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Abstract
We investigate strong stability preserving (SSP) implicit-explicit (IMEX) methods for par-
titioned systems of differential equations with stiff and nonstiff subsystems. Conditions for 
order p and stage order q = p are derived, and characterization of SSP IMEX methods is 
provided following the recent work by Spijker. Stability properties of these methods with 
respect to the decoupled linear system with a complex parameter, and a coupled linear sys-
tem with real parameters are also investigated. Examples of methods up to the order p = 4 
and stage order q = p are provided. Numerical examples on six partitioned test systems 
confirm that the derived methods achieve the expected order of convergence for large range 
of stepsizes of integration, and they are also suitable for preserving the accuracy in the stiff 
limit or preserving the positivity of the numerical solution for large stepsizes.

Keywords  Partitioned systems of differential equations · SSP property · IMEX general 
linear methods · Construction of highly stable methods

Mathematics Subject Classification  65L05

1  Introduction

Strong stability preserving (SSP) implicit-explicit (IMEX) Runge-Kutta methods for differ-
ential problems in additive form have been investigated in recent literature [9, 26].

In this manuscript, we consider a partitioned system of ordinary differential equations 
(ODEs)
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t ∈ [t0, tend] , where the solution vector is separated into two components x and z. We assume 
that the first subsystem of (1) corresponding to the function f ∶ ℝm ×ℝn

→ ℝm is non-
stiff, and the second subsystem of (1) corresponding to the function g ∶ ℝm ×ℝn

→ ℝn is 
stiff. Introducing the notation

the system (1) can be written in a more compact form

t ∈ [t0, tend] , corresponding to the function F ∶ ℝm+n
→ ℝm+n.

The problem (1) will be integrated by the class of IMEX methods, where the first subsys-
tem of (1) is integrated by explicit general linear method (GLM), and the second subsystem 
of (1) is integrated by diagonally implicit GLM. These methods for subsystems of (1) and 
the overall IMEX scheme, are defined in Sect. 2. In Sect. 3, we discuss stage order and order 
conditions for IMEX methods, and prove that the IMEX scheme has order p and stage order 
q = p if and only if the explicit and implicit “components” of the scheme have order p and 
stage order q = p . Stability properties of IMEX GLMs are investigated in Sect. 4. In Sect. 5, 
we define the SSP property of IMEX methods. A large class of transformed IMEX GLMs is 
defined in Sect. 6. In Sect. 7, we discuss the characterization of SSP IMEX methods, which is 
based on the recent work by Spijker [44]. Construction of transformed SSP IMEX GLMs is 
described in Sect. 8, and starting and finishing procedures are discussed in Sect. 9. The results 
of some numerical experiments with these methods are reported in Sect. 10. Finally, some 
concluding remarks and plans for future research are presented in Sect. 11.

2 � Partitioned GLMs and IMEX Schemes

For the numerical solution of (1), we consider the partitioned method, where the first and the 
second subsystems of (1) are integrated by the explicit and diagonally implicit GLMs, respec-
tively. These methods on the uniform grid

are defined by

n = 0, 1,⋯ ,N − 1 , and

(1)
{

x�(t) = f
(
x(t), z(t)

)
, x(t0) = x0,

z�(t) = g
(
x(t), z(t)

)
, z(t0) = z0,

y(t) =

[
x(t)

z(t)

]
, F

(
y(t)

)
=

[
f
(
x(t), z(t)

)
g
(
x(t), z(t)

)
]
=

[
f
(
y(t)

)
g
(
y(t)

)
]
, y0 =

[
x0
y0

]
,

(2)y�(t) = F
(
y(t)

)
, y(t0) = y0,

ti = t0 + ih, i = 0, 1,⋯ ,N, Nh = tend − t0

(3)

⎧⎪⎪⎨⎪⎪⎩

X
[n+1]

i
= h

i−1�
j=1

aijf
�
X
[n+1]

j
, Z

[n+1]

j

�
+

r�
j=1

uijx
[n]

j
, i = 1, 2,⋯ , s,

x
[n+1]

i
= h

s�
j=1

bijf
�
X
[n+1]

j
, Z

[n+1]

j

�
+

r�
j=1

vijx
[n]

j
, i = 1, 2,⋯ , r,
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n = 0, 1,⋯ ,N − 1 . We assume that the components of the input vectors x[n−1] and z[n−1] for 
the next step satisfy the relations

i = 1, 2,⋯ , r , for some constants qik and q̂ik , and request that

i = 1, 2,⋯ , s , and

i = 1, 2,⋯ , r , for the same constants qik and q̂ik . The explicit method (3) is characterized 
by the abscissa vector c = [c1,⋯ , cs]

T ∈ ℝs , four coefficient matrices

and the vectors

Similarly, the implicit method (4) is characterized by the abscissa vector 
ĉ = [̂c1,⋯ , ĉs]

T ∈ ℝs , four coefficient matrices

and the vectors

These methods are also characterized by four integers p, q, r, and s, where p is the order, 
q the stage order, r the number of external approximations, and s the number of internal 
approximations or stages.

Introducing the notation

(4)

⎧
⎪⎪⎨⎪⎪⎩

Z
[n+1]
i

= h

i�
j=1

âijg
�
X
[n+1]
j

, Z[n+1]
j

�
+

r�
j=1

ûijz
[n]

j
, i = 1, 2,⋯ , s,

z
[n+1]
i

= h

s�
j=1

b̂ijg
�
X
[n+1]
j

, Z[n+1]
j

�
+

r�
j=1

v̂ijz
[n]

j
, i = 1, 2,⋯ , r,

x
[n−1]
i

=

q∑
k=0

qikh
kx(k)(tn−1) + O(hp+1), z

[n−1]
i

=

q∑
k=0

q̂ikh
kz(k)(tn−1) + O(hp+1),

(5)X
[n+1]
i

= x(tn + cih) + O(hq+1), Z
[n+1]
i

= z(tn + ĉih) + O(hq+1),

(6)x
[n]

i
=

q∑
k=0

qikh
kx(k)(tn) + O(hp+1), z

[n]

i
=

q∑
k=0

q̂ikh
kz(k)(tn) + O(hp+1),

A =
[
aij
]
∈ ℝ

s×s, U =
[
uij
]
∈ ℝ

s×r, B =
[
bij
]
∈ ℝ

r×s, V =
[
vij
]
∈ ℝ

r×r,

qk =
[
q1,k q2,k ⋯ qr,k

]T
∈ ℝ

r, k = 1, 2,⋯ , q.

Â =
[
âij
]
∈ ℝ

s×s, Û =
[
ûij
]
∈ ℝ

s×r, B̂ =
[
b̂ij

]
∈ ℝ

r×s, V̂ =
[̂
vij
]
∈ ℝ

r×r,

q̂k =
[
q̂1,k q̂2,k ⋯ q̂r,k

]T
∈ ℝ

r, k = 1, 2,⋯ , q.
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the methods (3) and (4) can be written in the vector form

n = 0, 1,⋯ ,N − 1 , and

n = 0, 1,⋯ ,N − 1 . Here, I is the identity matrix of dimension m, and Î  is the identity 
matrix of dimension n. The relations (5) and (6) take now the form

and

We will reformulate next the methods (7) and (8) as GLM for the system (2). To simplify 
this reformulation, as well as the theoretical analysis of order and stage order conditions 
which is undertaken in the next section, and SSP properties discussed in Sects. 5 and 7, we 
will assume that the number of equations m of the nonstiff subsystem of (1) is equal to the 
number of equations n of the stiff subsystem. This assumption can be made without loss of 
generality, since if this is not the case, the subsystem with smaller number of equations can 
be padded by adding the equations of the form y�

�
(t) = 0 , y�(t0) = 0 , or repeating some of 

the equations of this subsystem. Putting

and taking into account that for any matrices Q and Q̂ , we have

X[n+1] =

⎡
⎢⎢⎣

X
[n+1]
1
⋮

X[n+1]
s

⎤
⎥⎥⎦
, x[n] =

⎡
⎢⎢⎣

x
[n]

1
⋮

x[n]
r

⎤
⎥⎥⎦
, x(tn + ch) =

⎡
⎢⎢⎣

x(tn + c1h)

⋮

x(tn + csh)

⎤
⎥⎥⎦
,

f
�
X[n+1], Z[n+1]� =

⎡
⎢⎢⎣

f
�
X
[n+1]
1 , Z[n+1]

1

�
⋮

f
�
X[n+1]
s

, Z[n+1]
s

�
⎤
⎥⎥⎦
,

Z[n+1] =

⎡⎢⎢⎣

Z
[n+1]
1
⋮

Z[n+1]
s

⎤⎥⎥⎦
, z[n] =

⎡⎢⎢⎣

z
[n]

1
⋮

z[n]
r

⎤⎥⎥⎦
, z(tn + ĉh) =

⎡⎢⎢⎣

z(tn + ĉ1h)

⋮

z(tn + ĉsh)

⎤⎥⎥⎦
,

g
�
X[n+1], Z[n+1]� =

⎡⎢⎢⎣

g
�
X
[n+1]
1 , Z[n+1]

1

�
⋮

g
�
X[n+1]
s

, Z[n+1]
s

�
⎤⎥⎥⎦
,

(7)
{

X[n+1] = h(A⊗ I)f
(
X[n+1],Z[n+1]

)
+ (U ⊗ I)x[n],

x[n+1] = h(B⊗ I)f
(
X[n+1], Z[n+1]

)
+ (V ⊗ I)x[n],

(8)
{

Z[n+1] = h(�A⊗�I)g
(
X[n+1], Z[n+1]

)
+ (�U ⊗�I)z[n],

z[n+1] = h(�B⊗�I)g
(
X[n+1], Z[n+1]

)
+ (�V ⊗�I)z[n],

(9)X[n+1] = x(tn + ch) + O(hq+1), Z[n+1] = z(tn + ĉh) + O(hq+1),

(10)x[n] =

q∑
k=0

(qk ⊗ I)hkx(k)(tn) + O(hp+1), z[n] =

q∑
k=0

(�qk ⊗�I)hkz(k)(tn) + O(hp+1).

Y [n+1] =

[
X[n+1]

Z[n+1]

]
, y[n] =

[
x[n]

z[n]

]
,

F
(
Y [n+1]) =

[
f
(
X[n+1], Z[n+1]

)
g
(
X[n+1], Z[n+1]

)
]
=

[
f
(
Y [n+1]

)
g
(
Y [n+1]

)
]
,
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where I and � stand for identity matrices of dimension m, leads to

n = 0, 1,⋯ ,N − 1 . Here, the abscissa vector � and the coefficient matrices � , � , � , and � 
are defined by

Observe that for this method, the relations (9) and (10) assume the form

and

where �k are now matrices defined by

3 � Stage Order and Order Conditions

In the remainder of the paper, we will be concerned with GLMs (11) of order p and 
stage order q = p . As in [49] it will be always assumed that the partitioned GLMs (7) 
and (8) are internally consistent, i.e., they have the same abscissa vectors c = ĉ . This 
condition implies that all stage components X[n+1]

i
 and Z[n+1]

i
 approximate the solutions x 

and z to (1) at the same time points tn + cih , i = 1, 2,⋯ , s.
To derive order conditions for such methods, we consider local discretization errors 

�(tn, h) and �(tn, h) of internal and external stages of (11), which are defined by the 
relations

and

[
Q⊗ I 0
0 �Q⊗ I

]
=

[
Q 0
0 �Q

]
⊗ �,

(11)
{

Y [n+1] = h(�⊗ �)F
(
Y [n+1]

)
+ (�⊗ �)y[n],

y[n+1] = h(�⊗ �)F
(
Y [n+1]

)
+ (�⊗ �)y[n],

(12)
� =

[
c

ĉ

]
∈ ℝ2s, � =

[
A 0
0 Â

]
∈ ℝ2s×2s, � =

[
U 0
0 Û

]
∈ ℝ2s×2r,

� =

[
B 0
0 B̂

]
∈ ℝ2r×2s, � =

[
V 0
0 V̂

]
∈ ℝ2r×2r.

