
Vol.:(0123456789)

Communications on Applied Mathematics and Computation (2022) 4:657–696
https://doi.org/10.1007/s42967-021-00134-5

1 3

ORIGINAL PAPER

Extendible and Efficient Python Framework for Solving
Evolution Equations with Stabilized Discontinuous Galerkin
Methods

Andreas Dedner1 · Robert Klöfkorn2

Received: 25 September 2020 / Revised: 18 March 2021 / Accepted: 31 March 2021 /
Published online: 7 September 2021
© The Author(s) 2021

Abstract
This paper discusses a Python interface for the recently published Dune-Fem-DG mod-
ule which provides highly efficient implementations of the discontinuous Galerkin (DG)
method for solving a wide range of nonlinear partial differential equations (PDEs).
Although the C++ interfaces of Dune-Fem-DG are highly flexible and customizable, a
solid knowledge of C++ is necessary to make use of this powerful tool. With this work,
easier user interfaces based on Python and the unified form language are provided to open
Dune-Fem-DG for a broader audience. The Python interfaces are demonstrated for both
parabolic and first-order hyperbolic PDEs.

Keywords Dune · Dune-Fem · Discontinuous Galerkin · Finite volume · Python ·
Advection-diffusion · Euler · Navier-Stokes

Mathematics Subject Classification 65M08 · 65M60 · 35Q31 · 35Q90 · 68N99

In this paper, we introduce a Python layer for the Dune-Fem-DG1 module [14] which is
available open source. The Dune-Fem-DG module is based on Dune [5] and Dune-
Fem [20] in particular and makes use of the infrastructure implemented by Dune-Fem for
seamless integration of parallel-adaptive finite-element-based discretization methods.

Dune-Fem-DG focuses exclusively on discontinuous Galerkin (DG) methods for vari-
ous types of problems. The discretizations used in this module are described by two main
papers [17], where we introduced a generic stabilization for convection dominated prob-
lems that works on generally unstructured and nonconforming grids and [9] where we

 * Robert Klöfkorn
 robertk@math.lu.se

 Andreas Dedner
 A.S.Dedner@warwick.ac.uk

1 University of Warwick, Coventry CV4 7AL, UK
2 Lund University, Box 118, 22100 Lund, Sweden

1 https:// gitlab. dune- proje ct. org/ dune- fem/ dune- fem- dg. git.

http://orcid.org/0000-0001-9664-0333
http://crossmark.crossref.org/dialog/?doi=10.1007/s42967-021-00134-5&domain=pdf
https://gitlab.dune-project.org/dune-fem/dune-fem-dg.git

658 Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

introduced a parameter independent DG flux discretization for diffusive operators. Dune-
Fem-DG has been used in several applications (see [14] for a detailed list), most notably a
comparison with the production code of the German Weather Service COSMO has been
carried out for test cases for atmospheric flow ([8, 49]). The focus of the implementation is
on Runge-Kutta DG methods using mainly a matrix-free approach to handle implicit time
discretizations which is a method especially used for convection dominated problems.

Many software packages provide implementations of DG methods, for example, deal.
II ([4]), feel++ ([27]), Nektar++ ([34]), FLEXI ([31]), FEniCS ([44]), or Firedrake ([48]).
However, most of these packages do not combine the complete set of the following
features:

– a wide range of different DG schemes for time-dependent diffusion, advection-diffu-
sion, and purely hyperbolic problems;

– a variety of grids ranging from dedicated Cartesian to fully unstructured in 2 and 3
space dimensions;

– dynamic local refinement and coarsening of the grid;
– parallel computing capabilities with dynamic load balancing;
– rapid prototyping using a Python front end;
– open-source licenses.

All of the above feature are available in the framework described here. It is based on the
distributed and unified numerics environment (Dune), which provides one of the most
flexible and comprehensive grid interfaces available. The interfaces allow to conveniently
switch grid implementations (not just element types), without the need to re-write appli-
cation code. Various different implementations support all kinds of grid structures from
Cartesian grids to polyhedral grids, all with their own optimized data structure and imple-
mentation. This is a very unique feature of the Dune framework, which is also available in
the Dune-Fem-DG package described in this paper.

So far, a shortcoming of Dune-Fem-DG has been the template heavy and relatively
complicated C++ user interfaces, leading to a steep learning curve for implementing new
models and applications or coupling of such. To simplify the usage of the software espe-
cially for new users, recent development (e.g., [19]) has focused on adding a Python layer
on top of Dune-Fem-DG. Low-level Python bindings were introduced for the Dune grid
interface in [23] and a detailed tutorial providing high-level access to Dune-Fem is also
available [16]. The software can now be completely installed from the Python Package
Index and used from within Python without requiring the users to change and compile any
of the C++ code themselves. The bindings are set up, so that the flexibility of the Dune
framework is not compromised, while at the same time providing a high-level abstraction
suitable for rapid prototyping of new methods. In addition, a wide range of mathematical
models can be easily investigated with this software which can be described symbolically
using the domain specific unified form language (UFL) [1].

The FEniCS project pioneered the UFL for the convenient formulation of weak forms
of PDEs. Over time, other finite-element frameworks, for example, firedrake [48] or ExaS-
tencils [32], adopted UFL to transform the weak forms into C or C++ code that assem-
bles resulting linear and linearized forms into matrix structures, for example provided by
packages like PETSc [3]. To our knowledge, only a few packages exist based on UFL that
consider convection dominated evolution equations. For example, in [33], UFL is used
to describe weak forms for the compressible Euler and Navier-Stokes equations but only
in the stationary setting. Another example is [51] where shallow water applications are

659Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

considered. A package that also provides Python bindings (not using UFL) with a strong
focus on hyperbolic problems is [45], where higher order finite-volume (FV) schemes are
the method of choice. To our best knowledge, this is the first package which combines
high-level scripting support with efficient stabilized DG methods for solving the full range
of pure hyperbolic systems, through advection dominated problems, to diffusion equations.

UFL is flexible enough to describe some DG methods like the interior penalty method
directly. While this is also an option within Dune-Fem-DG, we focus on a slightly differ-
ent approach in this paper, where we use UFL to describe the strong form of the equa-
tion, similar to [33]. The model description in UFL is then used in combination with pre-
implemented discretizations of a variety of different DG schemes to solve the PDE. This
approach allows us to also provide DG methods that cannot be easily described within
UFL, including interesting diffusion discretization like CDG, CDG2, BR2, or even LDG,
but also provides an easier framework to introduce complex numerical fluxes and limit-
ers for advection dominated problems. For the time discretization, Dune-Fem-DG uses a
method of lines approach, providing the user with a number of strong stability preserving
(SSP) implicit, explicit, and IMEX schemes. Overall, the package thus offers not only a
strong base for building state-of-the-art simulation tools, but it also allows for the develop-
ment of new methods and comparative studies of different method. In addition, paralleliza-
tion and adaptivity, including the hp adaptivity, can be used seamlessly with all available
methods.

Motivation and aim of this paper
This paper describes a collaborative effort to establish a test and research environment

for DG methods based on Dune and Dune-Fem for advection-diffusion problems ranging
from advection dominated to diffusion only problems. The aim here is to provide easy
access to a comprehensive collection of existing methods and techniques to serve as a start-
ing point for new developments and comparisons without having to reinvent the wheel.
This is combined with the easy access to advanced features like the availability of different
grid element types, not limited to dimensions less than or equal to three, hp adaptation, and
parallel computation with both distributed (e.g., MPI) and shared memory (e.g., OpenMP)
parallelization, with excellent scalability [38] even for large core counts and very good on-
core efficiency in terms of floating point operations per second [14]. Python has become a
widespread programming language in the scientific computing community including the
use in industry we see great potential in improving the scientific development of DG meth-
ods by providing access to state-of-the-art research tools which can be used through the
Python scripting language, backed up by an efficient C++ back end.

The focus of this paper is to describe the different parts of the framework and how they
can be modified by the user to tailor the code to their needs and research interests. In this
paper, we will mainly look at advection dominated evolution equations, because most dif-
fusion dominated problems can be often completely described within a variational frame-
work for which the domain specific language UFL is very well suited and the standard code
generation features available in Dune-Fem are thus sufficient. For advection dominated
problems, additional ingredients are often required, e.g., for stabilization, that do not fit the
variational framework. This aspect of the algorithm will be a central part of this paper. The
development and improvement of the DG method in general or the high-performance com-
puting aspect of the underlying C++ framework, which has been investigated previously,
are outside the scope of this work.

The paper is organized as follows. In Sect. 1, we briefly recall the main building blocks
of the DG discretization of advection diffusion problems. In Sect. 2, we introduce the newly
developed Python based model interface. In Sect. 3, we investigate the performance impact

660 Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

of using Python scripting and conclude with discussing the extensibility of the approach in
Sect. 4. Installation instructions are given in Appendix A and additional code examples are
available in Appendixes B and C.

1 Governing Equations, Discretization, and Stabilization

We consider a general class of time-dependent nonlinear advection-diffusion-reaction
problems for a vector-valued function U ∶ (0,T) ×� → ℝr with r ∈ ℕ+ components of
the form

in 𝛺 ⊂ ℝd , d = 1, 2, 3 . Suitable initial and boundary conditions have to be added. Fc
describes the convective flux, Fv the viscous flux, Si a stiff source term, and Se a nonstiff
source term. Note that all the coefficients in the partial differential equation are allowed to
depend explicitly on the spatial variable x and on time t, but to simplify the presentation,
we suppress this dependency in our notation. Also note that any one of these terms is also
allowed to be zero.

For the discretization, we use a method of lines approach based on first discretizing the
differential operator in space using a DG approximation and then solving the resulting sys-
tem of ordinary differential equations (ODEs) using a time stepping scheme.

1.1 Spatial Discretization

Given a tessellation Jh of the computational domain � with ∪K∈Jh
K = � , we introduce

a piecewise polynomial space V
h
= {v ∈ L2(�,ℝr) ∶ v|

K
∈ [P

k
(K)]r, K ∈ J

h
} for some

k ∈ ℕ, where Pk(K) is a space containing all polynomials up to degree k. Furthermore, we
denote with �i the set of all intersections between two elements of the grid Jh and accord-
ingly with � the set of all intersections, also with the boundary of the domain �.

