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Abstract
In this paper, we present a conservative semi-Lagrangian scheme designed for the numeri-
cal solution of 3D hydrostatic free surface flows involving sediment transport on unstruc-
tured Voronoi meshes. A high-order reconstruction procedure is employed for obtaining 
a piecewise polynomial representation of the velocity field and sediment concentration 
within each control volume. This is subsequently exploited for the numerical integration 
of the Lagrangian trajectories needed for the discretization of the nonlinear convective 
and viscous terms. The presented method is fully conservative by construction, since the 
transported quantity or the vector field is integrated for each cell over the deformed vol-
ume obtained at the foot of the characteristics that arises from all the vertexes defining the 
computational element. The semi-Lagrangian approach allows the numerical scheme to be 
unconditionally stable for what concerns the advection part of the governing equations. 
Furthermore, a semi-implicit discretization permits to relax the time step restriction due 
to the acoustic impedance, hence yielding a stability condition which depends only on the 
explicit discretization of the viscous terms. A decoupled approach is then employed for the 
hydrostatic fluid solver and the transport of suspended sediment, which is assumed to be 
passive. The accuracy and the robustness of the resulting conservative semi-Lagrangian 
scheme are assessed through a suite of test cases and compared against the analytical solu-
tion whenever is known. The new numerical scheme can reach up to fourth order of accu-
racy on general orthogonal meshes composed by Voronoi polygons.
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1 Introduction

The transport of sediment in rivers, lakes, or shores is particularly relevant in hydraulic 
engineering for several different reasons [2]. Erosion and deposition zones are generated by 
sediments which typically cause the modification of the river beds or that of the shores over 
time. Sediments have an influence on energy production in dams, and they may cause dam-
ages and serious risks for the environment, and they are responsible for delivering nutri-
ents and, as opposite, contaminants. For the above reasons, the modeling of such flows, as 
well as the understanding of their dynamics, is of paramount importance in applications 
[38]. From the mathematical modeling point of view, multi-phase approaches are typically 
considered [3, 11, 18, 30]. They consist in coupling the Navier-Stokes (NS) incompress-
ible hydrodynamic descriptions for the liquid phase with advection-diffusion equations for 
the concentration of sediments. Alternative modeling approaches treat the sediments as a 
fluid, which turns out to be a reasonable choice when high-density sediment concentrations 
coexist with the fluid phases [39]. If one is instead interested in the understanding of the 
microscopic modifications of the fluid, each individual sediment is likely to be modeled via 
a microscopic description [29].

In this work, we consider three-dimensional free surface flows (typically water at the 
interface with air) modeled by the incompressible NS equations with a hydrostatic pres-
sure distribution coupled with a scalar equation for the sediment transport. Sediments are 
supposed to be passive media. The equation for the solid-phase particles moves with speed 
determined by the liquid phase and an anistropic diffusion is added to the system. We focus 
on sediments in suspension and, thus, the main hypothesis is that the concentration of the 
solid phase is quite low. Additionally, sediments travel much more slowly compared to the 
fluid, and hence, they are supposed not to modify or affect its motion. This, in particular, 
can be shown to be true in slow current conditions and it can be inferred through a char-
acteristic analysis of the problem [2]. Such analysis shows also that the variation of the 
ground occurs with a speed which is at least one order of magnitude lower than the varia-
tion of the free-stream flow. For this reason, we do not consider a morphodynamic model 
in this work, i.e., we do not consider the situation in which sediments may modify the 
bottom over time. This choice is also legitimated by the fact that the solid phase is dilute 
compared to the fluid one.

The numerical scheme chosen for discretizing the liquid phase takes inspiration from 
a series of papers by Casulli and co-authors [19, 20, 23, 24, 43]. More in detail, we focus 
on a semi-implicit time approach for the solution of hydrostatic free surface flows. The main 
advantage of such the method is that it permits to get larger stability domains while main-
taining a reasonable computational cost. In fact, one of the main challenges related to this 
problem is due to the time step restriction induced by the fast scale coming from the viscous 
terms in both the horizontal and the vertical directions, together with the free surface speed. 
They typically cause a very severe CFL stability condition which penalizes explicit numeri-
cal schemes and which should be avoided if possible. The pressure terms, the velocity, and 
the vertical viscosity are discretized implicitly, while the nonlinear convective and horizon-
tal viscous terms are discretized explicitly. The computational domain is discretized on the 
horizontal x-y plane by an orthogonal unstructured staggered grid where the normal velocity 
components are defined at the cell interfaces, whereas the pressure is evaluated at the center of 
each control volumes. In the vertical direction, we employ a standard z-layer discretization. A 
finite-difference scheme is used for the discretization of the momentum equations, and a mass 
conservative finite volume method is used for the time evolution of the free surface elevation. 
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The method employs polygonal Voronoi meshes, and makes use of a polynomial-based high-
order reconstruction, along the lines of [9, 28, 33]. Concerning the remaining explicit terms in 
the NS equations and the solid phase, a semi-Lagrangian method is adopted [25, 32, 36, 40]. 
Semi-Lagrangian methods require the integration of the fluid trajectories backward in time. 
This can be done in several ways. Here, we adopt a conservative approach [27, 46] and a suit-
able interpolation of the vector velocity field that is provided by the high-order reconstruction 
procedure. Semi-Lagrangian methods see their origin for the numerical weather prediction [5, 
6, 37, 41, 44, 45]. Nowadays, they can be found in environmental engineering applications, 
such as free surface flows in rivers and oceans [27, 46] as well as in plasma physics [4, 17, 26], 
in applications to image processing [15, 16] or for solving the Hamilton-Jacobi equations [14]. 
Conservative semi-Lagrangian methods are described for instance in [4, 31, 36, 40]. A fully 
space-time strategy with a semi-Lagrangian scheme on unstructured meshes has been recently 
proposed in [8]. In addition to the inherent conservative property, slope limiters can be intro-
duced in the reconstruction to ensure preservation of specific properties such as positivity and 
monotonicity. In this work, we focus on a high-order semi-Lagrangian scheme which ensures 
conservation, hence presenting several advantages. Specifically, both momentum and sedi-
ment concentration will be proven to be conserved upon numerical evidences.

The outline of this article is as follows: Sect. 2 presents the physical model with the gov-
erning equations considered in this work, while Sect. 3 contains the details of the mesh, the 
definition of the discrete quantities, and the time discretization for both the fluid and the solid 
phases. Section 4 is dedicated to the high-order polynomial reconstruction and on the details 
of the semi-Lagrangian approach. In Sect. 5, a wide set of benchmark test problems is run to 
assess the accuracy and the validity of the new scheme. Finally, conclusions and outlook to 
future work are given in Sect. 6.

2  Governing Equations

The fluid phase is described by the three-dimensional hydrostatic free surface equations [22]. 
They are derived starting from the incompressible NS equations in the additional hypothesis 
that the vertical acceleration as well as the vertical viscosity forces are small when compared 
to the gravity acceleration and to the pressure gradient in the vertical direction. In Cartesian 
coordinates, these equations read

(1)
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where Eq. (1) expresses the mass conservation and, due to the hypothesis ��
�t

= 0 on which 
the model relies, the equivalent incompressibility constraint. Momentum conservation in 
the x- and y-directions is modeled by Eqs. (2) and (3), respectively. The last Eq. (4) gives 
the time evolution of the water surface elevation, �(x, y, t) , measured from the zero refer-
ence level located at z = 0 , as shown in Fig. 1. This equation is obtained integrating the 
continuity Eq. (1) over the water depth with the kinematic conditions

where, us, vs , and ws represent the velocity components at the free surface, while ub, vb , 
and wb are the corresponding components at the bottom. This is identified by the function 
h(x, y), measured from the reference plane z = 0 (see Fig. 1 for a visual explanation). The 
condition imposed to the bottom states that the velocity component perpendicular to the 
solid boundaries must vanish, and hence, no physical flux is allowed to cross the bottom. 
The total water depth is denoted by H(x, y, t) = h(x, y) + �(x, y, t) . The hydrostatic approxi-
mation leads, neglecting the viscous terms in the third momentum equation, to pz = −g , 
i.e., the derivative of the pressure field in the z-direction is matched by the gravity accelera-
tion g = 9.81 . Consequently, the normalized pressure is given by p(x, y, z, t) = pa + g(� − z) 
with pa the atmospheric pressure. Finally, � is the kinematic viscosity coefficient which can 
be taken as constant, or conversely, it can be determined starting from a specific turbulence 
model.