(13)Y [n+1] = y(tn + �h) + O(hp+1),

(14)y[n] =

q∑
k=0

(�k ⊗ �)hky(k)(tn) + O(hq+1),

(15)�k =

[
qk 0
0 q̂k

]
∈ ℝ

2r×2, k = 0, 1,⋯ , q.

(16)

𝜂(tn, h) =y(tn + �h) − h(�⊗ �)F
(
y(tn + �h)

)

− (�⊗ �)

p∑
k=0

(�k ⊗ �)hky(k)(tn),
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n = 0, 1,⋯ ,N − 1 . Here,

and x(tn + ch) and z(tn + ch) are defined in Sect. 2. Then, the method (11) has order p and 
stage order q = p if and only if

We have the following theorem.

Theorem 1  The internally consistent GLM (11) defined by abscissa vector � with c = ĉ , 
and coefficient matrices � , � , � , � given by (12), and the matrices �k , k = 0, 1,⋯ , p , given 
by (15), has order p and stage order q = p if and only if the explicit GLM defined by c, 
A, U, B, V, and qk , k = 0, 1,⋯ , p , and implicit GLM defined by c, Â , Û , B̂ , V̂  , and q̂k , 
k = 0, 1,⋯ , p , have order p and stage order q = p.

Proof  Let us partition the vectors �(tn, h) and �(tn, h) as

where �E(tn, h) , �E(tn, h) correspond to the first m non-stiff components of �(tn, h) , �(tn, h) , 
and �I(tn, h) , �I(tn, h) correspond to the last n stiff components of �(tn, h) , �(tn, h) . Then, tak-
ing into account that y�(tn + �h) = F(y(tn + �h)) , we obtain

and

These relations imply that

(17)

𝜉(tn, h) =
p∑

k=0

(�k ⊗ �)hky(k)(tn+1) − h(�⊗ �)F
(
y(tn + �h)

)

− (�⊗ �)

p∑
k=0

(�k ⊗ �)hky(k)(tn),

y(tn + �h) =

[
x(tn + ch)

z(tn + ch)

]
,

�(tn, h) = O(hp+1) and �(tn, h) = O(hp+1) as h → 0.

�(tn, h) =
[
�E(tn, h)
�I(tn, h)

]
, �(tn, h) =

[
�E(tn, h)
�I(tn, h)

]
,

[
𝜂E(tn, h)
𝜂I(tn, h)

]
=

[
x(tn + ch)

z(tn + ch)

]
− h

[
A⊗ I 0
0 �A⊗�I

][
x�(tn + ch)

z�(tn + ch)

]

−

p∑
k=0

[
U ⊗ I 0
0 �U ⊗�I

][
qk ⊗ I 0

0 �qk ⊗�I

]
hk
[
x(k)(tn)

z(k)(tn)

]
,

[
𝜉E(tn, h)
𝜉I(tn, h)

]
=

p∑
k=0

[
qk ⊗ I 0

0 �qk ⊗�I

]
hk
[
x(k)(tn+1)

z(k)(tn+1)

]

− h

[
B⊗ I 0
0 �B⊗�I

][
x�(tn + ch)

z�(tn + ch)

]

−

p∑
k=0

[
V ⊗ I 0
0 �V ⊗�I

][
qk ⊗ I 0

0 �qk ⊗�I

]
hk
[
x(k)(tn)

z(k)(tn)

]
.
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and

We recognize �E(tn, h) and �E(tn, h) as local discretization errors of internal and external 
stages of explicit GLM (7), and �I(tn, h) and �I(tn, h) as local discretization errors of inter-
nal and external stages of implicit GLM (8). Hence, the explicit and implicit methods (7) 
and (8) have order p and stage order q = p , i.e.,

and

if and only if the IMEX scheme (11) has order p and stage order q = p , i.e.,

These arguments complete the proof.

We can derive stage order and order conditions for explicit and implicit GLMs (7) and 
(8) by expanding x(tn + ch) , x�(tn + ch) , x(k)(tn+1) , and z(tn + ch) , z�(tn + ch) , z(k)(tn+1) , 
appearing in �E(tn, h) , �E(tn, h) , and �I(tn, h) , �I(tn, h) , into Taylor series around tn , and com-
paring to zero the terms with powers hk , k = 0, 1,⋯ , p . Such stage order and order condi-
tions were derived in [3, 4] and in the monograph [36]. To make this paper self-contained, 
these stage order and order conditions are also listed in Theorem 2 below.

Theorem 2  The GLMs (7) and (8) have order p and stage order q = p if and only if

and

𝜂E(tn, h) =x(tn + ch) − h(A⊗ I)x�(tn + ch) −

p∑
k=0

(Vqk ⊗ I)hkx(k)(tn),

𝜉E(tn, h) =
p∑

k=0

(qk ⊗ I)hkx(k)(tn+1) − h(B⊗ I)x�(tn + ch) −

p∑
k=0

(Vqk ⊗ I)hkx(k)(tn),

𝜂I(tn, h) =z(tn + ch) − h(�A⊗ I)z�(tn + ch) −

p∑
k=0

(�V�qk ⊗ I)hkz(k)(tn),

𝜉I(tn, h) =
p∑

k=0

(�qk ⊗ I)hkz(k)(tn+1) − h(�B⊗ I)z�(tn + ch) −

p∑
k=0

(�V�qk ⊗ I)hkz(k)(tn).

�E(tn, h) = O(hp+1) and �E(tn, h) = O(hp+1) as h → 0,

�I(tn, h) = O(hp+1) and �I(tn, h) = O(hp+1) as h → 0,

�(tn, h) = O(hp+1) and �(tn, h) = O(hp+1) as h → 0.

(18)
ck

k!
−

A ck−1

(k − 1)!
− Uqk = 0, k = 0, 1,⋯ , p,

(19)
k∑

l=0

1
l!
qk−l −

B ck−1

(k − 1)!
− Vqk = 0, k = 0, 1,⋯ , p,

(20)c k

k!
−

Âc k−1

(k − 1)!
− Û q̂k = 0, k = 0, 1,⋯ , p,
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For k = 0 , we obtain the pre-consistency conditions

where e = [1,⋯ , 1]T ∈ ℝr . For the methods investigated in this paper, the pre-consistency 
vectors q0 and q̂0 are given by

It follows from Theorem 1 that the IMEX scheme (11) has order p and stage order q = p if 
the “component” GLMs (7) and (8) independently meet the conditions (18), (19), (20), and 
(21), for order p and stage order q = p . Contrary to partitioned Runge-Kutta methods, con-
sidered for example in [21], no coupling conditions are required, i.e., conditions involving 
parameters of both methods. This result was also proved, using somewhat different argu-
ments, in [49], for internally consistent partitioned GLMs of order p and stage order q = p 
or q = p − 1.

4 � Stability Properties of IMEX Schemes

We consider first the decoupled linear test system

t ⩾ 0 , where � is a complex parameter. Then applying IMEX scheme (11) to this system the 
first equation of (22) is treated by the explicit GLM with abscissa vector c and coefficient 
matrices A, U, B, V, and the second equation of (22) is treated by the implicit GLM with 
the same abscissa vector c and coefficient matrices Â , Û , B̂ , V̂  . This leads to the relations

n = 0, 1,⋯ , z = h� , with stability matrix ME(z) given by

and

n = 0, 1,⋯ , z = h� , with stability matrix MI(z) given by

Hence, it follows that the absolute stability properties of IMEX method with respect to 
(22) are combinations of absolute stability properties of explicit and implicit parts of the 
scheme. In this paper we will search for IMEX schemes, where the explicit and implicit 
GLMs have so-called inherent Runge-Kutta stability (IRKS) [5, 36, 47, 48], and the 

(21)
k∑

l=0

1
l!
q̂k−l −

B̂c k−1

(k − 1)!
− V̂ q̂k = 0, k = 0, 1,⋯ , p.

Uq0 = e, Vq0 = q0, Ûq̂0 = e, V̂q̂0 = q̂0,

q0 = q̂0 =
[
1 0 ⋯ 0

]
∈ ℝ

r.

(22)
{

x�(t) = � x(t),
z�(t) = � z(t),

x[n+1] = ME(z) x
[n],

ME(z) = V + z B(I − z A)−1U,

z[n+1] = MI(z) z
[n],

MI(z) = V̂ + z B̂(I − zÂ)−1Û.
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implicit GLM is A- and L-stable. Moreover, we will monitor the size of the region of abso-
lute stability of the explicit GLM.

We consider next the coupled linear test system of the form

t ⩾ 0 , where a and b are real parameters. The solutions (x(t), z(t)) tend to zero as t tends to 
the infinity if and only if

and we will investigate whether this property is inherited by the numerical approximations 
(x[n], z[n]) obtained by application of IMEX method (11) to the system (23).

Applying (11) to (23) we obtain

and

n = 0, 1,⋯ . These equations can be rewritten in the form

and

n = 0, 1,⋯ , where � = ha and � = hb . Solving the equation (24) with respect to the vector 
of stage values, we obtain

Substituting the above relation into (25) leads to the vector recurrence equation

n = 0, 1,⋯ , with stability matrix �IMEX(�, �) of IMEX scheme defined by

Observe that for � = 0 we have

(23)
{

x�(t) = ax(t) + bz(t),
z�(t) = bx(t) + az(t),

a − b < 0, a + b < 0,

[
X[n+1]

Z[n+1]

]
= h

[
A 0
0 Â

][
aX[n+1] + bZ[n+1]

bX[n+1] + aZ[n+1]

]
+

[
U 0
0 Û

][
x[n]

z[n]

]
,

[
x[n+1]

z[n+1]

]
= h

[
B 0
0 B̂

][
aX[n+1] + bZ[n+1]

bX[n+1] + aZ[n+1]

]
+

[
V 0
0 V̂

][
x[n]

z[n]

]
,

(24)
[
X[n+1]

Z[n+1]

]
=

[
�A �A

�Â �Â

][
X[n+1]

Z[n+1]

]
+

[
U 0
0 Û

][
x[n]

z[n]

]
,

(25)
[
x[n+1]

z[n+1]

]
=

[
�B �B

�B̂ �B̂

][
X[n+1]

Z[n+1]

]
+

[
V 0
0 V̂

][
x[n]

z[n]

]
,

[
X[n+1]

Z[n+1]

]
=

[
I − �A − �A

−�Â I − �Â

]−1[
U 0
0 Û

][
x[n]

z[n]

]
.

(26)
[
x[n+1]

z[n+1]

]
= �IMEX(�, �)

[
x[n]

z[n]

]
,

(27)�IMEX(�, �) =
[
V 0
0 V̂

]
+

[
�B �B

�B̂ �B̂

][
I − �A − �A

−�Â I − �Â

]−1[
U 0
0 Û

]
.
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where ME(�) and MI(�) are stability functions of explicit and implicit GLMs, respec-
tively, with respect to (22) corresponding to Re(z) = � . We also define stability polynomial 
�IMEX(w;�, �) with respect to the test system (23) by the relation

and the stability region with respect to (23) is then given by

We recall that �IMEX(w;�, �) is a Schur polynomial if all its roots wi , i = 1, 2,⋯ , 2s , are 
inside of the unit circle. Stability regions AIMEX defined by (29), with respect to the test 
system (23), for SSP IMEX GLMs of order p = 1 , 2, 3, and 4, and stage order q = p , are 
displayed in Sect. 8.