A major advantage of the DG methods over other finite-element methods is that there
is little restriction on the combination of grids and discrete spaces one can use. Due to the
low regularity requirements of DG methods, we can use any form of grid elements, from
(axis aligned or general) cubes, simplices, to general polyhedrons. The best choice will
depend on the application. In addition, different local adaptation strategies can be consid-
ered as part of the underlying grid structure, e.g., conforming refinement using red-green
or bisection strategies, or simple nonconforming refinement.

For approximation purposes, the discrete spaces are generally chosen, so that they con-
tain the full polynomials of a given degree on each element. But even after having fixed the
space, the actual set of basis functions used to represent the space, can have a huge impact
on the performance of the scheme. Central here is the structure of the local mass matrix
on each element of the grid. During the time evolution, this has to be inverted in each time
step, so efficiency here can be crucial. Therefore, a possible choice is to use a polynomial
space with basis functions orthonormalized over the reference elements in the grid. If the
geometric mapping between physical grid elements and these reference elements is affine,
then the resulting local mass matrix is a very simple diagonal matrix. If the mapping is not
affine, then the mass matrix depends nontrivially on the element under consideration and
will often be dense. In this case, another approach is to use Lagrange type basis functions

(1)�tU = L(U) ∶= − ∇ ⋅

(
Fc(U) − Fv(U,∇U)

)
+ Si(U) + Se(U) in (0,T] ×�

661Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

where the interpolation points coincide with a suitable quadrature for the mass matrix. The
case of non-affine mapping is especially relevant for cube grids, and here, tensor product
quadrature points can be used to construct the Lagrange type space. A possible approach is
to use a tensor product Gaussian rule which results in a diagonal mass matrix for each ele-
ment in the grid with a trivial dependency on the element geometry. This is due to the fact
that this quadrature is accurate up to order 2k + 1 , so that it can be used to exactly compute
the mass matrix ∫ �i�j =

∑
q �q�i(xq)�j(xq) =

∑
q �q�iq�jq = �i�ij which will therefore be

diagonal with diagonal elements only depending on the integration element at the quad-
rature points. In addition, if all the other element integrals needed to evaluate the spatial
operator use the same quadrature, the interpolation property of the basis functions can be
used to further speedup evaluation. All of this is well known and for example investigated
in [42]. A second common practise is to use the points of a tensor product Lobatto-Gauss-
Legendre (LGL) quadrature (see, e.g., [41]). In this case, the evaluation of the intersection
integrals in the spatial operator can also be implemented more efficiently. To still retain the
simple structure of the mass matrix requires to use the same LGL rule to compute ∫ �i�j .
Since this rule is only accurate up to order 2k − 1 , this results in an underintegration of the
mass matrix similar to mass lumping; this does not seem to influence the accuracy of the
scheme. This approach is often referred to a spectral DG method [41, 42].

After fixing the grid and the discrete space, we seek Uh ∈ Vh by discretizing the spatial
operator L(U) in (1) with either Dirichlet, Neumann, or Robin type boundary conditions
by defining for all test functions � ∈ Vh,

with the element integrals

with S(Uh) = Si(Uh) + Se(Uh) and the surface integrals (by introducing appropriate numer-
ical fluxes F̂c , F̂v for the convection and diffusion terms, respectively)

with {{U}}e, [[U]]e denoting the classic average and jump of U over e, respectively.
The convective numerical flux F̂c can be any appropriate numerical flux known for

standard finite volume methods, e.g., F̂c could be simply the local-Lax-Friedrichs (LLF)
flux function (also known as Rusanov flux)

where �e is an estimate of the maximum wave speed on intersection e . One could also
choose a more problem tailored flux (i.e., approximate Riemann solvers). Different options
are implemented in Dune-Fem-DG (cf. [14]).

(2)⟨�,Lh(Uh)⟩ ∶= ⟨�,Kh(Uh)⟩ + ⟨�, Ih(Uh)⟩

(3)⟨�,Kh(Uh)⟩ ∶=
�

E∈Jh

∫E

�
(Fc(Uh) − Fv(Uh,∇Uh)) ∶ ∇� + S(Uh) ⋅ �

�
,

(4)

⟨�, Ih(Uh)⟩ ∶=
�

e∈�i

∫e

�
{{Fv(Uh, [[Uh]]e)

T ∶ ∇�}}e + {{Fv(Uh,∇Uh)}}e ∶ [[�]]e
�

−
�

e∈�
∫e

�
F̂c(Uh) − F̂v(Uh,∇Uh)

�
∶ [[�]]e,

(5)F̂c

LLF

(Uh)|e ∶= {{Fc(Uh)}}e +
�e

2
[[Uh]]e,

662 Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

A wide range of diffusion fluxes F̂v can be found in the literature and many of these
fluxes are available in Dune-Fem-DG, for example, interior penalty and variants, local DG,
compact DG 1 and 2, as well as Bassi-Rebay 1 and 2 (cf. [9, 14]).

1.2 Temporal Discretization

To solve the time-dependent problem (1), we use a method of lines approach in which
the DG method described above is first used to discretize the spatial operator, and then, a
solver for ODEs is used for the time discretization, see [14]. After spatial discretization,
the discrete solution Uh(t) ∈ Vh has the form Uh(t, x) =

∑
i Ui(t)�i(x) . We get a system of

ODEs for the coefficients of U(t) which reads

with f (U(t)) = M−1Lh(Uh(t)) , M being the mass matrix which is in our case is block
diagonal or even the identity, depending on the choice of basis functions. U(0) is given by
the projection of U0 onto Vh . For the type of problems considered here, the most popular
choices for the time discretization are based around the ideas of strong stability preserving
Runge-Kutta (SSP-RK) methods (for details, see [14]). Depending on the problem SSP-RK
method is available for treating the ODE either explicitly, implicitly, or by additively split-
ting the right hand, an implicit/explicit (IMEX) treatment is possible. In an example for
such a splitting L(U) = Le(U) +Li(U) , the advection term would be treated explicitly,
while the diffusion term would be treated implicitly. In addition, the source term could be
split as well leading to operators of the form

Of course, other splittings are possible but currently not available through the Python
bindings.

We implement the implicit and semi-implicit Runge-Kutta solvers using a Jacobian-free
Newton-Krylov method (see [40]).

1.3 Stabilization

The RK-DG method is stable when applied to linear problems such as linear hyperbolic
systems; however, for nonlinear problems, spurious oscillations occur near strong shocks or
steep gradients. In this case, the RK-DG method requires some extra stabilization. In fact,
it is well known that only the first-order scheme (k = 0) produces a monotonic structure in
the shock region. Many approaches have been suggested to make this property available
in higher order schemes, without introducing the amount of numerical viscosity, which is
such a characteristic feature of first-order schemes. Several approaches exist, among those
are slope limiters [13, 17, 26, 36, 43], and for a comprehensive literature list, we refer to
[50]. Another popular stabilization technique is the artificial diffusion (viscosity) approach
[24, 28, 30, 37, 47] and others. Further techniques exist, such as a posteriori techniques to
stabilize the DG method [21] or order reduction [25].

In the following, we focus on an approach based on limiting combined with a troubled
cell indicator. We briefly recall the main steps, since these are necessary to understand the
code design decision later on. Note that an artificial diffusion approach could be used eas-
ily by adding a suitable diffusion operator to the model described above.

(6)U
�(t) =f (U(t)) in (0, T]

(7)Le(U) ∶= −∇ ⋅ Fc(U) + Se(U) and Li(U) ∶= ∇ ⋅ Fv(U,∇U)
)
+ Si(U).

663Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

A stabilized discrete operator is constructed by concatenation of the DG operator Lh
from (2) and a stabilization operator �h , leading to a modified discrete spatial operator
L̃h(Uh) ∶= (Lh◦�h)(Uh) . The stabilizations considered in this work can be computed ele-
ment wise based only on data from neighboring elements thus not increasing the stencil
of the operator. Given a DG function Uh , we call U∗

h
= �h(Uh) the stabilized DG func-

tion and we call UE = Uh|E the restriction of a function Uh on element E and denote with
ŪE its average. Furthermore, we call e the intersection between two elements E,K for
K ∈ NE , with NE being the set of neighbors of E and IE the set of intersections of E with
its neighbors.

The stabilized solution should fulfil the following requirements.

i) Conservation property, i.e., ŪE = Ū
∗

E
.

ii) Physicality of U∗
E
 (i.e., values of U∗

E
 belong to the set of states, i.e., positive density, etc.)

at least for all quadrature points used to compute element and surface integrals.
iii) Identity in “smooth” regions, i.e., in regions where the solution is “smooth” we have

U
∗
h
= Uh . This requires an indicator for the smoothness of the solution.

iv) Consistency for linear functions, i.e., if the average values of Uh on E and its neighbors
are given by the same linear function LE, then U∗

E
= LE on E.

v) Minimal stencil, i.e., the stabilized DG operator shall have the same stencil as the origi-
nal DG operator (only direct neighboring information in this context).

vi) Maximum-minimum principle and monotonicity, i.e., in regions where the solution is not
smooth the function U∗

E
 should only take values between minK∈NE

ŪK and maxK∈NE
ŪK.

These requirements are built into the stabilization operator in different ways. Requirement
5 simply limits the choice of available reconstruction methods, e.g., higher order finite vol-
ume reconstructions could not be used because of the potentially larger stencil that would
be needed which is not desired here. For example, requirement 2 and 3 form the so-called
troubled cell indicator that triggers whether a stabilized solution has to be computed. The
stabilization then consists of two steps.

i) We define the set of troubled cells by

with JE being a smoothness indicator detailed in (11) and TOL a threshold that can be
influenced by the user.

ii) (a) If E ∉ TC(Uh) , then U∗
E
= UE , i.e., the operator �h is just the identity.

