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Abstract
This paper discusses a Python interface for the recently published Dune-Fem-DG mod-
ule which provides highly efficient implementations of the discontinuous Galerkin (DG) 
method for solving a wide range of nonlinear partial differential equations (PDEs). 
Although the C++ interfaces of Dune-Fem-DG are highly flexible and customizable, a 
solid knowledge of C++ is necessary to make use of this powerful tool. With this work, 
easier user interfaces based on Python and the unified form language are provided to open 
Dune-Fem-DG for a broader audience. The Python interfaces are demonstrated for both 
parabolic and first-order hyperbolic PDEs.

Keywords Dune · Dune-Fem · Discontinuous Galerkin · Finite volume · Python · 
Advection-diffusion · Euler · Navier-Stokes

Mathematics Subject Classification 65M08 · 65M60 · 35Q31 · 35Q90 · 68N99

In this paper, we introduce a Python layer for the Dune-Fem-DG1 module [14] which is 
available open source. The Dune-Fem-DG module is based on Dune   [5] and Dune-
Fem  [20] in particular and makes use of the infrastructure implemented by Dune-Fem for 
seamless integration of parallel-adaptive finite-element-based discretization methods.

Dune-Fem-DG focuses exclusively on discontinuous Galerkin (DG) methods for vari-
ous types of problems. The discretizations used in this module are described by two main 
papers [17], where we introduced a generic stabilization for convection dominated prob-
lems that works on generally unstructured and nonconforming grids and [9] where we 
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introduced a parameter independent DG flux discretization for diffusive operators. Dune-
Fem-DG has been used in several applications (see [14] for a detailed list), most notably a 
comparison with the production code of the German Weather Service COSMO has been 
carried out for test cases for atmospheric flow ([8, 49]). The focus of the implementation is 
on Runge-Kutta DG methods using mainly a matrix-free approach to handle implicit time 
discretizations which is a method especially used for convection dominated problems.

Many software packages provide implementations of DG methods, for example, deal.
II ([4]), feel++ ([27]), Nektar++ ([34]), FLEXI ([31]), FEniCS ([44]), or Firedrake ([48]). 
However, most of these packages do not combine the complete set of the following 
features:

– a wide range of different DG schemes for time-dependent diffusion, advection-diffu-
sion, and purely hyperbolic problems;

– a variety of grids ranging from dedicated Cartesian to fully unstructured in 2 and 3 
space dimensions;

– dynamic local refinement and coarsening of the grid;
– parallel computing capabilities with dynamic load balancing;
– rapid prototyping using a Python front end;
– open-source licenses.

All of the above feature are available in the framework described here. It is based on the 
distributed and unified numerics environment (Dune), which provides one of the most 
flexible and comprehensive grid interfaces available. The interfaces allow to conveniently 
switch grid implementations (not just element types), without the need to re-write appli-
cation code. Various different implementations support all kinds of grid structures from 
Cartesian grids to polyhedral grids, all with their own optimized data structure and imple-
mentation. This is a very unique feature of the Dune framework, which is also available in 
the Dune-Fem-DG package described in this paper.

So far, a shortcoming of Dune-Fem-DG has been the template heavy and relatively 
complicated C++ user interfaces, leading to a steep learning curve for implementing new 
models and applications or coupling of such. To simplify the usage of the software espe-
cially for new users, recent development (e.g., [19]) has focused on adding a Python layer 
on top of Dune-Fem-DG. Low-level Python bindings were introduced for the Dune grid 
interface in [23] and a detailed tutorial providing high-level access to Dune-Fem is also 
available [16]. The software can now be completely installed from the Python Package 
Index and used from within Python without requiring the users to change and compile any 
of the C++ code themselves. The bindings are set up, so that the flexibility of the Dune 
framework is not compromised, while at the same time providing a high-level abstraction 
suitable for rapid prototyping of new methods. In addition, a wide range of mathematical 
models can be easily investigated with this software which can be described symbolically 
using the domain specific unified form language (UFL) [1].

The FEniCS project pioneered the UFL for the convenient formulation of weak forms 
of PDEs. Over time, other finite-element frameworks, for example, firedrake [48] or ExaS-
tencils [32], adopted UFL to transform the weak forms into C or C++ code that assem-
bles resulting linear and linearized forms into matrix structures, for example provided by 
packages like PETSc [3]. To our knowledge, only a few packages exist based on UFL that 
consider convection dominated evolution equations. For example, in [33], UFL is used 
to describe weak forms for the compressible Euler and Navier-Stokes equations but only 
in the stationary setting. Another example is [51] where shallow water applications are 
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considered. A package that also provides Python bindings (not using UFL) with a strong 
focus on hyperbolic problems is [45], where higher order finite-volume (FV) schemes are 
the method of choice. To our best knowledge, this is the first package which combines 
high-level scripting support with efficient stabilized DG methods for solving the full range 
of pure hyperbolic systems, through advection dominated problems, to diffusion equations.

UFL is flexible enough to describe some DG methods like the interior penalty method 
directly. While this is also an option within Dune-Fem-DG, we focus on a slightly differ-
ent approach in this paper, where we use UFL to describe the strong form of the equa-
tion, similar to [33]. The model description in UFL is then used in combination with pre-
implemented discretizations of a variety of different DG schemes to solve the PDE. This 
approach allows us to also provide DG methods that cannot be easily described within 
UFL, including interesting diffusion discretization like CDG, CDG2, BR2, or even LDG, 
but also provides an easier framework to introduce complex numerical fluxes and limit-
ers for advection dominated problems. For the time discretization, Dune-Fem-DG uses a 
method of lines approach, providing the user with a number of strong stability preserving 
(SSP) implicit, explicit, and IMEX schemes. Overall, the package thus offers not only a 
strong base for building state-of-the-art simulation tools, but it also allows for the develop-
ment of new methods and comparative studies of different method. In addition, paralleliza-
tion and adaptivity, including the hp adaptivity, can be used seamlessly with all available 
methods.

Motivation and aim of this paper
This paper describes a collaborative effort to establish a test and research environment 

for DG methods based on Dune and Dune-Fem for advection-diffusion problems ranging 
from advection dominated to diffusion only problems. The aim here is to provide easy 
access to a comprehensive collection of existing methods and techniques to serve as a start-
ing point for new developments and comparisons without having to reinvent the wheel. 
This is combined with the easy access to advanced features like the availability of different 
grid element types, not limited to dimensions less than or equal to three, hp adaptation, and 
parallel computation with both distributed (e.g., MPI) and shared memory (e.g., OpenMP) 
parallelization, with excellent scalability [38] even for large core counts and very good on-
core efficiency in terms of floating point operations per second [14]. Python has become a 
widespread programming language in the scientific computing community including the 
use in industry we see great potential in improving the scientific development of DG meth-
ods by providing access to state-of-the-art research tools which can be used through the 
Python scripting language, backed up by an efficient C++ back end.

The focus of this paper is to describe the different parts of the framework and how they 
can be modified by the user to tailor the code to their needs and research interests. In this 
paper, we will mainly look at advection dominated evolution equations, because most dif-
fusion dominated problems can be often completely described within a variational frame-
work for which the domain specific language UFL is very well suited and the standard code 
generation features available in Dune-Fem are thus sufficient. For advection dominated 
problems, additional ingredients are often required, e.g., for stabilization, that do not fit the 
variational framework. This aspect of the algorithm will be a central part of this paper. The 
development and improvement of the DG method in general or the high-performance com-
puting aspect of the underlying C++ framework, which has been investigated previously, 
are outside the scope of this work.

