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Abstract
Hyperbolic systems of conservation laws in multiple spatial dimensions display features 
absent in the one-dimensional case, such as involutions and non-trivial stationary states. 
These features need to be captured by numerical methods without excessive grid refine-
ment. The active flux method is an extension of the finite volume scheme with additional 
point values distributed along the cell boundary. For the equations of linear acoustics, an 
exact evolution operator can be used for the update of these point values. It incorporates 
all multi-dimensional information. The active flux method is stationarity preserving, i.e., it 
discretizes all the stationary states of the PDE. This paper demonstrates the experimental 
evidence for the discrete stationary states of the active flux method and shows the evolution 
of setups towards a discrete stationary state.
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Mathematics Subject Classification 35L65 · 35L45 · 65M08

1 Introduction

Hyperbolic conservation laws in several space dimensions show a number of phenom-
ena which are absent in one-dimensional situations. E.g., in case of the Euler equa-
tions, these additional phenomena include vortices, nontrivial stationary states (them-
selves governed by PDEs), involutions, and the incompressible (low Mach number) 
limit. Design principles for numerical methods in one spatial dimension have been sub-
ject of successful investigation over several decades (correct approximation of weak 
solutions, stability, entropy, ⋯ ). Numerical methods able to capture truly multi-dimen-
sional phenomena on coarse grids still lack a comprehensive set of design principles. 
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There exist examples of numerical methods that can cope with particular multi-dimen-
sional phenomena without requiring excessive refinement of the computational grid. 
Numerical methods able to reproduce the low Mach number limit are referred to as low 
Mach number compliant, numerical methods that keep stationary a discretization of an 
involution—involution-preserving, numerical methods with stationary states being dis-
cretizations of all the stationary states of the PDE—stationarity preserving.

A standard approach for constructing numerical methods in multiple spatial dimen-
sions is to use a one-dimensional method in a direction-by-direction fashion, i.e., solv-
ing a sequence of one-dimensional problems in different directions. Such methods 
generally are unable to resolve multi-dimensional features on coarse grids and only 
achieve this by means of a “fix” (e.g., [2, 3, 6]). Such a fix generally affects other prop-
erties, e.g., the stability.

Several ways of incorporating truly multi-dimensional information in a numerical 
method have been suggested. They differ in the kind of information included and in the 
abilities of the resulting method. For instance including the solution of multi-dimen-
sional Riemann problems, exactly or approximately, does improve the resolution of 
multi-dimensional shock interactions, but has been shown in [5] not to yield a station-
arity preserving or involution preserving method in general. Retaining the enlarged 
stencil, but modifying the way how cells contribute “over the corner” has, however, in 
certain cases proven itself a successful way to obtain involution preserving schemes, 
e.g., in [2, 10, 12, 13].

An entirely different way to incorporate multi-dimensional information into a numer-
ical method has been suggested in [7] and given the name active flux. It is conceptually 
based on the so-called “Scheme V” from [14], which is a one-dimensional finite volume 
scheme with additional point values located at cell boundaries. These additional point-
wise degrees of freedom are evolved using an exact evolution operator, in the case of 
[14] solving the initial value problem for one-dimensional linear advection. The initial 
data for this update are provided by a conservative reconstruction of the data at the pre-
vious time step which interpolates the point values at cell boundaries.

The scheme from [14] has been extended to multiple spatial dimensions on triangu-
lar grids and to the equations of linear acoustics in [7]. The exact solution operator for 
linear acoustics is used for the update of the point values, and thus, the entire (multi-
dimensional) information is retained. In [4], this method has been extended to Cartesian 
grids and it has been shown that it then yields a stationarity preserving and vorticity 
preserving scheme. Since then, the method has been applied to other equations ([1, 8, 
9, 11]), in particular to those for which the IVP cannot easily be solved exactly. In these 
cases, an approximate evolution operator has to be used for the update of the pointwise 
degrees of freedom. To still guarantee structure preservation properties for an active 
flux method endowed with an approximate evolution operator, it is important to under-
stand the way active flux achieves structure preservation with an exact evolution opera-
tor. This then shall allow to derive conditions on the approximate evolution operators.

