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Abstract
We propose a p-multilevel preconditioner for hybrid high-order (HHO) discretizations of 
the Stokes equation, numerically assess its performance on two variants of the method, 
and compare with a classical discontinuous Galerkin scheme. An efficient implementa-
tion is proposed where coarse level operators are inherited using L2-orthogonal projec-
tions defined over mesh faces and the restriction of the fine grid operators is performed 
recursively and matrix-free. Both h- and k-dependency are investigated tackling two- and 
three-dimensional problems on standard meshes and graded meshes. For the two HHO for-
mulations, featuring discontinuous or hybrid pressure, we study how the combination of 
p-coarsening and static condensation influences the V-cycle iteration. In particular, two dif-
ferent static condensation procedures are considered for the discontinuous pressure HHO 
variant, resulting in global linear systems with a different number of unknowns and matrix 
non-zero entries. Interestingly, we show that the efficiency of the solution strategy might be 
impacted by static condensation options in the case of graded meshes.

Keywords Stokes equations · Divergence free constraint · Hybrid high-order · 
Discontinuous Galerkin · p-multigrid · Static condensation
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1 Introduction

In this work we develop and numerically validate p-multigrid solution strategies for non-
conforming polytopal discretizations of the Stokes equations, governing the creeping flow 
of incompressible fluids.
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For the sake of simplicity, we focus on a Newtonian fluid with uniform density and 
unit kinematic viscosity. Given a polygonal or polyhedral domain 𝛺 ⊂ ℝd , d ∈ {2, 3} , with 
boundary �� , the Stokes problem consists in finding the velocity field u ∶ � → ℝd and the 
pressure field p ∶ � → ℝ , such that 

where n denotes the unit vector normal to �� pointing out of � , gD and gN denote, respec-
tively, the prescribed velocity on the Dirichlet boundary 𝜕𝛺D ⊂ 𝜕𝛺 and the prescribed 
traction on the Neumann boundary ��N∶ = �� ⧵ ��D , while f ∶ � → ℝd is a given body 
force. For the sake of simplicity, it is assumed in what follows that both ��D and ��N have 
non-zero (d − 1)-dimensional Hausdorff measure (otherwise, additional closure conditions 
are needed).

Our focus is on new generation discretization methods for problem (1) that support gen-
eral polytopal meshes and high-order: hybridhigh-order (HHO) and discontinuous Galer-
kin (DG) methods.

HHO discretizations of the Stokes equations have been originally considered in [2] 
and later extended in [38] to incorporate robust handling of large irrotational body forces. 
Other extensions include their application to the Brinkman problem, considered in [18], 
Stokes equations [20, 35, 36]; see also [32, Chapters 8 and 9] for further details. In this 
work, we consider two HHO schemes that are novel variations of existing schemes with 
improved features. The first scheme, based on a hybrid approximation of the velocity along 
with a discontinuous approximation of the pressure, is a variation of the one considered in 
[32, Chapter 8] including two choices for the polynomial degree of the element velocity 
unknowns in the spirit of [30] (see also [32, Section 5.1]). The second scheme, inspired by 
the hybridizable discontinuous Galerkin (HDG) method of [52], see also [47], hinges on 
hybrid approximations of both the velocity and the pressure and includes, with respect to 
the above reference, a different treatment of viscous terms that results in improved orders 
of convergence. In both cases, the Dirichlet condition on the velocity is enforced weakly in 
the spirit of [20].

Since the pioneering works [23–27] dating back to the late 1980s, DG methods have 
gained significant popularity in computational fluid mechanics, boosted by the 1997 land-
mark papers [9, 10] on the treatment of viscous terms. The extension of DG methods to 
general polyhedral meshes was systematically considered in [33, 34]. Crucially, this exten-
sion paved the way to adaptive mesh coarsening by agglomeration, a strategy proposed in 
[14] and exploited in [13, 15] in practical CFD applications to provide high-order accurate 
geometry representation with arbitrarily coarse meshes. More recent developments, includ-
ing hp-versions and the support of meshes with small faces, can be found in [3, 5]; see also 
the recent monograph [21]. Our focus is on an equal-order approximation with stabilized 
pressure-velocity coupling in the spirit of [28] and a treatment of the viscous term based 
on the Bassi-Rebay 2 (BR2) method of [10]. Related works include [11, 31]; see also [34, 
Chapter 6] and references therein.

(1a)−Δu + ∇p = f in �,

(1b)∇ ⋅ u = 0 in �,

(1c)u = gD on ��D,

(1d)−n ⋅ ∇u + pn = gN on ��N,
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p-Multilevel solvers, extending the original ideas of [53] on spectral element mul-
tigrid, are well suited for both HHO and DG methods because the process of build-
ing coarse level operators based on polynomial degree reduction is straightforward and 
inexpensive. The purpose of applying iterative solvers to coarse problems is twofold: 
on the one hand, a coarser operator translates into a global sparse matrix of smaller 
size with fewer non-zero entries, resulting in cheaper matrix-vector products; on the 
other hand, coarse level iterations are best suited to smooth out the low-frequency 
components of the error, that are hardly damped by fine level iterations. In the con-
text of DG discretizations, p-multilevel solvers have been fruitfully utilized in practi-
cal applications, see, e.g., [12, 42, 43, 48, 54]. h-, p- and hp-multigrid solvers for DG 
discretizations of elliptic problems have been considered in [4], where uniform conver-
gence with respect to the number of levels for the W-cycle iteration has been proved, 
and in [19]. Multigrid solvers for HDG discretizations of scalar elliptic problems were 
considered in [29] and, more recently, in [41, 46], where a comparison with DG is car-
ried out. p-Multivel solvers for HDG methods with application to compressible flow 
simulations have been recently considered in [44]. Preconditioners for DG and HDG 
discretizations of the Stokes problem have been considered in [1, 7, 17, 22, 45, 51], 
respectively. Finally, an h-multigrid method for HHO discretizations of scalar diffusion 
problems has been recently proposed in [39]. The main novelty consists, in this case, 
in the use of the local potential reconstruction in the prolongation operator. Notice that 
h-multilevel solvers for HHO face a fundamental difficulty linked to the fact that face 
coarsening is required to damp high frequencies; see again [39] for further details on 
this subject and [16] for an extension of HHO to more general faces.

In this work we propose and numerically assess p-multilevel solution strategies 
for HHO discretizations of the Stokes equations. We specifically investigate how the 
combination of p-coarsening and static condensation influences the performance of the 
V-cycle iteration. To this end, we compare different static condensation strategies. In 
order to preserve computational efficiency, statically condensed coarse level operators 
are inherited using local L2-orthogonal projections defined over mesh faces. Restric-
tion of fine grid operators is performed recursively and matrix-free, relying on L2- 
orthogonal basis functions to further reduce the computational burden. Performance 
assessment is based on accuracy and efficiency of p-multilevel solvers considering DG 
discretizations as a reference for comparison. High-order accurate solutions approxi-
mating smooth analytical velocity and pressure fields are computed over standard and 
severely graded h-refined mesh sequences in both two and three space dimensions. 
Interestingly, the static condensation strategy plays a crucial role in case of graded 
meshes.

The rest of this work is organized as follows. In Sect. 2 we state the HHO and DG 
schemes considered in the numerical tests. The p-multilevel strategy is discussed in 
Sect. 3 and computational aspects are discussed in Sect. 4. Section 5 contains an exten-
sive panel of numerical results that enable one to assess and compare several solution 
strategies. Finally, some conclusions are drawn in Sect. 8.
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2  Three Nonconforming Methods for the Stokes Problem

In this section we describe two HHO and one DG methods for the approximation of 
problem (1) that will be used to assess the performance of the p-multilevel precondi-
tioner. In order to lay the ground for future works on the full nonlinear Navier-Stokes 
equations, the corresponding discrete problems are formulated in terms of the annihi-
lation of residuals.

2.1  Discrete Setting

We consider meshes of the domain � corresponding to couples Mh ∶= (Th,Fh) , where 
Th is a finite collection of polygonal (if d = 2 ) or polyhedral (if d = 3 ) elements such 
that h ∶= maxT∈Th

hT > 0 with hT denoting the diameter of T, while Fh is a finite collec-
tion of line segments (if d = 2 ) or polygonal faces (if d = 3 ). For the sake of brevity, in 
what follows the term “face” will be used in both two and three space dimensions. It is 
assumed henceforth that the mesh Mh matches the geometrical requirements detailed in 
[32, Definition 1.4]. This covers, essentially, any reasonable partition of � into polyhe-
dral sets, not necessarily convex. For each mesh element T ∈ Th , the faces contained in 
the element boundary �T  are collected in the set FT , and, for each mesh face F ∈ Fh , TF 
is the set containing the one or two mesh elements sharing F. We define three disjoint 
subsets of the set FT : the set of Dirichlet boundary faces FD

T
∶= {F ∈ FT ∶ F ⊂ 𝜕ΩD} ; 

the set of Neumann boundary faces FN

T
∶= {F ∈ FT ∶ F ⊂ 𝜕ΩN} ; the set of inter-

nal faces Fi

T
∶= FT ⧵

(
F

D

T
∪ F

N

T

)
 . For future use, we also let Fi,D

T
∶= F

i

T
∪ F

D

T
 . For all 

T ∈ Th and all F ∈ FT , nTF denotes the unit vector normal to F pointing out of T.
HHO methods hinge on local polynomial spaces on mesh elements and faces. For 

given integers � ⩾ 0 and n ⩾ 1 , we denote by ℙ�
n
 the space of n-variate polynomials of 

total degree ⩽ � (in short, of degree � ). For X mesh element or face, we denote by P�(X) 
the space spanned by the restriction to X of functions in ℙ�

d
 . When X is a mesh face, the 

resulting space is isomorphic to ℙ�
d−1

 (see [32, Proposition 1.23]). At the global level, 
we will need the broken polynomial space

Let again X denote a mesh element or face. The local L2-orthogonal projector 
��
X
∶ L2(X) → P

�(X) is such that, for all q ∈ L2(X),

Notice that, above and in what follows, we omit the measure from integrals as it can always 
be inferred from the context. The L2-orthogonal projector on P�(X)d , obtained applying ��

X
 

component-wise, is denoted by ��
X
.

2.2  Local Reconstructions and Face Residuals

The HHO discretizations of the Stokes problem considered in this work hinge on 
velocity reconstructions devised at the element level and obtained assembling diffu-
sive potential reconstructions component-wise. In what follows, we let a mesh element 

P
�(Th)∶ =

{
q ∈ L2(Ω) ∶ q|T ∈ P

�(T) for all T ∈ Th

}
.

∫X

(q − ��
X
q)r = 0, ∀r ∈ P

�(X).
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T ∈ Th be fixed, denote by k ⩾ 0 the degree of polynomials attached to mesh faces, and 
by k� ∈ {k, k + 1} the degree of polynomials attached to mesh elements.

2.2.1  Scalar Potential Reconstruction

The velocity reconstruction is obtained leveraging, for each component, the scalar 
potential reconstruction originally introduced in [37] in the context of scalar diffusion 
problems (see also [30] and [32, Section 5.1] for its generalization to the case of differ-
ent polynomial degrees on elements and faces). Define the local scalar HHO space.