The paper is organized as follows. In Sect. 1, we briefly recall the main building blocks 
of the DG discretization of advection diffusion problems. In Sect. 2, we introduce the newly 
developed Python based model interface. In Sect. 3, we investigate the performance impact 
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of using Python scripting and conclude with discussing the extensibility of the approach in 
Sect. 4. Installation instructions are given in Appendix  A and additional code examples are 
available in Appendixes B and C.

1  Governing Equations, Discretization, and Stabilization

We consider a general class of time-dependent nonlinear advection-diffusion-reaction 
problems for a vector-valued function U ∶ (0,T) ×� → ℝr with r ∈ ℕ+ components of 
the form

in 𝛺 ⊂ ℝd , d = 1, 2, 3 . Suitable initial and boundary conditions have to be added. Fc 
describes the convective flux, Fv the viscous flux, Si a stiff source term, and Se a nonstiff 
source term. Note that all the coefficients in the partial differential equation are allowed to 
depend explicitly on the spatial variable x and on time t, but to simplify the presentation, 
we suppress this dependency in our notation. Also note that any one of these terms is also 
allowed to be zero.

For the discretization, we use a method of lines approach based on first discretizing the 
differential operator in space using a DG approximation and then solving the resulting sys-
tem of ordinary differential equations (ODEs) using a time stepping scheme.

1.1  Spatial Discretization

Given a tessellation Jh of the computational domain � with ∪K∈Jh
K = � , we introduce  

a piecewise polynomial space V
h
= {v ∈ L2(�,ℝr) ∶ v|

K
∈ [P

k
(K)]r, K ∈ J

h
} for some

k ∈ ℕ, where Pk(K) is a space containing all polynomials up to degree k. Furthermore, we 
denote with �i the set of all intersections between two elements of the grid Jh and accord-
ingly with �  the set of all intersections, also with the boundary of the domain �.

A major advantage of the DG methods over other finite-element methods is that there 
is little restriction on the combination of grids and discrete spaces one can use. Due to the 
low regularity requirements of DG methods, we can use any form of grid elements, from 
(axis aligned or general) cubes, simplices, to general polyhedrons. The best choice will 
depend on the application. In addition, different local adaptation strategies can be consid-
ered as part of the underlying grid structure, e.g., conforming refinement using red-green 
or bisection strategies, or simple nonconforming refinement.

For approximation purposes, the discrete spaces are generally chosen, so that they con-
tain the full polynomials of a given degree on each element. But even after having fixed the 
space, the actual set of basis functions used to represent the space, can have a huge impact 
on the performance of the scheme. Central here is the structure of the local mass matrix 
on each element of the grid. During the time evolution, this has to be inverted in each time 
step, so efficiency here can be crucial. Therefore, a possible choice is to use a polynomial 
space with basis functions orthonormalized over the reference elements in the grid. If the 
geometric mapping between physical grid elements and these reference elements is affine, 
then the resulting local mass matrix is a very simple diagonal matrix. If the mapping is not 
affine, then the mass matrix depends nontrivially on the element under consideration and 
will often be dense. In this case, another approach is to use Lagrange type basis functions 

(1)�tU = L(U) ∶= − ∇ ⋅

(
Fc(U) − Fv(U,∇U)

)
+ Si(U) + Se(U) in (0,T] ×�
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where the interpolation points coincide with a suitable quadrature for the mass matrix. The 
case of non-affine mapping is especially relevant for cube grids, and here, tensor product 
quadrature points can be used to construct the Lagrange type space. A possible approach is 
to use a tensor product Gaussian rule which results in a diagonal mass matrix for each ele-
ment in the grid with a trivial dependency on the element geometry. This is due to the fact 
that this quadrature is accurate up to order 2k + 1 , so that it can be used to exactly compute 
the mass matrix ∫ �i�j =

∑
q �q�i(xq)�j(xq) =

∑
q �q�iq�jq = �i�ij which will therefore be 

diagonal with diagonal elements only depending on the integration element at the quad-
rature points. In addition, if all the other element integrals needed to evaluate the spatial 
operator use the same quadrature, the interpolation property of the basis functions can be 
used to further speedup evaluation. All of this is well known and for example investigated 
in [42]. A second common practise is to use the points of a tensor product Lobatto-Gauss-
Legendre (LGL) quadrature (see, e.g., [41]). In this case, the evaluation of the intersection 
integrals in the spatial operator can also be implemented more efficiently. To still retain the 
simple structure of the mass matrix requires to use the same LGL rule to compute ∫ �i�j . 
Since this rule is only accurate up to order 2k − 1 , this results in an underintegration of the 
mass matrix similar to mass lumping; this does not seem to influence the accuracy of the 
scheme. This approach is often referred to a spectral DG method [41, 42].

After fixing the grid and the discrete space, we seek Uh ∈ Vh by discretizing the spatial 
operator L(U) in (1) with either Dirichlet, Neumann, or Robin type boundary conditions 
by defining for all test functions � ∈ Vh,

with the element integrals

with S(Uh) = Si(Uh) + Se(Uh) and the surface integrals (by introducing appropriate numer-
ical fluxes F̂c , F̂v for the convection and diffusion terms, respectively)

with {{U}}e, [[U]]e denoting the classic average and jump of U over e, respectively.
The convective numerical flux F̂c can be any appropriate numerical flux known for 

standard finite volume methods, e.g., F̂c could be simply the local-Lax-Friedrichs (LLF) 
flux function (also known as Rusanov flux)

where �e is an estimate of the maximum wave speed on intersection e . One could also 
choose a more problem tailored flux (i.e., approximate Riemann solvers). Different options 
are implemented in Dune-Fem-DG (cf. [14]).

(2)⟨�,Lh(Uh)⟩ ∶= ⟨�,Kh(Uh)⟩ + ⟨�, Ih(Uh)⟩

(3)⟨�,Kh(Uh)⟩ ∶=
�

E∈Jh

∫E

�
(Fc(Uh) − Fv(Uh,∇Uh)) ∶ ∇� + S(Uh) ⋅ �

�
,

(4)

⟨�, Ih(Uh)⟩ ∶=
�

e∈�i

∫e

�
{{Fv(Uh, [[Uh]]e)

T ∶ ∇�}}e + {{Fv(Uh,∇Uh)}}e ∶ [[�]]e
�

−
�

e∈�
∫e

�
F̂c(Uh) − F̂v(Uh,∇Uh)

�
∶ [[�]]e,

(5)F̂c

LLF

(Uh)|e ∶= {{Fc(Uh)}}e +
�e

2
[[Uh]]e,
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A wide range of diffusion fluxes F̂v can be found in the literature and many of these 
fluxes are available in Dune-Fem-DG, for example, interior penalty and variants, local DG, 
compact DG 1 and 2, as well as Bassi-Rebay 1 and 2 (cf. [9, 14]).

1.2  Temporal Discretization

To solve the time-dependent problem  (1), we use a method of lines approach in which 
the DG method described above is first used to discretize the spatial operator, and then, a 
solver for ODEs is used for the time discretization, see [14]. After spatial discretization, 
the discrete solution Uh(t) ∈ Vh has the form Uh(t, x) =

∑
i Ui(t)�i(x) . We get a system of 

ODEs for the coefficients of U(t) which reads

with f (U(t)) = M−1Lh(Uh(t)) , M being the mass matrix which is in our case is block 
diagonal or even the identity, depending on the choice of basis functions. U(0) is given by 
the projection of U0 onto Vh . For the type of problems considered here, the most popular 
choices for the time discretization are based around the ideas of strong stability preserving 
Runge-Kutta (SSP-RK) methods (for details, see [14]). Depending on the problem SSP-RK 
method is available for treating the ODE either explicitly, implicitly, or by additively split-
ting the right hand, an implicit/explicit (IMEX) treatment is possible. In an example for 
such a splitting L(U) = Le(U) +Li(U) , the advection term would be treated explicitly, 
while the diffusion term would be treated implicitly. In addition, the source term could be 
split as well leading to operators of the form

Of course, other splittings are possible but currently not available through the Python 
bindings.