This paper contributes to this aim by providing an experimental study of the discrete 
stationary states of active flux for linear acoustics. The paper is organized as follows. 
Section 2 introduces the equations of linear acoustics, Sect. 3 describes the active flux 
scheme in detail, and in Sect. 4, the discrete stationary states of the active flux scheme 
for linear acoustics are presented. The behavior of setups that correspond to discrete 
stationary states, and of those that do not, is analyzed in Sect. 5 using carefully chosen 
numerical test cases.
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2  The Initial Value Problem for Linear Acoustics

Consider a hyperbolic system of m conservation laws in d spatial dimensions:

and the corresponding initial value problem with q(0, �) = q0(�) . One example of a hyper-
bolic system (2.1) is the Euler equations of ideal hydrodynamics1

The system is closed with the equation of state of an ideal gas:

Upon linearization around the state of constant density �̄� = const , constant pressure 
p̄ = const , and vanishing velocity �̄ = 0 , the following system arises:

with c =
√
𝛾 p̄∕�̄� . The last two equations form a closed system. Replacing p∕�̄� ↦ p yields 

the acoustic equations:

They form a hyperbolic system with eigenvalues ±c and 0. They also possess the involution 
∇ × � , which always remains stationary:

Stationary states of (2.9)–(2.10) are given by p = const and ∇ ⋅ � = 0 . Thus, both the invo-
lution and the stationary states involve differential operators. A numerical involution should 
involve some discretization of the curl, and numerical stationary states should be charac-
terized by some discretization of the divergence. This mimics the case of more compli-
cated equations, such as the Euler equations, or the equations of magnetohydrodynamics. 

(2.1)�tq + ∇ ⋅ � (q) = 0, q ∶ ℝ
+
0
×ℝ

d
→ ℝ

m,

(2.2)�t� + ∇ ⋅ (��) = 0,

(2.3)𝜕t(𝜌�) + ∇ ⋅ (𝜌�⊗ � + p�) = 0,

(2.4)�te + ∇ ⋅ (�(e + p)) = 0.

(2.5)e =
p

� − 1
+

1

2
�|�|2.

(2.6)𝜕t𝜌 + �̄�∇ ⋅ � = 0,

(2.7)𝜕t� +
∇p

�̄�
= 0,

(2.8)𝜕tp + �̄�c2∇ ⋅ � = 0

(2.9)�t� + ∇p = 0,

(2.10)�tp + c2∇ ⋅ � = 0.

(2.11)�t(∇ × �) = 0.

1 In this paper, derivatives of a function f w.r.t. a variable x are always written as �x f  and never as fx . Indi-
ces are reserved to denote, e.g., components or are related to the discretization.
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In particular, the latter are famous for possessing an involution ( ∇ ⋅ � = 0 ) which is hard to 
capture numerically.

The acoustic system (2.9)–(2.10) can be solved exactly. The exact solution operator is 
derived in [5], and the result is reproduced below.

Definition 1 (Spherical mean) The spherical mean M
[
f
]
(�, r) of an integrable function f 

that depends on � = (x, y, z) ∈ ℝ3 is given by

with the outward normal vector given by

Theorem 1 (Solution operator) The solution to the initial value problem for (2.9)–(2.10) is 
given by

The acoustic system thus offers the possibility to study aspects of multi-dimensional hyper-
bolic systems while having access to an exact evolution operator. It can also be used in the 
active flux method.

3  The Active Flux Scheme on Cartesian Grids

The following focuses on the two-dimensional case d = 2 . Consider a Cartesian grid covering 
the computational domain with cells Cij = [x

i−
1

2

, x
i+

1

2

] × [y
j−

1

2

, y
j+

1

2

] . Here, x
i+

1

2

− x
i−

1

2

= Δx , 
y
j+

1

2

− y
j−

1

2

= Δy, and �ij denotes the center of cell Cij.

3.1  Degrees of Freedom

Upon integration of (2.1) over a time step [tn, tn+1] and over a computational cell Cij , the Gauss 
theorem allows to write

(2.12)M
[
f
]
(�, r) =

1

4� ∮S2
d� f (� + r�) =

1

4� ∫
2�

0

d�∫
�

0

d� sin�f (� + r ⋅ �)

n =

⎛⎜⎜⎝

sin � cos�

sin� sin�

cos �

⎞⎟⎟⎠
.