The scalar potential reconstruction operator �k+1
T

 : Vk� ,k

T
→ P

k+1(T) maps a vector of poly-
nomials of Vk′ ,k

T
 onto a polynomial of degree (k + 1) over T as follows: given v

T
∈ V

k� ,k

T
 , 

�k+1
T

v
T
 is the unique polynomial in Pk+1(T) satisfying

Computing �k+1
T

 for each T ∈ Th requires to solve a small linear system. This is an embar-
rassingly parallel task that can fully benefit from parallel architectures.

2.2.2  Velocity Reconstruction

Define, in analogy with (2), the following vector-valued HHO space for the velocity:

The velocity reconstruction �k+1
T

 : Vk�,k

T
→ P

k+1(T)d is obtained setting

where for all i = 1,⋯ , d , v
T ,i

∈ V
k�,k

T
 is obtained gathering the ith components of the poly-

nomials in v
T
 , i.e., v

T ,i
∶ =

(
vT ,i, (vF,i)F∈FT

)
 if vT = (vT ,i)i=1,⋯,d and vF = (vF,i)i=1,⋯,d for all 

F ∈ FT.

2.2.3  Face Residuals

Let T ∈ Th and F ∈ FT . The stabilization bilinear form for the HHO discretiza-
tion of the viscous term in the momentum equation (1a) hinges on the face residual 
ℜk

TF
∶ V

k� ,k

T
→ P

max(k� ,k)(F)d such that, for all v
T
∈ V

k� ,k

T
,

(2)V
k� ,k

T
∶ =

{
v
T
=
(
vT , (vF)F∈FT

)
∶ vT ∈ P

k� (T) and vF ∈ P
k(F) for all F ∈ FT

}
.

∫T

∇�k+1
T

v
T
⋅ ∇wT = ∫T

∇vT ⋅ ∇wT

+
∑
F∈FT

∫F

(
vF − vT

)
∇wT ⋅ nTF , ∀wT ∈ P

k+1(T),

∫T

�k+1
T

v
T
= ∫T

vT .

V
k�,k

T
∶ =

{
v
T
=
(
vT , (vF)F∈FT

)
∶ vT ∈ P

k� (T)d and vF ∈ P
k(F)d for all F ∈ FT

}
.

�k+1
T

v
T
∶ =

(
�k+1
T

v
T ,i

)
i=1,⋯,d

,

ℜk�,k

T
v
T
∶ =

(
ℜk� ,k

TF
v
T ,i

)
i=1,⋯,d

,
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where the scalar face residual �k
�,k

TF
∶ V

k�,k

T
→ P

max(k� ,k)(F) is such that, for all v
T
∈ V

k� ,k

T
,

2.3  HHO Schemes

We consider two HHO schemes based, respectively, on discontinuous and hybrid approxi-
mations of the pressure. In both cases, the Dirichlet boundary condition is enforced weakly, 
considering a symmetric variation of the method discussed in [18].

2.3.1  An HHO Scheme with Discontinuous Pressure

Let again k ⩾ 0 and k� ∈ {k, k + 1} denote the polynomial degrees of the face and 
element unknowns, respectively, and let a mesh element T ∈ Th be fixed. Given 
(u

T
, pT ) ∈ V

k� ,k

T
× P

k(T) , the local residuals rmnt

I,T
((u

T
, pT );⋅) ∶ V

k� ,k

T
→ ℝ of the discrete 

momentum conservation equation and rcnt
I,T
(u

T
;⋅) ∶ P

k(T) → ℝ of the discrete mass conser-
vation equation are such that, respectively: for all v

T
∈ V

k� ,k

T
 and all qT ∈ P

k(T) , 

In the expression of rmnt

I,T
((u

T
, pT );⋅) , 𝜂 > 0 is a user-dependent parameter that has to be 

taken large enough to ensure coercivity. The penalty term where the parameter � appears, 
along with the consistency terms in the second line and the term involving the boundary 
datum gD in the fifth line, are responsible for the weak enforcement of the Dirichlet bound-
ary condition for the velocity. In the numerical tests provided below, � is taken equal to 3.

Define the global vector HHO space

�k
�,k

TF
v
T
∶ = �k

F

(
vF − �k+1

T
v
T

)
− �k�

T

(
vT − �k+1

T
v
T

)
.

(3a)

rmnt

I,T
((u

T
, pT );vT )∶ = ∫T

∇𝔭k+1
T

u
T
∶ ∇𝔭k+1

T
v
T
+

∑
F∈FT

1

hF ∫F

ℜk
TF
u
T
⋅ ℜk

TF
v
T

−
∑
F∈FD

T

∫F

[(
nTF ⋅ ∇𝔭k+1

T
u
T

)
⋅ vF + uF ⋅

(
nTF ⋅ ∇𝔭k+1

T
v
T

)]

+
∑
F∈FD

T

�

hF ∫F

uF ⋅ vF − ∫T

pT (∇ ⋅ vT ) −
∑
F∈FT

∫F

pT (vF − vT ) ⋅ nTF

+
∑
F∈FD

T

∫F

pT (vF ⋅ nTF) −
∑
F∈FD

T

∫F

gD ⋅

(
nTF ⋅ ∇𝔭k+1

T
v
T
+

�

hF
vF

)

−
∑
F∈FN

T

∫F

gN ⋅ vF − ∫T

f ⋅ vT ,

(3b)

rcnt
I,T
(u

T
;qT )∶ = −∫T

(∇ ⋅ uT ) qT −
∑
F∈FT

∫F

(uF − uT ) ⋅ nTF qT

+
∑
F∈FD

T

∫F

(uF ⋅ nTF) qT −
∑
F∈FD

T

∫F

gD ⋅ nTF qT .

V
k� ,k

h
∶ =

{
v
h
=
(
(vT )T∈Th , (vF)F∈Fh

)
∶ vT ∈ P

k� (T)d for all T ∈ Th and vF ∈ P
k(F)d for all F ∈ Fh

}
.
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For all v
h
∈ V

k�,k

h
 and all T ∈ Th , we denote by v

T
∈ V

k� ,k

T
 the restriction of v

h
 to T. The 

global residuals rmnt

I,h

(
(u

h
, ph);⋅

)
∶ V

k� ,k

h
→ ℝ and rcnt

I,h
(u

h
;⋅) ∶ P

k(Th) → ℝ are obtained by 
element-by-element assembly, i.e., for all v

h
∈ V

k�,k

h
 and all qh ∈ P

k(Th),

Scheme I (HHO-dp: HHO scheme with discontinuous pressure) Find 
(u

h
, ph) ∈ V

k� ,k

h
× P

k(Th) such that

2.3.2  An HHO Scheme with Hybrid Pressure

An interesting variation of Scheme I is obtained combining the HHO discretization of the 
viscous term with k� = k + 1 with a hybrid approximation of the pressure inspired by [52]. 
Let T ∈ Th . Given (u

T
, p

T
) ∈ V

k+1,k

T
× V

k,k

T
 , the local residuals rmnt

II,T
((u

T
, p

T
);⋅) ∶ V

k+1,k

T
→ ℝ 

of the discrete momentum and rcnt
II,T

(u
T
;⋅) ∶ V

k,k

T
→ ℝ of the discrete mass conservation 

equations for the HHO scheme with hybrid pressure are such that, for all v
T
∈ V

k+1,k

T
 and 

all q
T
∈ V

k,k

T
 , 

As before, 𝜂 > 0 is a penalty parameter that has to be taken large enough to ensure coer-
civity. The boxed terms are the ones that distinguish the local residuals on the momentum 
and mass conservation equations for the HHO scheme with hybrid pressure from Scheme I 
with k� = k + 1.

(4)rmnt

I,h

(
(u

h
, ph);vh

)
∶ =

∑
T∈Th

rmnt

I,T

(
(u

T
, pT );vT

)
, rcnt

I,h
(u

h
;qh)∶ =

∑
T∈Th

rcnt
I,T
(u

T
;qh|T ).

(5)

{
rmnt

I,h

(
(u

h
, ph);vh

)
= 0, ∀v

h
∈ V

k� ,k

h
,

rcnt
I,h
(u

h
;qh) = 0, ∀qh ∈ P

k(Th).

rmnt

II,T
((u

T
, p

T
);v

T
)∶ = ∫T

∇𝔭k+1
T

u
T
∶ ∇𝔭k+1

T
v
T
+

∑
F∈FT

1

hF ∫F

ℜk
TF
v
T
⋅ ℜk

TF
v
T

−
∑
F∈FD

T

∫F

[(
nTF ⋅ ∇𝔭k+1

T
u
T

)
⋅ vF + uF ⋅

(
nTF ⋅ ∇𝔭k+1

T
v
T

)]

+
∑
F∈FD

T

�

hF ∫F

uF ⋅ vF − ∫T

pT (∇ ⋅ vT ) +
∑
F∈FT

∫F

pF (vT − vF) ⋅ nTF

+
∑
F∈FD

T

∫F

pF (vF ⋅ nTF) −
∑
F∈FD

T

∫F

gD ⋅

(
nTF ⋅ ∇𝔭k+1

T
v
T
+

�

hF
vF

)

−
∑
F∈FN

T

∫F

gN ⋅ vF − ∫T

f ⋅ vT ,

rcnt
II,T

(u
T
;q

T
)∶ = −∫T

(∇ ⋅ uT ) qT +
∑
F∈FT

∫F

(uT − uF) ⋅ nTF qF

+
∑
F∈FD

T

∫F

(uF ⋅ nTF) qF −
∑
F∈FD

T

∫F

gD ⋅ nTF qF .
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Define the global scalar HHO space

The global residuals rmnt

II,h
((u

h
, p

h
);⋅) ∶ V

k+1,k

h
→ ℝ and rcnt

II,h
(u

h
;⋅) ∶ V

k,k

h
→ ℝ are obtained by 

element-by-element assembly of the local residuals.

Scheme II (HHO-hp: HHO scheme with hybrid pressure) Find (u
h
, p

h
) ∈ V

k+1,k

h
× V

k,k

h
 

such that

The HHO method (7) yields a velocity approximation that is pointwise divergence free (as 
can be checked adapting the argument of [52, Proposition 1]). As compared with the HDG 
method proposed in [52], the h-convergence rates for velocity and pressure are improved 
by one order. A key point consists in using an HHO discretization of the viscous term (cf. 
the discussion in [30] and also [32, Section 5.1.6]) with element unknowns for the velocity 
one degree higher than face unknowns. Notice that seeking the velocity in the space Vk+1,k

T
 

as opposed to Vk,k

T
 does not alter the number of globally coupled unknowns, as all velocity 

degrees of freedom attached to the mesh elements can be removed from the global linear sys-
tem by static condensation procedures similar to the ones discussed in Sect. 4.1.2.