We implement the implicit and semi-implicit Runge-Kutta solvers using a Jacobian-free 
Newton-Krylov method (see [40]).

1.3  Stabilization

The RK-DG method is stable when applied to linear problems such as linear hyperbolic 
systems; however, for nonlinear problems, spurious oscillations occur near strong shocks or 
steep gradients. In this case, the RK-DG method requires some extra stabilization. In fact, 
it is well known that only the first-order scheme ( k = 0 ) produces a monotonic structure in 
the shock region. Many approaches have been suggested to make this property available 
in higher order schemes, without introducing the amount of numerical viscosity, which is 
such a characteristic feature of first-order schemes. Several approaches exist, among those 
are slope limiters [13, 17, 26, 36, 43], and for a comprehensive literature list, we refer to 
[50]. Another popular stabilization technique is the artificial diffusion (viscosity) approach 
[24, 28, 30, 37, 47] and others. Further techniques exist, such as a posteriori techniques to 
stabilize the DG method [21] or order reduction [25].

In the following, we focus on an approach based on limiting combined with a troubled 
cell indicator. We briefly recall the main steps, since these are necessary to understand the 
code design decision later on. Note that an artificial diffusion approach could be used eas-
ily by adding a suitable diffusion operator to the model described above.

(6)U
�(t) =f (U(t)) in (0, T]

(7)Le(U) ∶= −∇ ⋅ Fc(U) + Se(U) and Li(U) ∶= ∇ ⋅ Fv(U,∇U)
)
+ Si(U).
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A stabilized discrete operator is constructed by concatenation of the DG operator Lh 
from (2) and a stabilization operator �h , leading to a modified discrete spatial operator 
L̃h(Uh) ∶= (Lh◦�h)(Uh) . The stabilizations considered in this work can be computed ele-
ment wise based only on data from neighboring elements thus not increasing the stencil 
of the operator. Given a DG function Uh , we call U∗

h
= �h(Uh) the stabilized DG func-

tion and we call UE = Uh|E the restriction of a function Uh on element E and denote with 
ŪE its average. Furthermore, we call e the intersection between two elements E,K for 
K ∈ NE , with NE being the set of neighbors of E and IE the set of intersections of E with 
its neighbors.

The stabilized solution should fulfil the following requirements. 

i) Conservation property, i.e., ŪE = Ū
∗

E
.

ii) Physicality of U∗
E
 (i.e., values of U∗

E
 belong to the set of states, i.e., positive density, etc.) 

at least for all quadrature points used to compute element and surface integrals.
iii) Identity in “smooth” regions, i.e., in regions where the solution is “smooth” we have 

U
∗
h
= Uh . This requires an indicator for the smoothness of the solution.

iv) Consistency for linear functions, i.e., if the average values of Uh on E and its neighbors 
are given by the same linear function LE, then U∗

E
= LE on E.

v) Minimal stencil, i.e., the stabilized DG operator shall have the same stencil as the origi-
nal DG operator (only direct neighboring information in this context).

vi) Maximum-minimum principle and monotonicity, i.e., in regions where the solution is not 
smooth the function U∗

E
 should only take values between minK∈NE

ŪK and maxK∈NE
ŪK.

These requirements are built into the stabilization operator in different ways. Requirement 
5 simply limits the choice of available reconstruction methods, e.g., higher order finite vol-
ume reconstructions could not be used because of the potentially larger stencil that would 
be needed which is not desired here. For example, requirement 2 and 3 form the so-called 
troubled cell indicator that triggers whether a stabilized solution has to be computed. The 
stabilization then consists of two steps. 

i) We define the set of troubled cells by

  
with JE being a smoothness indicator detailed in (11) and TOL a threshold that can be 
influenced by the user.

ii) (a) If E ∉ TC(Uh) , then U∗
E
= UE , i.e., the operator �h is just the identity.

(b) Construction of an admissible DG function if E ∈ TC(Uh) . In this case, the DG 
solution on E needs to be altered until E is no longer a troubled cell. In this work, 
we guarantee this by restricting ourselves to the reconstruction of limited linear 
functions based on the average values of Uh on E and its neighbors, similar to 
second-order MUSCL type finite volume schemes when used with piecewise con-
stant basis functions.

(8)TC(Uh) ∶= {E ∈ J
h
∶ JE(Uh) > TOL or UE has ���������� values}
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1.4  Adaptivity

Due to the regions of steep gradients and low regularity in the solution, advection domi-
nated problems benefit a lot from the use of local grid refinement and coarsening. In the 
example shown here, we use a residual type estimator where the adaptation process is 
based on the residual of an auxiliary PDE

where, for example, �,F, S could simply be taken from one of the components of the PDE 
or could be based on an entropy, entropy flux pair. We now define the element residual to 
be

where Rvol is a discretized version of the interior residual indicating how accurate the dis-
cretized solution satisfies the auxiliary PDE at every interior point of the domain for two 
timesteps tn and tn+1 ∶

and we have jump indicators

This indicator is just one of many possible choices, e.g., simply taking the jump of Uh over 
intersections will often lead to very good results, as well. We have had very good experi-
ences with this indicator as shown here based on earlier work (see [15]) where we used a 
similar indicator. Related work in this direction can be found in [21] where a similar indi-
cator was derived.

1.5  Summary of Building Blocks and Limitations

– Grid structure As discussed in Sect. 1.1, the DG method has very few restrictions on 
the underlying grid structure. Although more general methods have been implemented 
based on Dune-Fem-DG, we restrict our attention here on method that can be imple-
mented using direct neighboring information only. This excludes for example direct 
implementation of the local DG method and also more general reconstruction proce-
dures. From a parallelization point of view, the use of a minimal stencil is beneficial for 
many core architectures, but crucially available unstructured grids in Dune only imple-
ment this ghost cell approach and arbitrary overlap is only available for Cartesian grids. 
In the next section, we will show results for Cartesian, general cube and simplex grids, 
and also some results using polyhedral elements.

– Space DG methods are variational methods based on discrete function spaces defined 
over the given grid. As mentioned in Sect. 1.1, the efficiency of an implementation will 

(9)�t�(t, x,U) + ∇ ⋅ (F(t, x,U,∇U)) = S(t, x,U,∇U),

(10)�2
E
=h2

E
‖Rvol‖

2

L2(E)
+

1

2

�

e∈IE

�

he‖Re2
‖2
L2(e)

+
1

he
‖Re1

‖2
L2(e)

�

,

Rvol ∶=
1

tn+1 − tn

(
�(tn+1, ⋅,Un+1) − �(tn, ⋅,Un)

)

+
1

2
∇ ⋅

(
F(tn, ⋅,Un) + F(tn+1, ⋅,Un+1)

)
−

1

2

(
S(tn, ⋅,Un) + S(tn+1, ⋅,Un+1)

)
,

Re2
∶=

1

2
[[F(tn,⋯) + F(tn+1,⋯)]]e, Re1

∶=
1

2
[[�(tn,⋯) + �(tn+1,⋯)]]e.
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depend not only on the space used but also on the choice of basis functions. We will 
show results for a number of different choices in the following section.