5 � SSP Property of IMEX GLMs

Since IMEX methods for (1) can be reformulated as GLMs for (2), we can define SSP prop-
erty of IMEX schemes in the same way this was done for GLMs. To define this SSP property 
of IMEX schemes (11), we assume that the discretization of the initial-value problem (2) by 
the forward Euler method

n = 0, 1,⋯ ,N − 1 , is monotone or contractive. This means that the inequality

is satisfied for all n = 0, 1,⋯ ,N − 1 , in some norm or semi-norm ‖ ⋅ ‖ , under the following 
restriction on the stepsize h of integration

Following Spijker [44], we will say that the GLM (11) is monotone or contractive if

for n = 0, 1,⋯ ,N − 1 , under the modified step size restriction

where Y [n+1] and y[n+1] are defined by (11). IMEX schemes for (2) that satisfy the monoto-
nicity condition (32) under the step size restriction (33) with C > 0 are said to have the SSP 
property, and the maximal constant C in (33) is called the SSP coefficient. As in [7, 10, 39], 

�IMEX(�, 0) =

[
V 0
0 V̂

]
+

[
�B 0
0 �B̂

][
I − �A 0

0 I − �Â

]−1[
U 0
0 Û

]

=

[
V + �B(I − �A)−1U 0

0 V̂ + �B̂(I − �Â)−1Û

]

=

[
ME(�) 0

0 MI(�)

]
,

(28)�IMEX(w;�, �) = det
(
w � −�IMEX(�, �)

)
,

(29)AIMEX =
{
(�, �) ∶ �IMEX(w;�, �) is a Schur polynomial

}
.

yn+1 = yn + hFEF(yn), y0 = y(t0),

(30)‖‖yn+1‖‖ ⩽ ‖‖yn‖‖

(31)h ⩽ hFE.

(32)‖‖Y [n+1]‖‖ ⩽ ‖‖y[n+1]‖‖

(33)h ⩽ C ⋅ hFE,
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to compare methods with different number of internal stages s, we also define the effective 
SSP coefficient Ceff by the formula

Runge-Kutta and linear multistep methods with SSP property have been studied by Shu 
and Osher [43], Gottlieb et al. [20], Spiteri and Ruuth [45], Hundsdorfer et al. [30], Got-
tlieb [16], Hundsdorfer and Ruuth [28], Ruuth and Hundsdorfer [41], Gottlieb and Ruuth 
[19], Gottlieb et al. [17, 18], Higueras [23–25], and Ferracina and Spijker [12–15]. Two-
step Runge-Kutta methods, proposed in [36, 37], with the SSP property were investigated 
by Ketcheson et al. [39], and SSP multistep multistage schemes were investigated by Con-
stantinescu and Sandu [10]. SSP GLMs were investigated by Spijker in his seminal work 
[44], by Izzo and Jackiewicz [31, 32, 34, 35], and by Califano et al. [7], using the results 
from [44]. Also in this paper we will employ Spijker [44] results to construct internally 
consistent SSP IMEX GLMs up to the order p = 4 and stage order q = p.

The characterization of SSP IMEX methods is investigated in Sect. 7 for the large class of 
IMEX transformed GLMs (TGLMs) defined in Sect. 6

6 � IMEX TGLMs

Similarly as in [34, 35], a class of IMEX TGLMs is defined by multiplying the relation for 
y[n+1] in (11) by the transformation matrix �⊗ � , where

and det(T) ≠ 0 , det(T̂) ≠ 0 . This leads to

n = 0, 1,⋯ ,N − 1 . Define the transformed vectors of external approximations by

and the transformed coefficient matrices by

Observe that these matrices have the following block structure:

(34)Ceff = C∕s.

� =

[
T 0
0 T̂

]
∈ ℝ

2r×2r, T , T̂ ∈ ℝ
r×r,

(35)

⎧⎪⎨⎪⎩

Y [n+1] = h(�⊗ �)F
�
Y [n+1]

�
+ (�⊗ �)(�−1 ⊗ �)(�⊗ �)y[n],

(�⊗ �)y[n+1] = h(�⊗ �)(�⊗ �)F
�
Y [n+1]

�
+(�⊗ �)(�⊗ �)(�−1 ⊗ �)(�⊗ �)y[n],

y
[n+1]

= (�⊗ �)y[n+1], y
[n]

= (�⊗ �)y[n],

�∗ = �, �∗ = ��−1, �∗ = ��, �∗ = ���−1, �∗
k
= ��k, k = 0, 1,⋯ , p.
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Then the method (35) can be rewritten in the following form:

n = 0, 1,⋯ ,N − 1.
Similarly as in [34, 35], we can show that the IMEX TGLMs (36) preserve the order 

and stage order of the original methods (11), and have the same stability properties with 
respect to the basic test system (22).

To investigate stability properties of IMEX TGLMs with respect to the test system 
(23), we examine the stability matrix �∗

IMEX(�, �) corresponding to this scheme. We 
have

and taking into account the relation

it follows that

This relation implies that the stability properties of the transformed IMEX schemes with 
respect to the linear test system (23) are the same as that of the original IMEX methods. 
However, in general, SSP properties of transformed methods are different from SSP prop-
erties of original methods, and in Sect. 8, we will search for IMEX schemes with maximal 
SSP coefficients in a large class of IMEX TGLMs.

�∗ =

[
A∗ 0
0 Â∗

]
, A∗ = A, Â∗ = Â,

�∗ =

[
U∗ 0
0 Û∗

]
, U∗ = U T−1, Û∗ = Û T̂−1,

�∗ =

[
B∗ 0
0 B̂∗

]
, B∗ = T B, B̂∗ = T̂ B̂,

�∗ =

[
V∗ 0
0 V̂∗

]
, V∗ = T V T−1, V̂∗ = T̂ V̂ T̂−1,

�∗
k
=

[
Tqk 0
0 T̂q̂k

]
, k = 0, 1,⋯ , p.

(36)
{

Y [n+1] = h(�∗ ⊗ �)F
(
Y [n+1]

)
+ (�∗ ⊗ �)y

[n],
y
[n+1]

= h(�∗ ⊗ �)F
(
Y [n+1]

)
+ (�∗ ⊗ �)y

[n],

�∗
IMEX(�, �) =

[
V∗ 0
0 V̂∗

]

+

[
�B∗ �B∗

�B̂∗ �B̂∗

][
I − �A∗ − �A∗

−�Â∗ I − �Â∗

]−1[
U∗ 0
0 Û∗

]

=

[
T V T−1 0

0 T̂ V̂ T̂−1

]

+

[
�TB �TB

�T̂B̂ �T̂B̂

][
I − �A − �A

−�Â I − �Â

]−1[
UT−1 0
0 ÛT̂−1

]
,

[
�TB �TB

�T̂B̂ �T̂B̂

]
=

[
T 0
0 T̂

][
�B �B

�B̂ �B̂

]
,

�∗
IMEX(�, �) = ��IMEX(�, �)�

−1.
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7 � Characterization of SSP IMEX TGLMs

To investigate SSP properties of IMEX TGLMs (36), we will first reformulate these 
methods using the notation introduced by Spijker [44]. Define the coefficient matrices 
�∗ = [tij] and �∗ = [sij] by

Then (11) can be written in the form

n = 0, 1,⋯ ,N − 1 . Observe that

In what follows, we will always assume that p = q and r = s . It follows from the precon-
sistency conditions that

and the coefficient matrix �∗ satisfies

as required in [44].
We describe next the characterization of SSP coefficient C = C(�∗,�∗) of GLMs (37) 

which was discovered by Spijker in his seminal paper [44]. Denote by � the identity 
matrix of dimension 2(s + r) × 2(s + r) and by

the matrix whose first 2r columns are equal to �∗ and the last 2(s + r) columns are equal to 
��∗ . Following [44] consider the condition

where the inequality in (38) should be interpreted componentwise. Then it was demon-
strated by Spijker [44] that the SSP coefficient of GLM (37) is given by

�∗ =

[
�∗ �

�∗ �

]
∈ ℝ

2(s+r)×2(s+r), �∗ =

[
�∗

�∗

]
∈ ℝ

2(s+r)×2r.

(37)

⎧⎪⎪⎨⎪⎪⎩

Y
[n+1]
i

= h

2(s+r)�
j=1

tijF
�
Y
[n+1]
j

�
+

2r�
j=1

sijy
[n]

j
, i = 1, 2,⋯ , 2(s + r),

y
[n+1]
i

= h

2(s+r)�
j=1

t2s+i,jF
�
Y
[n+1]
j

�
+

2r�
j=1

s2s+i,jy
[n]

j
, i = 1, 2,⋯ , 2r,

y
[n+1]
i

= Y
[n+1]
2s+i , i = 1, 2,⋯ , 2r.

�∗�∗0 =

[
U∗ 0
0 Û∗

][
q∗0 0
0 q̂∗0

]
=

[
U∗q∗0 0
0 Û∗q̂∗0

]
=

[
UT−1Tq0 0

0 ÛT̂−1T̂q̂0

]
=

[
e 0
0 e

]

2r∑
j=1

sij = 1, i = 1, 2,⋯ , 2s

[
�∗ ��∗

]
∈ ℝ

2(s+r)×(2r+(2s+2r))

(38)det(� + ��∗) ≠ 0 and
(
� + ��∗

)−1[
�∗ ��∗

]
⩾ 0,

(39)C = C(�∗,�∗) = sup
{
� ∈ ℝ ∶ � satisfies (38)

}
.
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This condition can be reformulated in terms of coefficient matrices �∗ , �∗ , �∗ , and �∗ of 
TGLMs (37). Since

where �2s and �2r are identity matrices of dimensions 2s × 2s and 2r × 2r , it follows from 
the structure of the coefficient matrix �∗ that the condition det(� + ��∗) ≠ 0 is automati-
cally satisfied. It can be also verified, compare [31, 32], that the second condition of (38) is 
equivalent to the following inequalities of lower dimensions:

Hence, the SSP coefficient of GLM (11), which will be denoted now by CIMEX , can be 
expressed in terms of �∗ , �∗ , �∗ , and �∗ by the formula

These inequalities, reformulated in terms of coefficient matrices of explicit and diagonally 
implicit TGLMs (36), take the form

and

where Is is the identity matrix of dimension s × s , and the SSP coefficients of explicit and 
diagonally implicit TGLMs are given by

and

It follows from the above discussion that the IMEX method (36) is SSP if and only if the 
explicit and diagonally implicit TGLMs are SSP, and we have

� + ��∗ =

[
�2s + ��∗ �

� �2r

]
,

(40)
{

(�2s + ��∗)−1�∗ ⩾ 0, �2s − (�2s + ��∗)−1 ⩾ 0,
�∗ − ��∗(�2s + ��∗)−1�∗ ⩾ 0, ��∗(�2s + ��∗)−1 ⩾ 0.

(41)CIMEX = CIMEX(�
∗,�∗,�∗,�∗) = sup

{
� ∈ ℝ ∶ � satisfies (40)

}
.