2.4  DG Scheme

The third approximation of the Stokes problem is based on discontinuous approximations of 
both the velocity and the pressure. Specifically, we use the BR2 formulation for the vector 
Laplace operator (see [10] and also [34, Section 5.3.2]) together with a stabilized equal order 
pressure-velocity coupling. Fix a polynomial degree k ⩾ 1 and let T ∈ Th . We define the local 
discrete gradient �k

T
∶ H1(Th)

d
→ P

k(T)d×d such that, for all v ∈ H1(Th)
d,

where, for any F ∈ F
i,D

T
 , the jump of v across F is defined as

Introducing, for all F ∈ F
i,D

T
 , the jump lifting operator �k

FT
∶ L2(F)d → P

k(T)d×d such that, 
for all � ∈ L2(F)d and all � ∈ P

k(T)d×d,

it holds, for all v ∈ H1(Th)
d,

V
k,k

h
∶ =

{
q
h
=
(
(qT )T∈Th , (qF)F∈Fh

)
∶ qT ∈ P

k(T) for all T ∈ Th and qF ∈ P
k(F) for all F ∈ Fh

}
.

(7)

⎧⎪⎨⎪⎩

rmnt

II,h
((u

h
, p

h
);v

h
) = 0, ∀v

h
∈ V

k+1,k

h
,

rcnt
II,h

(u
h
;q

h
) = 0, ∀q

h
∈ V

k,k

h
.

∫T

�
k

T
(v) ∶ � = ∫T

∇v|T ∶ � −
∑

F∈F
i,D

T

1

2 ∫F

(
nTF ⊗ [[v]]TF

)
∶ � , ∀� ∈ P

k(T)d×d,

[[v]]TF∶ =

{
v|T − v|T � if F ∈ F

i

T
∩ F

i

T � withT , T
� ∈ Th, T ≠ T �,

2(vT − gD) if F ∈ F
D

T
.

∫T

�
k

FT
(�) ∶ � =

1

2 ∫F

(
nTF ⊗ �

)
∶ � ,
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Given (uh, ph) ∈ P
k(Th)

d × P
k(Th) , the local residuals rmnt

III,T
((uh, ph);⋅) ∶ P

k(T)d → ℝ of the 
discrete momentum equation and rcnt

III,T
((uh, ph);⋅) ∶ P

k(T) → ℝ of the discrete mass equa-
tion are such that, for all vT ∈ P

k(T)d and all qT ∈ P
k(T) , 

 where, for all � ∈ H1(Th) and all F ∈ Fh,

with the understanding that the average operator acts componentwise when applied to vec-
tor and tensor functions, and

In the numerical tests provided below, the stabilization parameter is taken equal to 2 (this 
value, while below the theoretical threshold, leads to invertible systems on all the con-
sidered meshes and experimentally delivers the smallest errors). The global residuals 
rmnt

III,h
((uh, ph);⋅) ∶ P

k(Th)
d
→ ℝ and rcnt

III,h
((uh, ph);⋅) ∶ P

k(Th) → ℝ are obtained by element-
by-element assembly of local residuals.

Scheme III (DG: DG scheme) Find (uh, ph) ∈ P
k(Th)

d × P
k(Th) such that

3  p‑Multilevel Solution Strategy

We consider L coarse problems, indexed as 𝓁 = 1,⋯ , L . Given a polynomial degree k ⩾ 0 
(for Schemes I, II) or k ⩾ 1 (for Scheme III), we set

�
k

T
(v) = ∇v|T −

∑
F∈F

i,D

T

�
k

FT
([[v]]TF).

rmnt

III,T
((uh, ph);vT )∶ = ∫T

�
k

T
(uh) ∶ ∇vT −

∑
F∈F

i,D

T

∫F

[
nTF ⋅ {∇uT − �F�

k

FT
([[uh]]TF)}F

]
⋅ vT

− ∫T

pT (∇ ⋅ vT ) +
∑

F∈F
i,D

T

∫F

{ph}F (vT ⋅ nTF)

− ∫T

f ⋅ vT −
∑
F∈FN

T

∫F

gN ⋅ vT ,

rcnt
III,T

((uh, ph);qT )∶ = ∫T

uT ⋅ ∇qT −
∑

F∈F
i,D

T

∫F

{uh}F ⋅ nTF qT +
∑
F∈Fi

T

hF ∫F

[[ph]]TF qT ,

{�}F∶ =

{
1

2

(
�|T + �|T �

)
if F ∈ F

i

T
∩ F

i

T � with T , T � ∈ Th, T ≠ T �,

�|F otherwise,

𝜂F >

{
max

(
card (FT ), card (FT � )

)
if F ∈ F

i

T
∩ F

i

T � with T , T � ∈ Th, T ≠ T �,

card (FT ) if F ∈ F
D

T
.

rmnt

III,h

(
(uh, ph);vh

)
=

∑
T∈Th

rmnt

III,T

(
(uh, ph);vh|T

)
= 0, ∀vh ∈ P

k(Th)
d,

rcnt
III,h

(
(uh, ph);qh) =

∑
T∈Th

rcnt
III,T

(
(uh, ph);qh|T ) = 0, ∀qh ∈ P

k(Th).
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the reference polynomial degree on the fine level, and denote by k� the polynomial degree 
at level � . Coarsening is achieved taking k�+1 < k� . The notation for the three schemes 
discussed in Sect. 2 is summarized in Table 1. Notice that, for the sake of simplicity, we 
only consider the equal-order version of Scheme I, where both element and face velocity 
unknowns have the same polynomial degree.

3.1  Intergrid Transfer Operators

Denoting by X ∈ Th ∪ Fh a mesh element or face, the prolongation operator 
I
�,X

�+1
∶ P

k�+1 (X) → P
k� (X) from level � + 1 to level � is the injection Pk�+1 (X) ↪ P

k(X) . The 
prolongation operator I0

�
 from level � to level 0 can be recursively defined by the composition 

of one level prolongation operators:

The restriction operator I�+1
�,X

∶ P
k� (X)→P

k�+1 (X) from level � to level � + 1 is simply taken 
equal to the L2-orthogonal projector on Pk�+1 (X) , that is, for all wX,� ∈ P

k� (X) , we set

The restriction operator I�
0
 from level 0 to level � is again obtained by the following 

composition:

It can be checked that I�+1
�,X

 is the transpose of I�,X
�+1

 with respect to the L2(X)-inner prod-
uct. When applied to vector-valued functions, intergrid transfer operators act component-
wise and are denoted using boldface font by I�,X

�+1
 , I�+1

�,X
 . The global restriction operator 

I
�+1

�
∶ V

k�
�
,k�

h
→ V

k�
�+1

,k�+1

h
 for HHO spaces is defined using the following setting: for all 

v
h,�

∈ V
k�
�
,k�

h
,

while the global restriction operator for DG spaces I�+1
�

∶ P
k� (Th)

d
→ P

k�+1 (Th)
d is 

obtained patching the following element restriction operators: for all vh,� ∈ P
k� (Th)

d,

3.2  Inherited Multilevel Operators

For any 𝓁 = 1,⋯ , L , set, for the sake of brevity,

The coarse residuals for the momentum and mass continuity equations for the schemes of 
Sect. 2 corresponding to a velocity-pressure couple at level � are obtained evaluating the 

k0 ∶= k,

I
0

𝓁
= I

0

1
I
1

2
⋯ I

𝓁−1
𝓁

.

(9)I
�+1
�,X

wX,� ∶= ��+1
X

wX,� .

I
𝓁
0
= I

𝓁
𝓁−1

⋯ I
2

1
I
1

0
.

I
�+1

�
v
h,�

∶ =
(
(I�+1

�,T
vT ,�)T∈Th , (I

�+1
�,F

vF,�)F∈Fh

)
,

(
I
�+1
�

vh,�
)
|T∶ = I

�+1
�,T

(vh,�)|T , ∀T ∈ Th.

W�
I,h
∶ = V

k� ,k�
h

× P
k� (Th), W�

II,h
∶ = V

k�+1,k�
h

× V
k� ,k�
h

, W�
III,h

∶ = P
k� (Th)

d × P
k� (Th).
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corresponding fine residuals defined in Sect. 2.3 at the prolongation of the given function, 
i.e., for 𝓁 = 1,⋯ , L,

• Scheme I (HHO-dp)
  Given (u

h,�
, ph,�) ∈ W�

I,h
 , rI,𝓁

(
(u

h,𝓁
, ph,𝓁); ⋅

)
∶ W𝓁

I,h
→ ℝ is such that, for all 

(v
h,�

, qh,�) ∈ W�
I,h

 , 

• Scheme II (HHO-hp)
  Given (u

h,�
, p

h,�
) ∈ W�

II,h
 , rII,𝓁

(
(u

h,𝓁
, p

h,𝓁
); ⋅

)
∶ W𝓁

II,h
→ ℝ is such that, for all 

(v
h,�

, q
h,�

) ∈ W�
II,h

 , 

• Scheme III (DG)
  Given (uh,� , ph,�) ∈ W�

III,h
 , rIII,𝓁

(
(uh,𝓁 , ph,𝓁); ⋅

)
∶ W𝓁

III,h
→ ℝ is such that, for all 

(vh,� , qh,�) ∈ W�
III,h

 , 

Fix ∙ ∈ {I, II, III} , 𝓁 = 0,⋯ , L , and denote by (⋅, ⋅) an inner product in W�
∙,h

 . Let 
Ah,� ∶ W�

∙,h
→ W�

∙,h
 be the operator corresponding to the linear part of the residual r∙,� , i.e., 

for all wh,� ∈ W�
∙,h

 , (Ah,�wh,� , zh,�) = r∙,�(wh,�;zh,�) − r∙,�(0;zh,�) for all zh,� ∈ W�
∙,h

 . Let-
ting bh,� ∈ W�

∙,h
 denote the Riesz representation of the affine part of the residual such that 

(bh,� , zh,�) = r∙,�(0;zh,�) for all zh,� ∈ W�
∙,h

 , the global problem at level � reads as follows: find 
wh,� ∈ W�

∙,h
 such that

(10)

rI,�
(
(u

h,�
, ph,�);(vh,� , qh,�)

)
∶ = rmnt

I,�

(
(u

h,�
, ph,�);vh,�

)
+ rcnt

I,�
(u

h,�
;qh,�)

with rmnt

I,�

(
(u

h,�
, ph,�);vh,�

)
∶ = rmnt

I,h

(
(I0

�
u
h,�

, I
0

�
ph,�);I

0

�
v
h,�

)

and rcnt
I,�
(u

h,�
;qh,�)∶ = rcnt

I,h
(I0

�
u
h,�

;I
0

�
qh,�).

(11)

rII,�
(
(u

h,�
, p

h,�
);(v

h,�
, q

h,�
)
)
∶ = rmnt

II,�

(
(u

h,�
, p

h,�
);v

h,�

)
+ rcnt

II,�
(u

h,�
;q

h,�
)

with rmnt

II,�

(
(u

h,�
, p

h,�
);v

h,�

)
∶ = rmnt

II,h

(
(I0

�
u
h,�

, I
0

�
p
h,�

);I0

�
v
h,�

)

and rcnt
II,�

(u
h,�

;q
h,�

)∶ = rcnt
II,h

(I0

�
u
h,�

;I
0

�
q
h,�

).

(12)

rIII,�
(
(uh,� , ph,�);(vh,� , qh,�)

)
∶ = rmnt

III,�

(
(uh,� , ph,�);vh,�

)
+ rcnt

III,�

(
(uh,� , ph,�);qh,�

)

with rmnt

III,�

(
(uh,� , ph,�);vh,�

)
∶ = rmnt

III,h

(
(I0

�
uh,� , I

0

�
ph,�);I

0

�
vh,�

)

and rcnt
III,�

(
(uh,� , ph,�);qh,�

)
∶ = rcnt

III,h

(
(I0

�
uh,� , I

0

�
ph,�);I

0

�
qh,�

)
.