– Numerical fluxes The discretization of both the diffusion and advective terms involves 
boundary integrals where the discrete solution is not uniquely defined requiring the use 
of numerical fluxes. As mentioned, we only consider methods with a minimal stencil, 
so that fluxes have to be used which depend only on the traces of the discrete solution 
on both sides of the interface. In the package presented here, a large number of fluxes 
for the diffusion are available [including but not limited to (nonsymmetric) interior pen-
alty, Bauman-Oden, Bassy-Rebay 1 and 2, compact DG 1 and 2]. Since we are focus-
ing on advection dominated problems, we will not discuss this aspect further. For the 
advective numerical flux, the simplest choice for the advective flux is the Local-Lax-
Friedrichs or Rusanov flux from equation (5) which requires little additional input from 
the user and in combination with higher order schemes generally gives good results. 
For the Euler equations of gas dynamics, a number of additional fluxes are available 
in Dune-Fem-DG, including well-known fluxes like HLL, HLLC, and HLLEM. Since 
using a problem specific flux for the hyperbolic flux can be a good way to guarantee 
that the method has some additional properties, e.g., well balancing for shallow water 
flow, we will shortly touch on the possibility of implementing new numerical fluxes in 
the following section.

– Stabilization As was discussed in some detail in the previous section, our stabilization 
approach is based on a troubled cell indicator (combining a smoothness indicator with a 
check on physicallity at quadrature points) and a reconstruction process of the solution 
in troubled cells. While at the time of writing, it is not straightforward to implement a 
new reconstruction strategy without detailed knowledge of the C++ code, it is fairly 
easy for a Python user to provide their own troubled cell indicator which is demon-
strated in the next section.

– Time evolution After the spatial discretization, the resulting ordinary differential equa-
tion is solved using a Runge-Kutta as already mentioned. Dune-Fem-DG provides a 
number of explicit, implicit, and IMEX SSP-RK method up to order four. However, 
since this part of the algorithm is not, so time critical compared to the evaluating the 
discrete spatial operator, we will also show in the following section how a different time 
evolution method can be implemented on the Python side.

In the following, we will describe how the different building blocks making up the DG 
method can be provided by the user, starting with some very simple problems, requiring 
little input from the user and slowly building up the complexity. We are not able to provide 
the full code listings in each case, but a tutorial with all the test cases presented here is 
available as discussed in Appendix A and also available from [18].

2  Customizing the DG Method Using the Python Interface

In the following, we describe how to use the DG methods provided by Dune-Fem-DG based 
on the mathematical description provided in the previous section. The setup of a simula-
tion always follows the same structure which is similar to the discussion in Sect. 1. The 
corresponding Python code is discussed in Sect.  2.1. First, a gridView is constructed 
given a description of (coarse) tessellation of the computational domain. The same basic 



666 Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

description can often be used to define grids with different properties, i.e., different element 
types or refinement strategies. This gridView is then used to construct a discrete space—
again, different choices are available as discussed in Sect. 1.1. The space is then used to 
construct the discrete version of the spatial operator L  in (1). Following the method of 
lines approach, this discrete operator is then used to construct an ODE solver. The sec-
tion concludes with the basic time loop which evolves the solution from t = 0 to t = T  . 
If not stated otherwise, all the examples in this section are based on the code described 
in Sect. 2.1. The details of the PDE we want to solve are encoded in a Model class. This 
contains only information about the continuous problem, i.e., not about the discretization 
details. All attributes that can be set on this class are summarized in Appendix B. Its main 
purpose is to define the boundary conditions, fluxes, and source term functions defining 
the spatial operator L  in (1). It is then used to construct the discrete spatial operator. For a 
scalar first-order hyperbolic problem, for example, this requires the definition of Fc , shown 
here for a simple linear advection problem: 

We add additional information like the description of the computational domain, the final 
time of simulation T, and the initial conditions not strictly required for the spatial operator. 
This simplifies the description of the setup process in the next section. In our first example 
in Sect. 2.2, we start with a similar advection problem as the one given above and then step 
by step how the Model class is extended to include additional features, like the stabiliza-
tion, and adaptivity. In Sect. 2.3, we show how a vector-valued PDE is implemented using 
the example of the Euler equations of gas dynamics. In this section, we also include an 
example showing how a source term is added and also how a diffusive flux is added by pro-
viding an implementation of the compressible Navier-Stokes equations.

In the next two sections, we demonstrate how to extend the existing code. In Sect. 2.4, 
we discuss how to implement a different troubled cell indicator and in Sect. 2.5 how a user-
defined time stepper can be used.

We conclude this section with a discussion on the use of different spaces and grid struc-
tures (Sect.  2.6) and show a simulation for an advection-diffusion-reaction problem in 
Sect. 2.7.

If not mentioned otherwise, the results presented in the following are obtained using a 
Cartesian grid with a fourth-order polynomial space spanned by orthonormal basis func-
tion. We use the local-Lax-Friedrichs flux (5) for the advection term and the CDG2 method 
[9] for the problems with diffusion. The troubled cell indicator is based on a smoothness 
indicator discussed in [17]. The reconstruction is computed based on a linear program-
ming problem as described in [10]. Finally, we use a standard third-order SSP Runge-Kutta 
method for the time evolution [29].

2.1  Simulation Setup

First, we need to choose the grid structure and the computational domain. For simplic-
ity, we concentrate here on problems defined on 2D intervals [xl, xr] × [yb, yt] and use an 
axis aligned cube grid capable of nonconforming refinement, with nx, ny elements in x- and 
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y-directions, respectively. The space consists of piecewise polynomials of degree p = 4 
spanned by an orthonormal basis over the reference element [0, 1]2 . This can be set up with 
a few lines of Python code: 

As already mentioned, the Model class combines information on the PDE and as seen 
above also provides a description of the domain, the number of components of the PDE to 
solve and the initial conditions U0 defined as a UFL expression. Examples will be provided 
in the next sections, and an overview of all attributes on this class is given in Appendix B. 
The discrete function U_h will contain our solution at the current time level and is initial-
ized by interpolating U0 into the discrete function space.

After setting up the grid, the space, and the discrete solution, we define the DG operator 
and the default Runge-Kutta time stepper: 

The Model class is used to provide all required information to the DG operator. In 
addition, the constructor of the DG operator takes a number of parameters which will be 
described throughout this section as required (see also Appendix B). In our first example, 
we will require no stabilization, so the limiter argument is set to 

In the final line of code, we pass the constructed operator to the time stepper together 
with the desired order (for the following simulations, we use methods of consistency order 
3). Finally, a simple loop is used to evolve the solution from the starting time (assumed to 
be 0) to the final time T (which is again a property of the Model class): 

The call method on the stepper evolves the solution Uh from the current to the next 
time step and returns the size Δt for the next time step. In the following, we will describe 
the Model class in detail and show how the above code snippets have to be modified to 
include additional features like stabilization for nonlinear advection problems or adaptiv-
ity. We will not describe each problem in detail, and the provided code should give all the 
required information.
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2.2  Linear Advection Problem

In the following, we solve a linear advection problem and explain various options for sta-
bilization and local grid adaptivity. The advection velocity is given by (−y, x) , so that the 
initial conditions are rotated around the origin. The initial conditions consist of three parts 
with different regularity: a cone, the characteristic function of a square and a slotted circle. 
Using UFL, these can be easily defined: 

We will solve the problem on the time interval [0, π] resulting in half of a rotation.

2.2.1  Model Description

Note that to use the local-Lax-Friedrichs flux from (5), we need to define the analytical flux 
function F_c(t,x,U) and the maximum wave speed maxWaveSpeed(t,x,U,n) in 
the Model class of the hyperbolic problem. This function is also used to provide an esti-
mate for the time step based on the CFL condition, which is returned by the stepper. 
The stepper also provides a property deltaT which allows to fix a time step to use for the 
evolution. A result for the described three-body problem is presented in Figs.  1 (left) and 
2 (left).
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2.2.2  Stabilization

It is well known that the DG method with a suitable numerical flux is stable when applied 
to linear advection problems like the one studied here. However, it does produce localized 
over and undershoots around steep gradients. While this is not necessarily a problem for 
linear equations, it can be problematic in some instances, e.g., when negative values are not 
acceptable. More crucially, this behavior leads to instabilities in the case of nonlinear prob-
lems. Therefore, a stabilization mechanism has to be provided. As mentioned in Sect. 1.3, 
we use a reconstruction approach combined with a troubled cell indicator.

