas EOS given by p = (� − 1)(E −

1

2
�‖u‖2

�2
) where 𝛾 > 1 . Euler equations can 

be written as

with � = (�,�,E)T ∈ ℝd+2 and � (�) ∶= (�, �⊗� + p�, �(E + p))T . The specific energy 
is

𝔪n+1
i

Δt
(�H,n

i
− �
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i
) =

∑
j∈I(i)⧵{i}
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j
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(31)�
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i
+ l�n

ij
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(36)�t� + ∇⋅� (�) = 0
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and the specific entropy can be defined as

The set A ∶= {(𝜌,�,E)|𝜌 > 0, e > 0, s ⩾ smin} is an invariant set for the Euler equations 
for any value of smin . Locally we want to enforce the following bounds:

where

and

are the so-called auxiliary (bar) states. Under the CFL condition, the bar state �
n

ij
 is the 

average of the exact solutions of a Riemann problem with a left state �n
i
 and a right state 

�n
j
 , see Theorem 1 for details. Therefore, as long as the initial states �n

i
 and �n

j
 are in an 

invariant set of the Euler system, the average �
n

ij
 will stay in that invariant set (recall that all 

invariant sets are convex).
Now we define the quasiconcave functionals to apply Lemma  2 to our invari-

ant domains. First, we define two functionals to enforce the bounds on the den-
sity, Ψ1(�) ∶= � − �n,min

i
⩾ 0 and Ψ2(�) ∶= −� + �n,max

i
⩾ 0 . Then we define 

cmin
i

∶= exp (smin
i

(� − 1)) . The inequality s(�, e(�)) ⩾ smin
i

 is satisfied if and only if

Defining Bi ∶= {� ∈ A|Ψi(�) ⩾ 0, i = 1, 2, 3} , we proved in Guermond et  al.  [9] that if 
�n

j
∈ Bi for all j ∈ I(i) and 2ΔtdL,n

ii
∕�n+1

i
⩽ 1 , then

for i ∈ N, n ⩾ 0.
That means that, for any smooth ALE velocity, the scheme is not only invariant domain 

preserving ( �n+1
i

∈ A ), but also preserves the local domain ( �n+1
i

∈ Bi).

Remark 4  In the numerical tests presented in Sect.  5, the quantity sn,min

i
 is relaxed as 

explained in Guermond et al. [8, Sect. 4.7.2], to maintain the second-order accuracy of the 
method.

Remark 5  Imposing local lower and upper bounds on the density, with the bounds coming 
from the bar sates, automatically enforces positivity and in case of the co-volume EOS, it 
also enforces the maximum compressibility of the method.
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5 � Numerical Results

In this section, we consider a set of test problems for the Euler equations, which are 
designed to verify the theoretical conservation and invariant domain properties of our high-
order ALE finite element scheme. We first solve problems with known solutions to com-
pare the errors obtained with our low- and high-order methods (with and without limit-
ing). Then, we present a more challenging set of problems, where the mesh motion is more 
complex and we focus the presentation on the robustness of our ALE method. All simula-
tions use RK3 strong stability preserving time integration derived from the explicit Euler 
scheme given in (22). The EOS for all test cases is the ideal gas law, p = (� − 1)�e , where 
the value of � is given for each test case.

When the exact solution of a specific test case is known, we compute the following rela-
tive error indicator:

The above norm is estimated using local Gaussian quadrature rules of order 8 with 16 
points.

5.1 � Isentropic Vortex

The first test case we consider is the so-called isentropic vortex problem. The exact solu-
tion is isentropic and is given by

The free-steam conditions we use are �∞ = p∞ = T∞ = 1 and u∞ = (2, 0)T . The perturba-
tions are

where r = ‖� − �c(t)‖ is the Euclidean distance from the vortex center �c(t) ∶= (x0
1
+ 2t, x0

2
)T , 

� = 5 is a constant defining the vortex strength, and � =
7

5
.

We set the initial computational domain to be D0 = (−5, 5)2 . The first mesh consists of 
20×20 squares divided into two triangles, then the mesh is refined uniformly five times. We 
set the density, momentum and total energy to the free-stream values on the boundary of 
the computational domain at all times. We use the GMS-EV method with the entropy com-
mutator computed with the generalized entropy �(u) = p

1

� to set dH,n

ij
 , see Sect. 3.4.