(b) Construction of an admissible DG function if E ∈ TC(Uh) . In this case, the DG
solution on E needs to be altered until E is no longer a troubled cell. In this work,
we guarantee this by restricting ourselves to the reconstruction of limited linear
functions based on the average values of Uh on E and its neighbors, similar to
second-order MUSCL type finite volume schemes when used with piecewise con-
stant basis functions.

(8)TC(Uh) ∶= {E ∈ J
h
∶ JE(Uh) > TOL or UE has ���������� values}

664 Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

1.4 Adaptivity

Due to the regions of steep gradients and low regularity in the solution, advection domi-
nated problems benefit a lot from the use of local grid refinement and coarsening. In the
example shown here, we use a residual type estimator where the adaptation process is
based on the residual of an auxiliary PDE

where, for example, �,F, S could simply be taken from one of the components of the PDE
or could be based on an entropy, entropy flux pair. We now define the element residual to
be

where Rvol is a discretized version of the interior residual indicating how accurate the dis-
cretized solution satisfies the auxiliary PDE at every interior point of the domain for two
timesteps tn and tn+1 ∶

and we have jump indicators

This indicator is just one of many possible choices, e.g., simply taking the jump of Uh over
intersections will often lead to very good results, as well. We have had very good experi-
ences with this indicator as shown here based on earlier work (see [15]) where we used a
similar indicator. Related work in this direction can be found in [21] where a similar indi-
cator was derived.

1.5 Summary of Building Blocks and Limitations

– Grid structure As discussed in Sect. 1.1, the DG method has very few restrictions on
the underlying grid structure. Although more general methods have been implemented
based on Dune-Fem-DG, we restrict our attention here on method that can be imple-
mented using direct neighboring information only. This excludes for example direct
implementation of the local DG method and also more general reconstruction proce-
dures. From a parallelization point of view, the use of a minimal stencil is beneficial for
many core architectures, but crucially available unstructured grids in Dune only imple-
ment this ghost cell approach and arbitrary overlap is only available for Cartesian grids.
In the next section, we will show results for Cartesian, general cube and simplex grids,
and also some results using polyhedral elements.

– Space DG methods are variational methods based on discrete function spaces defined
over the given grid. As mentioned in Sect. 1.1, the efficiency of an implementation will

(9)�t�(t, x,U) + ∇ ⋅ (F(t, x,U,∇U)) = S(t, x,U,∇U),

(10)�2
E
=h2

E
‖Rvol‖

2

L2(E)
+

1

2

�

e∈IE

�

he‖Re2
‖2
L2(e)

+
1

he
‖Re1

‖2
L2(e)

�

,

Rvol ∶=
1

tn+1 − tn

(
�(tn+1, ⋅,Un+1) − �(tn, ⋅,Un)

)

+
1

2
∇ ⋅

(
F(tn, ⋅,Un) + F(tn+1, ⋅,Un+1)

)
−

1

2

(
S(tn, ⋅,Un) + S(tn+1, ⋅,Un+1)

)
,

Re2
∶=

1

2
[[F(tn,⋯) + F(tn+1,⋯)]]e, Re1

∶=
1

2
[[�(tn,⋯) + �(tn+1,⋯)]]e.

665Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

depend not only on the space used but also on the choice of basis functions. We will
show results for a number of different choices in the following section.

– Numerical fluxes The discretization of both the diffusion and advective terms involves
boundary integrals where the discrete solution is not uniquely defined requiring the use
of numerical fluxes. As mentioned, we only consider methods with a minimal stencil,
so that fluxes have to be used which depend only on the traces of the discrete solution
on both sides of the interface. In the package presented here, a large number of fluxes
for the diffusion are available [including but not limited to (nonsymmetric) interior pen-
alty, Bauman-Oden, Bassy-Rebay 1 and 2, compact DG 1 and 2]. Since we are focus-
ing on advection dominated problems, we will not discuss this aspect further. For the
advective numerical flux, the simplest choice for the advective flux is the Local-Lax-
Friedrichs or Rusanov flux from equation (5) which requires little additional input from
the user and in combination with higher order schemes generally gives good results.
For the Euler equations of gas dynamics, a number of additional fluxes are available
in Dune-Fem-DG, including well-known fluxes like HLL, HLLC, and HLLEM. Since
using a problem specific flux for the hyperbolic flux can be a good way to guarantee
that the method has some additional properties, e.g., well balancing for shallow water
flow, we will shortly touch on the possibility of implementing new numerical fluxes in
the following section.

– Stabilization As was discussed in some detail in the previous section, our stabilization
approach is based on a troubled cell indicator (combining a smoothness indicator with a
check on physicallity at quadrature points) and a reconstruction process of the solution
in troubled cells. While at the time of writing, it is not straightforward to implement a
new reconstruction strategy without detailed knowledge of the C++ code, it is fairly
easy for a Python user to provide their own troubled cell indicator which is demon-
strated in the next section.

– Time evolution After the spatial discretization, the resulting ordinary differential equa-
tion is solved using a Runge-Kutta as already mentioned. Dune-Fem-DG provides a
number of explicit, implicit, and IMEX SSP-RK method up to order four. However,
since this part of the algorithm is not, so time critical compared to the evaluating the
discrete spatial operator, we will also show in the following section how a different time
evolution method can be implemented on the Python side.

In the following, we will describe how the different building blocks making up the DG
method can be provided by the user, starting with some very simple problems, requiring
little input from the user and slowly building up the complexity. We are not able to provide
the full code listings in each case, but a tutorial with all the test cases presented here is
available as discussed in Appendix A and also available from [18].

2 Customizing the DG Method Using the Python Interface

In the following, we describe how to use the DG methods provided by Dune-Fem-DG based
on the mathematical description provided in the previous section. The setup of a simula-
tion always follows the same structure which is similar to the discussion in Sect. 1. The
corresponding Python code is discussed in Sect. 2.1. First, a gridView is constructed
given a description of (coarse) tessellation of the computational domain. The same basic

666 Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

description can often be used to define grids with different properties, i.e., different element
types or refinement strategies. This gridView is then used to construct a discrete space—
again, different choices are available as discussed in Sect. 1.1. The space is then used to
construct the discrete version of the spatial operator L in (1). Following the method of
lines approach, this discrete operator is then used to construct an ODE solver. The sec-
tion concludes with the basic time loop which evolves the solution from t = 0 to t = T .
If not stated otherwise, all the examples in this section are based on the code described
in Sect. 2.1. The details of the PDE we want to solve are encoded in a Model class. This
contains only information about the continuous problem, i.e., not about the discretization
details. All attributes that can be set on this class are summarized in Appendix B. Its main
purpose is to define the boundary conditions, fluxes, and source term functions defining
the spatial operator L in (1). It is then used to construct the discrete spatial operator. For a
scalar first-order hyperbolic problem, for example, this requires the definition of Fc , shown
here for a simple linear advection problem:

We add additional information like the description of the computational domain, the final
time of simulation T, and the initial conditions not strictly required for the spatial operator.
This simplifies the description of the setup process in the next section. In our first example
in Sect. 2.2, we start with a similar advection problem as the one given above and then step
by step how the Model class is extended to include additional features, like the stabiliza-
tion, and adaptivity. In Sect. 2.3, we show how a vector-valued PDE is implemented using
the example of the Euler equations of gas dynamics. In this section, we also include an
example showing how a source term is added and also how a diffusive flux is added by pro-
viding an implementation of the compressible Navier-Stokes equations.

In the next two sections, we demonstrate how to extend the existing code. In Sect. 2.4,
we discuss how to implement a different troubled cell indicator and in Sect. 2.5 how a user-
defined time stepper can be used.

We conclude this section with a discussion on the use of different spaces and grid struc-
tures (Sect. 2.6) and show a simulation for an advection-diffusion-reaction problem in
Sect. 2.7.

If not mentioned otherwise, the results presented in the following are obtained using a
Cartesian grid with a fourth-order polynomial space spanned by orthonormal basis func-
tion. We use the local-Lax-Friedrichs flux (5) for the advection term and the CDG2 method
[9] for the problems with diffusion. The troubled cell indicator is based on a smoothness
indicator discussed in [17]. The reconstruction is computed based on a linear program-
ming problem as described in [10]. Finally, we use a standard third-order SSP Runge-Kutta
method for the time evolution [29].

2.1 Simulation Setup

First, we need to choose the grid structure and the computational domain. For simplic-
ity, we concentrate here on problems defined on 2D intervals [xl, xr] × [yb, yt] and use an
axis aligned cube grid capable of nonconforming refinement, with nx, ny elements in x- and

667Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

y-directions, respectively. The space consists of piecewise polynomials of degree p = 4
spanned by an orthonormal basis over the reference element [0, 1]2 . This can be set up with
a few lines of Python code:

As already mentioned, the Model class combines information on the PDE and as seen
above also provides a description of the domain, the number of components of the PDE to
solve and the initial conditions U0 defined as a UFL expression. Examples will be provided
in the next sections, and an overview of all attributes on this class is given in Appendix B.
The discrete function U_h will contain our solution at the current time level and is initial-
ized by interpolating U0 into the discrete function space.

After setting up the grid, the space, and the discrete solution, we define the DG operator
and the default Runge-Kutta time stepper:

The Model class is used to provide all required information to the DG operator. In
addition, the constructor of the DG operator takes a number of parameters which will be
described throughout this section as required (see also Appendix B). In our first example,
we will require no stabilization, so the limiter argument is set to

In the final line of code, we pass the constructed operator to the time stepper together
with the desired order (for the following simulations, we use methods of consistency order
3). Finally, a simple loop is used to evolve the solution from the starting time (assumed to
be 0) to the final time T (which is again a property of the Model class):

The call method on the stepper evolves the solution Uh from the current to the next
time step and returns the size Δt for the next time step. In the following, we will describe
the Model class in detail and show how the above code snippets have to be modified to
include additional features like stabilization for nonlinear advection problems or adaptiv-
ity. We will not describe each problem in detail, and the provided code should give all the
required information.