The implementation available in Dune-Fem-DG is based on a troubled cell indicator 
using a smoothness indicator suggested in [43]: this indicator accumulates the integral of 
the jump of some scalar quantity derived from Uh denoted with �(UE,UK) over all inflow 
boundaries of E (defined as the intersection where some given velocity v and the normal ne 
have opposite signs), that is 

�d(k) =
2

125
d5k denotes a scaling factor, hE is the elements diameter, and |e| the area of the 

intersection between the two elements E and K . Please note the slight derivation from the 
notation in [17] by denoting the smoothness indicator in (11) with JE instead of SE.

A cell E is then flags as troubled if JE(Uh) > TOL where TOL is a threshold that can 
be set by the user. As default, we use TOL = 1 . On such troubled cells, a reconstruction of 
the solution is used to obtain a suitable approximation. Two reconstruction methods are 
implemented, one described in [17] and extended to general polyhedral cells in [39] and 
an optimization based strategy described in [10] based on ideas from [46]. Both strategies 

(11)JE(Uh) ∶=
∑

e∈IE ,

v⋅ne<0

( ∫
e
𝜙(UE,UK) ds

𝛼d(k) h
(k+1)∕4

E
|e|

)

,

Fig. 1  Three body advection problem at time t = π . a without stabilization and b with limiter-based stabili-
zation. Color range based on minimum and maximum values of discrete solution
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correspond to second-order MUSCL type finite volume schemes when used with piecewise 
constant basis functions.

Therefore, the stabilization mechanism available in Dune-Fem-DG requires the user to 
provide some additional information in the Model class, i.e., a scalar jump function of the 
solution �(U,V) between two elements E and K (jump(t,x,U,V) in the Model) and a 
suitable velocity v required to compute the smoothness indicator given in Eq. (11): 

We now need to construct the operator to include stabilization: 

A result for three-body problem including a stabilization is presented in Figs. 1b and 
2b–d.

Fig. 2  Top view of three-body-advection problem at time t = π . a without stabilization, b with default lim-
iter-based stabilization using, c using physicality check on top of the default limiter to reduce oscillations, 
and d using a scaling limiter. Values above 1 + 10

−3 or below −10−3 indicate oscillations and are colored in 
grey and black, respectively. Without stabilization, over- and undershoots were around 20% (see Fig. 1) and 
completely removed by adding the physicality check
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Although over- and undershoots are clearly reduced by the stabilization approach, there 
are still some oscillations clearly visible. They can be removed by basing the troubled cell 
indicator on a physicality check, e.g., requiring that the solution remains in the interval 
[0, 1]. So (possibly instead of the jump,velocity) attributes we add 

to the code. Another alternative is to use the approach detailed in [12, 52] which required 
to add a tuple with upper and lower bounds for each component in the solution vector to 
the Model and to change the limiter parameter in the operator constructor: 

 
The resulting plots using the scaling limiter and simply limiting in cells where the solu-

tion is below zero or above one are shown in Fig. 2.

2.2.3  Adaptivity

We use dynamic local refinement and coarsening of the grid to improve the efficiency of 
our simulation. Elements are marked for refinement or coarsening based on an elementwise 
constant indicator as discussed in Sect.   1.4. Although this is a more general feature of 
the Dune-Fem framework on which the package is based, adaptivity is such an important 
tool to improve efficiency of schemes for the type of problems discussed here, that we will 
describe how to use it in some detail.

The grid modification requires an indicator indicator computed between time steps 
which provides the information for each cell whether to keep it as it is, refine it, or coarsen 
it. To this end, Dune-Fem provides a very simple function 

F

The indicator provides a number �E ⩾ 0 on each element E which is used to deter-
mine if an element is to be refined or coarsened. An element E is refined if its level in 
the grid hierarchy is less than minLevel and 𝜂E >refineTol; it is coarsened if its level 
is greater than maxLevel and 𝜂E <coarsenTol; otherwise, it remains unchanged. In 
addition, if a cell is to be refined all its neighboring cells are refined as well, so that impor-
tant structures in the solution do not move out of refined regions during a time step. If the 
initial grid is suitably refined, then one can take 

The choice for minLevel will depend on the problem and has to be chosen carefully, 
since increasing minLevel by one can potentially double the runtime simply due to the 
reduction in the time step due to the CFL condition. At the moment, we do not provide any 
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spatially varying time step control. We usually choose coarsenTol simply as a fraction 
of refineTol. In our simulation, we use 

This leaves us needing to describe our choice for indicator and refineTol.
In the results shown here, the indicator (�E)E is based on the residual of an auxiliary 

scalar PDE

The function � , flux F and source S are provided in a subclass Indicator of the Model 
class.

For the advection problem, we will simply use the original PDE: 

The indicator is now computed by applying an operator mapping the DG space onto a 
finite volume space resulting an elementwise constant value for the indicator which we can 
use to refine/coarsen the grid: 

In the following, we refine the initial grid to accurately resolve the initial condition. We 
also use the initial indicator to fix a suitable value for the refineTol: 

�t�(t, x,U) + ∇ ⋅ (F(t, x,U,∇U)) = S(t, x,U,∇U).
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Within the time loop, we now also need to add the marking and refinement methods, 
and we repeat the full time loop here: 

Results on a dynamically adapted grid with and without stabilization are shown in 
Figs. 3 and 4.

2.3  Compressible Euler and Navier‑Stokes Equations

We continue our presentation with a system of evolution equations. We focus on simula-
tions of the compressible Euler (and later Navier-Stokes) equations. We show results for 
two standard test cases: the interaction of a shock with a low-density region and the simu-
lation of a Kelvin-Helmholtz instability with a density jump.

2.3.1  Model Description

We start with the methods needed to describe the PDE, the local Lax-Friedrichs flux and 
time step control, the troubled cell indicator, and the residual indicator. All the methods 
were already discussed in the previous section: 
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The next step is to fix the initial conditions and the end time for the two problems we want 
to study. First for the shock bubble problem 
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To complete the description of the problem, we need to define boundary conditions. For 
the advection problem, we used Dirichlet boundary conditions which are used as second 
state for the numerical flux over the boundary segments. For this problem, we will use Dir-
ichlet boundary conditions on the left and right boundary but want to use no flow boundary 
conditions on the top and bottom boundaries (which will have an identifier of 3 on this 
domain): 

Fig. 3  Top view of three-body-advection problem at time t = π using an adaptive grid. Left without stabi-
lization and right with stabilization. Color range based on minimum and maximum values of discrete solu-
tion



676 Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

Next, we describe initial conditions and boundary conditions for the Kelvin-Helmholtz 
instability between two layers with a density jump where we use periodic boundary 
conditions in the horizontal direction and reflective boundary conditions on the vertical 
boundaries: 

 Now that we have set up the model class, the code presented for the advection problem for 
evolving the system and adapting the grid can remain unchanged.