Table  1 displays the errors obtained with our ALE schemes at t = 2 , where the CFL 
number is 0.25. We observe the first-order accuracy with the GMS-GV method and sec-
ond-order accuracy with the GMS-EV method with and without limiting. The solution 
of the isentropic vortex is smooth so the limiting technique does not offer an additional 
advantage over the initial GMS-EV method; however, we have verified that it does not sig-
nificantly increase the computational cost or increase the error of the method.

The CPU time used for the three methods is provided in Table 2. It can be observed that 
the limiting technique increases the CPU time by about 3% when the GMS-EV is used. 

(44)�1(t) ∶=
‖�h(t) − �(t)‖L1(D)

‖�(t)‖L1(D) +
‖�h(t) −�(t)‖L1(D)

‖�(t)‖L1(D) +
‖Eh(t) − E(t)‖L1(D)

‖E(t)‖L1(D) .

(45)�(�, t) = (T∞ + �T)1∕(�−1), �(�, t) = �∞ + ��, p(�, t) = �� .

(46)��(�, t) =
�

2π
e

1−r2

2 (−x2, x1), �T(�, t) = −
(� − 1)�2

8�π2
e1−r

2

,
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Notice that the time step changes in each simulation, because it depends on the viscos-
ity and the fluid velocity. Therefore, a better indicator of the computational cost of each 
method would be the ratio CPU time∕(N#dof) where N is the number of time steps done. 
From the values of this parameter displayed in Table 2, we can deduce that the computa-
tional cost of the low- and high-order methods is similar.

Finally, to illustrate how the accuracy of the methods increases when the ALE descrip-
tion is used, and Table 3 displayed the error indicator obtained with the GMS-EV scheme 
with limiting using the Eulerian (setting vA = 0 ) and ALE approaches. When the Eulerian 
approach is used, as the mesh is fixed and the vortex is moving to x > 0 direction, we have 
to increase the computational domain to ensure that the vortex remains in the domain. We 
set D0 = (−5, 10) × (−5, 5) . As in the previous simulations, we consider meshes formed 
by squares divided into two triangles, and we use the same meshes for both techniques. 
It can be observed that the errors obtained with the ALE approach are smaller than those 
obtained with the Eulerian approach, whereas the rate of convergence is the same.

5.2 � Noh Problem

Noh problem is a test problem with a known exact solution; a shock wave propagating radi-
ally outwards at a constant speed given by

Table 1   Isentropic vortex. 
Convergence test at t = 2 . 
CFL = 0.25

GMS-GV1 GMS-EV GMS-EV limited

# dof �1(t) Rate �1(t) Rate �1(t) Rate

441 9.18E−02 – 1.61E−02 – 1.62E−02 –
1 681 7.23E−02 0.34 4.97E−03 1.69 4.97E−03 1.70
6 561 4.98E−02 0.54 1.33E−03 1.90 1.33E−03 1.90
25 921 3.07E−02 0.70 3.38E−04 1.98 3.38E−04 1.98
103 041 1.74E−02 0.82 8.49E−05 2.00 8.49E−05 2.00

Table 2   Isentropic vortex. 
Comparison of the computational 
cost between the ALE methods 
when #dof = 14 641 , CFL = 0.25 
and the final time is t = 2

Method CPU time CPU time∕(N#dof)

GMS-GV 2 m 21.27 s 4.00E−05
GMS-EV 2 m 39.38 s 4.02E−05
GMS-EV + limiting 2 m 44.30 s 4.14E−05

Table 3   Isentropic vortex. 
Convergence test at t = 2 
obtained with GMS-EV with 
limiting. ALE vs. Eulerian 
( v

A
= 0 ) approximations. 

CFL = 0.25

# dof ALE Eulerian

�1(t) Rate �1(t) Rate

561 1.34E−02 – 3.40E−02 –
2 145 4.05E−03 1.73 9.62E−03 1.82
8 385 1.08E−03 1.90 2.48E−03 1.95
33 153 2.77E−04 1.97 6.33E−04 1.97
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See Noh [12] and Caramana et al. [3, Sect. 5], for instance. This problem can test the abil-
ity of our algorithm to handle discontinuities and still provide a solution consistent with the 
exact solution, while the invariant domains are preserved.