Mass conservation of a scalar variable is described by means of the following relation [13]:

where c(x, y, z, t) denotes the concentration of a scalar transported quantity: salinity, tem-
perature, suspended sediment, or any passive substance which may be relevant. The quan-
tity ws appearing in Eq. (7) is the settling velocity: it is assumed constant and it has to 
be different from zero in the sediment transport case. The turbulent diffusion coefficients 
along the horizontal and the vertical directions are denoted by eh and ev , respectively.
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Fig. 1  Domain and notations
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3  Numerical Scheme for the Fluid and the Solid Phases

We introduce now the scheme; taking inspiration from [24], we employ to resolve the 
fluid phase described by Eqs. (1)–(4) and we give the details of the discretization of Eq. 
(7) for the solid phase. For the fluid phase, we propose a semi-implicit method designed 
to work on an unstructured grid, while unknown quantities are defined with a staggered 
approach. Before giving the details of the schemes, in the next section, we briefly discuss 
the employed mesh.

3.1  Computational Grid: an Unstructured Staggered Voronoi Mesh Approach

Let us first focus on the Voronoi tessellation [9, 10] for the meshing of the computational 
domain � . The class of unstructured grid is very important in fluid dynamics, because it 
allows to reproduce complicated geometry as the channel bends. The final grid is obtained 
carrying out two different steps, namely (i) the generation of a grid lying on the x-y plane 
�xy , composed by a Voronoi tessellation, and (ii) the extrusion of the horizontal mesh 
along the vertical direction to produce the three-dimensional domain. The choice of using 
a Voronoi mesh is motivated by the fact that it is orthogonal by construction: namely the 
segment connecting two centroids of two adjacent elements is orthogonal to the shared 
edge that they have in common. This provides an essential property for the finite-difference 
discretization of the momentum equations discussed next. Here, we limit us to construct 
conforming meshes composed by convex elements.

More precisely, the generation of the domain �xy is composed by three different steps. 
We briefly recall them:

• the starting point is a Delaunay triangulation, referred to as primary grid, that must 
contain triangles with angles no greater than 90◦ of amplitude;

• after specifying an arbitrary refinement factor � , every triangle is split into a total num-
ber of (�+1)(�+2)

2
 sub-triangles, hence generating an isotropic refined Delaunay triangula-

tion;
• the final Voronoi tessellation is then obtained by linking the triangle circumcenters 

between them.

Figure 2 shows the dual bond between primary triangulation and Voronoi grid, where the 
Voronoi centers correspond to the triangle vertexes, while the circumcenters coincide with 
the Voronoi nodes. Along the horizontal boundaries, we note an additional layer that arises 
from the construction of the dual Voronoi tessellation, whose thickness depends on the 
characteristic mesh spacing of the primary grid. As already mentioned, we furthermore 
require that all primary triangles are acute-angled to avoid an empty intersection between 
two centers.

The final three-dimensional computational domain is made of right prisms whose bot-
tom and top faces are Voronoi polygons and height is a vertical layer of thickness Δz , that 
is assumed to be the uniform distance between two consecutive horizontal domains �xy 
along the z-direction. Figure 2 depicts the final computational grid obtained for a generic 
domain both on the x-y plane and for the vertical direction.

Now, we refer to Fig. 3 to introduce the notation adopted over the x-y plane and along 
the vertical direction z. We call the single Voronoi polygon as cell or element, and we 
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indicate it with Pi ∈ NP , with NP being the number of total cells, and �Pi representing 
its boundary which is composed by a total number of Nj edges denoted with �j . For a 
generic side �j , let L(j) and R(j) be its left and right elements, respectively, with their 
corresponding centers �L(j) and �R(j) that are connected by the straight line segment �j . 
The left and right orientation is given by the sign function �i,j , defined on every edge �j:

(8)�i,j =
R(j) − 2i + L(j)

R(j) − L(j)
.

(a)

X Y

Z

(b)

Fig. 2  Left: 2D grid view highlights the connection between primary triangulation and Voronoi tessellation. 
Right: cross-section of a generic final computational domain in 3D

Fig. 3  Notation adopted over the x-y plane and along the z direction
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We discretize the vertical column water by a sequence of z-layers of thickness Δzn
j,k

 or 
Δzn

i,k
 , depending if we are referring to a generic cell Pi or to an edge �j , as depicted in 

Fig.  3. Generally, we adopt a uniform height which remains constant, apart from those 
layers which are crossed by either the bottom or free surface, that have to be adjusted in 
order to exactly match the vertical boundaries of the domain. Indeed, some layers can be 
turned off or on, according to the time evolution of the free surface. More precisely, a cell 
or an edge is said to be active only if they are wet. We indicate the layer containing the 
bottom with the index mj and that one crossed by the free surface with Mn

j
 , and hence, the 

total number of active layers on the generic edge �j is given by Nn
z,j
= Mn

j
− mj + 1 . If no 

water is present on edge �j , then Nn
z,j
= 0 and the edge is dry. In this context, we consider 

solid transport due to suspended sediments, but erosion and deposition mechanisms are not 
taken into account, and thus, mj remains constant in time. Finally, in Fig. 4, we present the 
staggered definition of the variables appearing in the mathematical models (1)–(4) and (7):

– the free surface �n
i
 is evaluated for every cell Pi at center �i;

– the bottom topography hj and the total water depth Hn
j
 are located on each edge �j;

– instead of storing the horizontal velocity components u and v as two separate variables, 
they are replaced by the velocity un

j,k
 , defined at the intersection point between the seg-

ment �j and the edge �j over the x-y plane and at the midpoint of the kth layer along the 
vertical direction. It is, furthermore, defined in the normal direction with respect to the 
edge �j , pointing in accordance with the grid orientation given by Eq. (8);

– the vertical velocity component wn

i,k+
1

2

 lies on the center of element Pi at height z
i,k+

1

2

;

– the concentration ci,k lies on the center of polygon Pi as the vertical velocity but at 
height zi,k.

We are now ready to give the details of the space and time discretization.

Fig. 4  Staggered three-dimen-
sional control volume Pi × Δzn

i
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3.2  Space and Time Discretization

The space and time discretization for the fluid phase is given along the lines of [24] and 
reads as follows:

In the above equations, velocity, pressure, and vertical viscosity are discretized implic-
itly, while the convective and diffusive terms are computed explicitly. One consequently 
expects that the stability of the scheme depends only on the discretization of the nonlinear 
convective and the horizontal viscosity terms. Moreover, as it can be seen from (9), the 
horizontal momentum Eqs. (2)–(3) are reduced to the sole solution of the velocity in the 
normal direction �j for each computational edge �j and each active layer k. A semi-implicit 
finite-difference discretization is adopted for the momentum, i.e., for un+1

j,k
 , while a mass-

conservative finite volume scheme is used for the evolution of the free surface �n+1
i

 . In 
addition, |�j| denotes the length of the jth edge, |Pi| the area of the Voronoi polygon Pi on 
the x-y plane, and Δt = tn+1 − tn the current time step. The term Fun

j,k
 indicates an explicit 

finite-difference operator for the discretization of the nonlinear convective and horizontal 
viscous components. The details of it are given in the next Sect.  4.2. Systems (9)–(10) 
are solved by inserting the momentum Eq. (9) into the free surface Eq. (10), yielding a 
linear system in which the pressure �n+1

i
 is the only unknown. The matrix of this system is 

symmetric and positive definite, and thus, the conjugate gradient method can be used for 
efficiently computing the free surface elevation at the next time level. Once �n+1

i
 has been 

determined for every i ∈ [1,NP] , the horizontal normal velocities un+1
j,k

 are updated from Eq. 
(9). The finite volume discretization of the continuity Eq. (1) is finally used to update the 
velocity in the vertical direction as

hence ensuring mass conservation. This concludes the fluid-phase time evolution. We dis-
cuss now the discretization of the solid phase expressed by Eq. (7). This reads

In the above equation, Fcn
i,k

 is an explicit finite-difference operator for the discretization of 
the nonlinear convective and horizontal viscous terms analogous to the one used for deter-
mining the time evolution of the velocity field for the fluid phase. However, as opposite 
to (9), the unknown cn+1

i,k
 lies in the middle of each z-layer in the vertical direction and, on 
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the x-y plane, in the two-dimensional cell center, while the velocity field is defined on the 
edges �j of the Voronoi elements on the same x-y plane.