Ah,�wh,� = bh,� .

Table 1  Notation for the p-multilevel solver. We only consider the equal-order version of Scheme I, where 
both element and face velocity unknowns have the same polynomial degree

Scheme index Scheme label Fine discrete space Coarse discrete spaces Coarsest level

I HHO-dp V
k0,k0

h
 , Pk0 (T

h
) V

k� ,k�

h
 , Pk� (T

h
) k

L
⩾ 0

II HHO-hp V
k0+1,k0
h

 , Pk0 (T
h
) V

k�+1,k�
h

 , Pk� (T
h
) k

L
⩾ 0

III DG P
k0 (T

h
)d , Pk0 (T

h
) P

k� (T
h
)d , Pk� (T

h
) k

L
⩾ 1
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Besides the formal definition given above, coarse level operators can be efficiently inher-
ited from the fine operators relying on the restriction and prolongation operators. This com-
putationally efficient strategy, also known as Galerkin projection, is detailed in Sect. 4.2 
focusing on Scheme I.

3.3  Multilevel V‑Cycle Iteration

The approximate solution wh,� to the global problem at level � < L can be improved by means 
of one V-cycle iteration, as described in the following algorithm:

where dh,�+1 is the restriction of the defect and ch,�+1 is the coarse grid correction. All 
applications of prolongation and restriction operators involved in the multilevel V-cycle 
iteration are performed matrix-free, that is, without assembling the global sparse matrices 
associated to the operators I�+1

�
,I

�
�+1

.
In the pre- and post-smoothing steps, a few iterations of the generalized minimal resid-

ual (GMRES) method preconditioned with an incomplete lower-upper (ILU) factorization 
are performed in order to reduce the error eh,� = wh,� − wh,� . Indeed, the components of the 
error associated with the highest-order basis functions at level � are expected to be damped 
very fast, while the components of the error associated with lower-order basis functions are 
smoothed at a later stage when the recursion reaches coarser levels.

In the numerical tests of Sect. 5 we consider one V-cycle iteration as a preconditioner for 
the FGMRES (flexible GMRES) iteration applied to solve the global problem Ah,0wh,0 = bh,0 . 
We employ the solver and preconditioner framework provided by the PETSc library [8].

4  Computational Aspects

In what follows, we discuss some computational aspects focusing, for the sake of simplic-
ity, on the Scheme  I (HHO with discontinuous pressure). Algebraic objects are denoted 
using sans serif font, with boldface distinguishing matrices from vectors.
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4.1  Static Condensation

4.1.1  Algebraic Expression for the Local Residuals

We assume that local bases for each polynomial space attached to mesh elements and 
faces have been fixed, so that bases for the global approximations spaces for the velocity 
and the pressure can be obtained by taking the Cartesian product of the latter. Possible 
choices of local bases are discussed in [32, Appendix B.1]. In the numerical tests of 
Sect. 5, polynomial spaces over mesh elements are spanned by orthonormalized modal 
bases defined in the physical frame for both DG and HHO discretizations. For HHO 
discretizations, the polynomial spaces over mesh faces are spanned by orthogonal bases 
defined in the reference frame. Accordingly, the algebraic counterpart of restriction and 
prolongation operators are unit diagonal rectangular matrices, and their action on vec-
tors is implemented matrix-free as inexpensive vector shrink and expansion operations, 
respectively. Similarly, the Galerking projection is implemented as a sub-block extrac-
tion; see Sect. 4.2 for further details.

The unknowns for a mesh element T ∈ Th correspond to the coefficients of the expan-
sions of the velocity and pressure in the selected local bases. Assuming that the veloc-
ity unknowns are ordered so that element velocities come first and boundary velocities 
next, these coefficients are collected in the following vectors:

where the block partition of the vector �
T
 is the one naturally induced by the selected 

ordering of velocity unknowns.
The local matrices corresponding to the HHO discretization of the viscous term (first 

four terms in the right-hand side of (3a)) and of the pressure-velocity coupling (first 
three terms of the right-hand side of (3b)) are

where again the block partition is the one induced by the ordering of velocity unknowns. 
Details on the construction of the matrix �T can be found in [32, Appendix B.2].

Remark 1 (Block structure) Denoting by N the number of faces of T, the block structure of 
the matrix �T can be further detailed as follows:

Assume that the velocity unknowns attached to T and its faces are ordered by component. 
Since the viscous term is modeled in (1a) applying the Laplace operator to each velocity 
component, each block in the decomposition (13) is itself block-diagonal and is efficiently 
constructed starting from the corresponding matrix for the scalar Laplace operator.

�
T
=

[
�T

��T

]
and �T ,

�T =

[
�TT �T�T

��TT ��T�T

]
, �T =

[
�TT �T�T

]
,

(13)�T =

⎡
⎢⎢⎢⎣

�TT �TF1
⋯ �TFN

�F1T
�F1F1

⋯ �F1FN

⋮ ⋮ ⋮

�FNT
�FNF1

⋯ �FNFN

⎤
⎥⎥⎥⎦
.
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Introducing the vector representations �mnt

I,T
=

[
�
mnt

I,T

�
mnt

I,�T

]
 and �cnt

I,T
 of the residual linear 

forms defined by (3), ��T of the terms involving the boundary data corresponding to the 
last two terms in the right-hand side of (3a), �T of the term involving the volumetric 
body force in (3a), and �̂�T of the last term in the right-hand side of (3b), it holds

4.1.2  Static Condensation Strategies

The discrete problem (5) is obtained enforcing that the global residuals are zero, which 
requires the solution of a global linear system. The size of this linear system can be 
reduced by statically condensing the element velocity unknowns and, possibly, the pres-
sure unknowns corresponding to high-order modes inside each element. In what fol-
lows, we discuss two possible static condensations procedures leading to global systems 
with different features.

● HHO–dp v–cond: Static condensation of velocity element unknowns

The first static condensation procedure hinges on the observation that, given a mesh 
element T ∈ Th , the velocity unknowns collected in �T are not directly coupled with 
unknowns attached to mesh elements other than T. As a result, enforcing that the residu-
als in the left-hand side of (14) are zero, �T can be locally eliminated by expressing it in 
terms of ��T and �T by computing the Schur complement

of the block �TT in the matrix in the right-hand side of (14). With this static condensation 
strategy, the zero residual condition translates into

● HHO–dp v&p–cond: Static condensation of velocity element unknowns and high-
order pressure modes

  
The second static condensation strategy was originally suggested in [2] in the frame-

work of HHO methods and later detailed in [38, Section 6] (this strategy is similar to the 
one discussed in [49] in the context of hybridizable DG methods). Assume that the basis 
for the pressure inside each mesh element T ∈ Th is selected so that the first degree of 
freedom corresponds to the mean value of the pressure inside T and the remaining basis 
functions are L2-orthogonal to the first (this condition typically requires the use of modal 

(14)
⎡
⎢⎢⎣

�
mnt

I,T

�
mnt

I,�T

�
cnt

I,T

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

�TT �T�T �
⊺

TT

��TT ��T�T �
⊺

T�T

�TT �T�T �

⎤
⎥⎥⎦

⎡
⎢⎢⎣

�T

��T

�T

⎤
⎥⎥⎦
−

⎡
⎢⎢⎣

�T

��T

�̂�T

⎤
⎥⎥⎦
.

(15)�
�
T
=

[
�
�
�T�T

�
�
�TT

�
�
T�T

�
�
TT

]
∶ =

[
��T�T �

⊺

T�T

�T�T �

]
−

[
��TT

�TT

]
�
−1
TT

[
�T�T �

⊺

TT

]

�
�
T

[
��T

�T

]
=

[
��T

�̂�T

]
−

[
��TT

�TT

]
�
−1
TT
�T .
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bases). Let now a mesh element T ∈ Th be fixed. The above choice for the pressure basis 
induces the following partitions of the pressure unknowns and of the pressure-velocity cou-
pling matrix:

where �T ∈ ℝ is the mean value of the pressure inside T, �̃T is the vector corresponding 
to high-order pressure modes, and the matrix �T has been partitioned row-wise according 
to this decomposition. Enforcing that the residuals are zero in (14) and rearranging the 
unknowns and equations, we infer that the discrete solution satisfies

The only unknowns that are globally coupled are those collected in the subvector 
[
��T

�T

]
 , 

while the remaining unknowns collected in 
[
�T

�̃T

]
 can be eliminated by expressing them in 

terms of the former. After performing this local elimination, the condition (16) that the 
residuals associated with T are zero becomes

where ��&�

T
 denotes the Schur complement of the top left block of the matrix in (16), that 

is,

Remark 2 (Differences between the static condensation strategies) The two static conden-
sation strategies outlined above coincide for k = 0 . For k ⩾ 1 , the first, obvious difference 
is that the second results in a smaller global system, since high-order pressure unknowns 
are eliminated in addition to element-based velocity unknowns. There is, however, a sec-
ond, more subtle difference. As a matter of fact, while the block ��&�

�T�T
 in (17) is full, the 

block ��
�T�T

 in (15) preserves the pattern of A�T�T (which is composed of block-diagonal 
blocks, see Remark 1). As a result, the first static condensation strategy results in a sparser, 
albeit larger, matrix. The numerical tests in the next section show that the sparsity prevails 
over size resulting in cheaper matrix-vector products, so that the first static condensation 
strategy is in fact more efficient.

Notice that this difference would disappear if we replaced the Laplace operator in the 
momentum equation (1a) by div (��s⋅) , with �s denoting the symmetric part of the gra-
dient operator applied to vector-valued fields, as would be required for a viscosity coef-
ficient � ∶ � → ℝ+ variable in space. As demonstrated in the next section by means of 

�T =

[
�T

�̃T

]
, �T =

[
�TT �T�T

�̃TT �̃T�T

]
,

(16)

⎡⎢⎢⎢⎢⎣

�TT �̃
⊺

TT
�T�T �

⊺

TT

�̃TT � �̃T�T �

��TT �̃
⊺

T�T
��T�T �

⊺

T�T

�TT � �T�T �

⎤
⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣

�T

�̃T

��T

�T

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

�T

�

��T

�̂�T

⎤⎥⎥⎥⎦
.

(17)�
�&�

T

[
��T

�T

]
=

[
��T

�̂�T

]
−

[
��TT �̃

⊺

�TT

�TT �

] [
�TT �̃

⊺

TT

�̃TT �

]−1 [
�T

�

]
,

�
�&�

T
=

[
�
�&�

�T�T
�
�&�

�TT

�
�&�

T�T
�
�&�

TT

]
∶ =

[
��T�T �

⊺

T�T

�T�T �

]
−

[
��TT �̃

⊺

T�T

�TT �

] [
�TT �̃

⊺

TT

�̃TT �

]−1 [
�T�T �

⊺

TT

�̃T�T �

]
.
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numerical experiments the performance of the multilevel iteration is strongly influenced by 
the static condensation strategy when working with graded meshes: static condensation of 
high-order pressure modes provides worse convergence rates and degrades the efficiency of 
the solution strategy.