(42)
{

(Is + �A∗)−1U∗ ⩾ 0, Is − (Is + �A∗)−1 ⩾ 0,
V∗ − �B∗(Is + �A∗)−1U∗ ⩾ 0, �B∗(Is + �A∗)−1 ⩾ 0,

(43)
{

(Is + �Â∗)−1Û∗ ⩾ 0, Is − (Is + �Â∗)−1 ⩾ 0,
V̂∗ − �B̂∗(Is + �Â∗)−1Û∗ ⩾ 0, �B̂∗(Is + �Â∗)−1 ⩾ 0,

(44)CE = CE(A
∗,U∗,B∗,V∗) = sup

{
� ∈ ℝ ∶ � satisfies (42)

}
,

(45)CI = CI(Â
∗, Û∗, B̂∗, V̂∗) = sup

{
� ∈ ℝ ∶ � satisfies (43)

}
.

CIMEX = min
{
CE, CI

}
.
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8 � Construction of SSP IMEX GLMs

In this section, we describe the construction of internally consistent SSP IMEX TGLMs 
up to the order p = 4 and stage order q = p . We assume that the vectors qk and q̂k , 
k = 0, 1,⋯ , p , satisfy

where e1, e2,⋯ , ep+1 are the canonical bases in ℝp+1 . For such methods, the vectors y[n] 
approximate the Nordsieck vectors Ny(tn, h) , n = 0, 1,⋯ ,N , defined by

It follows from the discussion in Sect. 7, in particular from the formulas (45) and (44), that 
implicit parts of these schemes can be obtained by solving the minimization problem

with non-linear inequality constrains (43), and the implicit parts of these schemes can be 
obtained by solving the minimization problem

with non-linear inequality constrains (42). As already mentioned in Sect. 4, we will always 
assume that both implicit and explicit methods have IRKS property introduced in [5, 
47] (see also [36, 48]), and that implicit methods are A- and L-stable. Such methods are 
obtained following the algorithm for construction of formulas with IRKS presented in [5, 
36, 47].

8.1 � SSP IMEX TGLMs with p = q = 1 and r = s = 2

If the abscissa vector is fixed a priori, the explicit and implicit methods can be con-
structed independently. Here, we show the results corresponding to the abscissa vector 
� = [1∕2, 1]T.

Consider first the implicit methods with r = s = 2 . Following the algorithm for con-
struction of GLMs with IRKS, and assuming that the diagonal element � of the coefficient 
matrix Â is equal to 1/4, we obtain an A- and L-stable family of methods with p = q = 1 
depending on the parameter �̂1 , appearing in the algorithm for construction of such meth-
ods. Then solving the minimization problem (46) with inequality constrains (43) with 
respect to �̂1 and coefficients of the transformation matrix T̂  defined in Sect. 6 we obtain the 
method with coefficients

The transformation matrix T̂  is

q0 = q̂0 = e1, q1 = q̂1 = e2, ⋯ , qp = q̂p = ep+1,

Ny(t, h) =

⎡⎢⎢⎢⎣

y(t)

hy�(t)

⋮

hpy(p)(t)

⎤⎥⎥⎥⎦
∈ ℝ

2m(p+1).

(46)FI(�) ∶= −� ⟶ min

(47)FE(�) ∶= −� ⟶ min

Â∗ =

⎡⎢⎢⎣

1
4
0

1
2

1
4

⎤⎥⎥⎦
, Û∗ =

⎡⎢⎢⎣

1
2

1
2

1
2

1
2

⎤⎥⎥⎦
, B̂∗ =

⎡⎢⎢⎣

11
16

3
16

9
16

9
16

⎤⎥⎥⎦
, V̂∗ =

⎡⎢⎢⎣

1
2

1
2

1
2

1
2

⎤⎥⎥⎦
.
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For this method, CI = 2 and CI,eff = 1.
Consider next the explicit methods with r = s = 2 . Following again the algorithm for 

construction of GLMs with IRKS presented in [5, 36, 47], we obtain a family of methods 
with p = q = 1 depending on the parameter �1 appearing in the algorithm for construction 
of such methods. Then, assuming that the method is internally consistent with the implicit 
formula, and solving the minimization problem (47) with inequality constrains (42), with 
respect to �1 , and coefficients of the transformation matrix T defined in Sect. 6, we obtain 
the method with coefficients

The transformation matrix T is

T̂ =

[
1 1

8
1 3

8

]
.

Â∗ =

[
0 0
1
2
0

]
, Û∗ =

[
0 1
0 1

]
, B̂∗ =

[
1
2

1
4

1
2

1
2

]
, V̂∗ =

[
0 1
0 1

]
.

T̂ =

[
1 1

4
1 1

2

]
.

-6 -5 -4 -3 -2 -1 0

Re(z)

0

0.5

1.0

1.5

2.0

Im
(z
)

Fig. 1   Stability region SE (thick line) of explicit GLM with p = q = 1 , s = r = 2 , and stability region of RK 
method of order p = 1 (Euler method, thin line)

-10 -8 -6 -4 -2 0
0

5

10

Fig. 2   Stability region AIMEX (shaded region) of IMEX method with p = q = 1 and s = r = 2 . The bound-
ary � = −� , � ⩽ 0 , of stability region of the test system (23) is plotted by a thick line
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For this method, CE = 2 , CE,eff = 1 , and the region of absolute stability is plotted in Fig. 1.
It follows from the discussion presented in Sect. 7 that the SSP coefficients for the result-

ing IMEX scheme are CIMEX = 2 and CIMEX,eff = 1 . Stability region AIMEX defined in 
Sect. 4 of the resulting IMEX scheme is plotted in Fig. 2. We have also plotted on this fig-
ure by a thick line the boundary � = −� , � ⩽ 0 , of stability region of the test system (23). 
This region is symmetric with respect to � axis. We have also plotted on Fig.  3 spectral 
radius �(�IMEX) of the stability matrix �IMEX(�, �) versus � for � ∈ [−10, 0] and � = s� , 
for s = 0,−0.1,−0.2,⋯ ,−1 . The spectral radius �(�IMEX) is plotted by thick solid line for 
s = 0 , thick dotted line for s = −1 , and by thin solid lines for the remaining values of s. The 
line corresponding to �(�IMEX) = 1 is plotted by a thin dash-dot line. For comparison we 
have also plotted on Fig. 4 stability region AE of the numerical scheme, where both equations 
of (23) are treated by the explicit GLM. As before, we have also plotted by a thick line the 
boundary � = −� , � ⩽ 0 , of stability region of the test system (23). We can see that this region 
is bounded, and the region AIMEX is unbounded for � ⩽ 0 , and � ≈ � or � ≈ −� . Observe that 
stability intervals on Figs. 1, 2, 3, 4 are the same. This is a consequence of the fact that for 
b = 0 or � = 0 the test system (23) reduces to (22) with Re(�) = a or Re(z) = �.

-10 -8 -6 -4 -2 0
0

0.5

1.0

1.5

2.0

(M
IM

E
X
)

Fig. 3   Spectral radius �(�IMEX) of the stability matrix �IMEX(�, �) versus � for � = s� , 
s = 0,−0.1,−0.2,⋯ ,−1 , for IMEX method with p = q = 1 , r = s = 2

-10 -8 -6 -4 -2 0
0

5

10

Fig. 4   Stability region AE (shaded region) of numerical scheme, where both equations of (23) are treated 
by explicit GLM with p = q = 1 and r = s = 2 . The boundary � = −� , � ⩽ 0 , of stability region of the test 
system (23) is plotted by a thick line
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8.2 � SSP IMEX GLMs with p = q = 2 and r = s = 3

If the abscissa vector is fixed a priori, the explicit and implicit methods can be constructed 
independently. Here, we show the results corresponding to the linearly spaced abscissa 
vector � = [0, 1∕2, 1]T.

Consider first the implicit methods with r = s = 3 . Following the algorithm for con-
struction of GLMs with IRKS presented in [5, 36, 47], and assuming that � = 0 , we 
obtain a possibly A- and L-stable family of methods with p = q = 2 depending on � , �̂1 , 
�̂2 , and l̂21 . Then, solving the minimization problem (46) with inequality constrains (43) 
and coefficients of the transformation matrix T̂  defined in Sect. 6, we obtain the method 
with coefficients

The transformation matrix T̂  is

For this method CI = 2.131 and CI,eff = 0.710.
Consider next the explicit methods with r = s = 3 . Following again the algorithm for 

construction of GLMs with IRKS presented in [5, 36, 47], assuming that the diagonal 
element � of the coefficient matrix Â is equal to 1/4 and that � = 1∕6 , we obtain a family 
of methods with p = q = 2 depending on the parameters �1 and �2 , l21 , appearing in the 
algorithm for construction of such methods. Then, solving the minimization problem 
(47) with inequality constrains (42), with respect to �1 , �2 , l21 , and coefficients of the 
transformation matrix T defined in Sect. 6 we obtain the method with coefficients

Â∗ =

⎡
⎢⎢⎣

0.2500000000000000000 0 0
0.5003387283822169862 0.2500000000000000000 0
0.5001608898707649718 0.4986805982048520783 0.2500000000000000000

⎤
⎥⎥⎦
,

Û∗ =

⎡⎢⎢⎣

0.3705342371692555270 0.1050889479918137073 0.3072597415271085156
0.3682704654193326803 0.1028456108965995988 0.3111307157553221749
0.3709718504031393211 0.1180363277649080382 0.2966918642404505521

⎤⎥⎥⎦
,

B̂∗ =

⎡⎢⎢⎣

0.7551430607053234987 0.4608768636120115309 0.0736774793781561972
0.4567582133180009406 0.5521438901947252606 0.1108288368927108960
0.7635183122245887399 0.4750615478256855031 0.0770554015207384577

⎤⎥⎥⎦
,

V̂∗ =

⎡⎢⎢⎣

0.4716719406013863856 0.1350416611974712775 0.3866163381775349129
0.3969003577040184400 0.1137194881040167662 0.3254203681855260268
0.5060891815952526207 0.1446933576732365024 0.4146085712945968481

⎤⎥⎥⎦
.

T̂ =

⎡⎢⎢⎣

1.2681702121727689017 − 0.2952489424125132929 − 0.0347194343068768467
1.0673505106783030249 − 0.2142326109921935994 0.0674663104035160707
1.3601937352707475494 − 0.3843220008144882292 0.0187944424217467570

⎤⎥⎥⎦
.
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The transformation matrix T is

For this method CE = 1.193 , CE,eff = 0.398 , and the region of absolute stability is plotted in 
Fig 5.

A∗ =

⎡
⎢⎢⎣

0 0 0
0.6704674902497747642 0 0
0.5494708312040104825 0.6847019200200990196 0

⎤
⎥⎥⎦
,

U∗ =

⎡⎢⎢⎣

0.0209453989827169455 1.0232147047274957245 0.0000211517264798749
0.0928178311311476482 0.8184384243551088424 0.0000169186248225953
0.0810400964297409653 0.6777134409604051812 0.0472758400760015948

⎤⎥⎥⎦
,

B∗ =

⎡
⎢⎢⎣

0.8473330378069255943 0.4178144660625222059 7.1820389839911238E−16
0.5241364260829281828 0.2561049940932673033 0.2836402593863833120
0.8705962631349037964 1.0881220253044566810 0.1120600348024297485

⎤⎥⎥⎦
,

V∗ =

⎡⎢⎢⎣

0.0590876538224310731 1.0343378708912136997 0.4465136326910933477
0.0396957007456304837 0.7987551432756890163 0.0238991552259111082
0.1386804803714356719 2.7684496655871123027 0.1421572029018799106

⎤⎥⎥⎦
.