Since the discrete operators Fun
j,k

 and Fcn
i,k

 are given by a semi-Lagrangian approach 
[22], they do not require any particular CFL condition to be stable. Indeed, the time step 
limitations are only imposed by the diffusion coefficients for both phases in the horizontal 
direction. We then have

where lmin = min
√�Pi� is the minimum incircle diameter of the entire computational 

mesh and (eh, �) are the horizontal diffusion coefficients of the solid and fluid phases, 
respectively.

Let observe that Eqs. (9) and (10) are coupled. Thus, in principle, one needs to solve the 
resulting system by means of iterative methods. However, due to the semi-implicit struc-
ture imposed, the problem can be strongly simplified. Let us start by introducing the fol-
lowing notations:

Using the above definitions, the equations for the time evolution of the fluid phase (9) and 
(10) can be rewritten in the compact matrix-vector form as
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where, for completeness, one has to introduce inside the matrix �n
j
 the bottom and free sur-

face boundary conditions. These are, respectively, u
j,mj−

1

2

= 0 and w
i,mi−

1

2

= 0 , correspond-

ing to impose no-slip conditions on the bottom. On the free surface, we set 
�u

j,Mn
j
+
1
2

�z
= 0 , that 

is equivalent to demand zero stress. Now, by plugging Eq. (14) into Eq. (15), we obtain

Equation (16) constitutes a linear, sparse, symmetric, and positive definite system of Np 
(the number of elements) equations for �n+1

i
 , and one can resolve it by standard linear alge-

bra tools such as the conjugate gradient method. Once the free surface has been updated, 
Eq. (14) for the momentum yields a tridiagonal linear system for un+1

j,k
 . Finally, one uses the 

discretization of the continuity Eq. (11) to obtain the new vertical velocity component 
wn+1

i,k+
1

2

 , after imposing wn+1

mi−
1

2

 , i.e., no-slip boundary conditions.

Once the velocity and pressure fields at time n + 1 are known, the solution of the solid 
phase can be computed. Using the matrix notation as done for the fluid system, Eq. (12) 
becomes

This corresponds once again to the solution of a tridiagonal linear system for each water 
column and Thomas algorithm is used to obtain the concentration distribution values cn+1

i,k
 

at the next time level.

3.3  Interaction Between Fluid and Solid Phases

Equations (1)–(4) with (7) are only able to describe the evolution of free surface flows 
containing a scalar passive quantity advected at the speed of the fluid. This means that 
no interaction between fluid and solid phases has been considered so far apart from the 
introduction of the settling velocity ws which constitutes a first step towards the coupling 
of both fluid and sediments. The next step that we briefly detail in this paragraph is to 
introduce a term which causes the fluid to be affected by the sediments. In particular, we 
follow the lines of [12, 34, 35] where sediment-driven flows have been considered in a sort 
of shallow water model for the fluid phase. The main modification with respect to Eqs. 
(1)–(4) consists in a new pressure gradient in the momentum equations which takes into 
account the presence of suspended sediments. The new model reads

(14)�
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j
,
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�j∈�Pi

|�j|�i,j(��n
j
)T�n+1

j
,
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where R > 0 represents a constant coefficient that measures the interaction between water 
and sediment, while c is the concentration of sediments. Analytical expressions for R can 
be found in the literature, as, for instance, in [12, 34, 35], and typically, they are concerned 
with a function R = R(�, �s) , which then depends on the water and sediment density, � 
and �s , respectively. Assuming the density of the water constant and fixed, R is monotone 
increasing with the density �s . An explicit discretization of the correction term 1 + Rc in 
the horizontal momentum Eq. (9) yields

The concentration is computed on the common edge �j at the layer height zk by a simple 
arithmetic average between the neighbor elements R(j) and L(j). From this relation, it is 
easy to deduce that the greater the density of the sediments and the concentration are, the 
greater the effects of the correction term on the pressure are present. As a consequence, 
horizontal and vertical velocities are affected as well, thus involving a modification of the 
entire momentum field. From the numerical point of view, the pressure correction 1 + Rc 
can be conveniently embedded in the governing equations as a coefficient that multiplies 
the implicit pressure gradient given by �n+1

R(j)
− �n+1

L(j)
 . In this way, the time pressure wave Eq. 

(16) can be solved following the same path detailed in the previous paragraph without fur-
ther modifications. Finally, the interaction term can be neglected by simply assuming 
R = 0 , thus recovering the initial model with a passive sediment. Evidences about the 
effects of this correction term for the pressure in the modified momentum Eq. (20) will be 
numerically shown in Sect. 5.6.

4  High‑Order Reconstruction Procedure

In this part, we describe how in practice the operators Fun
j,k

 and Fcn
i,k

 , defined, respectively, 
in Eqs. (9) and (12), are computed. We recall that these terms discretize the convective 
terms (respectively, nonlinear and linear) and the horizontal viscosity terms present in the 
momentum Eqs. (2)–(3) and in the equation for the sediment transport (7). The idea is to 
use a semi-Lagrangian strategy for these parts of the system. This requires a backward inte-
gration of the Lagrangian trajectories to find the foot of the characteristic for each unknown 
and, at the same time, a reconstruction of the transported quantity to evaluate the unknown 
function at this position. The numerical scheme presented so far makes use of pointwise 
horizontal velocity components un+1

j,k
 , vertical velocity components wn+1

i,k+
1

2

 , and concentra-

tions cn+1
i,k

 . Therefore, in the next section, we discuss a reconstruction procedure which 

(18)
�u

�t
+ u

�u

�x
+ v

�u

�y
+ w

�u

�z
= −g

��

�x
(1 + Rc) + �

(
�2u

�x2
+

�2u

�y2
+

�2u

�z2

)
,

(19)
�v

�t
+ u

�v

�x
+ v

�v

�y
+ w

�v

�z
= −g

��

�y
(1 + Rc) + �

(
�2v

�x2
+

�2v

�y2
+

�2v

�z2

)
,

(20)

un+1
j,k

= Fun
j,k
− g

Δt

�j

�
�n+1
R(j)

− �n+1
L(j)

��
1 +

1

2
R
�
cn
R(j),k

+ cn
L(j),k

��

+ �
Δt

Δzn
j,k

⎛⎜⎜⎝
un+1
j,k+1

− un+1
j,k

Δzn
j,k+

1

2

−
un+1
j,k

− un+1
j,k−1

Δzn
j,k−

1

2

⎞⎟⎟⎠
.



607Communications on Applied Mathematics and Computation (2023) 5:596–637 

1 3

permits to obtain a high-order description of the velocity field and of the sediment concen-
tration within each computational cell. The details of the semi-Lagrangian technique will 
be instead given in Sect. 4.2.

4.1  Three‑Dimensional Polynomial Reconstruction and L2 Projection Operator

The high-order description of the velocity field and of the concentration distribution is 
obtained by means of a polynomial reconstruction procedure. Within each control active 

volume Vi,k = Pi ×

[
zn
k−

1

2

, zn
k+

1

2

]
 is thus defined a three-dimensional polynomial function of 

degree N, which allows to recover a reconstructed solution of accuracy (N + 1) at a generic 
point �p = (xp, yp, zp) , inside the cell where �p is located. These polynomials are defined at 
each time step exploiting the knowledge of the solution at time n.

We start by discussing a three-dimensional decoupled reconstruction strategy introduced in 
[9, 10]. This is based on two subsequent steps. The first step consists in reconstructing both the 
velocity field and the sediment concentration on the horizontal plane x-y for each active layer k 
producing the high-order two-dimensional polynomials �̄n

i,k
(x, y) , �̄n

i,k+
1

2

(x, y) , �̄n
i,k
(x, y) . Suc-

cessively, the second step is concerned with a reconstruction along the z-direction based on a 
Lagrange interpolation. This second procedure uses the two-dimensional polynomials 
obtained in the first step. In general, the choice of a decoupled reconstruction for the horizon-
tal and the vertical flow directions allows the scheme to be computationally less expensive 
compared to a fully three-dimensional reconstruction, and for this reason, it is employed here.