(2.13)p(t, �) = �r

(
r ⋅M

[
p0
]
(�, r)

)|||r=ct −
1

ct
�r

(
r2M

[
�0 ⋅ �

]
(�, r)

)|||r=ct,

(2.14)

�(t, �) = �0(�) −
1

ct
�r

(
r2M

[
p0�

]
(�, r)

)|||r=ct
+ ∫

ct

0

1

r
�r

(
1

r
�r

(
r3M

[(
�0 ⋅ �

)
�
]
(�, r)

)
− rM

[
�0
]
(�, r)

)
dr.

(3.1)
qn+1
ij

− qn
ij

Δt
+

1

|Cij|
∑
e

|e|fe = 0
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with

where the latter is the flux average through an edge e ⊂ 𝜕Cij.
Active flux additionally evolves independent point values at the cell boundaries. In this 

paper, they are chosen to be distributed at the following locations:

The pointwise degrees of freedom are correspondingly denoted by qN
ij
 , qEH

ij
 , qEV

ij
 (see Fig. 1). 

The pointwise degrees of freedom are shared between the cells. Having four nodes and four 
edges, every cell thus has access to 9 degrees of freedom (including the cell average). The 
continuity across cell boundaries leads to a reconstruction procedure that differs from the 
usual finite volume approach.

(3.2)qn
ij
∶=

1

|Cij| ∫Cij

d� q(tn, �),

(3.3)fe =
1

Δt ∫
tn+1

tn
dt

1

|e| ∫e

d� �e ⋅ � (q(t, �)),

(3.4)�N
ij
∶= �ij +

(
Δx∕2

Δy∕2

)
,

(3.5)�EV
ij

∶= �ij +

(
Δx∕2

0

)
, �EH

ij
∶= �ij +

(
0

Δy∕2

)
.

Fig. 1  Distribution of the pointwise values at edge midpoints and at nodes. The cell average is depicted 
with an open square and symbolically placed in the center of the cell
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3.2  Reconstruction and Update Procedure

3.2.1  Reconstruction

To update the point values in time, already in [14], it has been suggested to solve an initial 
value problem at their locations, with a reconstruction of the data at time tn serving as the 
initial datum. However, [14] focused on the one-dimensional linear advection only.

In multiple spatial dimensions, the 9 degrees of freedom accessible to every cell make 
a biparabolic reconstruction inside every cell natural. The reconstruction interpolates the 
pointwise degrees of freedom and its average matches the average in the cell. The explicit 
formula can be found in, e.g., [4].

Along every edge of the cell, this reconstruction reduces to a parabola. Every edge 
involves three pointwise degrees of freedom which are interpolated, and they suffice to 
uniquely define this parabola. Therefore, the reconstruction is continuous across cell 
boundaries, but, in general, has discontinuous derivatives.

3.2.2  Update of Point Values

For certain, in particular linear equations, an exact evolution operator is available. It then is 
used to find the exact solution of the initial value problem at the location of the pointwise 
degree of freedom. Nonlinear problems generally require approximate evolution operators 
(see, e.g., [1, 9]). In this paper, the exact evolution operator of linear acoustics, as discussed 
in Sect. 2, is used.

3.2.3  Update of the Averages

After the update of the point values, they are available at times tn , tn+
1

2 , and tn+1 . These val-
ues serve as quadrature points in an approximation of the flux according to (3.3):

with �0 = �1 =
1

6
 , � 1

2

=
2

3
 (Simpson’s rule) and having written � = (f x, f y).

This allows to update the averages according to (3.1). In the context of the active flux 
method, the usual problem of finding a numerical flux encountered for finite volume 
schemes is thus replaced by the problem of evolving the additional pointwise degrees of 
freedom in time.

3.2.4  Summary

Given both the averages and the point values at cell interfaces at time tn , the algorithm of 
the active flux thus consists of the following steps. 

 (i) Reconstruct the data in every cell, such that the reconstruction is conservative and 
interpolates the pointwise degrees of freedom.