T =

⎡
⎢⎢⎣

2.6310696125102805274 − 2.2410989322808015008 1.6433477499119608817
0.9233831030164229762 0.0459123052284078019 − 0.0336603153961643013
3.4053064855122751573 − 1.7698102004690786300 1.0001731955353854162

⎤⎥⎥⎦
.
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Fig. 5   Stability region SE (thick line) of explicit GLM with p = q = 2 , s = r = 3 , and stability region of RK 
method of order p = 2 (thin line)

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0
0

1

2

3

4

Fig. 6   Stability region AIMEX (shaded region) of IMEX method with p = q = 2 and s = r = 3 . The bound-
ary � = −� , � ⩽ 0 , of stability region of the test system (23) is plotted by a thick line
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The SSP coefficients for the resulting IMEX scheme are CIMEX = 1.193 and 
CIMEX,eff = 0.398 . Stability region AIMEX of this IMEX scheme is plotted in Fig. 6. We have 
also plotted on this figure by a thick line the boundary � = −� , � ⩽ 0 , of stability region of 
the test system (23). We have also plotted on Fig. 7 spectral radius �(�IMEX) of the stabil-
ity matrix �IMEX(�, �) versus � for � ∈ [−4, 0] and � = s� , for s = 0,−0.1,−0.2,⋯ ,−1 . 
The spectral radius �(�IMEX) is plotted by thick solid line for s = 0 , thick dotted line for 
s = −1 , and by thin solid lines for the remaining values of s. The line corresponding to 
�(�IMEX) = 1 is plotted by a thin dash-dot line. For comparison we have also plotted on 
Fig. 8 stability region AE of the numerical scheme, where both equations of (23) are treated 
by the explicit GLM. As before, we have also plotted by a thick line the boundary � = −� , 
� ⩽ 0 , of stability region of the test system (23).

8.3 � SSP IMEX GLMs with p = q = 3 and r = s = 4

Here, we show the construction of methods with linearly spaced abscissa vector 
� = [0, 1∕3, 2∕3, 1]T.

Consider first the implicit methods with r = s = 4 . Following the algorithm for construc-
tion of GLMs with IRKS, and assuming � = 0 , we obtain a possibly A- and L-stable family 
of methods with p = q = 3 depending on � , and additional parameters �̂1 , �̂2 , �̂3 , and l̂21 , l̂31 , 
l̂32 . Then solving the minimization problem (46) with inequality constrains (43), additional 
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Fig. 7   Spectral radius �(�IMEX) of the stability matrix �IMEX(�, �) versus � for � = s� , 
s = 0,−0.1,−0.2,⋯ ,−1 , for IMEX method with p = q = 2 , r = s = 3
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Fig. 8   Stability region AE (shaded region) of numerical scheme, where both equations of (23) are treated 
by explicit GLM with p = q = 2 and r = s = 3 . The boundary � = −� , � ⩽ 0 , of stability region of the test 
system (23) is plotted by a thick line
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inequality constrain � ⩽ 3∕2 , with respect to � , �̂1 , �̂2 , �̂3 , l̂21 , l̂31 , l̂32 , and coefficients of the 
transformation matrix T̂ defined in Sect. 6 we obtain the method with coefficients

 The transformation matrix T̂  is

 For this method CI = 1.51 and CI,eff = 0.38.
Consider next the explicit methods with r = s = 4 . Following again the algorithm for 

construction of GLMs with IRKS, and assuming � = 1∕24 , we obtain a family of methods 
with p = q = 3 depending on the parameters �1 and �2 , �3 , l21 , l31 , and l32 appearing in the 
algorithm for construction of such methods. Then, assuming that the method is internally 
consistent with the implicit formula, and solving the minimization problem (47) with ine-
quality constrains (42), with respect to �1 , �2 , �3 , l21 , l31 , l32 , and coefficients of the transfor-
mation matrix T defined in Sect. 6, we obtain the method with coefficients

Â
∗ =

⎡⎢⎢⎢⎢⎢⎣

0.1587582736465180787 0 0 0

0.3147936065099799288 0.1587582736465180787 0 0

0.3454858702124254731 0.3028923511538916698 0.1587582736465180787 0

0.3589258296379142850 0.2686736081830728378 0.3484149569958441051 0.1587582736465180787

⎤⎥⎥⎥⎥⎥⎦

,

Û
∗ =

⎡⎢⎢⎢⎢⎢⎣

1.2102746077476118E−8 0.09510798840806155 1.2851232821192887E−6 0.1717658935204507

1.8001061016348753E−6 0.09803358596871574 0.05043250838107611 0.1521250258248718

0.00801107232689032 0.07192450612527633 0.1440799825378817 0.14828278781827356

0.006251907035416157 0.0731325640758233 0.19952018754896134 0.13495924725222

⎤⎥⎥⎥⎥⎥⎦

,

B̂
∗ =

⎡⎢⎢⎢⎢⎢⎣

3.0750880359621176089 1.8452080931110706230 3.0199868465929942814 3.5349711953779992129

1.4846462660473323362 1.2867048779875503551 3.5016697010508622271 0.0070533088914376356

0.2899078369728039130 0.1630440067916633232 0.1876341083869850912 0.2154656593566269512

1.1439080001274604665 1.0468868405168857363 1.81734710364810256E−7 2.9887342577642890E−7

⎤⎥⎥⎥⎥⎥⎦

,

V̂
∗ =

⎡
⎢⎢⎢⎢⎢⎣

0.0646577804346853480 0.5701051519984964510 1.5995011697914174392 1.1030790328948990606

0.0432799312149678904 0.3613254821543134692 0.9595956756554017304 0.7071311815690112969

0.0037958447944054611 0.0691601073953650214 0.1534672318588225536 0.1150734456447886832

0.0279140719631941620 0.2101375084793350469 0.4860119754945125701 0.4205495055521786292

⎤
⎥⎥⎥⎥⎥⎦

.

T̂ =

⎡⎢⎢⎢⎢⎢⎣

8.1145043412098264992 2.2811232704776104174 − 0.0151454120576273984 0.0256496614792116036

5.1387798158770256149 0.4592389089894047285 − 0.1614483011681006885 − 0.0933880056895376061

0.8608233077554180325 − 0.1180960808570202895 0.0964536057858727941 − 0.0269331048442746026

2.9764918627879737515 − 1.1785543344490776459 0.0893943440680522027 0.0517097980423208014

⎤⎥⎥⎥⎥⎥⎦

.
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Fig. 9   Stability region SE (thick line) of explicit GLM with p = q = 3 , s = r = 4 , and stability region of RK 
method of order p = 3 (thin line)
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Fig. 10   Stability region AIMEX (shaded region) of IMEX method with p = q = 3 and s = r = 4 . The bound-
ary � = −� , � ⩽ 0 , of stability region of the test system (23) is plotted by a thick line
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Fig. 11   Spectral radius �(�IMEX) of the stability matrix �IMEX(�, �) versus � for � = s� , 
s = 0,−0.1,−0.2,⋯ ,−1 , for IMEX method with p = q = 3 , r = s = 4
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Fig. 12   Stability region AE (shaded region) of numerical scheme, where both equations of (23) are treated 
by explicit GLM with p = q = 3 and r = s = 4 . The boundary � = −� , � ⩽ 0 , of stability region of the test 
system (23) is plotted by a thick line
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The transformation matrix T is

For this method CE = 1.24 , CE,eff = 0.31 , and the region of absolute stability is plotted in 
Fig 9.

The SSP coefficients for the resulting IMEX scheme are CIMEX = 1.24 and 
CIMEX,eff = 0.31 . Stability region AIMEX of the resulting IMEX scheme is plotted in 
Fig.  10. This region is bounded and extends to about � = ±� = −4.15 along the lines 
� = ±� . We have also plotted on this figure by a thick line the boundary � = −� , � ⩽ 0 , 
of stability region of the test system (23). We have also plotted on Fig. 11 spectral radius 
�(�IMEX) of the stability matrix �IMEX(�, �) versus � for � ∈ [−6, 0] and � = s� , for 
s = 0,−0.1,−0.2,⋯ ,−1 . The spectral radius �(�IMEX) is plotted by thick solid line for 
s = 0 , thick dotted line for s = −1 , and by thin solid lines for the remaining values of s. 
The line corresponding to �(�IMEX) = 1 is plotted by a thin dash-dot line. For compari-
son we have also plotted on Fig. 12 stability region AE of the numerical scheme, where 
both equations of (23) are treated by the explicit GLM. As before, we have also plotted 
by a thick line the boundary � = −� , � ⩽ 0 , of stability region of the test system (23).

8.4 � SSP IMEX GLMs with p = q = 4 and r = s = 5

Here, we show the construction of methods with linearly spaced abscissa vector 
� = [0, 1∕4, 1∕2, 3∕4, 1]T.

Consider first the implicit methods with r = s = 5 . Following the algorithm for construc-
tion of GLMs with IRKS, and assuming that � = 0 , we obtain a possibly A- and L-stable fam-
ily of methods with p = q = 4 depending on �̂1 , �̂2 , �̂3 , �̂4 , and l̂21 , l̂31 , l̂32 , l̂41 , l̂42 , l̂43 . Then, 
solving the minimization problem (46) with inequality constrains (43), additional inequality 

A
∗ =

⎡⎢⎢⎢⎢⎢⎣

0 0 0 0

0.5015095193979003096 0 0 0

0.3509907446284340617 0.5131855222025055076 0 0

0.2639478681292023099 0.3886688787223385316 0.5125407700599630123 0

⎤⎥⎥⎥⎥⎥⎦

,

U
∗ =

⎡⎢⎢⎢⎢⎢⎣

0.0009458256048679615 0.1214065990432195876 0.1130202511459750579 0.0050812239544181834

0.0005888717568407858 0.0902775318063270008 0.0703665492976113533 0.0395610633040175212

0.0102745857744406272 0.0796000995468820021 0.0492473538418985049 0.0430982309858525754

0.0180937297751885805 0.0818334750346923066 0.0454737598765323415 0.0347921276431494769

⎤⎥⎥⎥⎥⎥⎦

,

B
∗ =

⎡⎢⎢⎢⎢⎢⎣

2.2523296901935043401 3.4841041337806903118 2.1095408916438571722 0.2828744206433550248

2.0266130529703889071 1.1693636869010657149 1.7365291750506974032 0.8169626379955447777

1.3710912691067697903 0.9340310971745189184 1.0075419617259765482 0.4119239972830878316

2.3043455790790701248 2.1974986473423812329 0.5687494664546820081 0.0039757675493384804

⎤⎥⎥⎥⎥⎥⎦

,

V
∗ =

⎡
⎢⎢⎢⎢⎢⎣

0.0839854310784300597 1.3332465780780297849 0.4161471500438139899 0.2218548862816888858

0.0460850398016848498 0.3884292884391450126 0.2929123438994835803 0.1081374169435784128

0.0198429714688718073 0.2576947981446385273 0.4012379283837833029 0.1233403363848953670

0.4699603258691165015 0.3997486346842408621 0.3233631438416656100 0.1263473520986416248,

⎤
⎥⎥⎥⎥⎥⎦

.

T =

⎡⎢⎢⎢⎢⎢⎣

9.9312154657332446400 − 2.0146699867246063439 − 0.3988369450540766616 0.9947940427446191511

4.1571133295008636574 1.1048113490974887666 − 0.7167913653652819087 0.4047371530992648852

3.9085442387259372084 − 0.9421513049687170538 0.6916877872459864308 − 0.4433754866009009206

8.6910476438960921177 − 5.0664338248695413190 1.8156461397803871157 0.0062476888389285992.