4.2  Inheritance by Means of Galerkin Projections

We show in this section how the operators can be inherited from level � to � + 1 . For X 
mesh element or face, we let {�X,𝓁

1
,�X,𝓁

2
,⋯ ,�X,𝓁

P
} be a basis of Pk� (X) (with P denoting 

the dimension of this vector space) and {�X,𝓁+1

1
,�X,𝓁+1

2
,⋯ ,�X,𝓁+1

Q
} a basis of Pk�+1 (X) (with 

Q denoting the dimension of this vector space). The algebraic counterpart ��+1
�,X

 of the local 
restriction operator I�+1

�,X
 defined by (9) reads

and the algebraic counterpart ��,X
�+1

 of the local prolongation operator I�,X
�+1

 is

Interestingly, when using hierarchical orthonormal bases and the basis for Pk�+1 (X) is 
obtained by restriction of the basis for Pk� (X) , both the prolongation and restriction opera-
tors are represented by unit diagonal rectangular matrices. In particular, for the local 
restriction operator it holds

As a result, intergrid transfer operators do not need to be computed nor stored in memory.
With a little abuse of notation, we also denote by ��+1

�,X
 and ��,X

�+1
 the local restriction and 

prolongation operators applied to vector-valued variables, which are obtained assembling 
component-wise the corresponding operators acting on scalar-valued variables. The matrix 
�
�+1
T

 discretizing the viscous term at level � + 1 can be inherited from the corresponding 
matrix ��

T
 at level � applying the restriction operators block-wise (compare with (13)): 

Applying this procedure recursively shows that, for any level � ⩾ 1 , the matrix ��
T
 can be 

obtained from the fine matrix �0

T
 . Note that pre- and post-multiplications of the matrix 

blocks by the restriction and the prolongation operators, respectively, result in a block 
shrink. When using orthonormal basis functions, these matrix multiplications can be 
avoided altogether and replaced with inexpensive sub-block extractions.

In order to further reduce the computational costs, Galerkin projections can be per-
formed on the statically condensed fine grid operator, so that static condensation of coarse 
grid operators is avoided altogether. For example, having computed the fine-level block 

�
𝓁+1
𝓁,X

=

(∫
X
�X,𝓁+1

i
�X,𝓁

j

)
i=1,⋯,Q, j=1,⋯,P

,

�
𝓁,X

𝓁+1
=
(
�
𝓁+1
𝓁,X

)⊺
.

(
�
𝓁+1
𝓁,X

)
i,j
= �ij, for all i = 1,⋯ ,Q and all j = 1,⋯ ,P.

�
𝓁+1
T

=

⎡⎢⎢⎢⎢⎣

�
𝓁+1
𝓁,T

�
𝓁
TT

�
𝓁,T

𝓁+1
�
𝓁+1
𝓁,T

�
𝓁
TF1

�
𝓁,F1

𝓁+1
⋯ �

𝓁+1
𝓁,T

�
𝓁
TFN

�
𝓁,FN

𝓁+1

�
𝓁+1
𝓁,F1

�
𝓁
F1T

�
𝓁,T

𝓁+1
�
𝓁+1
𝓁,F1

�
𝓁
F1F1

�
𝓁,F1

𝓁+1
⋯ �

𝓁+1
𝓁,F1

�
𝓁
F1FN

�
𝓁,FN

𝓁+1

⋮ ⋮ ⋮

�
𝓁+1
𝓁,FN

�
𝓁
FNT

�
𝓁,T

𝓁+1
�
𝓁+1
𝓁,FN

�
𝓁
FNF1

�
𝓁,F1

𝓁+1
⋯ �

𝓁+1
𝓁,FN

�
𝓁
FNFN

�
𝓁,FN

𝓁+1

⎤⎥⎥⎥⎥⎦
.
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of the Schur complement �0
�T�T

 (given by either formula (15) or (17)), the corresponding 
block ��+1

�T�T
 at level � + 1 is computed applying recursively the following relation:

To conclude, the resulting sub-blocks are assembled into the global matrix.

5  Numerical Investigation of h‑Dependency

5.1  Mesh Sequences

In order to assess and compare the performance of p-multilevel preconditioners, we consider 
four h-refined mesh sequences of the two-dimensional domain (−1, 1)2 , see Fig. 1, and three 
h-refined mesh sequences of the three-dimensional domain (0, 1)3 , see Fig. 2. In two space 
dimensions, we consider both standard and graded meshes composed of triangular and trap-
ezoidal elements. In three space dimensions, we consider standard meshes composed of pris-
matic and pyramidal elements and graded meshes composed of tetrahedral elements. While 
standard meshes have homogeneous meshsize, graded meshes feature mesh elements that 
become narrower and narrower while approaching the domain boundaries, mimicking com-
putational grids commonly employed in CFD to capture boundary layers. In order to build 
h-refined graded mesh sequences, the mesh nodes are first positioned according to Gauss-
Lobatto quadrature rules of increasing order, then randomly displaced by a small fraction 
of their distance. Accordingly, the reduction of the meshsize is non-linear in case of graded 
h-refined mesh sequences.

5.2  Setting

5.2.1  Manufactured Analytical Solution

We consider the following smooth analytical behaviours of the velocity and pressure fields: if 
d = 2 , we let �∶ = (−1, 1)2 and set

where {i, j} is the canonical basis of ℝ2 while, for d = 3 , we set �∶ = (0, 1)3 and

where {i, j, k} is the canonical basis of ℝ3 . Dirichlet boundary conditions are enforced on 
all but one of the surfaces (edges in 2D) composing �Ω , where Neumann boundary condi-
tions are enforced instead. The boundary data and forcing term are inferred from the exact 
solution.

�
𝓁+1
�T �T

=

⎡
⎢⎢⎢⎣

�
𝓁+1
𝓁,F1

�
𝓁
F1F1

�
𝓁,F1

𝓁+1
⋯ �

𝓁+1
𝓁,F1

�
𝓁
F1FN

�
𝓁,FN

𝓁+1

⋮ ⋮

�
𝓁+1
𝓁,FN

�
𝓁
FNF1

�
𝓁,F1

𝓁+1
... �

𝓁+1
𝓁,FN

�
𝓁
FNFN

�
𝓁,FN

𝓁+1

⎤
⎥⎥⎥⎦
.

u(x, y) = −ex
[
y cos(y) + sin(y)

]
i + ex (y sin(y)) j, ∀(x, y) ∈ �,

p(x, y) = 2 ex sin(y), ∀(x, y) ∈ �,

u(x, y, z) = 2 sin(�x)i − � y cos(�x)j − � z cos(�x)k, ∀(x, y, z) ∈ �,

p(x, y, z) = sin(�x) cos(�y) sin(�z), ∀(x, y, z) ∈ �,
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5.2.2  Multilevel Solver Options

We consider high-order and higher-order versions of the HHO and DG schemes correspond-
ing to the polynomial degrees k = 3 and k = 6 , respectively. The theoretical h-convergence 
rates for DG are k + 1 for the velocity error in the L2-norm and k for the velocity gradi-
ent and the pressure error in the L2-norm. The theoretical h-convergence rates for HHO are 
k + 2 for the velocity reconstruction error in the L2-norm and k + 1 for the gradient of the 
velocity reconstruction and the pressure error in the L2-norm. For the HHO-hp scheme, 
both the element velocity and the reconstructed velocity display the same convergence 
rates, but the former is additionally divergence free on standard meshes. For this reason, 
the element velocity field is used in the error computations. For all the numerical test 
cases, we report in the tables the L2-errors on the velocity (“uh ” column), velocity gradi-
ents (“Guh ” column), pressure (“ph ” column), and divergence (“Duh ” column).

The solution of the linear systems is based on an FGMRES iterative solver precondi-
tioned with a p-multilevel V-cycle iteration of three levels ( L = 2 ): for k0 = k = 3 (fine 
level), we set k1 = 2 on the intermediate level and k2 = kL = 1 on the coarse level; for 
k0 = k = 6 (fine level), we set k1 = 3 on the intermediate level and k2 = kL = 1 on the 
coarse level. Numerical tests not reported here for the sake of conciseness show that taking 
kL = 0 as the coarsest level for HHO discretizations results not only in a reduced memory 
footprint, but also in a significant increase in the number of iterations. This trade-off results 
in computational times comparable to kL = 1.

On the fine and intermediate levels, the pre- and post-smoothing strategies con-
sist in two iterations of ILU preconditioned GMRES (notice that, at the global level, 

Fig. 1  Two-dimensional meshes (one mesh for each h-refined mesh sequence here considered). From left to 
right: Delaunay triangular mesh, trapezoidal mesh, graded trapezoidal mesh, graded triangular mesh

Fig. 2  Three-dimensional meshes (one mesh for each h-refined mesh sequence here considered). From left 
to right: pyramidal mesh, prismatic mesh, graded tetrahedral mesh
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velocity-related unknowns come first and pressure-related unknowns next in order to facili-
tate the computation of the ILU preconditioner). The number of smoothing iterations has 
been experimentally selected so as to guarantee the best computational efficiency on the 
meshes considered in the numerical tests. Other choices for the smoothers could be consid-
ered such as, e.g., the ones proposed in the recent work [6]; we postpone the investigation 
of this topic to a future work. On the coarse level, we employ an LU solver when working 
in two space dimensions and ILU preconditioned GMRES solver when working in three 
space dimensions. Since enforcing looser tolerances on the coarse level does not alter the 
number of outer FGMRES iterations, we require three orders of magnitude decrease of the 
true (unpreconditioned) relative residual in three space dimensions. The relative residual 
decrease for the outer FGMRES solver is set to 10−13 when k = 3 and to 10−14 when k = 6 . 
These tight tolerances are considered in order to monitor the numerical convergence rates 
up to the machine precision. We carefully monitored convergence history to make sure 
that stagnation of residuals does not occur; hence relative comparison between the solution 
times and the number of iterations of the different schemes remains valid when real-life 
stopping criteria are employed. All test cases were performed with FGMRES restarting 
equal to 5. Larger values negatively affect the performance for DG approximations, while 
HHO approximations are rather insensitive to this parameter.

5.2.3  Performance Evaluation

For all the numerical test cases we compare the performance and efficiency of solver strate-
gies based on the following.

• Number of FGMRES outer iterations (“ITs” column).
• Number of coarse solver iterations (“ITsL ” column). Note that one iteration means that 

a direct solver is employed.
• Wall clock time required for linear system solution (“CPU time Sol.” column).
• Wall clock time required for matrix assembly (“CPU time Ass.” column). We remark 

that the computational cost of building the Schur complement is included since static 
condensation is performed element-by-element during matrix assembly.

• Wall clock time required for matrix assembly plus linear system solution (“CPU time 
Tot.” column).

• Efficiency with respect to linear scaling of the computational expense with the mesh 
cardinality (“Eff.” column). 100% efficiency means that for a fourfold increase of the 
number of elements we get a fourfold increase of the total (matrix assembly plus linear 
system solution) wall clock time. We remark that efficiency is computed considering 
two subsequent grids of the mesh sequence (whose data are reported in two successive 
table rows).