Results for both test cases on locally adapted grids are shown in Fig. 5 and the mid-
dle column of Fig. 6. The default setting works very well for the shock bubble interaction 

Fig. 4  Top view of three-body-advection problem at time t = π using an adaptive grid. Left without stabili-
zation and right with stabilization. Top shows solution with values above 1 + 10

−3 or below −10−3 colored 
in grey and black, respectively. Bottom row shows corresponding grid with solution colored according to 
their respective minimum and maximum values
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problem. It turns out that in the Kelvin-Helmholtz case, the stabilization is almost com-
pletely determined by the physicality check, since the smoothness indicator shown here is 
based on the pressure which in this case is continuous over the discontinuity. To increase 
the stabilization of the method, it is either possible to reduce the tolerance in the troubled 
cell indicator or to use a different smoothness indicator all together, which is discussed in 
Sect. 2.4. Using the default setting for the indicator, very fine structures appear with con-
siderable under- and overshoots developing as shown in the middle figure of Fig. 6. The 
minimum and maximum densities are around 0.6 and 2.6, respectively. After increasing the 
sensitivity of the smoothness indicator, by passing a suitable parameter to the constructor 
of the operator to reduce the tolerance (using TOL = 0.2 here), the under- and overshoots 
are reduced to 0.8 and 2.4 and some of the fine structure has been removed as shown in 
the right of Fig. 6. On the left of the same figure, we show results form a simulation using 
the indicator from [37] based on the modal expansion of the density. Here, minimum and 
maximum densities are 0.95 and 2.1, respectively. More details of this indicator are pro-
vided in Sect.  2.4. As reference for the Navier-Stokes simulation shown in the right of 
Fig. 8 density throughout the simulation was in the range 0.97 and 2.1. This is discussed 
further in Sect. 2.4.

2.3.2  Adding Source Terms

So far, we have in fact simulated the interaction of a shock wave with a column of low-
density gas and not in fact a bubble. To do, the later would require to either extend the 
problem to 3D (discussed in the next section) or to simulate the problem using cylindrical 
coordinates. This requires adding a geometric source term to the right-hand side of the 
Euler equations. As pointed out in the introduction, our model can take two types of source 
term depending upon the desired treatment in the time stepping scheme. Here, we want to 
treat the source explicitly, so need to add an S_e method to the Model class: 

 Results are shown in Fig. 7 which show a clear difference in the structure of the bubble at 
later time compared to Fig. 5 which is matched by the structure of the full 3D simulation 
shown in Fig.  9.

2.3.3  Adding Diffusion

Finally, we discuss the steps needed to add a diffusion term. This requires adding an addi-
tional method to the Model class. Therefore, to solve the compressible Navier-Stokes 
equations instead of the Euler equations, the following method needs to be added (given a 
viscosity parameter �):
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As an example, we repeat the simulation of the Kelvin-Helmholtz instability (see Fig. 8). 
Note that with the default setting for the stepper, an IMEX scheme is used where the dif-
fusion is treated implicitly and the advection explicitly with a time step given by the CFL 
condition. Consequently, we do not need to make any change to the construction of the 
spatial operator and time stepper shown in the code listing on Page 11.

2.4  User‑Defined Smoothness Indicator

To exchange the smoothness indicator, the construction of the operator has to be slightly 
changed. Assuming that the indicator is defined in a source file modalindicator.hh which 
defines a C++ class ModalIndicator which takes the C++ type of the discrete func-
tion U_h as template argument. This class needs to be derived from a pure virtual base 
class and override a single method. Then, the construction of the operator needs to be 
changed to 

As an example, we use here a smoothness indicator based on studying the decay properties 
of the modal expansion of the solution on each cell following the ideas presented in [37]. 
For the following implementation, we assume that we are using a modal basis function 
set orthonormalized over the reference element. Then, the C++ code required to compute 
the smoothness indicator based on the modal expansion of the density is given in the next 
snippets. 
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The actual computation of the indicator is carried out in the method smoothnessIn-
dicator, but is slightly too long to include here directly, but is shown in Appendix C. It 
is important to note that it requires very little knowledge of the Dune programming envi-
ronment or even C++, since it relies mainly on the local degrees of freedom vector pro-
vided by the argument uEn. Simulation results for the Kelvin-Helmholtz instability using 
this indicator are included in Fig. 6.

2.5  User‑Defined Time Stepping Schemes

The Dune-Fem package provides a number of standard strong stability preserving Runge-
Kutta (SSP-RK) solvers including explicit, diagonally implicit, and IMEX schemes of 
degree one to four. In the literature, there is a wide range of additional suitable RK meth-
ods (having low storage or better CFL constants using additional stages for example). Fur-
thermore, multistep methods can be used. Also there are a number of other packages pro-
viding implementations of timestepping methods. Since the computationally critical part of 
a DG method of the type described here lies in the computation of the spatial operator, the 
additional work needed for the timestepper can be carried out on the Python side with little 
impact. Furthermore, as pointed out in the introduction, it is often desirable to use Python 

Fig. 5  Shock bubble (actually column) interaction problem at t = 0.1 (left) and t = 0.5 (right). Top figure 
shows the density and bottom figure shows the levels of the dynamically adapted grid
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for rapid prototyping and to then reimplement the finished algorithm in C++ after a first 
testing phase to avoid even the slightest impact on performance. The following code snip-
pet shows how a multistage third-order RK method taken from [35] can be easily imple-
mented in Python and used to replace the stepper used so far: 

Again, the other parts of the code can remain unchanged. Results with this time stepping 
scheme are included in some of the comparisons shown in the next section (see Figs. 11 
and 12).
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Fig. 6  Density (top) and grid levels (bottom) for Kelvin-Helmholtz instability at time t = 1.5 . In the initial 
setup, the density in the upper layer is 2 and 1 in the lower layer. The middle figure shows the default setting 
for the troubled cell indicator which uses a tolerance of 1. The right figure shows results using a reduced 
tolerance of 0.2, so that more cells are marked. On the left, we show results obtained using the indicator 
from [37] based on the modal expansion of the density. Details on how this indicator is added to the code 
are discussed in Sect. 2.4

2.6  Different Grids and Spaces

One of the strengths of the Dune framework on which we are basing the software presented 
here is that it can handle many different types of grid structures. Performing a 3D simula-
tion can be as simple as changing the domain attribute in the Model class (Fig. 9).

It is also straightforward to perform the simulations on for example a simplicial grid 
instead of the cube grid used so far: 

It is even possible to use a grid consisting of general polygonal elements, by simply 
importing the correct grid implementation: 

A wide range of other grid types are available and a recent overview is given in [6]; 
some examples are shown in Fig. 10.

As pointed out in the previous section, the choice of the basis function set used to rep-
resent the discrete solution can strongly influence the efficiency of the simulation. So far, 
we have used an orthonormal basis function set for the polynomial space over the reference 
cube [0, 1]d . If the grid elements are all affine mapping of [0, 1]d (i.e., parallelograms), then 
this is a good choice, since it has the minimal number of degrees of freedom for a desired 
approximation accuracy, while the mass matrix will be a very simple diagonal matrix on 
all elements. These properties always hold for simplicial elements when an orthonormal 
polynomial basis over the reference simplex is used. As soon as the mapping between the 
reference element and a given element in the grid becomes non-affine, both properties can 
be lost. To achieve the right approximation properties in this case, it might be necessary, 
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to use a tensor product polynomial space, increasing the number of degrees of freedom per 
element considerably. Also, an orthonormal set of basis function over the reference cube 
will still lead to a dense mass matrix. This leads to a significant reduction in the efficiency 
of the method if the local mass matrix on each element cannot be stored due to memory 
restrictions. A possible solution to this problem is to use a Lagrange type set of basis func-
tions with interpolation points coinciding with a quadrature rule over the reference cube. 
We discussed this approach in some detail in Sect. 1.1. There, we mentioned two choices 
for such quadrature: the use of tensor product Gauss-Legendre rules which are optimal 
with respect to accuracy. In the software framework presented here, it is straightforward 
to switch to this representation of the discrete space by replacing the construction of the 
space object by 

DG

If the operator is constructed using this space, the suitable Gaussian quadrature is 
chosen automatically. Note that this space is only well defined over a grid consisting of 

Fig. 7  Shock bubble interaction problem in cylindrical coordinate at time t = 0.1 and t = 0.5 . Density is 
shown in the top row and the adaptive grid in the bottom row

Fig. 8  Diffusive Kelvin-Helmholtz instability with � = 0 (Euler), � = 0.0001 , and � = 0.001 (from left 
to right). Top row shows density and bottom row shows the grid levels of the adaptive simulation. The 
smoothing effect of the viscosity is clearly visible compared to the results shown for the Euler equations. 
Consequently, the small-scale instabilities are completely suppressed and a coarser grid is used
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Fig. 9  Adaptive 3D simulation of shock bubble interaction problem shown from two different sides. The 
grid levels and the density distribution at time t = 0.5 are shown together with the isosurface � = 1.5 . The 
simulation was performed on a workstation using eight processors. The corresponding globally refined grid 
would have contained 1.5 M elements resulting in 52 M degrees of freedom. The grid shown here consists 
of 150.000 elements with about 5.2 M degrees of freedom

cubes. A second common choice, which corresponds to an underintegration of the mass 
matrix but faster evaluation of surface integrals, is to use LGL quadrature rules. Again, 
switching to this Lagrange point set is straightforward, 

and again, using this space in the construction of the spatial operator will result in the 
correct LGL quadrature being used.