668 Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

2.2 Linear Advection Problem

In the following, we solve a linear advection problem and explain various options for sta-
bilization and local grid adaptivity. The advection velocity is given by (−y, x) , so that the
initial conditions are rotated around the origin. The initial conditions consist of three parts
with different regularity: a cone, the characteristic function of a square and a slotted circle.
Using UFL, these can be easily defined:

We will solve the problem on the time interval [0, π] resulting in half of a rotation.

2.2.1 Model Description

Note that to use the local-Lax-Friedrichs flux from (5), we need to define the analytical flux
function F_c(t,x,U) and the maximum wave speed maxWaveSpeed(t,x,U,n) in
the Model class of the hyperbolic problem. This function is also used to provide an esti-
mate for the time step based on the CFL condition, which is returned by the stepper.
The stepper also provides a property deltaT which allows to fix a time step to use for the
evolution. A result for the described three-body problem is presented in Figs. 1 (left) and
2 (left).

669Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

2.2.2 Stabilization

It is well known that the DG method with a suitable numerical flux is stable when applied
to linear advection problems like the one studied here. However, it does produce localized
over and undershoots around steep gradients. While this is not necessarily a problem for
linear equations, it can be problematic in some instances, e.g., when negative values are not
acceptable. More crucially, this behavior leads to instabilities in the case of nonlinear prob-
lems. Therefore, a stabilization mechanism has to be provided. As mentioned in Sect. 1.3,
we use a reconstruction approach combined with a troubled cell indicator.

The implementation available in Dune-Fem-DG is based on a troubled cell indicator
using a smoothness indicator suggested in [43]: this indicator accumulates the integral of
the jump of some scalar quantity derived from Uh denoted with �(UE,UK) over all inflow
boundaries of E (defined as the intersection where some given velocity v and the normal ne
have opposite signs), that is

�d(k) =
2

125
d5k denotes a scaling factor, hE is the elements diameter, and |e| the area of the

intersection between the two elements E and K . Please note the slight derivation from the
notation in [17] by denoting the smoothness indicator in (11) with JE instead of SE.

A cell E is then flags as troubled if JE(Uh) > TOL where TOL is a threshold that can
be set by the user. As default, we use TOL = 1 . On such troubled cells, a reconstruction of
the solution is used to obtain a suitable approximation. Two reconstruction methods are
implemented, one described in [17] and extended to general polyhedral cells in [39] and
an optimization based strategy described in [10] based on ideas from [46]. Both strategies

(11)JE(Uh) ∶=
∑

e∈IE ,

v⋅ne<0

(∫
e
𝜙(UE,UK) ds

𝛼d(k) h
(k+1)∕4

E
|e|

)

,

Fig. 1 Three body advection problem at time t = π . a without stabilization and b with limiter-based stabili-
zation. Color range based on minimum and maximum values of discrete solution

670 Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

correspond to second-order MUSCL type finite volume schemes when used with piecewise
constant basis functions.

Therefore, the stabilization mechanism available in Dune-Fem-DG requires the user to
provide some additional information in the Model class, i.e., a scalar jump function of the
solution �(U,V) between two elements E and K (jump(t,x,U,V) in the Model) and a
suitable velocity v required to compute the smoothness indicator given in Eq. (11):

We now need to construct the operator to include stabilization:

A result for three-body problem including a stabilization is presented in Figs. 1b and
2b–d.

Fig. 2 Top view of three-body-advection problem at time t = π . a without stabilization, b with default lim-
iter-based stabilization using, c using physicality check on top of the default limiter to reduce oscillations,
and d using a scaling limiter. Values above 1 + 10

−3 or below −10−3 indicate oscillations and are colored in
grey and black, respectively. Without stabilization, over- and undershoots were around 20% (see Fig. 1) and
completely removed by adding the physicality check

671Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

Although over- and undershoots are clearly reduced by the stabilization approach, there
are still some oscillations clearly visible. They can be removed by basing the troubled cell
indicator on a physicality check, e.g., requiring that the solution remains in the interval
[0, 1]. So (possibly instead of the jump,velocity) attributes we add

to the code. Another alternative is to use the approach detailed in [12, 52] which required
to add a tuple with upper and lower bounds for each component in the solution vector to
the Model and to change the limiter parameter in the operator constructor:

The resulting plots using the scaling limiter and simply limiting in cells where the solu-

tion is below zero or above one are shown in Fig. 2.

2.2.3 Adaptivity

We use dynamic local refinement and coarsening of the grid to improve the efficiency of
our simulation. Elements are marked for refinement or coarsening based on an elementwise
constant indicator as discussed in Sect. 1.4. Although this is a more general feature of
the Dune-Fem framework on which the package is based, adaptivity is such an important
tool to improve efficiency of schemes for the type of problems discussed here, that we will
describe how to use it in some detail.

The grid modification requires an indicator indicator computed between time steps
which provides the information for each cell whether to keep it as it is, refine it, or coarsen
it. To this end, Dune-Fem provides a very simple function

F

The indicator provides a number �E ⩾ 0 on each element E which is used to deter-
mine if an element is to be refined or coarsened. An element E is refined if its level in
the grid hierarchy is less than minLevel and 𝜂E >refineTol; it is coarsened if its level
is greater than maxLevel and 𝜂E <coarsenTol; otherwise, it remains unchanged. In
addition, if a cell is to be refined all its neighboring cells are refined as well, so that impor-
tant structures in the solution do not move out of refined regions during a time step. If the
initial grid is suitably refined, then one can take

The choice for minLevel will depend on the problem and has to be chosen carefully,
since increasing minLevel by one can potentially double the runtime simply due to the
reduction in the time step due to the CFL condition. At the moment, we do not provide any

672 Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

spatially varying time step control. We usually choose coarsenTol simply as a fraction
of refineTol. In our simulation, we use

This leaves us needing to describe our choice for indicator and refineTol.
In the results shown here, the indicator (�E)E is based on the residual of an auxiliary

scalar PDE

The function � , flux F and source S are provided in a subclass Indicator of the Model
class.

For the advection problem, we will simply use the original PDE:

The indicator is now computed by applying an operator mapping the DG space onto a
finite volume space resulting an elementwise constant value for the indicator which we can
use to refine/coarsen the grid:

In the following, we refine the initial grid to accurately resolve the initial condition. We
also use the initial indicator to fix a suitable value for the refineTol:

�t�(t, x,U) + ∇ ⋅ (F(t, x,U,∇U)) = S(t, x,U,∇U).

673Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

Within the time loop, we now also need to add the marking and refinement methods,
and we repeat the full time loop here:

Results on a dynamically adapted grid with and without stabilization are shown in
Figs. 3 and 4.

2.3 Compressible Euler and Navier‑Stokes Equations

We continue our presentation with a system of evolution equations. We focus on simula-
tions of the compressible Euler (and later Navier-Stokes) equations. We show results for
two standard test cases: the interaction of a shock with a low-density region and the simu-
lation of a Kelvin-Helmholtz instability with a density jump.

2.3.1 Model Description

We start with the methods needed to describe the PDE, the local Lax-Friedrichs flux and
time step control, the troubled cell indicator, and the residual indicator. All the methods
were already discussed in the previous section:

674 Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

The next step is to fix the initial conditions and the end time for the two problems we want
to study. First for the shock bubble problem

675Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

To complete the description of the problem, we need to define boundary conditions. For
the advection problem, we used Dirichlet boundary conditions which are used as second
state for the numerical flux over the boundary segments. For this problem, we will use Dir-
ichlet boundary conditions on the left and right boundary but want to use no flow boundary
conditions on the top and bottom boundaries (which will have an identifier of 3 on this
domain):

Fig. 3 Top view of three-body-advection problem at time t = π using an adaptive grid. Left without stabi-
lization and right with stabilization. Color range based on minimum and maximum values of discrete solu-
tion

676 Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

Next, we describe initial conditions and boundary conditions for the Kelvin-Helmholtz
instability between two layers with a density jump where we use periodic boundary
conditions in the horizontal direction and reflective boundary conditions on the vertical
boundaries:

 Now that we have set up the model class, the code presented for the advection problem for
evolving the system and adapting the grid can remain unchanged.

Results for both test cases on locally adapted grids are shown in Fig. 5 and the mid-
dle column of Fig. 6. The default setting works very well for the shock bubble interaction

Fig. 4 Top view of three-body-advection problem at time t = π using an adaptive grid. Left without stabili-
zation and right with stabilization. Top shows solution with values above 1 + 10

−3 or below −10−3 colored
in grey and black, respectively. Bottom row shows corresponding grid with solution colored according to
their respective minimum and maximum values

677Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

problem. It turns out that in the Kelvin-Helmholtz case, the stabilization is almost com-
pletely determined by the physicality check, since the smoothness indicator shown here is
based on the pressure which in this case is continuous over the discontinuity. To increase
the stabilization of the method, it is either possible to reduce the tolerance in the troubled
cell indicator or to use a different smoothness indicator all together, which is discussed in
Sect. 2.4. Using the default setting for the indicator, very fine structures appear with con-
siderable under- and overshoots developing as shown in the middle figure of Fig. 6. The
minimum and maximum densities are around 0.6 and 2.6, respectively. After increasing the
sensitivity of the smoothness indicator, by passing a suitable parameter to the constructor
of the operator to reduce the tolerance (using TOL = 0.2 here), the under- and overshoots
are reduced to 0.8 and 2.4 and some of the fine structure has been removed as shown in
the right of Fig. 6. On the left of the same figure, we show results form a simulation using
the indicator from [37] based on the modal expansion of the density. Here, minimum and
maximum densities are 0.95 and 2.1, respectively. More details of this indicator are pro-
vided in Sect. 2.4. As reference for the Navier-Stokes simulation shown in the right of
Fig. 8 density throughout the simulation was in the range 0.97 and 2.1. This is discussed
further in Sect. 2.4.