⎤⎥⎥⎥⎥⎥⎦

.
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constrains � ⩽ 3∕2 , with respect to � , �̂1 , �̂2 , �̂3 , �̂4 , l̂21 , l̂31 , l̂32 , l̂41 , l̂42 , l̂43 , and coefficients of 
the transformation matrix T̂ defined in Sect. 6 we obtain the method with coefficients

The transformation matrix T̂  is

 For this method CI = 1.50 and CI,eff = 0.30.
Consider next the explicit methods with r = s = 5 . Following again the algorithm for 

construction of GLMs with IRKS, assuming � = 1∕120 , we obtain a family of methods 
with p = q = 4 depending on the parameters �1 and �2 , �3 , �4 , l21 , l31 , l32 , l41 , l42 , l43 , appear-
ing in the algorithm for construction of such methods. Then, assuming that the method 
is internally consistent with the implicit formula, and solving the minimization problem 
(47) with inequality constrains (42), with respect to �1 , �2 , �3 , �4 , l21 , l31 , l32 , l41 , l42 , l43 , and 
coefficients of the transformation matrix T defined in Sect. 6 we obtain the method with 
coefficients

Â
∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1026541498671639909 0 0 0 0

0.2104155077712366174 0.1026541498671639909 0 0 0

0.1804998115106030666 0.2534396011077829942 0.1026541498671639909 0 0

0.2003687340719781937 0.2439474023536451122 0.2682968838612916433 0.1026541498671639909 0

0.2149197220271112059 0.1581215733769807394 0.3172668506621374553 0.2501678379902111984 0.1026541498671639909

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Û
∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0017507900134227017 6.7318737597927559E−6 0.0082536311487357817 0.0025916661167807678 0.0889139326544405459

0.0019218950799270200 0.0153852640332281136 0.0033976988086306140 0.0007088417863984310 0.0798426778368396765

0.0017364066200722539 0.0292329576498193698 0.0118118331818167014 0.0006080626386883765 0.0580697654240866400

0.0017802957004428544 0.0197052651766038336 0.0123868943992437104 0.0045691459046282445 0.0630724894349725606

0.0019580708478763794 0.0295676070591021954 0.0190222957547033207 0.0019903154389705835 0.0491617451510652119

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B̂
∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.1468433169622039047 2.3405008080551537294 1.7841703189743897771 0.4311585694294190066 1.3259069005534106168

2.0078700993191591248 2.7420623489697215595 1.7184046037628132188 1.3041945818295646563 4.0106835821401073206

1.4965888464053731523 3.6965462647148686951 2.5218698514795293370 0.2407683861233892659 0.7404154461834526408

2.2482095497141571747 2.6022072354803587441 1.0770223349882140535 0.4094948656674662311 1.2592862733592327402

2.2220977581748032127 1.5616721955831628766 3.2880560875611528866 2.3649135447779883497 0.0707859309044374350

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V̂
∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0841806297003035179 0.1445868040035408743 0.0597211973759077311 0.0883875633999846101 0.6227081135575271315

0.0164710882084377213 0.2717470552864313290 0.1775186015447681358 0.0462095028803371321 0.4988856025358828410

0.0249505576198493679 0.2488324478642199359 0.1028214020821387652 0.0829039865553031797 0.5066858592053278452

0.0125590807458929075 0.3048632723463564468 0.0618426050649928313 0.0361814272630941736 0.5918787314136294937

0.0134457748882583137 0.2815712602369490900 0.1247424628839976307 0.0770881278411806196 0.5050694856680322144

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

T̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

9.8676314416359738694 − 3.8337896663560231320 2.2828585446599413632 − 0.9963640019082533808 0.3990323296250162779

9.9438557561834643654 1.3287941157362032311 0.3494284712595161364 0.0088497314991052999 − 0.0193471432429202003

9.5299909846460711572 − 1.4079148066903179087 − 0.0945342619447120952 0.0741972063564250021 0.0108235351662332993

9.9508781269033486420 − 2.6971995980785123385 0.5964460283973141386 0.0578375764252724983 − 0.0598537993899977968

9.8770856074444001632 − 0.8698331280516334402 − 0.0535877352562708953 0.0110452038173330995 − 0.0071159149018987998

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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 The transformation matrix T is

A
∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0.4417111030737873338 0 0 0 0

0.1644343031042212071 0.4670483511022344381 0 0 0

0.1187370743815824674 0.3141283116784794731 0.4264255194988550945 0 0

0.3040093516679691182 0.1045601034886504757 0.1442055205755064217 0.5216743019921853023 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

U
∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0076806958523112218 0.0478701592959415731 0.0241709637804630051 0.0010308738787743445 0.0381561234137053128

0.0022634097775238769 0.0686580863412751056 0.0130415986469209753 0.0247862415621660135 0.0106358678427780174

0.0087427810827810142 0.0652183806083473705 0.0139297728377206279 0.0228954050304003819 0.0072834932535713101

0.0209069931254498558 0.0676293150628618826 0.0056344241585976988 0.0136600748981572729 0.0110825948120292142

0.0100241092868467783 0.0575852115944299527 0.0160960448723609398 0.0052610767269572500 0.0309069335078178293

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B
∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.8819612887953393642 5.0043090699215476939 2.0995165692335877709 6.8617502191233721408 0.0011234657325213515

1.9206733619511261488 0.4821259078151781854 1.6331758837459723527 0.0003381339665351838 1.3002243537592648E-8

1.5030209051013873098 2.2971252767163813125 5.0172927322943649209 3.5055420003915285753 3.9177525501767901933

1.5486640271260079534 3.1570183970553966590 4.5974747524186174491 0.8162059845956186543 0.0000130076581489195

1.3377503680409932720 4.5363835052551853105 0.8692321023640166183 3.2156629072829075608 0.0408453755572449678

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V
∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1132616353927589386 0.6248876336617833866 0.1114608438338539979 0.1208357248037200834 0.2224463199955226397

0.0560706772836316892 0.5817947723551945359 0.0434324775608005962 0.0857375633501667642 0.1540455505806404501

0.0782693037783967266 0.6967440452100281788 0.0875617105558678103 0.1635292391804090357 0.1267132706668479554

0.3699451490453822815 0.3083386489780842917 0.2717050114372367676 0.0973196856754897895 0.0507366091716716645

0.1382837896426468020 0.3819407511844215204 0.1672277493321670036 0.1613457684349285468 0.1200621960206889257

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

9.9732827471037548802 7.7604409358255184833 − 5.2750271211949624960 2.1565953647775586647 − 0.7017935910636133101

7.4995710528317202341 − 5.3616956666003137596 3.1165918247111466515 − 1.6684153192062349780 0.8309449754965087017

9.5508859592357649431 4.7345376332878284716 0.5797129982138089796 − 1.0253011334005798258 0.6474740453290085368

9.9999974288807748108 3.0234555590554425134 − 5.8839911389117435802 4.1263562371023380415 − 2.0325937343364021657

8.4712414148115809235 2.0836629359772343458 − 3.0564540330561087510 2.1970763858800745705 − 1.2564675035475039096

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Fig. 13   Stability region SE (thick line) of explicit GLM with p = q = 4 , s = r = 5 , and stability region of 
RK method of order p = 4 (thin line)
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For this method CE = 0.63 , CE,eff = 0.13 , and the region of absolute stability is plotted in 
Fig 13.

The SSP coefficients for the resulting IMEX scheme are CIMEX = 0.63 and 
CIMEX,eff = 0.13 . Stability region AIMEX of the resulting IMEX scheme is plotted in 
Fig.  14. This region is bounded and extends to about � = ±� = −6.00 along the lines 
� = ±� . We have also plotted on this figure by a thick line the boundary � = −� , � ⩽ 0 , 
of stability region of the test system (23). We have also plotted on Fig. 15 spectral radius 
�(�IMEX) of the stability matrix �IMEX(�, �) versus � for � ∈ [−8, 0] and � = s� , for 
s = 0,−0.1,−0.2,⋯ ,−1 . The spectral radius �(�IMEX) is plotted by thick solid line for 

-7 -6 -5 -4 -3 -2 -1 0
0

2

4

6

Fig. 14   Stability region AIMEX (shaded region) of IMEX method with p = q = 4 and s = r = 5 . The bound-
ary � = −� , � ⩽ 0 , of stability region of the test system (23) is plotted by a thick line

-8 -7 -6 -5 -4 -3 -2 -1 0
0

0.5

1.0
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2.0

(M
IM

E
X
)

Fig. 15   Spectral radius �(�IMEX) of the stability matrix �IMEX(�, �) versus � for � = s� , 
s = 0,−0.1,−0.2,⋯ ,−1 , for IMEX method with p = q = 4 , r = s = 5

-7 -6 -5 -4 -3 -2 -1 0
0

2

4

6

Fig. 16   Stability region AE (shaded region) of numerical scheme, where both equations of (23) are treated 
by explicit GLM with p = q = 4 and r = s = 5 . The boundary � = −� , � ⩽ 0 , of stability region of the test 
system (23) is plotted by a thick line
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s = 0 , thick dotted line for s = −1 , and by thin solid lines for the remaining values of s. 
The line corresponding to �(�IMEX) = 1 is plotted by a thin dash-dot line. For compari-
son we have also plotted on Fig. 16 stability region AE of the numerical scheme, where 
both equations of (23) are treated by the explicit GLM. As before, we have also plotted 
by a thick line the boundary � = −� , � ⩽ 0 , of stability region of the test system (23).

9 � Starting and Finishing Procedures

To start the integration with IMEX method (36), we have to compute the starting vectors

where

This can be done in many different ways and in what follows, we describe the strategy to 
compute x[0] and z[0] using initial values x0 = x(t0) and z0 = z(t0) and approximations xk and 
zk of order p to x(t0 + kh) and z(t0 + kh) , k = 1, 2,⋯ , p . This strategy was first suggested in 
the context of diagonally implicit multistage integration methods by Butcher [3], and then 
described in more detail in [6, 7] in the context of GLMs.

Putting

we have

where Nx(t, h) and Nz(t, h) are Nordsieck vectors corresponding to x(t) and z(t), i.e.,

For methods with r = p + 1 , these Nordsieck vectors can be approximated by

x
[0]

= (T ⊗ I)x[0], z
[0]

= (�T ⊗ I)z[0],

x[0] =

p∑
k=0

(qk ⊗ I)hkx(k)(t0) + O(hp+1), z[0] =

p∑
k=0

(�qk ⊗ I)hkz(k)(t0) + O(hp+1).

Q =
[
q0 q1 ⋯ qp

]
∈ ℝ

r×(p+1), Q̂ =
[
q̂0 q̂1 ⋯ q̂p

]
∈ ℝ

r×(p+1),

(48)x[0] =(Q⊗ I)Nx(t0, h) + O(hp+1),

(49)z[0] =(�Q⊗ I)Nz(t0, h) + O(hp+1),

Nx(t, h) =

⎡⎢⎢⎢⎣

x(t)

hx�(t)

⋮

hpx(p)(t)

⎤
⎥⎥⎥⎦
, Nz(t, h) =

⎡
⎢⎢⎢⎣

z(t)

hz�(t)

⋮

hpz(p)(t)

⎤
⎥⎥⎥⎦
.

(50)

⎡⎢⎢⎢⎣

x(t0)

hx�(t0)

⋮

hpx(p)(t0)

⎤⎥⎥⎥⎦
= (S⊗ I)

⎡⎢⎢⎢⎣

x(t0)

x(t0 + h)

⋮

x(t0 + ph)

⎤⎥⎥⎥⎦
+ O(hp+1),



746	 Communications on Applied Mathematics and Computation (2021) 3:719–758

1 3

where the matrix S can be obtained by expanding x(t0 + kh) and z(t0 + kh) into Taylor 
series around t0 and comparing terms of the same order on both sides of the resulting rela-
tions. The matrices S corresponding to p = 1 , 2, 3, and 4, are listed in [6, 7] but to make 
this paper self-contained these matrices are also listed below. We have

for p = 1 and p = 2 , and

for p = 3 and p = 4.
It follows from relations (48), (49), (50) and (51) that

Based on these relations, we propose to compute approximations to x[0] and z[0] from the 
equations

The approximations xk and zk to x(t0 + kh) and z(t0 + kh) , k = 1, 2,⋯ , p , can be computed 
by IMEX RK methods of order p, discussed, for example, in [1, 2, 8, 33, 40].