In Figs. 11, 12, we compare L2 errors on a sequence of non-affine cube grids (split into 
two simplices for the simplicial simulation) using different sets of basis functions. We 
show both the error in the L2 vs. the number of degrees of freedom (left) and vs. the runt-
ime (right). The right plot also includes results from a simulation with the LGL method 
and the SSP3 time stepper implemented in Python as discussed previously. The results of 
this simulation are not included on the left, since they are broadly in line with the LGL 
simulation using the three-stage RK method available in Dune-Fem-DG.

Summarizing the results from both Figs. 11 and 12, it seems clear that the simulation 
on the simplicial grid produces a slightly better error on the same grid, but requires twice 
as many degrees of freedom, so that it is less efficient compared to the LGL or GL simula-
tions. Also as expected, the runtime with the ONB basis on the cube grids is significantly 
larger due to the additional cost of computing the inverse mass matrix on each element of 
the grid as discussed above. On an affine cube grid, the runtime is comparable to the GL 
scheme on the same grid, but this is not shown here. Finally, due to the larger effective 
CFL constant, the time stepper implemented in Python is more efficient, then the three-
stage method of the same order is available in Dune-Fem-DG.

In Fig. 13, we carry out the same experiment, but this time using the orthonormal basis 
but varying the troubled cell indicator. While all methods seem to broadly converge in a 
similar fashion when the grids are refined, it is clear that the main difference in the effi-
ciency is again based on question if the grid elements are affine mappings of the reference 
element or not. For a given grid structure, the results indicate that using the modal indica-
tor based on the density is the most efficient for the given test case.
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2.7  Reactive Advection‑Diffusion Problem

We conclude with an example demonstrating the flexibility of the framework to combine 
different components of the Dune-Fem package to construct a scheme for a more complex 
problem. As a simple example, we use a chemical reaction type problem with linear advec-
tion and diffusion where the velocity field is given by discretizing the solution to an elliptic 
problem in a continuous Lagrange space. As mentioned, this is still a simple problem but 
can be seen as a template for coupled problems, e.g., transport in porous media setting or 
where the flow is given by solving incompressible Navier Stokes equations.

Let us first compute the velocity given as the curl of the solution to a scalar elliptic 
problem: 

We use this velocity field to evolve three chemical components reacting through some 
nonlinear reaction term and include some small linear diffusion: 

Fig. 10  Shock bubble interaction problem at t = 0.1 using different grid structures. A structured simplex 
grid (left), a non-affine cube grid (right), and a polygonal grid (middle) consisting of the dual of the simplex 
grid on the left
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Note that the source term includes both the chemical reaction and a source for the first 
two components. The third component is generated by the first two interacting.

Due to the diffusion, we do not need any stabilization of the form used so far. However, 
in this case, a reasonable assumption is that all components remain positive throughout the 
simulation, so the physicality check described above is still a useful feature. We can com-
bine this with the scaling limiter already described for the advection problem. To this end, 
we need to add bounds to the model and change to the construction call for the operator: 

LL

N T

- -
-
-

-

-
-

-

Fig. 11  Two rarefaction wave problems simulated from t = 0.05 to 0.12 on a sequence of non-affine cube 
and on simplicial grids with different representation for the discrete space with polynomial order 4



686 Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

Note that by default, the stepper switches to an IMEX Runge-Kutta scheme if the  
Model class contains both an advective and a diffusive flux. This behavior can be changed 
using the rkType parameter in the constructor call for the stepper. A final remark con-
cerning boundary conditions: here, we use simple Dirichlet boundary conditions which are 
then used for both the diffusive and advective fluxes on the boundary as outside cell value. 
We saw in a previous example that we can also prescribe the advective flux on the bound-
ary directly. In that example, we used 

If this type of boundary conditions is used, we also need to prescribe the flux for the  
diffusion term, so for an advection-diffusion problem, we pass in a pair of fluxes at the 
boundary, e.g., 
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Fig. 12  Sod’s Riemann problem simulated from t = 0 to 0.2 on a sequence of non-affine cube and on sim-
plicial grids with different representation for the discrete space with polynomial order 4
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Fig. 13  Sod’s Riemann problem simulated from t = 0 to 0.2 using different troubled cell indicators. The 
simulations were performed on a sequence of grids consisting of non-affine cubes (split into two triangles 
for simplicial simulations) using piecewise polynomials of order 4 with the orthonormal basis. Shown are 
the errors measured in the L2 norm versus the number of degrees of freedom (left) and the runtime (right)
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Fig.  14 shows the results for the chemical reaction problem.

3  Efficiency of Python‑Based Auto‑generated Models

While Python is easy to use, its flexibility can lead to some deficiencies when it comes to 
performance. In Dune, [16, 23], a just-in-time compilation concept is used to create Python 
modules based on the static C++ type of every object used, i.e., the models described in 
the previous section are translated into C++ code based on the UFL descriptions in the 
various model methods which is then compiled and loaded as Python modules. This way, 
we avoid virtualization of the Dune interfaces, and consequently, one would expect very 
little performance impact as long as calls between Python and C++ are only done for long 
running methods. To verify this, we compare the performance of the approach shown here 
with the previously hand-coded pure C++ version described in [14].

As a test example, we choose a standard Riemann problem (Sod, T = 0.1 ) for the Euler 
equations solved on a series of different grid resolutions using fourth-order basis functions, 
the default limiter, and explicit RK3 time stepping with CFL = 0.4 . We use two different 
grid implementations, a dedicated Cartesian grid (SPGrid) and a fully unstructured grid 
(ALUGrid). The results are shown in Table  1 and should be taken with a grain of salt, 
since these only present a preliminary comparison, as such measurements heavily depend 
on the hardware, compiler and compiler flags, as well as selected mathematical problem. 
The results presented here were produced on an Intel CPU i7-9750H @ 2.60 GHz using  

 and the following compiler flags: 

With our setting, we observe that for the Cartesian grid (SPGrid), using the Python front 
end leads to no performance loss. For the unstructured grid (ALUGrid), we observe a per-
formance decrease of about 10%. This can be explained with the fact that for SPGrid, all 
source  code can be inlined in the just-in-time compiled Python module which uses the 
same compiler optimization flags as the normal C++ code. For ALUGrid, where a shared 
library exists, this is not so straight forward. In the future, we will experiment with link 
time optimization and try to reduce implementation of small code snippets in the ALUGrid 
library.
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4  Conclusion and Outlook

In this paper, we presented a comprehensive framework for the DG method with an easy to 
use Python interface for model description and solver configuration. The framework covers 
different variants of existing DG methods and can be easily extended to include improve-
ments and new development of the methodology.