2.3.2 Adding Source Terms

So far, we have in fact simulated the interaction of a shock wave with a column of low-
density gas and not in fact a bubble. To do, the later would require to either extend the
problem to 3D (discussed in the next section) or to simulate the problem using cylindrical
coordinates. This requires adding a geometric source term to the right-hand side of the
Euler equations. As pointed out in the introduction, our model can take two types of source
term depending upon the desired treatment in the time stepping scheme. Here, we want to
treat the source explicitly, so need to add an S_e method to the Model class:

 Results are shown in Fig. 7 which show a clear difference in the structure of the bubble at
later time compared to Fig. 5 which is matched by the structure of the full 3D simulation
shown in Fig. 9.

2.3.3 Adding Diffusion

Finally, we discuss the steps needed to add a diffusion term. This requires adding an addi-
tional method to the Model class. Therefore, to solve the compressible Navier-Stokes
equations instead of the Euler equations, the following method needs to be added (given a
viscosity parameter �):

678 Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

As an example, we repeat the simulation of the Kelvin-Helmholtz instability (see Fig. 8).
Note that with the default setting for the stepper, an IMEX scheme is used where the dif-
fusion is treated implicitly and the advection explicitly with a time step given by the CFL
condition. Consequently, we do not need to make any change to the construction of the
spatial operator and time stepper shown in the code listing on Page 11.

2.4 User‑Defined Smoothness Indicator

To exchange the smoothness indicator, the construction of the operator has to be slightly
changed. Assuming that the indicator is defined in a source file modalindicator.hh which
defines a C++ class ModalIndicator which takes the C++ type of the discrete func-
tion U_h as template argument. This class needs to be derived from a pure virtual base
class and override a single method. Then, the construction of the operator needs to be
changed to

As an example, we use here a smoothness indicator based on studying the decay properties
of the modal expansion of the solution on each cell following the ideas presented in [37].
For the following implementation, we assume that we are using a modal basis function
set orthonormalized over the reference element. Then, the C++ code required to compute
the smoothness indicator based on the modal expansion of the density is given in the next
snippets.

679Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

The actual computation of the indicator is carried out in the method smoothnessIn-
dicator, but is slightly too long to include here directly, but is shown in Appendix C. It
is important to note that it requires very little knowledge of the Dune programming envi-
ronment or even C++, since it relies mainly on the local degrees of freedom vector pro-
vided by the argument uEn. Simulation results for the Kelvin-Helmholtz instability using
this indicator are included in Fig. 6.

2.5 User‑Defined Time Stepping Schemes

The Dune-Fem package provides a number of standard strong stability preserving Runge-
Kutta (SSP-RK) solvers including explicit, diagonally implicit, and IMEX schemes of
degree one to four. In the literature, there is a wide range of additional suitable RK meth-
ods (having low storage or better CFL constants using additional stages for example). Fur-
thermore, multistep methods can be used. Also there are a number of other packages pro-
viding implementations of timestepping methods. Since the computationally critical part of
a DG method of the type described here lies in the computation of the spatial operator, the
additional work needed for the timestepper can be carried out on the Python side with little
impact. Furthermore, as pointed out in the introduction, it is often desirable to use Python

Fig. 5 Shock bubble (actually column) interaction problem at t = 0.1 (left) and t = 0.5 (right). Top figure
shows the density and bottom figure shows the levels of the dynamically adapted grid

680 Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

for rapid prototyping and to then reimplement the finished algorithm in C++ after a first
testing phase to avoid even the slightest impact on performance. The following code snip-
pet shows how a multistage third-order RK method taken from [35] can be easily imple-
mented in Python and used to replace the stepper used so far:

Again, the other parts of the code can remain unchanged. Results with this time stepping
scheme are included in some of the comparisons shown in the next section (see Figs. 11
and 12).

681Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

Fig. 6 Density (top) and grid levels (bottom) for Kelvin-Helmholtz instability at time t = 1.5 . In the initial
setup, the density in the upper layer is 2 and 1 in the lower layer. The middle figure shows the default setting
for the troubled cell indicator which uses a tolerance of 1. The right figure shows results using a reduced
tolerance of 0.2, so that more cells are marked. On the left, we show results obtained using the indicator
from [37] based on the modal expansion of the density. Details on how this indicator is added to the code
are discussed in Sect. 2.4

2.6 Different Grids and Spaces

One of the strengths of the Dune framework on which we are basing the software presented
here is that it can handle many different types of grid structures. Performing a 3D simula-
tion can be as simple as changing the domain attribute in the Model class (Fig. 9).

It is also straightforward to perform the simulations on for example a simplicial grid
instead of the cube grid used so far:

It is even possible to use a grid consisting of general polygonal elements, by simply
importing the correct grid implementation:

A wide range of other grid types are available and a recent overview is given in [6];
some examples are shown in Fig. 10.

As pointed out in the previous section, the choice of the basis function set used to rep-
resent the discrete solution can strongly influence the efficiency of the simulation. So far,
we have used an orthonormal basis function set for the polynomial space over the reference
cube [0, 1]d . If the grid elements are all affine mapping of [0, 1]d (i.e., parallelograms), then
this is a good choice, since it has the minimal number of degrees of freedom for a desired
approximation accuracy, while the mass matrix will be a very simple diagonal matrix on
all elements. These properties always hold for simplicial elements when an orthonormal
polynomial basis over the reference simplex is used. As soon as the mapping between the
reference element and a given element in the grid becomes non-affine, both properties can
be lost. To achieve the right approximation properties in this case, it might be necessary,

682 Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

to use a tensor product polynomial space, increasing the number of degrees of freedom per
element considerably. Also, an orthonormal set of basis function over the reference cube
will still lead to a dense mass matrix. This leads to a significant reduction in the efficiency
of the method if the local mass matrix on each element cannot be stored due to memory
restrictions. A possible solution to this problem is to use a Lagrange type set of basis func-
tions with interpolation points coinciding with a quadrature rule over the reference cube.
We discussed this approach in some detail in Sect. 1.1. There, we mentioned two choices
for such quadrature: the use of tensor product Gauss-Legendre rules which are optimal
with respect to accuracy. In the software framework presented here, it is straightforward
to switch to this representation of the discrete space by replacing the construction of the
space object by

DG

If the operator is constructed using this space, the suitable Gaussian quadrature is
chosen automatically. Note that this space is only well defined over a grid consisting of

Fig. 7 Shock bubble interaction problem in cylindrical coordinate at time t = 0.1 and t = 0.5 . Density is
shown in the top row and the adaptive grid in the bottom row

Fig. 8 Diffusive Kelvin-Helmholtz instability with � = 0 (Euler), � = 0.0001 , and � = 0.001 (from left
to right). Top row shows density and bottom row shows the grid levels of the adaptive simulation. The
smoothing effect of the viscosity is clearly visible compared to the results shown for the Euler equations.
Consequently, the small-scale instabilities are completely suppressed and a coarser grid is used

683Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

Fig. 9 Adaptive 3D simulation of shock bubble interaction problem shown from two different sides. The
grid levels and the density distribution at time t = 0.5 are shown together with the isosurface � = 1.5 . The
simulation was performed on a workstation using eight processors. The corresponding globally refined grid
would have contained 1.5 M elements resulting in 52 M degrees of freedom. The grid shown here consists
of 150.000 elements with about 5.2 M degrees of freedom

cubes. A second common choice, which corresponds to an underintegration of the mass
matrix but faster evaluation of surface integrals, is to use LGL quadrature rules. Again,
switching to this Lagrange point set is straightforward,

and again, using this space in the construction of the spatial operator will result in the
correct LGL quadrature being used.

In Figs. 11, 12, we compare L2 errors on a sequence of non-affine cube grids (split into
two simplices for the simplicial simulation) using different sets of basis functions. We
show both the error in the L2 vs. the number of degrees of freedom (left) and vs. the runt-
ime (right). The right plot also includes results from a simulation with the LGL method
and the SSP3 time stepper implemented in Python as discussed previously. The results of
this simulation are not included on the left, since they are broadly in line with the LGL
simulation using the three-stage RK method available in Dune-Fem-DG.

Summarizing the results from both Figs. 11 and 12, it seems clear that the simulation
on the simplicial grid produces a slightly better error on the same grid, but requires twice
as many degrees of freedom, so that it is less efficient compared to the LGL or GL simula-
tions. Also as expected, the runtime with the ONB basis on the cube grids is significantly
larger due to the additional cost of computing the inverse mass matrix on each element of
the grid as discussed above. On an affine cube grid, the runtime is comparable to the GL
scheme on the same grid, but this is not shown here. Finally, due to the larger effective
CFL constant, the time stepper implemented in Python is more efficient, then the three-
stage method of the same order is available in Dune-Fem-DG.

In Fig. 13, we carry out the same experiment, but this time using the orthonormal basis
but varying the troubled cell indicator. While all methods seem to broadly converge in a
similar fashion when the grids are refined, it is clear that the main difference in the effi-
ciency is again based on question if the grid elements are affine mappings of the reference
element or not. For a given grid structure, the results indicate that using the modal indica-
tor based on the density is the most efficient for the given test case.

684 Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

2.7 Reactive Advection‑Diffusion Problem

We conclude with an example demonstrating the flexibility of the framework to combine
different components of the Dune-Fem package to construct a scheme for a more complex
problem. As a simple example, we use a chemical reaction type problem with linear advec-
tion and diffusion where the velocity field is given by discretizing the solution to an elliptic
problem in a continuous Lagrange space. As mentioned, this is still a simple problem but
can be seen as a template for coupled problems, e.g., transport in porous media setting or
where the flow is given by solving incompressible Navier Stokes equations.

Let us first compute the velocity given as the curl of the solution to a scalar elliptic
problem:

We use this velocity field to evolve three chemical components reacting through some
nonlinear reaction term and include some small linear diffusion:

Fig. 10 Shock bubble interaction problem at t = 0.1 using different grid structures. A structured simplex
grid (left), a non-affine cube grid (right), and a polygonal grid (middle) consisting of the dual of the simplex
grid on the left

685Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

Note that the source term includes both the chemical reaction and a source for the first
two components. The third component is generated by the first two interacting.