The initial computational domain is D0 = (−1, 1) × (−1, 1) and we do the computations 
up to tf = 0.6 , with CFL = 0.4 and � =

5

3
 . The calculations were performed in a sequence 

of uniform meshes generated from N×N,N ∈ {30, 60, 120, 240} squares divided into two 
triangles. A summary of the data used in our simulations is provided in Table 4.

Convergence rates and L1 relative errors are presented in Table 5. With both schemes, 
GMS-GV and GMS-EV limited, the convergence rates are close to first order which is con-
sistent with the literature on this problem. As expected, the errors obtained using the high-
order scheme are smaller. However, when using the GMS-EV high-order scheme without 
applying the limiting technique, the convergence rates are worse. This is consistent with 
the results shown in Fig. 3. On the left panel of Fig. 3, a scatter plot of the density field is 
plotted for three ALE methods: GMS-GV, GMS-EV and GMS-EV with convex limiting. 
To obtain these plots, we compute the distance to the center of each mesh vertex and plot 
it versus the value of the density at this point. We compare our results with the exact solu-
tion. If we look at the results obtained with the GMS-EV with and without limiting, plotted 
with green and red solid lines, respectively, we observe that the non-limited solution is 
more precise, but it exhibits undershoots and overshoots, as expected.

To examine the behavior of our ALE technique, Fig. 4 compares the solution obtained 
with our best scheme (GMS-EV + limiting) with the same method using an Eulerian 
description of the motion. It can be concluded that the solution with the Eulerian descrip-
tion is much more diffusive.

u(x, t) =

⎧⎪⎨⎪⎩

�
16,−16

x

‖x‖ , 8
�T

, if ‖x‖ ⩽
t

3
,�

1 +
t

‖x‖ , 0,
1

2

�
1 +

t

‖x‖
��T

, if
t

3
< ‖x‖.

Table 4   Simulations data for the 
Noh problem

Domain D0 = (−1, 1)2

Final time t
f
= 0.6

# dof N = 921, 3 721, 14 641, 58 081, 231 361

Finite elements Motion ℙ2 , hyperbolic system ℙ1

Scheme GMS-GV, GMS-EV, GMS-EV + convex limiting
CFL 0.4

Table 5   Noh problem, 
convergence test, L1-norm 
relative error at t = 0.6

# dof GMS-GV1 GMS-EV GMS-EV limited

�1(t) Rate �1(t) Rate �1(t) Rate

961 8.52E−01 – 2.35E−01 – 2.89E−01 –
3 721 5.48E−01 0.64 1.26E−01 0.89 1.51E−01 0.94
14 641 3.14E−01 0.80 7.19E−02 0.81 8.07E−02 0.90
58 081 1.47E−01 1.09 4.16E−02 0.79 4.18E−02 0.95
231 361 7.72E−02 0.93 2.40E−02 0.79 2.18E−02 0.94
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To illustrate the robustness of our ALE method with respect to the mesh regular-
ity, we solve the problem on a non-uniform mesh. The initial mesh is divided into four 
quadrants: the bottom left quadrant is composed of 32×32 squares; the top left is com-
posed of 32×64 squares; the top right is composed of 64×64 ; and the bottom right is 
composed of 64×32 squares. Each square cell is divided into two triangles. Figure  5 
indicates that our ALE high-order method preserves the radial symmetry of the solution 
and does not develop any hour-glass-like instability with a non-uniform mesh.

5.3 � Radial Sod Problem

We run the well-known Sod shock tube problem using a radial configuration, so the initial 
condition is

(47)u(x, 0) =

⎧⎪⎨⎪⎩

(1, 0, 0, 0.25), if

�
x2
1
+ x2

2
⩽ 0.5,

(0.125, 0, 0, 2.5), if

�
x2
1
+ x2

2
> 0.5,
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Fig. 3   Noh problem. Scatter plot of the density at the vertices of the mesh as a function of the radial dis-
tance, computed on the 120 × 120 × 2 element mesh. From left to right: ALE GMS-GV, GMS-EV and 
GMS-EV with limiting schemes

Fig. 4   Noh problem. Density along the diagonal line from (−0.5, 0.5) to (0.5,  0.5), computed on the 
240 × 240 × 2 element mesh. ALE vs. Eulerian GMS-EV algorithm with limiting
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and we consider the domain D = (0, 1) × (0, 1) and impose symmetry conditions at x = 0 
and y = 0 . Here, we take � = 1.4 . We perform the calculations on a uniform mesh formed 
by 100 × 100 squares divided into two triangles each. The final time in our simulations is 
tf = 0.225 and the CFL number is 0.25.