Although the Dune-Fem-DG framework serves as a good starting point for high-per-
formance DG solvers, the aim of this work is to demonstrate how the Python interface 

Fig. 14  The three components of the chemical reaction system (left to right) at t = 4.5 (top row) and t = 10 
(bottom row). Velocity field included in middle figure

Table 1  Runtime comparison of the C++ and the Python code for a simple test example solving the Euler 
equations in 2D with explicit time stepping and fourth-order polynomials using 1 and 4 thread(s)

SPGrid ALUGrid

Code ∖ #el 1 024 4 096 16 384 Code ∖ #el 1 024 4 096 16 384

Fourth-order polynomials and 1 thread
C++ 15.5 128.6 1 045.4 C++ 17.3 145.6 1 203.5
C++(UFL) 14.8 123.7 1 013.2 C++(UFL) 17. 3 145.0 1 199.3
Python 14.8 123.9 1 008.6 Python 19.5 163.3 1 341.7
Fourth-order polynomials and 4 threads
C++ 4.43 35.7 291.2 C++ 4.79 39.9 331.3
C++(UFL) 4.18 34.4 282.0 C++(UFL) 4.73 39.9 331.5
Python 4.19 34.1 280.9 Python 5.43 44.2 365.7
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simplifies the simulation of a wide range of evolution equations as well as enabling the 
rapid prototyping of new methods, their testing, and their comparison with other methods. 
For example, in almost all the tests presented here, computations were done using the same 
setting for the indicator and tolerance for adaptivity and the troubled cell detection, demon-
strating the robustness of the default setup. Of course, the default setup will only be a suit-
able starting point, and so, most of the building blocks of the discretization can be straight-
forwardly replaced from within the Python script, often without requiring any or not much 
C++ knowledge. Also we would like to point out the implemented DG solver which can be 
directly used as higher (second)-order FV scheme by replacing the DG space with an FV 
space consisting of piecewise constant polynomials.

The Python interfaces are not yet fully reflecting the possibilities on the C++ side; for 
example, the reconstruction in primary variables for the Euler equations is possible, but not 
yet available on the Python side. Another missing feature is that it is currently not possible 
on the Python side to easily exchange the average operators in the discretization of the dif-
fusive terms as, for example, needed in some applications [15].

Another missing feature in Python is the assembly of Jacobian matrices during the non-
linear solve. This could be desirable for some applications or to test different existing solv-
ers. Although the feature is available in the C++ code, it needs a few code alterations in 
the underlying infrastructure package. This would also make it straightforward to then use 
other solver packages available in Python, e.g., scipy. For the compressible applications, 
which were the focus of this work, it is much more feasible to work with the Jacobian-free 
nonlinear solvers and there robust and efficient preconditioning techniques are still a very 
active research topic. We are currently focusing on including ideas presented in [7] based 
on subcell FV multigrid preconditioning.

The extension of the DGSEM methods to simplicial grids (see [11] for an overview) 
could be implemented with a few minor modifications. Based on earlier work [22], the nec-
essary basis function implementations for arbitrary quadrature points are available but need 
to be integrated into the Dune-Fem and Dune-Fem-DG framework.

While Dune-Fem provides a number of Runge-Kutta methods, we have shown here that 
it is straightforward to add other time stepping algorithms on the Python side, a feature 
which should also allow to use other packages which provide bindings for Python, such 
as the Assimulo package [2]. For IMEX schemes, the splitting is at the moment still a bit 
restricted focusing on the important case of implicitly treating the diffusion (and part of the 
source term) while using an explicit method for the advection. In some applications, other 
types of splitting (e.g., horizontal explicit vertical implicit (HEVI) methods used in mete-
orology) are of interest and will be made available in future releases.

Appendix A Installation

The presented software is based on the upcoming Dune release version 2.8. Installing the 
software described in this paper can be done using the Package Installer for Python (pip). 
This method of installing the software has been tested on different Linux systems and 
MAC OS Catalina. Installations on Windows systems require to make use of the Windows 
Subsystem for Linux and, for example, Ubuntu as an operating system.

Prerequisites for the installation are 
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A A working compiler suite (C++, C) that supports C++ standard 17 (i.e., g++ version 
8 or later or clang version 10 or later),

B pkg-config,
C cmake version 3.13.3 or later (newer versions can be installed using pip),
D git for downloading the software, and
E a working Python 3 installation including the virtual environment module (venv).

The first step is to create a so-called Python virtual environment which will contain all the 
installed software, and for later removal one only has to remove the folder containing the 
virtual environment. 

i) Create a Python virtual environment, i.e., 

  This will create a virtual environment in the folder  
ii) Activate the virtual environment by 

  The prompt of the shell will now contain the name of the virtual environment direc-
tory in parenthesis. The virtual environment can be deactivated by closing the shell or 
invoking the command deactivate.

iii) To ensure consistent package installation upgrade pip first, i.e., 

iv) Install Python packages needed by scripts in this paper that are not listed as default 
dependencies of Dune-Fem-DG, i.e., 

  At this point, cmake only needs to be installed if the system version is older than 
3.13.3.

v) Install Dune-Fem-DG by simply using pip again, i.e., 

  This will also install all necessary other packages such as NumPy, FEniCS-ufl, 
mpi4py, and various Dune packages. Depending on the time of the day, it might be a 
good idea to get a cup of coffee now, because this will take a few minutes, since libraries 
and Python packages are now actually build.

vi) Finally, the scripts used to produce the results presented in this paper can be downloaded 
by calling 
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  This will create a folder femdg_tutorial containing various example programs. 
Note that the first run of each script will take relatively long, since various C++ modules 
are compiled just-in-time.

The software can also be installed using the standard Dune way of installing from source. 
A ready to use and up-to-date build script is found inside the dune-fem-dg git repository 
at https:// gitlab. dune- proje ct. org/ dune- fem/ dune- fem- dg/-/ blob/ master/ scrip ts/ build- dune- 
fem- dg. sh. This way of installation requires more in-depth knowledge of the Dune build 
system and Linux expert knowledge in general.

Appendix B Interfaces

Signature of femdgOperator: 

The Model class contains the description of the mathematical model to solve and is 
described below. The space parameter is one of the available DG spaces available in the 
Dune-Fem framework. We have limiter equal to  
taking advectionFlux equal to  to use Local-Lax-Friedrichs scheme; for 
Euler, there are some other fluxes available; this parameter can also be used to pass in 
a user-defined flux implementation. The parameter diffusionScheme can be used to 
change the diffusive flux. The parameters is a dictonary where additional information 
can be passed to the C++ code, e.g., the tolerance for the troubled cell indicator. Static 
methods on Model class passed to femdgOperator: 

https://gitlab.dune-project.org/dune-fem/dune-fem-dg/-/blob/master/scripts/build-dune-fem-dg.sh
https://gitlab.dune-project.org/dune-fem/dune-fem-dg/-/blob/master/scripts/build-dune-fem-dg.sh
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The final ingredient is the time stepper: 

If rkType is  or , then the type of Runge-Kutta method used will depend 
on the methods defined on the Model class used to construct the operator. If no diffusive 
flux F_v was defined an explicit RK method is used, if a diffusive flux but no advective 
flux F_c is defined an implicit method is used, while if both fluxes are present an IMEX 
scheme is employed. Again, the parameter dictonary can be used to set further param-
eters read by the underlying C++ code.

Appendix C C++ Code for Modal Troubled Cell Indicator

The full class for the modal indicator. The class needs to derive from a templated pure vir-
tual base class 

and override a single method. The main work is done in the private method smooth-
nessIndicator which sets up a least square problem to compute a smoothness indica-
tor following [37]. We assume that the degrees of freedom  are modal. The modal 
decay is computed for the first component, i.e., 
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