Due to the diffusion, we do not need any stabilization of the form used so far. However,
in this case, a reasonable assumption is that all components remain positive throughout the
simulation, so the physicality check described above is still a useful feature. We can com-
bine this with the scaling limiter already described for the advection problem. To this end,
we need to add bounds to the model and change to the construction call for the operator:

LL

N T

- -
-
-

-

-
-

-

Fig. 11 Two rarefaction wave problems simulated from t = 0.05 to 0.12 on a sequence of non-affine cube
and on simplicial grids with different representation for the discrete space with polynomial order 4

686 Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

Note that by default, the stepper switches to an IMEX Runge-Kutta scheme if the
Model class contains both an advective and a diffusive flux. This behavior can be changed
using the rkType parameter in the constructor call for the stepper. A final remark con-
cerning boundary conditions: here, we use simple Dirichlet boundary conditions which are
then used for both the diffusive and advective fluxes on the boundary as outside cell value.
We saw in a previous example that we can also prescribe the advective flux on the bound-
ary directly. In that example, we used

If this type of boundary conditions is used, we also need to prescribe the flux for the
diffusion term, so for an advection-diffusion problem, we pass in a pair of fluxes at the
boundary, e.g.,

N
N
N

N

L L

N T

-
-
-

-

-
-
-

-

Fig. 12 Sod’s Riemann problem simulated from t = 0 to 0.2 on a sequence of non-affine cube and on sim-
plicial grids with different representation for the discrete space with polynomial order 4

L L

N T

N
S

N

N
S

S

N
S

N

N
S

S

- -

-

-

-

-

Fig. 13 Sod’s Riemann problem simulated from t = 0 to 0.2 using different troubled cell indicators. The
simulations were performed on a sequence of grids consisting of non-affine cubes (split into two triangles
for simplicial simulations) using piecewise polynomials of order 4 with the orthonormal basis. Shown are
the errors measured in the L2 norm versus the number of degrees of freedom (left) and the runtime (right)

687Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

Fig. 14 shows the results for the chemical reaction problem.

3 Efficiency of Python‑Based Auto‑generated Models

While Python is easy to use, its flexibility can lead to some deficiencies when it comes to
performance. In Dune, [16, 23], a just-in-time compilation concept is used to create Python
modules based on the static C++ type of every object used, i.e., the models described in
the previous section are translated into C++ code based on the UFL descriptions in the
various model methods which is then compiled and loaded as Python modules. This way,
we avoid virtualization of the Dune interfaces, and consequently, one would expect very
little performance impact as long as calls between Python and C++ are only done for long
running methods. To verify this, we compare the performance of the approach shown here
with the previously hand-coded pure C++ version described in [14].

As a test example, we choose a standard Riemann problem (Sod, T = 0.1) for the Euler
equations solved on a series of different grid resolutions using fourth-order basis functions,
the default limiter, and explicit RK3 time stepping with CFL = 0.4 . We use two different
grid implementations, a dedicated Cartesian grid (SPGrid) and a fully unstructured grid
(ALUGrid). The results are shown in Table 1 and should be taken with a grain of salt,
since these only present a preliminary comparison, as such measurements heavily depend
on the hardware, compiler and compiler flags, as well as selected mathematical problem.
The results presented here were produced on an Intel CPU i7-9750H @ 2.60 GHz using

 and the following compiler flags:

With our setting, we observe that for the Cartesian grid (SPGrid), using the Python front
end leads to no performance loss. For the unstructured grid (ALUGrid), we observe a per-
formance decrease of about 10%. This can be explained with the fact that for SPGrid, all
source code can be inlined in the just-in-time compiled Python module which uses the
same compiler optimization flags as the normal C++ code. For ALUGrid, where a shared
library exists, this is not so straight forward. In the future, we will experiment with link
time optimization and try to reduce implementation of small code snippets in the ALUGrid
library.

688 Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

4 Conclusion and Outlook

In this paper, we presented a comprehensive framework for the DG method with an easy to
use Python interface for model description and solver configuration. The framework covers
different variants of existing DG methods and can be easily extended to include improve-
ments and new development of the methodology.

Although the Dune-Fem-DG framework serves as a good starting point for high-per-
formance DG solvers, the aim of this work is to demonstrate how the Python interface

Fig. 14 The three components of the chemical reaction system (left to right) at t = 4.5 (top row) and t = 10
(bottom row). Velocity field included in middle figure

Table 1 Runtime comparison of the C++ and the Python code for a simple test example solving the Euler
equations in 2D with explicit time stepping and fourth-order polynomials using 1 and 4 thread(s)

SPGrid ALUGrid

Code ∖ #el 1 024 4 096 16 384 Code ∖ #el 1 024 4 096 16 384

Fourth-order polynomials and 1 thread
C++ 15.5 128.6 1 045.4 C++ 17.3 145.6 1 203.5
C++(UFL) 14.8 123.7 1 013.2 C++(UFL) 17. 3 145.0 1 199.3
Python 14.8 123.9 1 008.6 Python 19.5 163.3 1 341.7
Fourth-order polynomials and 4 threads
C++ 4.43 35.7 291.2 C++ 4.79 39.9 331.3
C++(UFL) 4.18 34.4 282.0 C++(UFL) 4.73 39.9 331.5
Python 4.19 34.1 280.9 Python 5.43 44.2 365.7

689Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

simplifies the simulation of a wide range of evolution equations as well as enabling the
rapid prototyping of new methods, their testing, and their comparison with other methods.
For example, in almost all the tests presented here, computations were done using the same
setting for the indicator and tolerance for adaptivity and the troubled cell detection, demon-
strating the robustness of the default setup. Of course, the default setup will only be a suit-
able starting point, and so, most of the building blocks of the discretization can be straight-
forwardly replaced from within the Python script, often without requiring any or not much
C++ knowledge. Also we would like to point out the implemented DG solver which can be
directly used as higher (second)-order FV scheme by replacing the DG space with an FV
space consisting of piecewise constant polynomials.

The Python interfaces are not yet fully reflecting the possibilities on the C++ side; for
example, the reconstruction in primary variables for the Euler equations is possible, but not
yet available on the Python side. Another missing feature is that it is currently not possible
on the Python side to easily exchange the average operators in the discretization of the dif-
fusive terms as, for example, needed in some applications [15].

Another missing feature in Python is the assembly of Jacobian matrices during the non-
linear solve. This could be desirable for some applications or to test different existing solv-
ers. Although the feature is available in the C++ code, it needs a few code alterations in
the underlying infrastructure package. This would also make it straightforward to then use
other solver packages available in Python, e.g., scipy. For the compressible applications,
which were the focus of this work, it is much more feasible to work with the Jacobian-free
nonlinear solvers and there robust and efficient preconditioning techniques are still a very
active research topic. We are currently focusing on including ideas presented in [7] based
on subcell FV multigrid preconditioning.

The extension of the DGSEM methods to simplicial grids (see [11] for an overview)
could be implemented with a few minor modifications. Based on earlier work [22], the nec-
essary basis function implementations for arbitrary quadrature points are available but need
to be integrated into the Dune-Fem and Dune-Fem-DG framework.

While Dune-Fem provides a number of Runge-Kutta methods, we have shown here that
it is straightforward to add other time stepping algorithms on the Python side, a feature
which should also allow to use other packages which provide bindings for Python, such
as the Assimulo package [2]. For IMEX schemes, the splitting is at the moment still a bit
restricted focusing on the important case of implicitly treating the diffusion (and part of the
source term) while using an explicit method for the advection. In some applications, other
types of splitting (e.g., horizontal explicit vertical implicit (HEVI) methods used in mete-
orology) are of interest and will be made available in future releases.

Appendix A Installation

The presented software is based on the upcoming Dune release version 2.8. Installing the
software described in this paper can be done using the Package Installer for Python (pip).
This method of installing the software has been tested on different Linux systems and
MAC OS Catalina. Installations on Windows systems require to make use of the Windows
Subsystem for Linux and, for example, Ubuntu as an operating system.

Prerequisites for the installation are

690 Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

A A working compiler suite (C++, C) that supports C++ standard 17 (i.e., g++ version
8 or later or clang version 10 or later),

B pkg-config,
C cmake version 3.13.3 or later (newer versions can be installed using pip),
D git for downloading the software, and
E a working Python 3 installation including the virtual environment module (venv).

The first step is to create a so-called Python virtual environment which will contain all the
installed software, and for later removal one only has to remove the folder containing the
virtual environment.

i) Create a Python virtual environment, i.e.,

 This will create a virtual environment in the folder
ii) Activate the virtual environment by

 The prompt of the shell will now contain the name of the virtual environment direc-
tory in parenthesis. The virtual environment can be deactivated by closing the shell or
invoking the command deactivate.

iii) To ensure consistent package installation upgrade pip first, i.e.,

iv) Install Python packages needed by scripts in this paper that are not listed as default
dependencies of Dune-Fem-DG, i.e.,

 At this point, cmake only needs to be installed if the system version is older than
3.13.3.

v) Install Dune-Fem-DG by simply using pip again, i.e.,

 This will also install all necessary other packages such as NumPy, FEniCS-ufl,
mpi4py, and various Dune packages. Depending on the time of the day, it might be a
good idea to get a cup of coffee now, because this will take a few minutes, since libraries
and Python packages are now actually build.

vi) Finally, the scripts used to produce the results presented in this paper can be downloaded
by calling

691Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

 This will create a folder femdg_tutorial containing various example programs.
Note that the first run of each script will take relatively long, since various C++ modules
are compiled just-in-time.

The software can also be installed using the standard Dune way of installing from source.
A ready to use and up-to-date build script is found inside the dune-fem-dg git repository
at https:// gitlab. dune- proje ct. org/ dune- fem/ dune- fem- dg/-/ blob/ master/ scrip ts/ build- dune-
fem- dg. sh. This way of installation requires more in-depth knowledge of the Dune build
system and Linux expert knowledge in general.