 (ii) Use an evolution operator for the update of the pointwise degrees of freedom to times 
t
n+

1

2 and tn+1 (for acoustics, (2.13)–(2.14) is used).
 (iii) Compute intercell flux via quadrature (equation (3.6)).

(3.6)f̂ x
i+

1

2
,j
=

∑
k∈{0,

1

2
,1}

𝜔k

(
1

6
f x((qN)n+k

i,j−1
) +

2

3
f x((qEV)n+k

ij
) +

1

6
f x((qN)n+k

ij
)
)
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 (iv) Update the average as in a standard finite volume scheme (equation (3.1)).

3.3  Properties of the Active Flux Method

Certain properties of the active flux are entirely different from usual finite volume schemes. 
They are briefly addressed in the following.

– The usage of independently evolved point values makes the computation of the flux 
through the cell boundary very easy (hence, the name active flux).

– Point values shared by adjacent cells imply a continuous reconstruction and disconti-
nuities are approximated by steep gradients. For nonlinear problems, the continuous 
data might self-steepen into a shock—here, care must be taken in the design of the 
(approximate) evolution operator (see [1] for examples). However, this is not an issue 
for the linear problems discussed here.

– The active flux as described above is a time-explicit method. It is stable, because the 
evolution of the point values respects the characteristic directions and thus naturally 
provides upwinding. Additional upwinding in the computation of the intercell flux is 
not necessary.

– The active flux scheme as described above is linear and has a compact stencil. This 
means that the update of the degrees of freedom of each cell (point values and the cell 
average) is a linear function of the degrees of freedom in a neighborhood of the cell. 
The corresponding coefficients (which follow from the reconstruction and the exact 
evolution operator) need to be computed only once. The update thus can be imple-
mented very efficiently.

– The active flux scheme is third-order accurate in both space and time (see also [4]), 
because the reconstruction is parabolic, and a half-step in time is used.

Nonlinear problems make approximate evolution operators necessary. They introduce addi-
tional error into the scheme, and the properties of the scheme will generally depend on the 
approximation chosen for the evolution operator. This paper focuses on structure preserva-
tion properties. A first step of the analysis should address the question whether structure 
preserving properties are attainable at all, i.e., even upon the usage of the exact evolution 
operator. If so, then this result requires any approximate evolution operator not to spoil 
these properties. Therefore, equations which admit exact evolution operators are valuable 
to separate the approximation introduced by the active flux in general from the possible 
influence of an approximate evolution operator. This paper focuses on the equations of lin-
ear acoustics.

4  Stationarity Preservation

Numerical methods achieve stability by adding the diffusion which manifests itself in a 
decay of Fourier modes. The von Neumann stability criterion, therefore, enforces every 
Fourier mode to be nonincreasing in time. Fourier modes characterizing numerical station-
ary states (of which, e.g., the uniformly constant state is a simple example) neither decay 
nor increase in time. In multiple spatial dimensions, stationary states can be very diverse 
(e.g., all divergence-free vector fields for linear acoustics). The analysis of stationary 
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Fourier modes has been recognized in [2] to be an efficient way of finding all numerical 
stationary states of a numerical method.

Whenever structures (e.g., stationary states) are themselves given as differential opera-
tors, the question arises whether a numerical method can be at all capable of “preserving” 
them. A numerical method only has access to a finite amount of information and surely 
cannot achieve this preservation exactly. A comparison of the numerical stationary states to 
the stationary states of the PDE has two possible outcomes. The numerical stationary states 
should be a discretization of all the stationary states of the PDE. However, often, they only 
discretize a subset of all the stationary states of the PDE. For example, certain numerical 
methods keep only spatially constant states stationary (see [2] for a precise definition of 
trivial stationary states). They thus entirely fail to capture all the others. The method in this 
case adds too much diffusion and this diffusion acts even on states which should remain 
stationary. Numerical schemes with numerical stationary states discretizing the full set of 
stationary states of the PDE are called stationarity preserving.