For this problem, we use the GMS-EV method with an entropy commutator computed 
with the physical entropy �(u) = s to set dH,n

ij
 . This high-order viscosity, together with 

the limiting technique, allows us to use a purely Lagrangian motion for the mesh without 
smoothing the velocity. Thus, for this test problem, in the definition of the ALE velocity, 
we only do the reconstruction stage using ℙ2 finite elements.

The results for the ALE (Lagrangian in this case) and Eulerian GMS-EV schemes are 
presented in Fig. 6. The density fields for both methods are plotted together with the final 
mesh obtained by the ALE method. The Eulerian versions of the scheme suffer from a 
strong numerical diffusion, whereas with the ALE method, the mesh moves to better cap-
ture the shock wave and the contact discontinuity. The same results can be observed from 
the surface plots of the density in Fig. 7.

5.4 � Double Mach Reflection Problem

The double Mach reflection problem involves a strong shock (Mach 10) moving in air 
( � = 1.4 ) that impinges a wall with 60 degree angle. When the shock runs up the wall, a 

Fig. 5   Noh problem. Solution obtained with the GMS-EV method and the convex limiting technique using 
the non-uniform mesh. From left to right: initial mesh, mesh and density contours at t

f
= 0.6

Fig. 6   Radial Sod problem. Density field at t
f
= 0.225 computed by the limited GMS-EV scheme with 

Eulerian (left) and ALE (center) descriptions. On the left, the final mesh for the ALE scheme is plotted
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self-similar structure (with two triple points) emerges. This is a standard benchmark test 
popularized by Woodward and Colella [14] and then by many others for evaluating the 
resolution of Euler codes. Different setups are proposed in the literature for this problem 
to prevent the formation of undesirable numerical artifacts (see Vevek et al. [13]). The 
setup in the case of an ALE code is even more problematic, we use a setting similar to 
that of Zhao et al. [15] but allow the non-wall boundaries to move with the flow.

We solve this problem in the initial computational domain D0 = (−1.5, 4) × (0, 1) , 
and with the shock initially positioned at x1 = 1∕6 where the horizontal wall begins. A 
free-slip boundary condition is enforced on x2 = 0, x1 ⩾ 1∕6, at the top boundary, the 
flow values are set to describe the exact motion of the Mach 10 shock, and inflow and 
outflow boundary conditions are enforced on the left and right boundaries, respectively. 
The initial condition is

where g(x1, t) =
√
3(x1 −

1

6
) − 20t is the position of the shock at instant t. The flow is com-

puted at time t = 0.2 with CFL = 0.5 . The initial mesh is a uniform mesh formed by 65 142 
triangles and 33 072 ℙ1 nodes. Regarding the mesh motion, we allow the inflow and the top 
boundary nodes to move right with the flow. Because part of the bottom boundary is a wall, 
the second component of the velocity in the wall nodes is 0. Therefore, in order to maintain 
the computational domain as a square, we set on all boundaries (�A)x2 = 0.

Figure  8 presents the density field obtained with the GMS-EV scheme using ALE 
and Eulerian approaches. In the works of Zhao et al. [15] and Boscheri and Balsara [1], 
the double Mach reflection problem is also solved using ALE techniques. The mesh reg-
ularization stage in our ALE movement is much simpler than that used in these two ref-
erences where a much more sophisticated mesh motion is defined. However, we believe 
that our results are in good agreement with the results of Boscheri and Balsara  [15], 
Zhao et al. [1] as the final results for the density are similar. The result from the GMS-
EV scheme using ALE mesh motion appears to be superior to the Eulerian one. The 
triple points are resolved better and the jet is well defined (Fig. 9).