Appendix B Interfaces

Signature of femdgOperator:

The Model class contains the description of the mathematical model to solve and is
described below. The space parameter is one of the available DG spaces available in the
Dune-Fem framework. We have limiter equal to
taking advectionFlux equal to to use Local-Lax-Friedrichs scheme; for
Euler, there are some other fluxes available; this parameter can also be used to pass in
a user-defined flux implementation. The parameter diffusionScheme can be used to
change the diffusive flux. The parameters is a dictonary where additional information
can be passed to the C++ code, e.g., the tolerance for the troubled cell indicator. Static
methods on Model class passed to femdgOperator:

https://gitlab.dune-project.org/dune-fem/dune-fem-dg/-/blob/master/scripts/build-dune-fem-dg.sh
https://gitlab.dune-project.org/dune-fem/dune-fem-dg/-/blob/master/scripts/build-dune-fem-dg.sh

692 Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

The final ingredient is the time stepper:

If rkType is or , then the type of Runge-Kutta method used will depend
on the methods defined on the Model class used to construct the operator. If no diffusive
flux F_v was defined an explicit RK method is used, if a diffusive flux but no advective
flux F_c is defined an implicit method is used, while if both fluxes are present an IMEX
scheme is employed. Again, the parameter dictonary can be used to set further param-
eters read by the underlying C++ code.

Appendix C C++ Code for Modal Troubled Cell Indicator

The full class for the modal indicator. The class needs to derive from a templated pure vir-
tual base class

and override a single method. The main work is done in the private method smooth-
nessIndicator which sets up a least square problem to compute a smoothness indica-
tor following [37]. We assume that the degrees of freedom are modal. The modal
decay is computed for the first component, i.e.,

693Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

694 Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

Funding Open access funding provided by Lund University.

Compliance with Ethical Standards

Conflict of Interest On behalf of all authors, the corresponding author states that there is no conflict of inter-
est.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Alnæs, M.S., Logg, A., Ølgaard, K.B., Rognes, M.E., Wells, G.N.: Unified form language: adomain-
specific language for weak formulations of partial differential equations. CoRR abs/1211.4047 (2012).
arxiv: 1211. 4047

 2. Andersson, C., Führer, C., Åkesson, J.: Assimulo: a unified framework for ODE solvers. Math. Com-
put. Simul. 116, 26–43 (2015). https:// doi. org/ 10. 1016/j. matcom. 2015. 04. 007

 3. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A.,
Eijkhout, V., Gropp, W.D., Karpeyev, D., Kaushik, D., Knepley, M.G., May, D.A., McInnes, L.C.,
Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc
users manual. Tech. Rep. ANL-95/11 - Revision 3.14, Argonne National Laboratory (2020). https://
www. mcs. anl. gov/ petsc

 4. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II – A general-purpose object-oriented finite element
library. ACM Trans. Math. Softw. 33(4), 24/1–24/27 (2007). https:// doi. org/ 10. 1145/ 12687 76. 12687 79

 5. Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander,
O.: A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and
tests in DUNE. Computing 82(2/3), 121–138 (2008). https:// doi. org/ 10. 1007/ s00607- 008- 0004-9

 6. Bastian, P., Blatt, M., Dedner, M., Dreier, N.A., Engwer, Ch., Fritze, R., Gräser, C., Grüninger, C.,
Kempf, D., Klöfkorn, R., Ohlberger, M., Sander, O.: The DUNE framework: basic concepts and recent
developments. Comput. Math. Appl. 81, 75–112 (2021). https:// doi. org/ 10. 1016/j. camwa. 2020. 06. 007

 7. Birken, P., Gassner, G.J., Versbach, L.M.: Subcell finite volume multigrid preconditioning for high-
order discontinuous Galerkin methods. Int. J. Comput. Fluid Dyn. 33(9), 353–361 (2019). https:// doi.
org/ 10. 1080/ 10618 562. 2019. 16679 83

 8. Brdar, S., Baldauf, M., Dedner, A., Klöfkorn, R.: Comparison of dynamical cores for NWP models:
comparison of COSMO and DUNE. Theoretical Comput. Fluid Dyn. 27(3/4), 453–472 (2013). https://
doi. org/ 10. 1007/ s00162- 012- 0264-z

 9. Brdar, S., Dedner, A., Klöfkorn, R.: Compact and stable discontinuous Galerkin methods for convec-
tion-diffusion problems. SIAM J. Sci. Comput. 34(1), 263–282 (2012). https:// doi. org/ 10. 1137/ 10081
7528

 10. Chen, L., Li, R.: An integrated linear reconstruction for finite volume scheme on unstructured grids. J.
Sci. Comput. 68, 1172–1197 (2016). https:// doi. org/ 10. 1007/ s10915- 016- 0173-1

 11. Chen, T., Shu, C.-W.: Review article: review of entropy stable discontinuous Galerkin methods for
systems of conservation laws on unstructured simplex meshes. CSIAM Trans. Appl. Math. 1(1), 1–52
(2020). https:// doi. org/ 10. 4208/ csiam- am. 2020- 0003

 12. Cheng, Y., Li, F., Qiu, J., Xu, L.: Positivity-preserving DG and central DG methods for ideal MHD
equations. J. Comput. Phys. 238, 255–280 (2013). https:// doi. org/ 10. 1016/j. jcp. 2012. 12. 019

 13. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated
problems. J. Sci. Comput. 16(3), 173–261 (2001)

 14. Dedner, A., Girke, S., Klöfkorn, R., Malkmus, T.: The DUNE-FEM-DG module. ANS (2017). https://
doi. org/ 10. 11588/ ans. 2017.1. 28602

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1211.4047
https://doi.org/10.1016/j.matcom.2015.04.007
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://doi.org/10.1145/1268776.1268779
https://doi.org/10.1007/s00607-008-0004-9
https://doi.org/10.1016/j.camwa.2020.06.007
https://doi.org/10.1080/10618562.2019.1667983
https://doi.org/10.1080/10618562.2019.1667983
https://doi.org/10.1007/s00162-012-0264-z
https://doi.org/10.1007/s00162-012-0264-z
https://doi.org/10.1137/100817528
https://doi.org/10.1137/100817528
https://doi.org/10.1007/s10915-016-0173-1
https://doi.org/10.4208/csiam-am.2020-0003
https://doi.org/10.1016/j.jcp.2012.12.019
https://doi.org/10.11588/ans.2017.1.28602
https://doi.org/10.11588/ans.2017.1.28602

695Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

 15. Dedner, A., Kane, B., Klöfkorn, R., Nolte, M.: Python framework for hp-adaptive discontinuous Galer-
kin methods for two-phase flow in porous media. AMM 67, 179–200 (2019). https:// doi. org/ 10. 1016/j.
apm. 2018. 10. 013

 16. Dedner, A., Kloefkorn, R., Nolte, M.: Python bindings for the DUNE-FEM module (2020). https:// doi.
org/ 10. 5281/ zenodo. 37069 94

 17. Dedner, A., Klöfkorn, R.: A generic stabilization approach for higher order discontinuous Galerkin
methods for convection dominated problems. J. Sci. Comput. 47(3), 365–388 (2011). https:// doi. org/
10. 1007/ s10915- 010- 9448-0

 18. Dedner, A., Klöfkorn, R.: The DUNE-FEM-DG Module. https:// gitlab. dune- proje ct. org/ dune- fem/
dune- fem- dg (2019)

 19. Dedner, A., Klöfkorn, R.: A Python framework for solving advection-diffusion problems. In: Klöfkorn,
R., Keilegavlen, E., Radu, F.A., Fuhrmann, J. (eds) Finite Volumes for Complex Applications IX -
Methods, Theoretical Aspects, Examples, pp. 695–703. Springer International Publishing, Cham
(2020)

 20. Dedner, A., Klöfkorn, R., Nolte, M., Ohlberger, M.: A generic interface for parallel and adaptive sci-
entific computing: abstraction principles and the DUNE-FEM module. Computing 90(3/4), 165–196
(2010). https:// doi. org/ 10. 1007/ s00607- 010- 0110-3

 21. Dedner, A., Makridakis, C., Ohlberger, M.: Error control for a class of Runge-Kutta discontinuous
Galerkin methods for nonlinear conservation laws. SIAM J. Numer. Anal. 45(2), 514–538 (2007).
https:// doi. org/ 10. 1137/ 05062 4248

 22. Dedner, A., Nolte, M.: Construction of local finite element spaces using the generic reference ele-
ments. In: Dedner, A., Flemisch, B., Klöfkorn, R. (eds) Advances in DUNE, pp. 3–16. Springer, Ber-
lin, Heidelberg (2012). https:// doi. org/ 10. 1007/ 978-3- 642- 28589-9_1

 23. Dedner, A., Nolte, M.: The Dune-Python Module. CoRR abs/1807.05252 (2018). arxiv: 1807. 05252
 24. Discacciati, N., Hesthaven, J.S., Ray, D.: Controlling oscillations in high-order discontinuous Galerkin

schemes using artificial viscosity tuned by neural networks. J. Comput. Phys. 409, 109–304 (2020).
https:// doi. org/ 10. 1016/j. jcp. 2020. 109304

 25. Dolejší, V., Feistauer, M., Schwab, C.: On some aspects of the discontinuous Galerkin finite element
method for conservation laws. Math. Comput. Simul. 61(3), 333–346 (2003). https:// doi. org/ 10. 1016/
S0378- 4754(02) 00087-3

 26. Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.D.: A unified framework for the construction of
one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys.
227(18), 8209–8253 (2008). https:// doi. org/ 10. 1016/j. jcp. 2008. 05. 025

 27. The Feel++ Consortium: The Feel++ Book (2015). https:// www. gitbo ok. com/ book/ feelpp/
feelpp- book

 28. Feistauer, M., Kučera, V.: A new technique for the numerical solution of the compressible Euler equa-
tions with arbitrary Mach numbers. In: Benzoni-Gavage, S., Serre, D. (eds) Hyperbolic Problems: The-
ory, Numerics and Applications, pp. 523–531. Springer, Berlin, Heidelberg (2008)

 29. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization meth-
ods. SIAM Rev. 43(1), 89–112 (2001). https:// doi. org/ 10. 1137/ S0036 14450 03675 7X