The two-dimensional reconstruction polynomials in the x-y plane are expressed by a nor-
malized Taylor series of degree N using the pointwise values furnished by the scheme at time 
n, that is,

The term li =
√�Pi� denotes the normalizing factor necessary to avoid ill-conditioned 

reconstruction matrices (see [1] for details) and �c = (xi, yi) represents the centroid, that is 
the center of the Taylor expansion and coincides with the centroid �i . Notice that the sum-
mation over all terms of the Taylor series explicitly writes

(21)
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and counts a total number of addends l = 1,⋯ ,N  with N =
(N+1)(N+2)

2
 . These are nothing 

but the degrees of freedom of a polynomial of degree N along each spatial direction, and 
thus, it follows that the reconstruction polynomials (21)–(23) can be written in compact 
notation by adopting the following expansions:

where Einstein summation convention is adopted implying summation over repeated 
indexes. The unknown expansion coefficients are given by the space derivatives of the pol-
ynomials to be constructed,

In the above formulae, the basis functions are denoted by �l and are piecewise polynomials 
belonging to ℙN . Let observe that the degrees of freedom �̂l

i,k
 for the horizontal velocity 

count twice the number N  , because two spatial directions are involved, according to (21). 
Let us note that, for the horizontal velocity and for the concentration, the polynomials are 
defined at the height level zn

i,k
 , whereas the vertical velocity is defined at location zn

i,k+
1

2

 (see 

Fig. 3 for the definition of the variables in the system).
The unknown coefficients (28)–(30) are then recovered by solving a linear system. 

This linear system is composed by the values of the functions to be reconstructed on a 
given stencil. For the horizontal normal velocity, the stencil S�

i
 is composed by a total 

number nS of edges �j , while for the vertical velocity and for the concentration, we con-
sider the entire cells Pj to construct the stencil SP

i
 . Typically, due to the unstructured 

nature of the mesh, the number of elements composing the stencil is bigger than the 
necessary minimum number N  of unknown expansion coefficients required to obtain 
the formal order of accuracy (N + 1) . In particular, to perform our reconstruction, a 
safety factor of 2 is adopted, and hence, we set nS = 4N  for Eq. (28) and nS = 2N  for 
Eqs. (29)–(30), so that an overdetermined system is obtained. For those cells lying on 
physical boundaries, the reconstruction stencil results in a one-sided stencil composed 
by elements inside the computational domain. The conditions to be fulfilled by the 
reconstruction polynomials are that conservation holds true in each of the cells compos-
ing the stencils [7, 28],
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where integrals are computed using Gaussian quadrature rules of suitable order of accu-
racy, see [42]. As already stated, by construction, the resulting system is overdetermined. 
Thus, a solution can be found, in general, by solving it in the least square sense. Unfortu-
nately, this inevitably leads to loss of conservation issues, since Eqs. (31)–(33) cannot be 
anymore solved exactly. This problem can be overcome by adding a linear constraint to the 
system,

The role of the above constraints is to require that the reconstructed polynomials exactly 
match at least the pointwise values of the unknowns on the polygon Pi where they are 
defined. To enter the details, the unknown coefficients of the Taylor expansion to be deter-
mined can now be conveniently written in vector notation as

This leads to three overdetermined linear systems which can be formulated in matrix form 
as

(31)
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where their relative linear constraints also appear in the second rows. In the above expres-
sions, �u , �w , and �c are the reconstruction matrices depending on the chosen Taylor 
expansion which can be pre-computed once for all offline (since they are simple geometric 
objects), whereas �n

u
 , �n

w
 , and �n

c
 are the right hand-side vectors containing the cell values 

of velocities and concentrations that change at every time step. The second rows in Eqs. 
(40)–(42) correspond to the matrix form of the linear constraint condition. Finally, using a 
constrained least square approach, one gets

where � , � , and � are the vectors of Lagrange multipliers used to enforce the linear 
constraints.

The reconstruction can be extended to the vertical direction as well, starting from the two-
dimensional polynomials on the horizontal plane and relying on one-dimensional Lagrange 
polynomials along the z-direction. Due to the staggered grid discretization, we have to deal 
with two different situations. In particular, we define two different reconstruction stencils con-
sisting of (N + 1) values. The first, Si,k , is used for the horizontal velocities and the sediment 
concentration, and is defined at height zk , the second, S

i,k+
1

2

 , is used for the vertical velocity 
and is defined at level z

k+
1

2

 . Thus, we obtain a continuous three-dimensional representation of 
the solution as

with

where each stencil counts a total number of N + 1 layers corresponding to the number of 
degrees of freedom in one dimension ( d = 1).

(42)
{

�c� = �n
c
,

�c� = �c�
n
c
,

(43)
(
�

�

)
=

(
2�T

u
�u − �T

u

�u �

)−1(
2�T

u

�u

)
�
n
u
,

(44)
(
�

�

)
=

(
2�T

w
�w − �T

w

�w �

)−1(
2�T

w

�w

)
�
n
w
,

(45)
(
�

�

)
=

(
2�T

c
�w − �T

c

�c �

)−1(
2�T

c

�c

)
�
n
c
,

(46)�
n
i,k
(�) =

⎛
⎜⎜⎝
�
r∈S

v,±

i,k

Lv−c
k+r

(z) �̄n
i,k+r

(x, y),
�
r∈Sw

i,k

Lw
k+r

(z) �̄n

i,k+r−
1

2

(x, y)

⎞⎟⎟⎠
,

(47)�
n
i,k
(�) =

∑
r∈S

v,±

i,k

Lv−c
k+r

(z) �̄n
i,k+r

(x, y)

(48)L
v−c,w

k+r
(z) =

∏
m≠r

�
z − zk+m

�

∏
m≠r

�
zk+r − zk+m

� , ∀m, r ∈ Si,k,Si,k+
1

2

,



611Communications on Applied Mathematics and Computation (2023) 5:596–637 

1 3

The decoupled reconstruction procedure described above guarantees high computational 
efficiency, because it involves a more compact reconstruction stencil compared to a truly three-
dimensional reconstruction. Nevertheless, for evaluating the reconstructed value of a quantity 
(either velocity or concentration) at a generic point �p , it would be much more convenient to 
deal with a polynomial directly defined for d = 3 , i.e., within each control volume Vi,k . This 
is the reason why we introduce the following three-dimensional polynomials �n,3D

i,k
(�) and 

�
n,3D

i,k
(�) for the velocity vector and the concentration, respectively,

Here, the normalizing factor is taken to be li,k = (|Pi| × Δz0
i,k
)
1

3 with Δz0
i,k

 being the layer 
thickness at the initial time t = 0 , whereas �c = (xi, yi, zk) represents the center of expan-
sion and �l denotes a set of basis functions in the three-dimensional polynomial space ℙN . 
The total number of degrees of freedom becomes with this choice,

for each velocity component in �n,3D
i,k

 and for the concentration �n,3D
i,k

 . The unknowns are 
then determined relying on an L2 projection operator defined on the control volume Vi,k,

where �k are a set of test functions assumed to be equal to the basis functions used in Eqs. 
(49)–(50). Plugging the approximations (49)–(50) into Eqs. (52)–(53) yields
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The integrals appearing in the above formulae are again evaluated using Gaussian quadra-
ture rules of suitable order of accuracy, while the values of the functions on the right-hand 
side of Eqs. (54)–(55) are computed at each Gauss point by means of the decoupled high-
order reconstruction polynomials (46)–(47). The unknown expansion coefficients �̂3D,l

i,k
 and 

�̂
3D,l

i,k
 can, therefore, be computed.

We will show producing the convergence studies reported in Sect. 5 that the accuracy 
order of this new three-dimensional polynomials remains equal to (N + 1) , as in the case 
of polynomials obtained from the decoupled reconstruction.