(48)u(x, 0) =

{
(8, 57.151 97,−33.001 2, 563.544), if x2 ⩾ g(x1, 0),

(1.4, 0, 0, 2.5), if x2 < g(x1, 0),

Fig. 7   Radial Sod problem. Surface plot of density at t = 0.225 obtained with the GMS-EV method com-
bined with the convex limiting technique. From left to right: Eulerian vs. ALE description
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5.5 � Rayleigh‑Taylor Instability

This instability occurs in the interface between two fluids of different densities when the 
more dense fluid is on top. Under the force of gravity, the initial equilibrium is unstable to 
any perturbation of the interface and the heavier fluid goes into the lighter one developing 
the so-called Rayleigh-Taylor instability.

The computational domain is a fixed rectangular box D0 = (0, d∕2) × (0, 3d) . 
In the simulations, we set d = 1∕3 . The gravitational force is � = (0,−0.1x2)

T . The 

Fig. 8   Double Mach reflection problem. Density field and contours of the density at t
f
= 0.2 obtained with 

the GMS-EV scheme with limiting using ALE (top) and Eulerian (bottom) approaches

Fig. 9   Double Mach reflection problem. Velocity magnitude field and mesh obtained at t
f
= 0.2 with the 

limited ALE GMS-EV scheme
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heavy fluid has density �max = 2 and the light fluid has density �min = 1 . The interface 
between the two fluids at t = 0 is x2 = �(x) = 0.5 − 0.1d cos(2πx1∕d) . The growth of 
the perturbation at the interface is exponential and the rate is exp(�t) where � ∝ A , and 
A = (�max − �min)∕(�max + �min) is the Atwood number; here, we take A = 1∕3 . The initial 
density field is slightly regularized by setting

The initial pressure is hydrostatic. The slip boundary condition is enforced on the four 
walls of D0 . In Fig. 10, we can see the computational domain and the initial conditions, 
as well as the details of the initial mesh around the interface. The mesh is composed of 
50×200 squares divided into two triangles. The ALE velocity is computed with P̂geo = ℙ4,2 
Lagrange finite elements. The simulations are run until t = 7.5 with CFL = 0.6 . A sum-
mary of the data used in the simulations is given in Table 6.

The mesh undergoes very large deformations in the time interval [0, t] and is smoothed 
using s = 3 to define the blending parameter given by (15). Figure  11 displays the den-
sity field obtained with the GMS-EV scheme with limiting using ALE and Eulerian 
approaches. Finally, to illustrate that the method is robust when using fourth-order polyno-
mials to describe the mesh motion, that is Pgeo = ℙ4,2 , Fig. 12 displays the meshes and the 
density field at six time: t = 2, 3, 4, 5, 6, 7.5 . These pictures show that the mesh undergoes 
very large deformations in this test.

(49)�0(x) ∶= 2 + tanh

(
y − �(x)

0.01d

)
.

Fig. 10   RT problem. Initial configuration for our simulations (left) and initial mesh of the domain close to 
the interface (right)

Table 6   Data for the simulations 
of the Rayleigh-Taylor instability

Domain D = (0, 1∕6) × (0, 1)

Final time t
f
= 7.5

Mesh 50 × 200 squares divided into two triangles
Finite elements Motion ℙ4 , hyperbolic system ℙ1

Scheme GMS-EV + convex limiting, CFL = 0.6
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We do not compare here the solutions obtained by the different schemes proposed, as it 
was done in the previous sections. This is because when we try to solve this problem with 
the low-order method, with the mesh described above, the interface between the two fluids is 
completely diffused. On the other hand, when we use the GMS-EV scheme (not limited), the 
solution is not between the physical bounds. As a consequence the mesh collapses at a certain 
time (before the final time of t = 7.5 s ), even when doing the smoothing, because the ALE 
velocity is not smooth enough to keep the mesh untangled.

Fig. 11   Rayleigh-Taylor instability. Density field at t = 7.5 s obtained with GMS-EV method with limiting. 
ALE (left panel) vs. Eulerian (right panel) approach
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6 � Conclusion

We have extended in this paper our work from Guermond et al. [7, 9]. The main novelty 
is that we give complete details on the implementation of the method for the Euler equa-
tions and present new numerical tests. In particular, we compare the performance of the 
ALE and Eulerian formulations of our high-order scheme for the radial Sod and the dou-
ble Mach reflection problems. The results clearly show the advantage of using the ALE 
method and confirm the robustness of our methodology. More sophisticated mesh motions 
and handling of multiple materials will be addressed in future works.
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