 30. Guermond, J.L., Pasquetti, R., Popov, B.: Entropy viscosity method for nonlinear conservation laws. J.
Comput. Phys. 230(11), 4248–4267 (2011). https:// doi. org/ 10. 1016/j. jcp. 2010. 11. 043. (Special issue
High Order Methods for CFD Problems)

 31. Hindenlang, F., Gassner, G.J., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.D.: Explicit discon-
tinuous Galerkin methods for unsteady problems. Comput. Fluids 61, 86–93 (2012). https:// doi. org/ 10.
1016/j. compfl uid. 2012. 03. 006

 32. Hönig, J., Koch, M., Rüde, U., Engwer, C., Köstler, H.: Unified generation of DG-kernels for different
HPC frameworks. In: Foster, I., Joubert, G.R., Kucera, L., Nagel, W.E., Peters F. (eds) Advances in
Parallel Computing, vol. 36, pp. 376–386. IOS Press BV (2020). https:// doi. org/ 10. 3233/ APC20 0062

 33. Houston, P., Sime, N.: Automatic symbolic computation for discontinuous Galerkin finite element
methods. SIAM J. Sci. Comput. 40(3), C327–C357 (2018). https:// doi. org/ 10. 1137/ 17M11 29751

 34. Karniadakis, G., Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics.
Oxford University Press, New York (2005). http:// www. nektar. info/

 35. Ketcheson, D.I.: Highly efficient strong stability-preserving Runge-Kutta methods with low-storage
implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008). https:// doi. org/ 10. 1137/ 07070 485X

 36. Klieber, W., Rivière, B.: Adaptive simulations of two-phase flow by discontinuous Galerkin methods.
Comput. Methods Appl. Mech. Eng. 196(1/2/3), 404–419 (2006). https:// doi. org/ 10. 1016/j. cma. 2006.
05. 007

https://doi.org/10.1016/j.apm.2018.10.013
https://doi.org/10.1016/j.apm.2018.10.013
https://doi.org/10.5281/zenodo.3706994
https://doi.org/10.5281/zenodo.3706994
https://doi.org/10.1007/s10915-010-9448-0
https://doi.org/10.1007/s10915-010-9448-0
https://gitlab.dune-project.org/dune-fem/dune-fem-dg
https://gitlab.dune-project.org/dune-fem/dune-fem-dg
https://doi.org/10.1007/s00607-010-0110-3
https://doi.org/10.1137/050624248
https://doi.org/10.1007/978-3-642-28589-9_1
http://arxiv.org/abs/1807.05252
https://doi.org/10.1016/j.jcp.2020.109304
https://doi.org/10.1016/S0378-4754(02)00087-3
https://doi.org/10.1016/S0378-4754(02)00087-3
https://doi.org/10.1016/j.jcp.2008.05.025
https://www.gitbook.com/book/feelpp/feelpp-book
https://www.gitbook.com/book/feelpp/feelpp-book
https://doi.org/10.1137/S003614450036757X
https://doi.org/10.1016/j.jcp.2010.11.043
https://doi.org/10.1016/j.compfluid.2012.03.006
https://doi.org/10.1016/j.compfluid.2012.03.006
https://doi.org/10.3233/APC200062
https://doi.org/10.1137/17M1129751
http://www.nektar.info/
https://doi.org/10.1137/07070485X
https://doi.org/10.1016/j.cma.2006.05.007
https://doi.org/10.1016/j.cma.2006.05.007

696 Communications on Applied Mathematics and Computation (2022) 4:657–696

1 3

 37. Klöckner, A., Warburton, T., Hesthaven, J.S.: Viscous shock capturing in a time-explicit discontinu-
ous Galerkin method. Math. Model. Nat. Phenom. 6(3), 57–83 (2011). https:// doi. org/ 10. 1051/ mmnp/
20116 303

 38. Klöfkorn, R.: Efficient matrix-free implementation of discontinuous Galerkin methods for compress-
ible flow problems. In: Handlovicova, A. et al. (eds) Proceedings of the ALGORITMY 2012, pp.
11–21. Slovak University of Technology in Bratislava, Publishing House of STU, Slovakia (2012)

 39. Klöfkorn, R., Kvashchuk, A., Nolte, M.: Comparison of linear reconstructions for second-order finite
volume schemes on polyhedral grids. Comput. Geosci. 21(5), 909–919 (2017). https:// doi. org/ 10. 1007/
s10596- 017- 9658-8

 40. Knoll, D.A., Keyes, D.E.: Jacobian-free Newton-Krylov methods: a survey of approaches and applica-
tions. J. Comput. Phys. 193(2), 357–397 (2004)

 41. Kopriva, D.A., Gassner, G.: On the quadrature and weak form choices in collocation type discontinu-
ous Galerkin spectral element methods. J. Sci. Comput. 44, 136–155 (2010). https:// doi. org/ 10. 1007/
s10915- 010- 9372-3

 42. Kopriva, D.A., Woodruff, S.L., Hussaini, M.Y.: Computation of electromagnetic scattering with a
non-conforming discontinuous spectral element method. Int. J. Numer. Methods Eng. 53(1), 105–122
(2002). https:// doi. org/ 10. 1002/ nme. 394

 43. Krivodonova, L., Xin, J., Remacle, J.F., Chevaugeon, N., Flaherty, J.E.: Shock detection and limiting
with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48(3/4),
323–338 (2004). https:// doi. org/ 10. 1016/j. apnum. 2003. 11. 002

 44. Logg, A., Mardal, K.A., Wells, G.: Automated Solution of Differential Equations by the Finite Ele-
ment Method: the FEniCS Book. Springer Publishing Company Incorporated, Berlin (2012)

 45. Mandli, K.T., Ahmadia, A.J., Berger, M., Calhoun, D., George, D.L., Hadjimichael, Y., Ketcheson,
D.I., Lemoine, G.I., LeVeque, R.J.: Clawpack: building an open source ecosystem for solving hyper-
bolic PDEs. Peer J. Comput. Sci. 2, e68 (2016). https:// doi. org/ 10. 7717/ peerj- cs. 68

 46. May, S., Berger, M.: Two-dimensional slope limiters for finite volume schemes on non-coordinate-
aligned meshes. SIAM J. Sci. Comput. 35(5), A2163–A2187 (2013). https:// doi. org/ 10. 1137/ 12087
5624

 47. Persson, P.O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: 44th
AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2006-0112, Reno, Nevada (2006). https:// doi.
org/ 10. 2514/6. 2006- 112

 48. Rathgeber, F., Ham, D.A., Mitchell, L., Lange, M., Luporini, F., McRae, A.T.T., Bercea, G.T., Markall,
G.R., Kelly, P.H.J.: Firedrake: automating the finite element method by composing abstractions. ACM
Trans. Math. Softw. 43(3), 24/1–24/7 (2016). https:// doi. org/ 10. 1145/ 29984 41

 49. Schuster, D., Brdar, S., Baldauf, M., Dedner, A., Klöfkorn, R., Kröner, D.: On discontinuous Galer-
kin approach for atmospheric flow in the mesoscale with and without moisture. Meteorologische
Zeitschrift 23(4), 449–464 (2014). https:// doi. org/ 10. 1127/ 0941- 2948/ 2014/ 0565

 50. Shu, C.-W.: High order WENO and DG methods for time-dependent convection-dominated PDEs: a
brief survey of several recent developments. J. Comput. Phys. 316, 598–613 (2016). https:// doi. org/ 10.
1016/j. jcp. 2016. 04. 030

 51. Wallwork, J.G., Barral, N., Kramer, S.C., Ham, D.A., Piggott, M.D.: Goal-oriented error estimation
and mesh adaptation for shallow water modelling. SN Appl. Sci. 2, 1053 (2020). https:// doi. org/ 10.
1007/ s42452- 020- 2745-9

 52. Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for com-
pressible Euler equations on rectangular meshes. J. Comput. Phys. 229(23), 8918–8934 (2010). https://
doi. org/ 10. 1016/j. jcp. 2010. 08. 016

https://doi.org/10.1051/mmnp/20116303
https://doi.org/10.1051/mmnp/20116303
https://doi.org/10.1007/s10596-017-9658-8
https://doi.org/10.1007/s10596-017-9658-8
https://doi.org/10.1007/s10915-010-9372-3
https://doi.org/10.1007/s10915-010-9372-3
https://doi.org/10.1002/nme.394
https://doi.org/10.1016/j.apnum.2003.11.002
https://doi.org/10.7717/peerj-cs.68
https://doi.org/10.1137/120875624
https://doi.org/10.1137/120875624
https://doi.org/10.2514/6.2006-112
https://doi.org/10.2514/6.2006-112
https://doi.org/10.1145/2998441
https://doi.org/10.1127/0941-2948/2014/0565
https://doi.org/10.1016/j.jcp.2016.04.030
https://doi.org/10.1016/j.jcp.2016.04.030
https://doi.org/10.1007/s42452-020-2745-9
https://doi.org/10.1007/s42452-020-2745-9
https://doi.org/10.1016/j.jcp.2010.08.016
https://doi.org/10.1016/j.jcp.2010.08.016

	Extendible and Efficient Python Framework for Solving Evolution Equations with Stabilized Discontinuous Galerkin Methods
	Abstract
	1 Governing Equations, Discretization, and Stabilization
	1.1 Spatial Discretization
	1.2 Temporal Discretization
	1.3 Stabilization
	1.4 Adaptivity
	1.5 Summary of Building Blocks and Limitations

	2 Customizing the DG Method Using the Python Interface
	2.1 Simulation Setup
	2.2 Linear Advection Problem
	2.2.1 Model Description
	2.2.2 Stabilization
	2.2.3 Adaptivity

	2.3 Compressible Euler and Navier-Stokes Equations
	2.3.1 Model Description
	2.3.2 Adding Source Terms
	2.3.3 Adding Diffusion

	2.4 User-Defined Smoothness Indicator
	2.5 User-Defined Time Stepping Schemes
	2.6 Different Grids and Spaces
	2.7 Reactive Advection-Diffusion Problem

	3 Efficiency of Python-Based Auto-generated Models
	4 Conclusion and Outlook
	References