A linear PDE with nontrivial stationary states possesses an involution, i.e., a functional 
of the solution which remains stationary even if the solution does not. Stationarity-pre-
serving schemes mimic this feature: such a numerical scheme always possesses a discrete 
involution. In the case of linear acoustics (2.9)–(2.10), the involution is the vorticity ∇ × � 
and, thus, stationarity preserving schemes are also vorticity preserving. For more details, 
see [2].

Thus, stationarity preserving numerical methods keep those discrete data stationary 
that fulfill a particular discrete counterpart to div � = 0 (in the acoustic case, for exam-
ple). The question whether any other discretization is also kept stationary must generally 
be answered in the negative. This leads to the question what happens when the discrete 
data are not fulfilling this particular discretization. Note that this is the general case, as no 
preprocessing or projection of the initial data is ever assumed. This is discussed in Sect. 5, 
while the remainder of this section presents the discrete stationary states of the active flux.

A prominent feature of the active flux method in this paper is the usage of the exact 
solution operator (2.14)–(2.13) in the point value update. Obviously, the exact evolution 
operator keeps divergence-free velocities and a constant pressure stationary. Therefore, the 
point values remain stationary if the reconstruction of the pressure is constant, and the 
reconstruction of the velocity is divergence-free. This implies conditions on the values of 
the discrete degrees of freedom. In [4], the usage of the exact evolution operator in the 
active flux method has been recognized as the crucial ingredient for a drastic simplification 
of the study of the numerical stationary states. Now, only the reconstruction needs to be 
dealt with, and the evolution operator is merely involved through the fact that its stationary 
states are known.

It is easiest to study numerical stationary states using the discrete Fourier transform. 
Define tx ∶= exp(�kxΔx) , ty ∶= exp(�kyΔy) with � the imaginary unit and � = (kx, ky) ∈ ℝ2 
the wave vector characterizing the spatial frequency of the Fourier mode. Then, apply the 
Fourier transform to the four sets of degrees of freedom:

Recall that (2.9)–(2.10) in two spatial dimensions form a linear system of three equations, 
and therefore, the total set of Fourier modes is

(4.1)qij ∶= q̂ti
x
tj
y
, qN

ij
∶= q̂Nti

x
tj
y
,

(4.2)qEV
ij

∶= q̂EVti
x
tj
y
, qEH

ij
∶= q̂EHti

x
tj
y
.
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Theorem 2 If Q̂ is such that

then precon = 0 and div �recon = 0 uniformly.

Proof See [4].

Corollary 1 From (4.8) and (4.5), it follows that

and from (4.6)–(4.7),

These equations are discretizations of div � = 0 , and (by inverting the Fourier transform) 
can be written as the following finite difference formulae:

(4.3)Q̂ ∶=
(
û, v̂, p̂, ûEH, v̂EH, p̂EH, ûEV, v̂EV, p̂EV, ûN, v̂N, p̂N

)
∈ ℝ

12.

(4.4)p̂ = p̂EH = p̂EV = p̂N = 0,

(4.5)û = −
2

3

1 + 4tx + t2
x

tx
⋅

(ty − 1)(ty + 1)

Δyty
, v̂ =

2

3

1 + 4ty + t2
y

ty
⋅

(tx − 1)(tx + 1)

Δxtx
,

(4.6)ûEH = −
1 + 6tx + t2

x

tx
⋅

ty − 1

Δy
, v̂EH = 2

(tx − 1)(tx + 1)

Δxtx
(ty + 1),

(4.7)ûEV = −2(tx + 1)
(ty − 1)(ty + 1)

Δyty
, v̂EV =

tx − 1

Δx
⋅

1 + 6ty + t2
y

ty
,

(4.8)ûN = −4(tx + 1)
ty − 1

Δy
, v̂N = 4

tx − 1

Δx
(ty + 1),

(4.9)ûN
(tx − 1)(ty + 1)

Δx
+ v̂N

(tx + 1)(ty − 1)

Δy
= 0,

(4.10)û
1 + 4ty + t2

y

ty

(tx − 1)(tx + 1)

Δxtx
+ v̂

1 + 4tx + t2
x

tx

(ty − 1)(ty + 1)

Δyty
= 0,

(4.11)ûEV
tx − 1

Δxtx
+ v̂EH

ty − 1

Δyty
= 0,

(4.12)ûEH
1 + 6ty + t2

y

ty

tx − 1

Δx
+ v̂EV

1 + 6tx + t2
x

tx

ty − 1

Δy
= 0.