(51)

⎡
⎢⎢⎢⎣

z(t0)

hz�(t0)

⋮

hpz(p)(t0)

⎤
⎥⎥⎥⎦
= (S⊗ I)

⎡
⎢⎢⎢⎣

z(t0)

z(t0 + h)

⋮

z(t0 + ph)

⎤
⎥⎥⎥⎦
+ O(hp+1),

S =

�
1 0
−1 1

�
, S =

⎡⎢⎢⎣

1 0 0
−

3
2

2 −
1
2

1 − 2 1

⎤⎥⎥⎦

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

−
11
6

3 −
3
2

1
3

2 − 5 4 − 1

−1 3 − 3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

−
25
12

4 − 3 4
3

−
1
4

35
12

−
26
3

19
2

−
14
3

11
12

−
5
2

9 − 12 7 −
3
2

1 − 4 6 − 4 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x[0] =(QS⊗ I)

⎡
⎢⎢⎢⎣

x(t0)

x(t0 + h)

⋮

x(t0 + ph)

⎤
⎥⎥⎥⎦
+ O(hp+1),

z[0] =(�QS⊗ I)

⎡
⎢⎢⎢⎣

z(t0)

z(t0 + h)

⋮

z(t0 + ph)

⎤
⎥⎥⎥⎦
+ O(hp+1).

x[0] =(QS⊗ I)

⎡⎢⎢⎢⎣

x0
x1
⋮

xp

⎤⎥⎥⎥⎦
, z[0] = (�QS⊗ I)

⎡⎢⎢⎢⎣

z0
z1
⋮

zp

⎤⎥⎥⎥⎦
.
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We describe now the finishing procedure following the presentation in [7]. After com-
pleting the integration with IMEX GLMs (3) and (4), we have computed the vectors

We then compute

where qk = q̂k = ek+1 , k = 0, 1,⋯ , p . These vectors approximate the Nordsieck vectors 
Nx(tend, h) and Nz(tend, h) at the endpoint tend of the interval of integration, and x[N]1  and z[N]1  
are the required approximations to x(tend) and z(tend) , i.e.,

x
[N]

= (T ⊗ I)x[N], z
[N]

= (�T ⊗ I)z[N].

x[N] =(T−1 ⊗ I)x
[N]

=

p∑
k=0

(qk ⊗ I)hkx(k)(tend) + O(hp),

z[N] =(�T−1 ⊗ I)z
[N]

=

p∑
k=0

(�qk ⊗ I)hkz(k)(tend) + O(hp),

x
[N]

1 = x(tend) + O(hp), z
[N]

1 = z(tend) + O(hp).
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Fig. 17   Error versus stepsize (double logarithmic scale plot) for IMEX-GLMp2, IMEX-GLMp3 and IMEX-
GLMp4 applied to problem (52)
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10 � Numerical Experiments

10.1 � ODEs

We now test the methods derived in Sect.  8 on four examples of ordinary partitioned 
systems of differential equations. The results reported in this section have been obtained 
using the starting procedure described in Sect. 9. All the approximations to the solution at 
linearly spaced points, needed for the starting procedure, and all the reference solutions, 
have been computed by Matlab code ode15s with AbsTol = eps and RelTol = 102 ∗ eps , 
where eps stands for double precision machine Epsilon, i.e., eps ≈ 2.22 ∗ 10−16 . For each 
selected test, we have plotted in double logarithmic scale the maximum of the infinity 
norm of the global error all over the integration grid, versus the stepsize h (see Figs. 17, 
18, 19, 20).

Example 1  ([22]) The van der Pol equation:
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Fig. 18   Error versus stepsize (double logarithmic scale plot) for IMEX-GLMp2, IMEX-GLMp3 and IMEX-
GLMp4 applied to problem (53)
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t ∈ [0, tend] , tend = 0.551 39 , 0 < 𝜖 ≪ 1 , with initial conditions

We consider here a stiff case where � = 10−6.

Example 2  ([27, 46]) Problem in biochemistry:

t ∈ [0, tend] , tend = 50 . The initial conditions are

(52)

{
x�(t) = z(t),

z�(t) =
((

1 − x(t)2
)
z(t) − x(t)

)
∕�,

x(0) = 2, z(0) = −
2
3
+

10
81

� −
292
2 187

�2 −
1 814
19 683

�3 + O(�4).

(53)
{

x�(t) =
(
z(t) − 1

)
x(t) + 0.99z(t),

z�(t) = 1 000
(
x(t) − z(t) − x(t)z(t)

)
,
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Fig. 19   Error versus stepsize (double logarithmic scale plot) for IMEX-GLMp2, IMEX-GLMp3 and IMEX-
GLMp4 applied to problem (54)
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Example 3  ([11, 27]) Nonlinear chemical problem of Robertson:

t ∈ [0, tend] , tend = 5 . The initial conditions are

Example 4  The differential system from [27]:

x(0) = 1, z(0) = 0.

(54)

⎧⎪⎨⎪⎩

x�1(t) = −0.04x1(t) + 0.01x2(t)z(t),
x�2(t) = 30z(t)2,
z�(t) = 400x1(t) − 100x2(t)z(t) − 3 000z(t)2,

x1(0) = 1, x2(0) = 0, z(0) = 0.

log10 (h)

-10

-8

-6

-4

-2

lo
g

10
( 

||e
h
|| 

)

Slope p2
IMEX-GLMp2

log10 (h)

-10

-8

-6

-4

-2

lo
g

10
( 

||e
h
|| 

)

Slope p3
IMEX-GLMp3

-4.2 -4.0 -3.8 -3.6 -3.4 -3.2 -3.0 -2.8 -2.6

-4.2 -4.0 -3.8 -3.6 -3.4 -3.2 -3.0 -2.8 -2.6

-4.2 -4.0 -3.8 -3.6 -3.4 -3.2 -3.0 -2.8 -2.6
log10 (h)

-10

-8

-6

-4

-2

lo
g

10
( 

||e
h
|| 

)

Slope p4
IMEX-GLMp4

Fig. 20   Error versus stepsize (double logarithmic scale plot) for IMEX-GLMp2, IMEX-GLMp3 and IMEX-
GLMp4 applied to problem (55)
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t ∈ [0, tend] , tend = 10 . The function R(t) is defined by

and the initial conditions are

We applied the methods of order p = 2 , p = 3 , and p = 4 introduced in Sect. 8 to prob-
lems (52)–(55). Figures 17, 18, 19, 20 confirm that all methods achieve the expected order 
of convergence for large range of stepsizes. We note a limiting accuracy of 10−12 for the 
method order p = 4 when applied to the van der Pol problem (52).

10.2 � Semi‑discretized Partial Differential Equations

We now test the methods derived in Sect. 8 on two examples of ordinary partitioned sys-
tems of differential equations arising from spatial discretization of partial differential 
equations.

Example 5  Shallow water model [38, 40].

We consider a one-dimensional model of shallow water flow:

(55)

⎧⎪⎪⎨⎪⎪⎩

x�1(t) = 0.1
�
z1(t) − x1(t)

�
,

x�2(t) = 0.87
�
z2(t) − x2(t)

�
− 11

�
x2(t) − x3(t)

�
,

x�3(t) = 1.8
�
x2(t) − x3(t)

�
− 13

�
x3(t) − 270

�
,

z�1(t) = 250
�
(R(t) − 1)z1(t) + x1(t)

�
,

z�2(t) = 93z1(t) − 0.26
�
z2(t) − x2(t)

�
,

R(t) = −0.004 8
(
z2(t) − 660.2

)
− 0.032

(
x3(t) − 273.9

)
,

x1(0) = 1, x2(0) = 302.2, x3(0) = 223.9, z1(0) = 1, z2(0) = 660.2.

Fig. 21   Evolution of the shallow water model (56), with � = 10−8 and t ∈ [0, 0.25]
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where h is the water height with respect to the bottom and hv is the flux of the velocity 
field. We use periodic boundary conditions and initial conditions at t0 = 0

with x ∈ [0, 1] . For this problem the space derivative has been discretized by a fifth order 
finite difference weighted essentially non-oscillatory (WENO) scheme following the imple-
mentation described in [42]. The evolution of the model is shown in Figs. 21 and 22.

To verify the experimental order of the proposed methods, we considered the case with 
N = 100 spatial points, that results in a system of first-order ODEs of dimension d = 200 . The 
first hundred components, corresponding to ht , are integrated by the explicit method, while the 
rest of the components, corresponding to (hv)t , are integrated by the implicit method.

The numerical results with � = 10−2 and � = 10−8 , reported in Figs. 23 and 24, confirm 
that the methods proposed in this paper have the asymptotic preserving property, but they are 
also asymptotically accurate in the stiff limit for � → 0 (compare [40]). In other words, for 

(56)

⎧⎪⎨⎪⎩

�

�t
h +

�

�x
(hv) = 0,

�

�t
(hv) +

�

�x

�
h +

1
2
h2
�
=

1
�

�
h2

2
− hv

�
,

(57)h(0, x) = 1 +
1

5
sin(8�x), hv(0, x) =

1

2
h(0, x)2
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Fig. 22   Numerical solution to shallow water model, (56) with � = 10−8 and t ∈ [0, 0.25] , computed by 
IMEX-GLMp3, for N = 200 spatial points, and h = 1∕200 . Reference solution (black circles) and numeri-
cal solution computed by IMEX-GLMp3 (red dots)
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small values of � the expected order of convergence matches the theoretical one and no order 
reduction occurs (compare [33, 35]).

Example 6  Population dynamics model — positivity test ( [26, 29]).

We consider the evolution of a population density P according to the model

where x ∈ [0, 1] and t ⩾ 0 . We assume periodic boundary conditions and zero initial condi-
tion, P(0, x) = 0 , x ∈ [0, 1].

This differential equation models the evolution of an ecological population using birth, 
death and migration. A description of the model can be found in [29]. The birth rate, 
b(x, P), has taken to decline nonlinearly with the population density:

(58)
�P(t, x)

�t
= f (t, x) + b(x,P(t, x)) − rdP(t, x) + d

�2P(t, x)
�x2

,
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Fig. 23   Error versus stepsize (double logarithmic scale plot) for IMEX-GLMp2, IMEX-GLMp3 and IMEX-
GLMp4 applied to the discretization of the shallow water problem (56), with N = 100 , by a WENO5 space 
discretization scheme, and � = 10−2
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Fig. 24   Error versus stepsize (double logarithmic scale plot) for IMEX-GLMp2, IMEX-GLMp3 and IMEX-
GLMp4 applied to the discretization of the shallow water problem (56), with N = 100 , by a WENO5 space 
discretization scheme, and � = 10−8

Fig. 25   Evolution of the population dynamics model (58), with d = 0.01 (left) and d = 0.04 (right), for 
t ∈ [0, 1] . Numerical solution computed by IMEX-GLMp3
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The death rate is set equal to one, i.e., rd = 1 . The birth rate rb varies by position according 
to

The forcing term, f(t, x), is taken to be zero for all times t ≠ 0 . At time t = 0 , and for each 
grid point, f is assigned a random value in the interval [0.8, 1.2] according to a uniform 
distribution. Finally, note that we treat models with diffusion, d = 0.01, 0.04 , and without, 
d = 0 . Without diffusion, the population eventually must tend to zero in the first half of the 
domain. Conversely, the diffusive model evolves as shown in Fig. 25 and tends to a non-
zero profile as t increases, see Fig. 26.