4.2  The Conservative Semi‑Lagrangian Operators

In this section, we detail the discrete operators Fun
j,k

 and Fcn
i,k

 contained in Eqs. (9) and 
(12), which account for the convective and horizontal diffusive terms of the free surface 
NS model (2)–(3) and the sediment transport model (7), respectively. The semi-Lagrangian 
approach for these operators reads as

To design a conservative scheme, the three-dimensional control volume Vn
i,k

 is transported 
backward in time by integrating the Lagrangian trajectories that depart from all the ver-
texes that define it, as shown in Fig. 5 for a simplified setting with d = 2.

In this way, the transported volume VL
i,k

 becomes the control volume onto which the 
transported quantities have to be integrated, namely the velocity field and the sediment 
concentration. Specifically, in Eq. (56), the horizontal velocity is integrated along the edge 
�L
j
 of VL

i,k
 at height zL

i,k
 , while for the concentration (57), we consider the Voronoi polygon 

PL
i
 defined again in VL

i,k
 at level zL

i,k
 . Furthermore, �L

j,k
 and �L

i,k
 denote, in the new control 

volumes VL
i,k

 , the points where the velocity and the concentration are defined, respectively, 
at the intersection point between the segment �j and the edge �j over the x-y plane and at 
the center of the polygon Pi in the starting volume. These quantities are readily known 
calculating the feet of the Lagrangian trajectories connected to the vertexes constituting 
the Voronoi volume and are defined by applying an appropriate numerical integration pro-
cedure to the transported control volumes. In particular, what is integrated are the continu-
ous polynomial functions that define the velocity field and the concentration distribution 
at time n obtained from the three-dimensional reconstruction procedure presented in the 
previous Sect. 4.1, i.e., polynomials �n,3D(�) and �n,3D(�) . The other two terms appearing 
in Eqs. (56) and (57), ∇2

h
� and ∇2

h
c , are suitable discretizations of the horizontal Laplacian 

operators regarding viscosity and diffusion at the end of the Lagrangian trajectory. For con-
sistency, neglecting convection and horizontal diffusion, formulae (56) and (57) reduce to 
the identities Fun

j,k
= un

j,k
 and Fcn

i,k
= cn

i,k
.

Now, using the reconstructed velocity field, one can numerically integrate the Lagran-
gian trajectories connected to all the vertexes (m1,m2,⋯) of the mesh element to compute 
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(a)

(b)

L

L

L

L

Boundary

Fig. 5  Conservative semi-Lagrangian operator in 2D. (a) The control volume Pi is traced backward in time 
to its transported configuration PL

i
 , onto which the transported quantities are integrated in the semi-Lagran-

gian scheme. The Lagrangian trajectories are computed for all nodes (m1,m2,⋯) which define the control 
volume. Velocity is integrated along edge �L

j
 , while sediment concentration over the cell PL

i
 . Finally, the 

horizontal diffusive terms are evaluated at points �L
j,k

 for velocity and �L
i,k

 for concentration. (b) Crossing-
boundary situation that occurs when a semi-Lagrangian polygon PL

i
 reaches a generic boundary: integration 

of velocity and sediment concentration over the dashed control volume is carried out according to the pre-
scribed boundary condition
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an approximation of the convection terms. To that aim, a generic Lagrangian trajectory 
�(�;�,Δ�) is obtained by solving the following Cauchy problem:

where �(�;�,Δ�) is the so-called characteristic curve depending on � which passes at time 
Δ� by the point � and where the velocity vector �̄(�, t) is evaluated relying on the high-
order three-dimensional velocity field reconstruction given by Eq. (49). The domain �(�) 
refers to the fully 3D computational domain crossed by the trajectory �(�;�,Δ�) . In prac-
tice, the condition �(Δ�;x) = � is fixed in such a way that we look for the curve passing on 
the generic vertex of the control volume �m1

 after the time step Δ� . A graphical representa-
tion of the above situation is given in Fig. 5 for Δ� = Δt . The system (58) is then approxi-
mated by means of a high-order Taylor expansion. This permits to write

In the above expression, �L corresponds then to the searched foot of the characteristic 
corresponding to the point � . Here, to compute the Lagrangian trajectories, we make the 
hypothesis that ū is frozen at time � . Extensions of the proposed method to the case of time 
reconstructions can be obtained following the path discussed in [8]. Under this hypothesis, 
then, at the aid of the chain rule, the time derivatives in Eq. (59) can be replaced by spatial 
derivatives that are readily computed from the high-order reconstruction polynomials and 
permit a direct computation of the foot of the characteristics. This gives in practice,

and consequently,

The spatial derivatives appearing in Eq. (60) can be easily evaluated relying on the high-
order expansion (49). Indeed, the derivatives are entirely taken into account by the basis 
functions, that is,

(58)

{
d�

d𝜏
= �̄(�(𝜏), 𝜏), � ∈ Ω(𝜏), 𝜏 ∈ [0,Δt],

�(Δ𝜏;�,Δ𝜏) = �, � ∈ 𝛺(𝜏),

(59)�
L = � − Δ�

d�

d�
+

Δ�2

2

d2�

d�2
−

Δ�3

6

d3�

d�3
+O(Δ�4).

(60)d𝐗

d�
= �̄�(𝐗(�), �),

d2𝐗

d�2
=

��̄�

�𝐱

d𝐗

d�
=

��̄�

�𝐱
�̄�,

d3𝐗

d�3
=

�2�̄�

�𝐱2
�̄��̄� +

(
��̄�

�𝐱

)2

�̄�,

(61)�
L = � − Δ𝜏�̄ +

Δ𝜏2

2

(
𝜕�̄

𝜕�
�̄

)
−
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6

(
𝜕2�̄

𝜕�2
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)2
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)
+O(Δ𝜏4).
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The order of accuracy for the Taylor expansion (59) is chosen to be the same of the order 
adopted in the reconstruction procedure, so that all high-order terms can be easily evalu-
ated. The numerical integration stops either at the time � = Δt or when the physical bound-
ary �� of the computational domain has been crossed by the characteristic curve. In the lat-
ter case, as shown in Fig. 5, the shifted control volume is still computed and consequently 
subdivided into a physical and a ghost partition, which does not and does exceed the limits 
of the domain, respectively. The convective operators (56), (57) are formally evaluated in 
the same manner, integrating the prescribed boundary condition over the ghost partition 
and the reconstructed numerical solution over the physical partition. Specifically, the flow 
field is assigned in the case of Dirichlet boundary conditions, while, for periodic boundary 
conditions, the ghost cells are simply the cells located on the other side of the torus which, 
by definition, lies inside the domain. Finally, Neumann conditions require the computation 
of the derivatives, which are reconstructed using only elements inside the domain and no 
ghost cells are needed.

The time step Δt is given by the stability condition introduced with Eq. (13). In the case 
in which the sediment transport is considered, we assume �̄(�) = (u(�), v(�),w(�) − ws) . It 
might happen that the shifted control volumes at the foot of the characteristics are degener-
ate or inverted, even though this is very rare for free surface applications. Nevertheless, a 
possible remedy to overcome this problem could be to introduce an a posteriori indicator 
which permits to detect which control volumes do not fulfill some regularity conditions. 
Then, one can recompute the solution in these volumes by reducing the order of the poly-
nomial reconstruction. Alternatively, one can reduce the time step or remapping the solu-
tion over a new grid. The above ideas have not been explored in this work and they will be 
the subject of future investigations.

The diffusive components ∇2
h
� and ∇2

h
c of Fun

j,k
 and Fcn

i,k
 are defined at the end of the 

Lagrangian trajectory. For a generic scalar quantity � , the discrete Laplacian is obtained 
first using Gauss’ theorem,

and successively relying on the exact solution of the generalized Riemann problem of the 
heat equation to discretize the integral Eq. (63). This yields

where �−
k
 corresponds to the reconstructed value onto the boundary �Pi from within the 

element Pi and �+

k
 is the reconstructed value again onto the boundary �Pi but from the 

neighbor of Pi . This concludes the description of the numerical method for the fluid phase 
and the solid phase.

(63)∇2
i
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|Pi| ∫
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∇ ⋅ ∇h�k dA =
1

|Pi| ∫
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∇h�k ⋅ �j ds,
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Nj�
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5  Numerical Results

In this section, we present several tests which are used to validate the numerical schemes 
illustrated previously. Specifically, we focus on analyzing the new conservative semi-
Lagrangian schemes proposed to advect the NS equations and for computing the solution 
of the solid-phase equation. In details, we propose the following numerical tests. 