(4.13)
{[uN]

i+
1

2

}
j+

1

2

2Δx
+

[{vN}
i+

1

2

]
j+

1

2

2Δy
= 0,

⟨[u]i±1⟩(4)j

6Δx
+

[⟨v⟩(4)
i
]j±1

6Δy
= 0,
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Here, the following notation has been used:

The notation is combined for different directions, e.g.,

After the conditions are clarified under which the point values remain stationary, the 
remaining question concerns the stationarity of the cell averages.

Theorem 3 If the discrete degrees of freedom on the grid fulfill the conditions of Theorem 
2, then the update (3.1) of the cell averages leaves the averages stationary, as well.

The proof can be found in [4]. Thus, the active flux scheme as described above on 
Cartesian grids is stationarity preserving.

5  Numerical Study of Stationary States

Having identified the numerical stationary states does not yet provide an answer to the 
question how initial data behave that are sampled from a stationary state of the PDE, 
but fail to satisfy the discrete relations (4.9)–(4.12). As pointed out in [2] for finite dif-
ference methods, such initial data will undergo a transition towards one of the discrete 
stationary states. For stationarity preserving schemes, the smaller Δx , the closer do the 
discrete stationary states approximate the stationary states of the PDE. Therefore, the 
transition can be expected to be exponentially quick and the discrete stationary state 
onto which the simulation settles to be an equally recognizable representation of the sta-
tionary state of the PDE. An experimental demonstration of this transition for the active 
flux scheme using carefully chosen setups is subject of Sect. 5.2.

When the initial data satisfy (4.13)–(4.14), the active flux scheme should remain sta-
tionary up to the machine precision. This statement can be observed in simulations and 
Sect. 5.1 serves to illustrate this behavior.

5.1  Discrete Stationary State

Consider a Fourier mode Q̂ exp(�kxiΔx + �kyjΔy) . Theorem 2 states a choice of Q̂ (which 
via tx, ty depends on � ) that remains stationary. This mode is complex valued, but adding 
up two such modes with opposite signs of � yields a real-valued grid function:

(4.14)
⟨[uEH]

i+
1

2

⟩(6)
j

8Δx
+

[⟨vEV⟩(6)
i
]
j+

1

2

8Δy
= 0,

[uEV]
i−

1

2
,j

Δx
+

[vEH
i
]
j−

1

2

Δy
= 0.

(4.15)[q]
i+

1

2

= qi+1 − qi, {q}
i+

1

2

= qi+1 + qi,

(4.16)[q]i±1 = qi+1 − qi−1, ⟨q⟩(�)
i

= qi−1 + �qi + qi+1.

(4.17){[q]
i+

1

2

}
j+

1

2

= qi+1,j+1 − qi,j+1 + qi+1,j − qij.
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To see how this mode arises, consider, e.g., ûN , ignore Δx and Δy for the moment, and 
observe that k ↦ −k maps tx ↦ 1∕tx . Then,

Here, kx = 2� , ky = 10 ⋅ 2� is set; the pressure is chosen to vanish identically. This initial 
datum is now evolved in a 100 × 100 grid covering [0, 1]2 with periodic boundaries. Fig-
ure 2 shows the initial datum. Figure 3 shows that it, indeed, remains stationary up to the 
machine precision, and that the discrete divergences (4.13)–(4.14) remain at the level of 
machine precision.

5.2  General Stationary States

Numerical initial data originating from a stationary state of the PDE generally do not fulfill 
(4.13)–(4.14), and, therefore, generally do not remain exactly stationary. A stable scheme 
applies diffusion to all non-stationary Fourier modes (von Neumann stability). Therefore, 
one can expect the numerical evolution to stationarize on data fulfilling (4.13)–(4.14). In 
practical applications, numerical data originating from a stationary state of the PDE evolve 

(5.1)qij =
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,
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Δy

−
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⎞
⎟⎟⎟⎟⎠
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(5.3)qEV
ij

=
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⎜⎜⎜⎜⎝

8 cos(Δx�) sin(20Δy�) sin(�(Δx + 2iΔx + 20jΔy))

Δy

−
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Δx
0

⎞
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(5.4)qN
ij
=
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⎜⎜⎜⎜⎝
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−
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to a numerical stationary state which is virtually indistinguishable, although, of course, the 
transition can be noticed if measured carefully. The numerical stationary state is not dif-
fused further and persists forever.