In all cases, the analytical solution is non-negative for all times t ≠ 0.
For these tests, we set Dx = 1∕100 and use second-order centered differences to discretize 

the diffusion term. The problem is reformulated as (1), where stiff diffusion term is treated 
implicitly, while the other terms are treated explicitly.

As stated in [29], the preservation of positivity is particularly desirable in this problem 
since it leads to more biologically meaningful population densities and avoids the possibility 
of having reaction terms grow unboundedly (which would happen for P tending to −� ). Exam-
ples of IMEX methods which, for some choice of the stepsize h, return negative approxima-
tions that cause huge error can be found in [29].

We have experimentally determined the largest step size h for which the numerical solution 
maintains the positivity (at least) up to t = 10 . The results reported in Table 1 show that the 
proposed IMEX-GLMs methods preserve the positivity of the numerical solution for larger 
stepsizes with respect to methods analyzed in [29].

b(x,P) = rb(x)
�

� + P
, � = 0.005.

rb(x) =

{
1 if x ∈ [0, 1∕2],
100 if x ∈ (1∕2, 1].

Fig. 26   Steady state (computed 
at t = 10 ) of the population 
dynamics model (58), with 
d = 0.01 and d = 0.04
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Table 1   Problem (58) — critical 
time step values for positivity 
preservation

Method h (d = 0) h (d = 0.01) h (d = 0.04)

IMEX-GLMp2 1.202 3 1.185 5 1.264 4
IMEX-GLMp3 1.345 6 1.352 8 2.567 3
IMEX-GLMp4 1.160 2 1.354 6 2.626 3
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11 � Concluding Remarks

We considered the integration of partitioned systems of ODEs, with stiff and nonstiff com-
ponents, by IMEX general linear methods. For this class of methods we provide formula-
tion, order and stage order conditions, as well as a characterization of SSP IMEX GLMs. 
We then analyzed the stability of these methods with respect to two, uncoupled and cou-
pled, linear test systems, and we introduced a suitable transformation which does not mod-
ify the order, the stage order and the linear stability properties of the methods, but allow 
to obtain methods with larger SSP coefficients. Afterwards, we showed how to determine 
good methods inside the considered class, and provided examples of methods of order 
p = 1, 2, 3 and p = 4 . Finally, after giving information about the starting and the finishing 
procedure, we reported the results of numerical tests on a selection of stiff problems, that 
confirm the good performance of the methods here introduced.

Funding  Open access funding provided by Università degli Studi di Napoli Federico II within the CRUI-
CARE Agreement.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Asher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge-Kutta methods for time-dependent par-
tial differential equations. Appl. Numer. Math. 25, 151–167 (1997)

	 2.	 Asher, U.M., Ruuth, S.J., Wetton, B.: Implicit-explicit methods for time dependent PDE’s. SIAM J. 
Numer. Anal. 32, 797–823 (1995)

	 3.	 Butcher, J.C.: Diagonally-implicit multi-stage integration methods. Appl. Numer. Math. 11, 347–363 
(1993)

	 4.	 Butcher, J.C., Jackiewicz, Z.: Diagonally implicit general linear methods for ordinary differential equa-
tions. BIT 33, 452–472 (1993)

	 5.	 Butcher, J.C., Wright, W.M.: The construction of practical general linear methods. BIT 43, 695–721 
(2003)

	 6.	 Califano, G., Izzo, G., Jackiewicz, Z.: Starting procedures for general linear methods. Appl. Numer. 
Math. 120, 165–175 (2017)

	 7.	 Califano, G., Izzo, G., Jackiewicz, Z.: Strong stability preserving general linear methods with Runge-
Kutta stability. J. Sci. Comput. 76, 943–968 (2018)

	 8.	 Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H.: Extrapolated implicit-explicit Runge-Kutta meth-
ods. Math. Model. Anal. 19, 18–43 (2014)

	 9.	 Conde, S., Gottlieb, S., Grant, Z.J., Shadid, J.N.: Implicit and implicit-explicit strong stability preserv-
ing Runge-Kutta methods with high linear order. J. Sci. Comput. 73, 667–690 (2017)

	10.	 Constantinescu, E.M., Sandu, A.: Optimal strong-stability-preserving general linear methods. SIAM J. 
Sci. Comput. 32, 3130–3150 (2010)

	11.	 Enright, W.H.: Second derivative multistep methods for stiff ordinary differential equations. SIAM J. 
Numer. Anal. 11, 321–331 (1974)

	12.	 Ferracina, L., Spijker, M.N.: An extension and analysis of the Shu-Osher representation of Runge-
Kutta methods. Math. Comput. 74, 201–219 (2004)

http://creativecommons.org/licenses/by/4.0/


757Communications on Applied Mathematics and Computation (2021) 3:719–758	

1 3

	13.	 Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in gen-
eral Runge-Kutta methods. SIAM J. Numer. Anal. 42, 1073–1093 (2004)

	14.	 Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-boundedness in general Runge-
Kutta procedures. Appl. Numer. Math. 53, 265–279 (2005)

	15.	 Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge-Kutta methods. Appl. 
Numer. Math. 58, 1675–1686 (2008)

	16.	 Gottlieb, S.: On high order strong stability preserving Runge-Kutta methods and multistep time discre-
tizations. J. Sci. Comput. 25, 105–127 (2005)

	17.	 Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: High order strong stability preserving time discretizations. J. 
Sci. Comput. 38, 251–289 (2009)

	18.	 Gottlieb, S., Ketcheson, D., Shu, C.-W.: Strong Stability Preserving Runge-Kutta and Multistep Time 
Discretizations. World Scientific, New Jersey (2011)

	19.	 Gottlieb, S., Ruuth, S.J.: Optimal strong-stability-preserving time stepping schemes with fast down-
wind spatial discretizations. J. Sci. Comput. 27, 289–303 (2006)

	20.	 Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization meth-
ods. SIAM Rev. 43, 89–112 (2001)

	21.	 Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. 
Springer-Verlag, New York (1993)

	22.	 Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic 
Problems. Springer Verlag, Berlin (1996)

	23.	 Higueras, I.: On strong stability preserving time discretization methods. J. Sci. Comput. 21, 193–223 
(2004)

	24.	 Higueras, I.: Monotonicity for Runge-Kutta methods: inner product norms. J. Sci. Comput. 24, 97–117 
(2005)

	25.	 Higueras, I.: Representations of Runge-Kutta methods and strong stability preserving methods. SIAM 
J. Numer. Anal. 43, 924–948 (2005)

	26.	 Higueras, I., Happenhofer, N., Koch, O., Kupka, F.: Optimized strong stability preserving IMEX 
Runge-Kutta methods. J. Comput. Appl. Math. 272, 116–140 (2014)

	27.	 Hofer, E.: A partially implicit method for large stiff systems of ODE’s with only few equations intro-
ducing small time-constants. SIAM J. Numer. Anal. 13, 645–663 (1976)

	28.	 Hundsdorfer, W., Ruuth, S.J.: On monotonicity and boundedness properties of linear multistep meth-
ods. Math. Comput. 75, 655–672 (2005)

	29.	 Hundsdorfer, W., Ruuth, S.J.: IMEX extensions of linear multistep methods with general monotonicity 
and boundedness properties. J. Comput. Phys. 225, 2016–2042 (2007)

	30.	 Hundsdorfer, W., Ruuth, S.J., Spiteri, R.J.: Monotonicity-preserving linear multistep methods. SIAM J. 
Numer. Anal. 41, 605–623 (2003)

	31.	 Izzo, G., Jackiewicz, Z.: Strong stability preserving general linear methods. J. Sci. Comput. 65, 271–
298 (2015)

	32.	 Izzo, G., Jackiewicz, Z.: Strong stability preserving multistage integration methods. Math. Model. 
Anal. 20, 552–577 (2015)

	33.	 Izzo, G., Jackiewicz, Z.: Highly stable implicit-explicit Runge-Kutta methods. Appl. Numer. Math. 
113, 71–92 (2017)

	34.	 Izzo, G., Jackiewicz, Z.: Strong stability preserving transformed DIMSIMs. J. Comput. Appl. Math. 
343, 174–188 (2018)

	35.	 Izzo, G., Jackiewicz, Z.: Transformed implicit-explicit DIMSIMs with strong stability preserving 
explicit part. Numer. Algorithms 81, 1343–1359 (2019)

	36.	 Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. John Wiley, Hoboken 
(2009)

	37.	 Jackiewicz, Z., Tracogna, S.: A general class of two-step Runge-Kutta methods for ordinary differen-
tial equations. SIAM J. Numer. Anal. 32, 1390–1427 (1995)

	38.	 Jin, S.: Runge-Kutta methods for hyperbolic systems with stiff relaxation terms. J. Comput. Phys. 122, 
51–67 (1995)

	39.	 Ketcheson, D.I., Gottlieb, S., Macdonald, C.B.: Strong stability preserving two-step Runge-Kutta 
methods. SIAM J. Numer. Anal. 49, 2618–2639 (2011)

	40.	 Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems 
with relaxation. J. Sci. Comput. 25, 129–155 (2005)

	41.	 Ruuth, S.J., Hundsdorfer, W.: High-order linear multistep methods with general monotonicity and 
boundedness properties. J. Comput. Phys. 209, 226–248 (2005)



758	 Communications on Applied Mathematics and Computation (2021) 3:719–758

1 3

	42.	 Shu, C.-W.: High order ENO and WENO schemes for computational fluid dynamics. In: Barth, T.J., 
Deconinck, H. (eds) High-Order Methods for Computational Physics. Lecture Notes in Computational 
Science and Engineering, vol. 9, pp. 439–582. Springer, Berlin (1999)

	43.	 Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing 
schemes. J. Comput. Phys. 77, 439–471 (1988)

	44.	 Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM 
J. Numer. Anal. 45, 1226–1245 (2007)

	45.	 Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretiza-
tion methods. SIAM J. Numer. Anal. 40, 469–491 (2002)

	46.	 Van der Houwen, P.J.: Explicit Runge-Kutta formulas with increased stability boundaries. Numer. 
Math. 20, 149–164 (1972)

	47.	 Wright, W.: General linear methods with inherent Runge-Kutta stability. Ph.D. thesis. The University 
of Auckland, New Zealand (2002)

	48.	 Wright, W.: Explicit general linear methods with inherent Runge-Kutta stability. Numer. Algorithms 
31, 381–399 (2002)

	49.	 Zhang, H., Sandu, A., Blaise, S.: Partitioned and implicit-explicit general linear methods for ordinary 
differential equations. J. Sci. Comput. 61, 119–144 (2014)


	Strong Stability Preserving IMEX Methods for Partitioned Systems of Differential Equations
	Abstract
	1 Introduction
	2 Partitioned GLMs and IMEX Schemes
	3 Stage Order and Order Conditions
	4 Stability Properties of IMEX Schemes
	5 SSP Property of IMEX GLMs
	6 IMEX TGLMs
	7 Characterization of SSP IMEX TGLMs
	8 Construction of SSP IMEX GLMs
	8.1 SSP IMEX TGLMs with  and 
	8.2 SSP IMEX GLMs with  and 
	8.3 SSP IMEX GLMs with  and 
	8.4 SSP IMEX GLMs with  and 

	9 Starting and Finishing Procedures
	10 Numerical Experiments
	10.1 ODEs
	10.2 Semi-discretized Partial Differential Equations

	11 Concluding Remarks
	References