1) Convergence test for the high-order polynomial reconstruction.
2) Convergence test for the semi-Lagrangian method in the zero diffusion case.
3) Convergence test for the semi-Lagrangian method in the zero advection case.
4) Stationary vortex flow for the NS equations.
5) Advection of a sphere of contaminant along a channel.
6) Introduction of sediment into a channel by a point source.
7) Sediment transport into a channel with settling velocity.
8) Gaussian pulse with water-sediment interaction.

If not stated otherwise, we always assume a flat bottom profile set at height z = 0 , so that 
the free surface elevation coincides with the total water depth.

5.1  Convergence Study

To check the correct implementation of the high-order 3D reconstruction for the sediment 
concentration presented in Sect. 4, we assume a smooth initial distribution that reads

The computational domain is the unit cube � = [0, 1]3 that is discretized with a fixed num-
ber of active vertical layers Nz = 50 . Instead along the x-y plane, each layer is paved with 
an unstructured Voronoi mesh and a sequence of consecutive values of a refinement factor 
� are considered. We measure the L1 , L2 , and L∞ error norms of the reconstruction as

where s represents a generic variable for which one wants to measure the error, while se(�) 
and sh(�) denote the exact and the numerical reconstructed solutions for a given mesh size 
h, respectively. The above integrals are computed by summing the contributions of all the 
Voronoi active cells Vi,k ∈ � where the index i ∈ [1,NP] identifies the 2D Voronoi polygon 
and the index k ∈ [1,Nz] the vertical layer. Three-dimensional Gaussian quadrature formu-
lae of appropriate order [42] are then applied. The numerical order of accuracy p is evalu-
ated as follows:

(65)c0(x, y, z) = sin
(
�

2
x
)
cos

(
�

2
y
)
cos

(
�

2
z
)
.

(66)

⎧⎪⎨⎪⎩

�L1 = ∫
�
�(se(�) − sh(�))�d�, �L2 =

�
∫
�
�se(�) − sh(�)�2d�,

�L∞ = max
�

�se(�) − sh(�)�,

(67)p = ln

(
�(h1)

�(h2)

)/
ln

(
h1

h2

)
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with h2 < h1 . The results are displayed in Table 1. They confirm that the expected theoreti-
cal accuracy order has been reached and they validate the high-order reconstruction proce-
dure up to fourth order.

A second convergence study has been implemented to test the effectiveness of the con-
servative semi-Lagrangian discretization proposed in this article. The initial concentration is 
the same as the one given in Eq. (65), while for the NS equations, we consider the following 
initial data:

corresponding to a uniform flow in longitudinal direction with constant free surface eleva-
tion. In addition, we take the diffusion coefficients (eh, ev) = 0 in the solid-phase equation. 
The exact solution of the NS equations for this set of initial data consists in a free stream 
with constant velocity � , while the sediment concentration is advected at the speed of the 
fluid phase: c(x, y, z, t) = c0(x − ut, y, z) . For this problem, we measure the errors produced 
by the scheme for the solid phase and we report a convergence table analogous to the one 
presented previously for the polynomial reconstruction by fixing the time step to Δt = 0.1 . 

(68)� = (u, v,w) = (1, 0, 0), � = 1

Table 1  Convergence rates 
and norm of the errors for 
the reconstruction procedure 
described in Sect. 4.1. 
Polynomial functions of first, 
second, and third degrees are 
considered

Note Characteristic mesh size is h(�) = max
P
i

√�P
i
�

h(�) �
L1

O(L1) �
L2

O(L2) �
L∞

O(L∞)

N = 1

1.99E−01 4.78E−03 – 6.82E−03 – 3.84E−02 –
1.02E−01 8.63E−04 2.6 1.35E−03 2.4 1.12E−02 1.8
7.13E−02 3.44E−04 2.5 5.20E−04 2.6 5.10E−03 2.2
5.35E−02 1.91E−04 2.1 2.81E−04 2.2 2.94E−03 1.9
4.28E−02 1.27E−04 1.8 1.80E−04 2.0 1.95E−03 1.8
3.56E−02 9.54E−05 1.6 1.30E−04 1.8 1.42E−03 1.8
3.06E−02 7.85E−05 1.3 1.04E−04 1.5 1.09E−03 1.7
2.67E−02 6.82E−05 1.1 8.81E−05 1.2 8.78E−04 1.6
N = 2

1.99E−01 1.74E−03 – 2.21E−03 – 1.47E−02 –
1.02E−01 1.84E−04 3.4 2.43E−04 3.3 1.78E−03 3.2
7.13E−02 5.03E−05 3.6 6.77E−05 3.5 5.07E−04 3.5
5.35E−02 2.05E−05 3.1 2.79E−05 3.1 2.14E−04 3.0
4.28E−02 1.03E−05 3.1 1.41E−05 3.1 1.10E−04 3.0
3.56E−02 5.95E−06 3.0 8.12E−06 3.0 6.41E−05 3.0
3.06E−02 3.76E−06 3.0 5.11E−06 3.0 4.05E−05 3.0
2.67E−02 2.54E−06 2.9 3.44E−06 3.0 2.72E−05 3.0
N = 3

1.99E−01 4.82E−04 – 6.64E−04 – 5.77E−03 –
1.02E−01 2.30E−05 4.6 3.66E−05 4.3 4.02E−04 4.0
7.13E−02 3.91E−06 4.9 6.37E−06 4.8 1.04E−04 3.7
5.35E−02 1.23E−06 4.0 1.98E−06 4.1 2.98E−05 4.3
4.28E−02 5.17E−07 3.9 8.34E−07 3.9 1.22E−05 4.0
3.56E−02 2.55E−07 3.9 4.11E−07 3.9 6.03E−06 3.9
3.06E−02 1.40E−07 3.9 2.25E−07 3.9 3.36E−06 3.8
2.67E−02 8.29E−08 3.9 1.34E−07 3.9 2.06E−06 3.7
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Table  2 shows the obtained results for different polynomial degree N. The convergence 
rates match the theoretical prediction for all tested polynomial reconstructions.

We now study the convergence for our numerical scheme for the solid phase in the case 
in which pure diffusion is present, i.e., (eh, ev) ≠ 0 , while the fluid is at rest. In particular, we 
focus on the case in which the diffusion constant eh is different from zero in the longitudinal 
x-direction and zero otherwise. In this situation, our model for the sediment transport reduces 
to the one-dimensional heat equation for which we consider the exact solution:

where g(x) is an arbitrary initial distribution for the concentration. In our case, we assign to 
g(x) the following Riemann initial datum:

(69)c(x, t) =
1√
4𝜋eht

∫
+∞

−∞

exp

�
−
(x − 𝜉)2

4 eh t

�
g(𝜉)d𝜉, ∀t > 0,

Table 2  Convergence rates 
and norm of the errors for the 
conservative semi-Lagrangian 
method applied to the sediment 
transport equation with 
zero diffusion. Polynomial 
reconstruction of first, second, 
and third degrees

Note The characteristic mesh size is h(�) = max
P
i

√�P
i
�

h(�) �
L1

O(L1) �
L2

O(L2) �
L∞

O(L∞)

N = 1

1.99E−01 5.25E−03 – 7.26E−03 – 3.92E−02 –
1.02E−01 8.88E−04 2.7 1.33E−03 2.5 9.80E−03 2.1
7.13E−02 3.61E−04 2.5 5.42E−04 2.5 5.26E−03 1.7
5.35E−02 1.96E−04 2.1 2.82E−04 2.3 2.80E−03 2.2
4.28E−02 1.29E−04 1.9 1.82E−04 2.0 2.11E−03 1.3
3.56E−02 9.46E−05 1.7 1.28E−04 1.9 1.36E−03 2.4
3.06E−02 7.60E−05 1.4 1.01E−04 1.5 1.18E−03 1.0
2.67E−02 6.40E−05 1.3 8.28E−05 1.5 8.48E−04 2.4
N = 2