Consider, therefore, the following initial data of a divergence-free vortex:

with r =
√
(x − 0.5)2 + (y − 0.5)2 and w = 0.2 . This setup is solved on a 10 × 10 computa-

tional grid covering [0, 1]2 with zero-gradient boundaries. Figure 4 shows the decay of the 
discrete divergences (4.13)–(4.14) and the stationarization of the setup. One observes that 
the discrete divergences decay exponentially to machine level.

(5.5)p = 0, � = �
𝜑

⎧
⎪⎨⎪⎩

r∕w, r ⩽ w,

2 − r∕w, w < r ⩽ 2w,

0, else

Fig. 2  Setup (5.1)–(5.4) of a numerical stationary state. Left: vx . Right: vy . CFL = 0.45, c = 1

Fig. 3  Setup (5.1)–(5.4) of a numerical stationary state. Left: measuring the discrete divergences (4.13)–
(4.14). Right: measuring the error norm on the node values. The only evolution that is observed is due to 
machine error
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To demonstrate how special the decay to machine zero of the discrete divergences 
(4.13)–(4.14) is, consider now an alternative discretization of the divergence:

The time evolution of this discrete divergence is shown in Fig.  5. One observes that it 
becomes stationary, as the entire setup, but it does not decay.

(5.6)
⟨[u]i±1⟩(2)j

4Δx
+

[⟨v⟩(2)
i
]j±1

4Δy
= 0.

Fig. 4  Setup (5.5) of a divergence-free vortex, which performs a transition to a numerical stationary state. 
Here, CFL = 0.45, c = 1 . Left: the discrete divergences (4.13)–(4.14) decay to the level of machine error. 
Right: measuring the error norm on the node values. One observes that the setup quickly stationarizes

Fig. 5  Setup as in Fig. 4. Meas-
uring another discrete divergence 
(5.6) instead of (4.13). One 
observes that the discrete diver-
gence becomes stationary (as is 
the case for the entire setup), but 
that it does not reach (machine) 
zero
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6  Conclusion and Outlook

The active flux method is an extension of the finite volume scheme which incorporates 
point values distributed along the cell boundary. This paper deals with the active flux 
method on Cartesian grids for the equations of linear acoustics. They admit an exact 
evolution operator which is used to update the pointwise degrees of freedom and, thus, 
incorporates all multi-dimensional information. This is presumably the reason why the 
active flux method is found to resolve multi-dimensional features much better than usual 
finite volume schemes. In particular, it is stationarity preserving, i.e., it discretizes all 
the stationary states of the PDE. Note that, in multiple spatial dimensions, the station-
ary states of a hyperbolic system of PDEs themselves are given by PDEs. Numerical 
schemes in general add diffusion, which, in many cases, affects even states which should 
remain stationary. The fact that a scheme is stationarity preserving can, thus, be reinter-
preted as a careful choice of the numerical diffusion.

This paper demonstrates experimental evidence for the discrete stationary states of 
the active flux method. In particular, the numerical evolution of such a state is dem-
onstrated to be only due to the machine error. In general, the initial data that originate 
from a stationary state of the PDE do not fulfill the particular discretization of a numeri-
cal stationary state. However, by stability, the instationary part is diffused away and the 
setup transitions exponentially quickly to a numerical stationary state which then per-
sists forever. For stationarity preserving schemes, this new stationary state is an equally 
recognizable discrete representation of the stationary state of the PDE. This is demon-
strated experimentally in this paper.

The active flux scheme thus seems to allow to construct truly multi-dimensional 
structure preserving schemes in a natural way. Nonlinear systems of conservation laws, 
however, generally do not admit exact solutions in the closed form. Future work shall be 
devoted to an understanding of the conditions that lead to structure preservation for the 
active flux scheme endowed with an approximate evolution operator.
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