5.3  Comparison Based on Matrix Dimension and Matrix Non‑zero Entries

The cost of a Krylov iteration scales linearly with the number of matrix non-zero entries 
(MNZs) plus the number of Krylov spaces times the matrix dimension (equal to the number 
of degrees of freedom, DOFs), see, e.g., [50]. Multilevel Krylov solvers utilize only a few 
smoother iterations on the fine and intermediate levels and iteratively solve on the coarse 
level, where the number of MNZs and DOFs is favourable, see Sect. 3.3. Accordingly, with 
respect to solver efficiency, the most relevant discretization-dependent parameters are the 
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MNZs of the fine and coarse matrices and the number of DOFs of the coarse level: fine-
level MNZs influence the cost of the most expensive matrix-vectors products, performed 
once per smoother iteration; coarse level MNZs influence the cost of the least expensive 
matrix-vector products, performed once per iteration of the coarse solver (that is, many 
times per multilevel iteration); the number of DOFs of the coarse level influences the cost 
of the Gram-Schmidt orthogonalization carried out within the GMREs algorithm on the 
coarse level.

Static condensation of the element-based unknowns is an effective means of improv-
ing solver efficiency in the context of hybridized methods. For HHO-dp, we compare 
the uncondensed (HHO-dp uncond) implementation to the static condensation strate-
gies described in Sect. 4.1. We recall that both static condensation procedures involve 
the local elimination of velocity unknowns attached to mesh elements, and the dif-
ference lies in the treatment of pressure DOFs. According to (17), all pressure modes 
except the constant value are statically condensed in the HHO-dp v&p-cond strat-
egy while, according to (15), pressure modes are not statically condensed in the HHO-
dp v-cond strategy. For HHO-hp, we consider static condensation of the element 
unknowns for both the velocity and the pressure (HHO-hp v&p-cond), so that only 
skeletal unknowns appear in the global systems.

DOFs and MNZs of HHO discretizations are associated with element variables and 
face variables. DG discretizations rely only on element variables. The formulas for com-
puting DOFs and MNZs reported in Table 2 show the following.

• The number of DOFs associated with element variables is proportional to the dimen-
sion of the polynomial space ℙk

d
 and to the number of mesh elements.

• The number of DOFs associated with face variables is proportional to the dimension 
of ℙk

d−1
 and to the number of mesh faces.

• The number of MNZs associated with element variables is proportional to the square 
of the dimension of ℙk

d
 and to the number of mesh elements.

• The number of MNZs associated with face variables is proportional to the square of 
the dimension of ℙk

d−1
 and to the number of mesh faces.

MNZs are also influenced by the stencil of the discretization and the fill-in of the Schur 
complement, as explained in Remark 2. Since the ratio between the dimensions of ℙk

d
 

and ℙk
d−1

 is k+d
d

 , we have the following rules of thumb:

where 2 card (TF)−1
card (TF)+1

 is the ratio between the stencil of face variables and element variables, 
respectively. This simple observation allows to interpret the results of Tables 3, 4, 5 and 6, 
where the DOFs and MNZs counts for the methods and implementations considered in this 
work are reported. Placeholders correspond to combinations of meshes, polynomial 
degrees, schemes, and static condensation options that are either not possible or have not 
been considered in numerical tests. The data are reported only for the finest grids of each 
mesh sequence for k ∈ {1, 3, 6} (the case k = 1 is also included as it is relevant for estimat-
ing the efficiency of the coarse solver).

(18)

face variables have fewer DOFs than element variables if
card (Fh)

card (Th)
<
k + d

d
,

face variables have fewer MNZs than element variables if
card (Fh)

card (Th)

2 card (TF)−1

card (TF)+1
<
(
k + d

d

)2

,
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Some comments regarding the DOFs counts reported in Tables 3, 4 and 5 are as fol-
lows. As expected, the HHO-dp uncond DOFs count is the largest. In 2D and 3D, 
HHO-dp v&p-cond and DG, respectively, have the fewest DOFs count on the coarse 
level ( k = 1 ). This can easily be interpreted based on (18), as the condition is harder to 
meet in 3D than in 2D. In 2D, the number of coarse level DOFs for HHO-dp v-cond, 
HHO-hp, and DG are very similar. In 2D and 3D, higher-order statically condensed HHO 
shows some advantage over DG in terms of DOFs.

Some comments regarding the MNZs counts reported in Tables  3, 4 and 5 are as 
follows. In 2D, HHO-dp v&p-cond and v-cond have fewer MNZs than DG, at all 
polynomial degrees. In 3D, HHO-dp v&p-cond and v-cond have fewer MNZs than 
DG for both k = 3 and k = 6 , with HHO-dp v-cond being the most efficient. HHO-dp 
v-cond is very close to DG for k = 1 . The fact that HHO-dp v-cond outperforms 
HHO-dp v&p-cond is due to increased fill-in of the Schur complement matrix arising 
from (17), see Remark 2. HHO-hp v&p-cond improves DG only for k = 6 , while DG 
is significantly better for both k = 1 and k = 3 . Similar to strategy (17) for HHO-dp, the 
aforementioned static condensation procedure increases the fill-in of the blocks pertain-
ing to skeletal velocity unknowns with respect to the uncondensed operator.

5.4  Comparison of Static Condensation Strategies

In this section we evaluate the performance of the multilevel solution strategy for Scheme I 
(HHO-dp) comparing the two approaches for static condensation described in Sect. 4.1; 
see in particular (17) (HHO-dp v&p-cond) and (15) (HHO-dp v-cond). We also con-
sider the uncondensed formulation (HHO-dp uncond) as a reference to evaluate the per-
formance gains.

In case of regular 2D mesh sequences, the results reported in Table 7 confirm that static 
condensation leads to significant gains (on average, the computation time halves) when 
compared with the uncondensed implementation. The results reported in Table 8, where 
graded 2D mesh sequences are considered, show that the HHO-dp v&p-cond strategy 
(static condensation of both velocity element unknowns and high-order pressure modes) 
leads to a suboptimal performance of the multigrid preconditioner in case of stretched ele-
ments: notice the increase in the number of FGMRES iterations when the mesh is refined. 
A similar behaviour, even if less pronounced, is observed for the uncondensed implementa-
tion. The results reported in Table 9, where 3D mesh sequences are considered, confirm 
the strategy HHO-dp v-cond (static condensation of element velocity unknowns only) 
leads to the best performance in terms of execution times, both in the case of standard and 
graded meshes. We remark that the gains are to be ascribed to fewer FGMRES iterations 
and a smaller number of matrix non-zero entries, see Table 6.

It is interesting to remark that accuracy and convergence rates are not influenced by the 
static condensation procedure as soon as the relative residual drop satisfies the prescribed 
criterion. Solver fails to converge for HHO v&p-cond over fine-graded triangular meshes, 
see Table 8. Note that the prescribed maximum number of iteration (1 K) of the FMGRES 
solver is reached and the convergence rates are spoiled.
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5.5  Comparison Based on Accuracy and Efficiency of the Solver Strategy

In this section we compare the three discretizations of the Stokes problem presented in 
Sect. 2 based on accuracy and performance of the multilevel solver strategy. For the HHO 
scheme HHO-dp, in accordance with the results of Sect.  5.4, the static condensation strat-
egy v-cond is used for all meshes in both two and three space dimensions. For the HHO 
scheme HHO-hp, we consider static condensation of the element unknowns for both the 
velocity and the pressure (HHO-hp v&p-cond), so that only skeletal unknowns appear 
in the global systems. The results for 2D regular and graded sequences are reported in 
Tables 10, 11, 12 and 13, respectively. The results for 3D mesh sequences are reported in 
Tables 14 and 15.

As a first point, we remark that the theoretical convergence rates are confirmed for 
all the test cases performed on regular 2D and 3D mesh sequences. When higher-order 
( k = 6 ) discretizations are considered and machine precision is reached, the converge 
rates deteriorate, as expected. Interestingly, all the schemes suffer from a convergence 
degradation for card (Th) between 192 and 1  546 over the graded tetrahedral mesh 
sequence. This is probably due to mesh elements of extremely bad quality generated as 
a result of grading plus random node displacement, see Sect.  5.1. Overall, both HHO-
dp and HHO-hp outperform DG in terms of accuracy with order of magnitudes gains 
observed moving towards finer meshes. This is due to better asymptotic convergence 
rates (one order higher) as well as better accuracy on coarse meshes. One could, alter-
natively, compare the (k + 1)-version of DG with the k-version of ��� : this would result 
in the same convergence rates for both methods, but would of course further increase the 
gap in terms of efficiency.

p-Multilevel solvers guarantee uniform convergence with respect to the mesh den-
sity when standard 2D and 3D mesh sequences are considered: note that the number of 
FGMRES iterations is almost uniform all along the mesh sequence. Interestingly, HHO-
dp discretizations show uniform convergence with respect to the mesh density on graded 
quadrilateral meshes, while DG is most affected by mesh grading, especially for k = 6 . For 

Table 2  Formulas for computing the matrix dimension (equal to the number of DOFs) and number of 
matrix non-zero entries (MNZs) of nonconforming discretization. Several static condensation options are 
considered for HHO-dp, see text for details

Scheme Matrix dim. (DOFs) Matrix non-zero entries (MNZs)

HHO-dp 
uncond

card (T
h
)(d+1) dim(ℙk

d
)+

card (F
h
)d dim(ℙk

d−1
)

card (Th)(d+1) dim(ℙk

d
)2+

∑
T∈Th

card (FT )d
2 dim(ℙk

d
) dim(ℙk

d−1
)+∑

F∈Fh
card (TF )d

2 dim(ℙk

d
) dim(ℙk

d−1
) +

∑
F∈Fh

�
2 card (TF )−1

�
d dim(ℙk

d−1
)2

HHO-dp 
v&p-
cond

card (T
h
)+

card (F
h
)d dim(ℙk

d−1
)

card (T
h
) +

∑
T∈T

h

card (F
T
)d dim(ℙk

d−1
)+∑

F∈F
h

�
2 card (T

F
)−1

�
d
2 dim(ℙk

d−1
)2 +

∑
F∈F

h

card (T
F
)d dim(ℙk

d−1
)

HHO-dp 
v-cond

card (T
h
) dim(ℙk

d
)+

card (F
h
)d dim(ℙk

d−1
)

card (Th) dim(ℙk

d
)2+

∑
T∈Th

card (FT )d dim(ℙk
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) dim(ℙk
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∑
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�
d dim(ℙk
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HHO-hp 
v&p-
cond

card (F
h
)(d+1) dim(ℙk

d−1
)
∑

F∈F
h

�
2 card (F
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)−1

��
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dim(ℙk
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h
)(d+1) dim(ℙk
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T∈T

h

�
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�
(3d+1) dim(ℙk
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Table 3  Matrix dimension (equal to the number of DOFs) on 2D meshes. Note that graded quadrilateral 
meshes are not included because they coincide with trapezoidal meshes in terms of DOFs

Number of DOFs, 2D meshes

Mesh seq. card (T
h
) k HHO-dp HHO-hp DG

uncond v&p-cond v-cond v&p-cond

Trapz-quad 16 384 3 7.56E+05 2.81E+05 4.28E+05 3.96E+05 4.92E+05
1 2.80E+05 1.48E+05 2.23E+05 1.98E+05 1.47E+05