1.99E−01 2.04E−03 – 2.62E−03 – 2.18E−02 –
1.02E−01 1.88E−04 3.6 2.49E−04 3.5 1.52E−03 4.0
7.13E−02 5.17E−05 3.6 7.04E−05 3.5 5.54E−04 2.8
5.35E−02 2.07E−05 3.2 2.84E−05 3.2 1.91E−04 3.7
4.28E−02 1.05E−05 3.0 1.46E−05 3.0 9.50E−05 3.1
3.56E−02 5.98E−06 3.1 8.26E−06 3.1 6.03E−05 2.5
3.06E−02 3.77E−06 3.0 5.21E−06 3.0 3.47E−05 3.6
2.67E−02 2.53E−06 3.0 3.47E−06 3.0 2.60E−05 2.2
N = 3

1.99E−01 5.82E−04 – 8.17E−04 – 1.01E−02 –
1.02E−01 2.29E−05 4.9 3.49E−05 4.7 4.07E−04 4.8
7.13E−02 4.10E−06 4.7 6.72E−06 4.6 9.19E−05 4.1
5.35E−02 1.24E−06 4.2 1.93E−06 4.3 2.71E−05 4.2
4.28E−02 5.47E−07 3.7 8.77E−07 3.5 1.23E−05 3.5
3.56E−02 2.57E−07 4.1 4.04E−07 4.3 5.64E−06 4.3
3.06E−02 1.45E−07 3.7 2.33E−07 3.6 3.28E−06 3.5
2.67E−02 8.33E−08 4.1 1.31E−07 4.3 1.93E−06 4.0
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with the exact solution

where eh = 10−4 . We consider a square domain in the x-y plane given by �xy ∈ [−0.5, 0.5]2 , 
while along the vertical direction, we have z ∈ [0, 1] . This domain is discretized with a uni-
form mesh spacing of Δz = 0.2 , equivalent at Nz = 5 in the vertical direction, while differ-
ent mesh sizes are considered on the plane x-y to produce the convergence results. Figure 6 
depicts a one-dimensional cut of the solution at two different instant of time: namely at the 
beginning of the simulation for t = 10 and when the simulation ends at t = 200 . In both 
panels, the exact and the computed solutions are compared to each other. We clearly see a 
good matching between the two profiles even for long times.

Figure 7 depicts the projection of the same numerical solution of Fig. 6 in different 
directions.

Finally, in Table  3, we report the norm of the errors and the convergence rates 
obtained by refining the mesh in the x-y plane. Again, the theoretical order of conver-
gence is reached by the numerical scheme for all the tested reconstructions.

5.2  Stationary Vortex

In this part, we consider the NS model and we test the new semi-Lagrangian scheme in the 
nonlinear case which we use to advect the momentum equation. The test is a stationary vor-
tex with a variable free surface produced by a balance between the pressure gradient and the 
centrifugal force [9], where viscous terms are neglected. Thanks to the radial symmetry of the 
problem, the momentum equation in polar coordinates is reduced to a balance between pres-
sure forces and angular velocity. It can then be written as

(70)g(x) =

{
uL = 1, ∀ x ⩽ 0,

uR = 0, ∀ x > 0

(71)c(x, t) =
1

2

�
uR + uL

�
+

1

2
erf

�
1

2

�
x√
eht

���
uR − uL

�
,
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Fig. 6  One-dimensional solution of the solid-phase equation at time t = 10 on the left and at final time 
t = 200 on the right with zero advection speed. Comparison against the exact solution
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where r =
√
x2 + y2 is the radius and u� the angular velocity. Then, to construct an ana-

lytical solution, one needs to balance the centrifugal force. A possible choice consists in 
adopting the following initial distribution for the angular velocity:

It is possible to find an explicit expression for the free surface replacing (73) into (72) and 
integrating over the radial direction. This leads to

(72)��

�r
=

u2
�

gr
,

(73)u� = r exp
(
−
1

2
(r2 − 1)

)
, � =

u�

r
.
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Fig. 7  Numerical distribution at t = 10 (left) and at t = 200 (right) for the solid-phase equation with zero 
advection speed. Top: 2D view on x-y plane. Bottom: 3D view
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where we assume as integration constant the unperturbed free surface elevation sufficiently 
far from the vortex center, that is �∞ = 1 . Figure 8 plots this steady solution for the tangen-
tial velocity and for the free surface, respectively. Instead, Fig. 9b shows the same profile 
for the free surface in a 3D view. In this setting, the computational domain is a circle with 
r = 10 on the x-y plane, paved with NP = 9 511 polygonal elements, while along the verti-
cal direction, we adopt Nz = 10 vertical layers in the interval z ∈ [0, 1] . We can observe 
the 2D Voronoi mesh used for this test in Fig. 9a. The final time is t = 0.5 and the time 
step is chosen to be Δt = 0.1 . Figure  10 depicts the numerical results produced for the 
tangential velocity and the free surface at final time t = 0.5 . For all the three polynomial 

(74)�(r) = ∫
u2
�

gr
dr = �∞ −

1

2g
exp

(
1 − r2

)
,

Table 3  Convergence rates 
and norm of the errors for the 
conservative semi-Lagrangian 
method applied to the sediment 
transport equation with diffusion 
in the longitudinal x-direction 
and zero advection

Note Polynomial reconstruction of first, second, and third degrees. 
The characteristic mesh size is h(�) = max

P
i

√�P
i
� . Final time t = 0.25

h(�) �
L1

O(L1) �
L2

O(L2) �
L∞

O(L∞)

N = 1

1.99E−01 4.30E−02 – 6.62E−02 – 2.50E−01 –
1.02E−01 9.01E−03 2.3 1.79E−02 2.0 1.01E−01 1.4
7.13E−02 3.72E−03 2.4 7.58E−03 2.4 6.60E−02 1.2
5.35E−02 2.00E−03 2.2 4.10E−03 2.1 4.02E−02 1.7
4.28E−02 1.24E−03 2.2 2.55E−03 2.1 2.59E−02 2.0
3.56E−02 8.41E−04 2.1 1.73E−03 2.1 1.78E−02 2.1
3.06E−02 6.08E−04 2.1 1.25E−03 2.1 1.33E−02 1.9
2.67E−02 4.60E−04 2.1 9.42E−04 2.1 1.05E−02 1.8
N = 2

1.99E−01 4.65E−02 – 6.33E−02 – 2.86E−01 –
1.02E−01 8.58E−03 2.5 1.69E−02 2.0 1.29E−01 1.2
7.13E−02 2.93E−03 3.0 6.12E−03 2.8 6.36E−02 1.9
5.35E−02 1.33E−03 2.7 2.81E−03 2.7 3.25E−02 2.3
4.28E−02 7.05E−04 2.8 1.51E−03 2.8 1.83E−02 2.6
3.56E−02 4.24E−04 2.8 9.05E−04 2.8 1.11E−02 2.7
3.06E−02 2.77E−04 2, 8 5.88E−04 2.8 7.31E−03 2.7
2.67E−02 1.93E−04 2.7 4.05E−04 2.8 5.01E−03 2.8
N = 3

1.99E−01 5.06E−02 – 6.38E−02 – 1.98E−01 –
1.02E−01 7.33E−03 2.9 1.38E−02 2.3 8.81E−02 1.2
7.13E−02 2.08E−03 3.5 4.46E−03 3.1 5.83E−02 1.2
5.35E−02 7.76E−04 3.4 1.75E−03 3.3 2.89E−02 2.4
4.28E−02 3.49E−04 3.6 8.07E−04 3.5 1.57E−02 2.7
3.56E−02 1.78E−04 3.7 4.15E−04 3.6 8.39E−03 3.4
3.06E−02 9.97E−05 3.8 2.33E−04 3.8 4.67E−03 3.8
2.67E−02 5.99E−05 3.8 1.40E−04 3.8 2.94E−03 3.5
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reconstructions that have been tested, a very good matching between exact and numerical 
solutions is achieved. Furthermore, a zoom of the free surface is proposed in Fig. 11 where 
we can observe that the polynomial reconstructions of high order give a better reproduction 
of the exact solution.