1 024 6 – 3.06E+04 5.82E+04 4.44E+04 8.60E+04
1 – 9.47E+03 1.15E+04 1.27E+04 9.22E+03

Del. tri 50 744 3 2.13E+06 6.62E+05 1.12E+06 9.16E+05 1.52E+06
1 7.62E+05 3.56E+05 4.58E+05 4.58E+05 4.57E+05

3 120 6 – 6.95E+04 1.54E+05 9.96E+04 2.62E+05
1 – 2.21E+04 2.83E+04 2.85E+04 2.81E+04

Dist. tri 32 768 3 1.38E+06 4.28E+05 7.23E+05 5.93E+05 9.83E+05
1 4.93E+05 2.30E+05 2.96E+05 2.96E+05 2.95E+05

2 048 6 – 4.60E+04 1.01E+05 6.59E+04 1.72E+05
1 – 1.46E+04 1.87E+04 1.88E+04 1.84E+04

Table 4  Number of matrix non-zero entries (MNz) on 2D meshes. Note that graded quadrilateral meshes 
are not included because they coincide with trapezoidal meshes in terms of MNZs

Number of MNZs, 2D meshes

Mesh seq. card (T
h
) k HHO-dp HHO-hp DG

uncond v&p-cond v-cond v&p-cond

Trapz-quad 16 384 3 3.98E+07 1.58E+07 2.68E+07 3.31E+07 5.70E+07
1 6.01E+06 4.21E+06 3.56E+06 8.27E+06 5.13E+06

1 024 6 – 2.94E+06 5.43E+06 6.35E+06 2.74E+07
1 – 2.64E+05 2.23E+05 5.18E+05 3.14E+05

Del. tri 50 744 3 9.64E+07 2.69E+07 5.38E+07 5.48E+07 1.42E+08
1 1.36E+07 7.36E+06 7.16E+06 1.37E+07 1.28E+07

3 120 6 – 4.86E+06 1.21E+07 1.03E+07 6.78E+07
1 – 4.53E+05 4.40E+05 8.45E+05 7.78E+05

Dist. tri 32 768 3 6.23E+07 1.74E+07 3.48E+07 3.54E+07 9.14E+07
1 8.75E+06 4.76E+06 4.62E+06 8.86E+06 8.23E+06

2 048 6 – 3.20E+06 7.93E+06 6.80E+06 4.43E+07
1 – 2.98E+05 2.89E+05 5.55E+05 5.08E+05
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HHO-hp, the number of iterations increases with mesh density on graded quadrilateral 
meshes. Nevertheless, the number of iterations over coarse meshes is remarkably small and 
grows up to match the iterations count of HHO-dp over fine meshes. The solver conver-
gence deteriorates with the mesh density in case of graded triangular and tetrahedral mesh 
sequences: the increase in the number of iterations is clearly visible but not pathological 
for HHO discretizations.

Table 5  Matrix dimension (equal to the number of DOFs) on 3D meshes

Number of DOFs, 3D meshes

Mesh seq. card (T
h
) k HHO-dp HHO-hp DG

uncond v&p-cond v-cond v&p-cond

Dist. tet 12 288 3 1.74E+06 7.73E+05 1.01E+06 1.01E+06 9.83E+05
1 4.25E+05 2.40E+05 2.77E+05 3.04E+05 1.97E+05

1 536 6 – – 4.03E+05 3.66E+05 5.16E+05
1 – – 3.55E+04 3.92E+04 2.46E+04

Prism 8 192 3 1.30E+06 6.53E+05 8.09E+05 8.60E+05 6.55E+05
1 3.25E+05 2.02E+05 2.26E+05 2.58E+05 1.31E+05

1 024 6 – – 3.23E+05 3.15E+05 3.44E+05
1 – – 2.94E+04 3.38E+04 1.64E+04

Pyram 24 576 3 3.83E+06 1.89E+06 2.36E+06 2.49E+06 1.97E+06
1 9.53E+05 5.84E+05 6.58E+05 7.46E+05 3.93E+05

3 072 6 – – 9.19E+05 8.82E+05 1.03E+06
1 – – 8.31E+04 9.45E+04 4.92E+04

Table 6  Number of matrix non-zero (MNZs) entries on 3D meshes

Number of MNZs, 3D meshes

Mesh seq. card (T
h
) k HHO-dp HHO-hp DG

uncond v&p-cond v-cond v&p-cond

Dist. tet 12 288 3 2.19E+08 1.58E+08 1.16E+08 2.76E+08 2.40E+08
1 1.37E+07 1.49E+07 8.40E+06 2.49E+07 9.58E+06

1 536 6 – – 1.49E+08 2.72E+08 5.15E+08
1 – – 1.05E+06 3.12E+06 1.17E+06

Prism 8 192 3 1.87E+08 1.69E+08 1.08E+08 2.97E+08 1.88E+08
1 1.22E+07 1.58E+07 8.08E+06 2.67E+07 7.54E+06

1 024 6 – – 1.34E+08 2.92E+08 3.97E+08
1 – – 1.01E+06 3.35E+06 9.01E+05

Pyram 24 576 3 5.59E+08 5.06E+08 3.23E+08 8.86E+08 5.84E+08
1 3.66E+07 4.71E+07 2.42E+07 7.97E+07 2.33E+07

3 072 6 – – 4.01E+08 8.69E+08 1.27E+09
1 – – 3.03E+06 9.98E+06 2.89E+06
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Interestingly, p-multilevel solvers show improved robustness with respect to the poly-
nomial degree when applied to HHO discretizations: moving from high-order ( k = 3) to 
higher-order ( k = 6 ) entails a mild iterations increase for HHO, while the iteration count 
doubles for DG. In 2D, this behaviour has a strong impact on computation times: HHO is 
up to three and eight times faster than DG at high-order and higher-order, respectively. 
HHO-dp outperforms DG because of the reduced number of matrix non-zero entries 
and the reduced matrix dimension, see Tables 3 and 4: the former influences the cost of 
smoothing iterations while the latter strongly influences the cost of the LU factorization 
on the coarse level.

Let us consider the performance of the multilevel solver in 3D. HHO-dp is two times 
and four-to-five times faster than DG in terms of solution times for k = 3 and k = 6 , 
respectively. HHO-hp is slower than HHO-dp in terms of solution times and faster than 
DG by a small amount, with the exception of the pyramidal elements mesh sequence for 
k = 3 . The difference in computational cost between HHO-dp and HHO-hp is essen-
tially due to the number of MNZs, see Table 6, while the number of FGMRES iterations 
is comparable. Since, in 3D, the coarse level solver is generally more efficient for DG, 
the HHO advantage results from the efficiency of the smoothers and the reduced num-
ber of FGMRES iterations. In particular, we remark that DG has fewer DOFs than HHO 
for k = 1 , see Table 5. Moreover, DG and HHO-dp v-cond have a comparable MNZ 
count for k = 1 , significantly smaller than the MNZ count of HHO-hp v&p-cond, see 
Table 6.

Overall, the gain in terms of total execution times is less significant than in 2D. When 
working with HHO in three space dimensions, assembly times are a considerable fraction of 
the total computation time: matrix assembly is twice as expensive as linear system solution 
for HHO-dp for k = 6 . As opposite, for DG, solution times dominate. Increased assembly 
costs are essentially due to the solution of the local problems involved in static condensa-
tion. An important observation is that, since the assembly procedure is perfectly scalable 
while ILU preconditioned smoothers are not, HHO discretizations might show better scal-
ability results as compared to DG in massively parallel computations.

We conclude this section commenting about solver efficiency (last column in Tables 10, 
11, 12, 13, 14 and 15). It is clear that higher-order discretizations ( k = 6 ) achieve better 
efficiency than high-order discretizations ( k = 3 ), in both 2D and 3D. This outlines the 
intrinsic limitation of p-multilevel solution strategies: when considering fine meshes, the 
performance of the coarse solver might limit the efficiency because the number of DOFs 
and MNZs on the coarse level can not be chosen arbitrarily low. Accordingly, p-multilevel 
solver are best suited for those situations where arbitrarily coarse meshes with higher-order 
polynomials can be employed.

5.6  Comparison Based on CPU Time

To close this section, we provide a synthetic comparison based on CPU time for various 
choices of mesh families and polynomial degrees. Specifically, Figs. 3, 4, 5 and 6 display 
the L2-norms of the errors on both the velocity and pressure for selected mesh families and 
maximum polynomial degrees k = 3 and k = 6 . In all the cases, the HHO schemes outper-
form the DG schemes, with the HHO-dp variant being the most efficient. Only for the pris-
matic mesh sequence considered in Fig. 5 the performance of the DG scheme comes close 
to that of the HHO on coarser meshes (on finer meshes, the reduced order of convergence 
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results in worse performance for DG). We remark that the formula given in (18) predicts a 
different performance gap between HHO and DG for tetrahedral and prismatic meshes since 
prisms have twice the number of faces.

6  Numerical Investigation of k‑Dependency

In this section we investigate the performance of the multilevel solver while increasing 
the polynomial degree. We consider discretizations of degree k = 3, 6, 10 over the coarsest 
grids of the 2D and 3D mesh sequences described in Sect. 5.1. We omit the graded quad-
rilateral mesh since the results are comparable with those obtained over the trapezoidal 
mesh. Dirichlet boundary conditions are enforced on all but one of the surfaces (edges 
in 2D) composing �Ω , where Neumann boundary conditions are enforced instead. The 
boundary data and forcing term are inferred from the exact solution, see Sect. 5.2.1.

Table 7  Evaluation of p-multilevel solution strategies for solving high-order k = 3 HHO-dp over 2D regu-
lar mesh sequences. Solvers are applied to uncondensed and statically condensed matrices (identified by 
different colors) considering two alternative Schur complement implementations, see text for details. See 
Sect.  5.2.2 for solver options
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The solution of the linear systems is based on an FGMRES iterative solver precondi-
tioned with a p-multilevel V-cycle iteration: for k0 = k = 3 (fine level), we consider a two-
level ( L = 1 ) preconditioner with k1 = kL = 1 on the coarse level ({3,1} preconditioner in 
tables); for k0 = k = 6 (fine level), we consider a three-level ( L = 2 ) preconditioner with 
k1 = 3 on the intermediate level and k2 = kL = 1 on the coarse level ({6,3,1} preconditioner 
in tables); for k0 = k = 10 (fine level) we consider a four-level ( L = 3 ) preconditioner with 
k1 = 6 , k2 = 3 on the intermediate levels and k3 = kL = 1 on the coarse level ({10,6,3,1} 
preconditioner in tables). We remark that, in order to preserve the efficiency of the multi-
grid iteration while increasing k, we increase the stride between the degree of subsequent 
polynomial spaces in the multilevel stack. Notice that the ratio between the dimension of 
polynomial spaces of degree k + 1 and k obeys the following rule:

dim(ℙk+1
d

)

dim(ℙk
d
)

= 1 +
d

k + 1
.

Table 8  Evaluation of p-multilevel solution strategies for solving high-order k = 3 HHO-dp over 2D graded 
mesh sequences. Solvers are applied to uncondensed and statically condensed matrices (identified by dif-
ferent colors) considering two alternative Schur complement implementations, see text for details. See 
Sect. 5.2.2 for solver options
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On the fine and intermediate levels, the pre- and post-smoothing strategies consist in two 
iterations of ILU preconditioned GMRES. On the coarse level, we employ an LU solver 
when working in two space dimensions and ILU preconditioned GMRES solver when 
working in three space dimensions. The relative (unpreconditioned) residual decrease for 
the outer FGMRES solver is set to 10−13 when d = 2 and to 10−14 when d = 3 . The relative 
(unpreconditioned) residual decrease for the GMRES solver on the coarse level is set to 
10−3 in three space dimensions.

We compare the performance of the three schemes presented in Sect. 2. For all the numeri-
cal test cases, accuracy is evaluated computing the L2-errors on the velocity (“uh ” column), 
velocity gradients (“Guh ” column), pressure (“ph ” column) and divergence (“Duh ” column). 
Similarly, performance is evaluated based on number of iterations and wall clock times, see 
Sect.  5.2.3. The results are reported in Tables  16 and 17 considering 2D and 3D meshes, 
respectively. p-Multilevel solvers deliver almost uniform convergence with respect to the poly-
nomial degree when applied to HHO discretizations: notable exceptions are HHO-dp over the 
trapezoidal elements grid and HHO-hp over the pyramidal elements grid. The increase in the 
iteration number for higher-order DG discretizations is more evident: in 3D, e.g., the iteration 
count doubles moving from k = 3 to k = 10.

Table 9  Evaluation of p-multilevel solution strategies for solving high-order k = 3 HHO-dp over 3D mesh 
sequences. Solvers are applied to uncondensed and statically condensed matrices (identified by different 
colors) considering two alternative Schur complement implementations, see text for details. See Sect.  5.2.2 
for solver options
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As a final comment regarding accuracy at very high-order polynomial degrees, we remark 
that HHO discretizations seem to be more sensitive than DG to round-off errors related to finite 
precision. In particular, HHO shows better precision than DG at k = 6 but, in some cases, the 
accuracy of DG is slightly better at k = 10 , when the errors approach machine precision.

7  Scalability

In this section we include basic scalability results for p-multilevel solvers applied to 
HHO-dp discretizations. Even if a complete analysis and comparison of the parallel per-
formance of nonconforming discretizations is outside the scope of the paper, we ought 
to show that additive Schwarz method (ASM) preconditioners are an effective means of 
achieving satisfactory parallel efficiency. We consider the finest grid of the pyramidal 
mesh sequence (counting of 24 K elements) and an HHO-dp scheme with k = 5 . Static 
condensation acts on the sole velocity unknowns (HHO-dp v-cond), as described in 

Table 10  Evaluation of p-multilevel solution strategies performance while decreasing h ( d = 2 standard 
meshes, k = 3 ). See Sect.  5.2.2 for solver options. DOF and MNZ specs are reported in Tables 3 and 4, 
respectively
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(15). The multilevel solver strategy is the same employed in serial computations for 
k = 6 , but smoother preconditioners are suitably designed, as outlined in what follows.

The parallel implementation is based on the distributed memory paradigm and requires 
to partition the computational mesh in several subdomains. In case of HHO methods, not 
only the mesh but also the mesh skeleton needs to be partitioned: as a result, each mesh 
entity (element or face) belongs to one and only subdomain. Each subdomain is assigned to 
a different computing unit that performs matrix assembly for the local mesh elements per-
taining to the subdomain. Mesh partitioning directly reflects into matrix partitioning in the 
sense that all entries of the matrix rows (PETSc matrix implementation is row-major) per-
taining to local mesh entities are allocated and stored in local memory. Once matrix assem-
bly is completed, the linear system is approximately solved in each subdomain. Depending 
on the preconditioner strategy, the solver performance might degrade increasing the num-
ber of subdomains, see e.g., [55].

A commonly used ASM preconditioner strategy for DG discretizations consists in 
employing an ILU decomposition in each subdomain matrix suitably extended to include 

Table 11  Evaluation of p-multilevel solution strategies performance while decreasing h ( d = 2 graded 
meshes, k = 3 ). See Sect.  5.2.2 for solver options. DOF and MNZ specs are reported in Tables 3 and 4, 
respectively
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the matrix rows of ghost elements, that is, neighbors of local mesh elements that belong to 
a different subdomain. This implies that the local matrix is extended to encompass the sten-
cil of the DG discretizations, see [43] for additional details. We consider a similar strategy 
for HHO discretizations: each subdomain matrix is extended to include the matrix rows of 
ghost faces, that is, faces of the local mesh elements that belong to a different subdomain. 
Interestingly, even if the resulting local matrix does not encompass the stencil of the HHO 
discretization, mass conservation defect takes into account all element’s faces.

As a result of the ASM described above, the amount of overlap between subdomain 
matrices, i.e., the number of matrix entries that are repeated in more than one subdomain, 
is smaller for HHO than for DG. Consider, for example, two subdomains sharing a face: 
if the face is local for subdomain A, it is a ghost face for subdomain B and vice-versa. 
Accordingly, only one of the two subdomain matrices is extended for HHO discretizations. 
As opposite, since each of the two mesh elements sharing the face has a ghost neighbour, 
both subdomain matrices are extended for DG discretizations.

Scalability is measured increasing the number of execution units from 16 to 256: 
in particular we consider a total of five steps doubling the number of execution units 
at each step. We ran our tests on a four two-socket nodes cluster with eight 32-cores 
AMD EPYC 7501 CPUs. Each CPU has a non-uniform memory access (NUMA) topol-
ogy of four 8-core dies and two memory channels per die. Execution-units are pinned 
so that each NUMA is either empty (no process running) or full (8 processes running), 
thereby ensuring that the memory bandwidth is independent from the number of MPI 

Table 12  Evaluation of p-multilevel solution strategies performance while decreasing h ( d = 2 standard 
meshes, k = 6 ). See Sect. 5.2.2 for solver options and Figs. 3 and 4 for a graphical representation. DOFs 
and MNZs specs are reported in Tables 3 and 4, respectively
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processes. Notice that, when running on 256 subdomains, each subdomain counts of 
approximately 96 local elements.

The results reported in Table 18 confirm that the ASM preconditioner strategy pro-
vides satisfactory parallel performance: the number of outer FGMRES iterations is 
uniform while increasing the number of execution units, and only a mild increase in 
the iteration count is observed for the ASM preconditioned GMRES solvers on the 
coarse level. The efficiency parameter (last column in Table 18) measures strong scal-
ability: 100% efficiency with N execution units would imply coarsened operators and 
an N/16 fold reduction of total computation time with respect to the baseline computa-
tion performed with 16 execution units.

8  Conclusions and Perspectives

The multilevel V-cycle iteration based on p-coarsened operators and ILU preconditioned 
Krylov smoothers is an effective solution strategy for high-order HHO discretizations of 
the Stokes equations. The corresponding global linear systems can be solved up to machine 
precision in a reasonable amount of V-cycle preconditioned FGMRES iterations (less than 

Table 13  Evaluation of p-multilevel solution strategies’ performance while decreasing h ( d = 2 graded 
meshes, k = 6 ). See Sect. 5.2.2 for solver options and Figs.  3 and 4 for a graphical representation. DOF and 
MNZ specs are reported in Tables 3 and 4, respectively
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20). This is remarkable, considering that severely graded mesh sequences have been tack-
led in both 2D and 3D.

Comparing p-multilevel solvers for HHO and DG discretizations based on FGMRES 
iteration count, it appears that, at least in the test cases considered in this work, the for-
mer are more robust than the latter with respect to both the meshsize and the polynomial 
degree. When standard h-refined mesh sequences are considered, HHO formulations show 
uniform convergence with respect to the meshsize, irrespective of the considered polyno-
mial degree. On graded h-refined mesh sequences, the iteration count increases over finer 
meshes, more severely so for DG discretizations. Similarly, when doubling the polynomial 
degree (passing from k = 3 to k = 6 ) for a fixed meshsize, we observe that the iteration 
count is more stable for HHO schemes.

Since code ruse and code optimization are still possible (the HHO implementation 
in our code is more recent and probably less optimized), we avoid drawing conclusions 

Table 14  Evaluation of p-multilevel solution strategies’ performance while decreasing h ( d = 3 , k = 3 ). See 
Sect. 5.2.2 for solver options and Figs.   5 and 6 for a graphical representation. DOF and MNZ specs are 
reported in Tables 5 and 6, respectively
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regarding computation times. The synthetic results reported in Sect.  5.6, however, seem 
to point out an advantage for HHO in terms of precision versus CPU time. It has to be 
noticed, however, matrix-free implementations of DG methods (not considered here) can 
lead to significant gains on element shapes like hexahedra [46]. As a general remark, the 
following observations suggest that p-multilevel solution strategies are a compelling choice 
in case of HHO formulations.

• HHO displays an advantage over DG both in terms of matrix dimension and number of 
non-zero entries when the polynomial degree is sufficiently high;

• p-multilevel solvers for HHO show better solver robustness with respect to the polyno-
mial degree.

The results in the present work are extremely encouraging and open up new perspectives 
concerning the efficient solution of linear systems resulting from the HHO and DG dis-
cretization of incompressible flow problems. The next obvious step will be to include the 
convective term and study the robustness for high Reynolds numbers. Another interesting 

Table 15  Evaluation of p-multilevel solution strategies performance while decreasing h ( d = 3, k = 6 ). See 
Sect.  5.2.2 for solver options and Figs.  5 and 6 for a graphical representation. DOF and MNZ specs are 
reported in Tables 5 and 6, respectively
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Fig. 3  Accuracy versus computation time while decreasing h, trapezoidal elements mesh sequence. Graphi-
cal representation of the data reported in Tables 10 (left panel) and 12 (right panel)

Fig. 4  Accuracy versus computation time while decreasing h, distorted and graded triangular elements 
mesh sequence. Graphical representation of the data reported in Tables 11 (left panel) and 13 (right panel)

Fig. 5  Accuracy versus computation time while decreasing h, prismatic elements mesh sequence. Graphical 
representation of the data reported in Tables 14 (left panel) and 15 (right panel)
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Fig. 6  Accuracy versus computation time while decreasing h, distorted and graded tetrahedral elements 
mesh sequence. Graphical representation of the data reported in Tables 14 (left panel) and 15 (right panel)

Table 16  Performance of p-multilevel solution strategies (k-dependency in space dimension d = 2 ). See 
Sect. 6 for further details
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research path consists in exploring alternative approaches for HHO that consider 
Schur complement solvers, where one only needs to invert the velocity block with 
multigrid, whereas a pressure mass matrix can be used as a spectrally equivalent 

Table 17  Performance of p-multilevel solution strategies (k-dependency in space dimension d = 3 ). See 
Sect. 6 for further details

Table 18  Parallel performance of p-multilevel solution strategies applied to HHO-dp discretizations with 
k = 5
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approximation of the Schur complement (see, e.g., [40]). The comparison with DG discre-
tization will be all the more interesting, as numerical evidence in [17] seems to suggest that 
Schur complement solvers are more affected than monolithic solvers by mesh regularity.
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