5.3  Advection of a Sphere of Contaminant Over a Channel

This test case aims at showing some qualitative results which couple the solution of the NS 
model with the equation for the transport of sediment. We assume as the initial condition for 
the fluid phase a uniform flow in longitudinal direction of unitary velocity, that is the vector 
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�0 = (u, v,w) = (1, 0, 0) , and the water depth H0 = 1 , whereas for the solid phase, we con-
sider that the sediments are initially concentrated within a sphere of radius rs = 0.2 . We have

The computational domain corresponds to a channel of rectangular cross-section which can 
be observed in Fig. 12. This figure is obtained by cutting the three-dimensional domain at 
y = 0.5 and it highlights the structure of initial condition for the concentration of sediments. 
The computational grid on the horizontal domain �x,y =

{
� ∈ ℝ2|x ∈ [0, 4] ∧ y ∈ [0, 1]

}
 

is composed by NP = 2 053 Voronoi elements, whereas the water column H0 in the vertical 
direction is discretized with Nz = 20 layers, yielding the uniform thickness Δz = 0.05 . The 

(75)c0(x, y, z) =

{
1 if (x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2 ⩽ r,

0 otherwise.
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Fig. 10  Comparison between the numerical solution and the exact steady solution for the free surface eleva-
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different polynomial reconstruc-
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fluid is inviscid and diffusion is set to zero. The time step is fixed to Δt = 0.1 and the simu-
lation ends at final time t = 3.0.

Figure 13 shows some cross-section views of the results at time t = 1.5 , while Fig. 14 at 
t = 3 . They are compared with the results produced by the numerical scheme presented in 
[10] in which the semi-Lagrangian method for the terms Fun

j,k
 and Fcn

i,k
 was not conserva-

tive. The results underline how the conservative version of explicit terms better preserves 
the solution over the time evolution of the solution. This is of paramount importance when 
the long time behavior of the simulation is demanded.

5.4  Point Source Solution

Here, we consider the introduction of suspended sediments inside a flat rectangular chan-
nel by a point source. For the fluid phase, we suppose a uniform flow in the longitudinal 
direction, a hydrostatic pressure, and an inviscid fluid. The boundary conditions for the 
sediment equation correspond to the imposition of null flux across the channel boundaries

where yL and yR represent the transverse coordinates of the left bank and the right bank, 
respectively, whereas b and �0 denote the constant elevation of bottom and initial free sur-
face. The described problem has an analytical solution which reads

with

(76)eh
�c

�y

||||y=yL,yR
= 0, ev

�c

�z

||||z=b,�0
= 0,

(77)c(x, y, z) =
Ṁ

4𝜋x
√
ehev
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Fig. 12  Cross-section of the initial datum for the advection of a sphere of contaminant problem
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where y0 and z0 are the coordinates on the plane x = 0 at which the point source lies, while 
Ṁ represents the solid flow rate and B = yR − yL is the width of the channel. The following 
computational domain is considered:

where

This corresponds to assume as the initial condition a constant unitary water depth and a 
velocity flow with null components in the y- and z-directions. The domain �xy is made of 
286 881 cells, while, in the vertical direction, we consider NZ = 25 active layers. Regard-
ing the other physical and geometrical parameters, we assume

Figures  15 and 16 illustrate the numerical results for incremental times. They highlight 
how the sediments evolve in time. After a certain time, around t = 300 , a steady solution 
is reached, and thus, we can compare the numerical solution with the exact steady solu-
tion (77). The numerical results show a good agreement with the analytical solution. Some 
numerical diffusion in the longitudinal direction is present which is due to the long time 
evolution of the problem.

(78)�y =

∞∑
n=−∞

{
exp

[
−u

(y − y0 + 2nB)2

4ehx

]
+ exp

[
−u

(y + y0 + 2nB)2

4ehx

]}
,

(79)�z =

∞∑
n=−∞

{
exp

[
−u

(z − z0 + 2n�0)
2

4evx

]
+ exp

[
−u

(z + z0 + 2n�0)
2

4evx

]}
,

(80)� =
{
� ∈ ℝ

3 | x ∈ [0, 100], y ∈ [yL, yR], z ∈ [b, �0]
}
,

(81)b = 0, �0 = 1, yL = 0, yR = 10.

(82)y0 = 5, z0 = 0.5, Ṁ = 5, eh = 10−1, eh = 10−3.
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Fig. 13  Solution at time t = 1.5 for the advection of a sphere of contaminant problem
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5.5  Sediment Transport with Settling Velocity

The last test problem is concerned with the transport of a sphere of sediment 
with a settling velocity ws ≠ 0 in (7). The computational domain is the channel 
� =

{
� ∈ ℝ3|x ∈ [0, 4] ∧ y ∈ [0, 1] ∧ z ∈ [0, 1]

}
 , that is paved with a total number of 

NP = 3 176 Voronoi polygons and Nz = 50 uniform layers of thickness Δz = 0.02 . The 
initial condition for the fluid phase is simply given by an inviscid fluid with the velocity 
�0 = (1, 0, 0) and the free surface elevation �0 = 1 , while the sediment concentration is 
assumed to be initially unitary and defined within a sphere of radius rs = 0.1 centered at 
�s = (0.5, 0.5, 0.75) , by means of (75). Two different simulations are run up to the final 
time t = 3 with time step Δt = 0.1 , namely with ev = 0 and ev = 5 ⋅ 10−3 , while eh = 0 in 
both cases. The settling velocity is ws = 0.25 , so that the sediment sphere reaches the 
bottom of the channel where concentration starts to grow, hence accumulating sediment. 
Figure  17 reports the result for both simulations at different output times, showing a 
slice along the x-z plane at y = 0.5 , thus following the transport and, eventually the dif-
fusion, of the sediment. If diffusion is present, the concentration is not accumulating as 
much as in the pure advected configuration, and hence, the sediment remains suspended, 
as expected. Finally, Fig.  18 demonstrates that the sediment mass as well as the fluid 
mass is conserved by the novel semi-Lagrangian scheme.
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Fig. 14  Solution at time t = 3 for the advection of a sphere of contaminant problem
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5.6  Gaussian Pulse with Water‑Sediment Interaction

In this last part, we validate the coupled water-sediment model introduced in Sect. 3.3. 
This model corresponds to case in which the modified momentum equations (20) defin-
ing the influence of sediments on the fluid flow are introduced. The setting of the prob-
lem is the following. The computational domain is � = [−1, 1]2 × [0, 1.5] , discretized 
with 30 z-layers along the vertical direction and paved with 7 377 Voronoi cells over 
the x-y plane where no-slip wall boundary conditions are imposed. The initial pressure 
distribution is depicted in Fig. 19a and is given by

with (xO, yO) = (0, 0) , s = 1 , and A = 0.5 . The fluid is initially at rest and the hori-
zontal viscous terms are neglected, while the vertical viscosity coefficient is chosen 
to be � = 10−1 . A sphere of sediments with radius r = 0.2 is located inside the fluid at 
(xc, yc, zc) = (0.2, 0, 0.6) . A uniform initial concentration equal to c = 500 is assigned to 
the sphere and the settling velocity is ws = 0.25 . The initial concentration distribution is 
depicted in Fig. 19b through a cross-section of the entire fluid domain.

We consider two different cases, namely R = 0 and R = 0.014 , in order to enhance 
the differences between passive and active sediment transportation. Both simulations 
are run up to the final time tfin = 0.5 . Results at different output times are shown to 
qualitatively highlight how the correction term acting on the pressure in the moment 
equations affects the fluid flow. Figures 20 and 21 compare the velocity flow field at 
different cross-sections on, respectively, the x-z and x-y planes. Figure 22 depicts dif-
ferent views on the horizontal plane for the free surface elevation, while corresponding 
one-dimensional plots of the free surface along the line y = 0 are shown in Fig.  23, 
giving evidences of the different behavior of the flow with R = 0 and R = 0.014 . In 
particular, one can observe that symmetry is lost due to the presence of sediments in 
the case of a coupled approach between the fluid phase and the solid phase, while it is 
maintained in the opposite situation by the numerical scheme. Finally, Fig. 24 reports 
the concentration distribution across the plane x-z at y = 0 . In this last figure, it is pos-
sible to notice how the sediments undergoes a slightly different distortion depending 
on the passive or active transport that has been modeled.

6  Conclusions

In this work, we have presented a new semi-Lagrangian method for solving the three-
dimensional free surface hydrostatic NS equations coupled with an advection-diffusion 
model for the sediment transport. The numerical scheme works on arbitrary polygonal 
meshes and its semi-implicit character permits to overcome severe stability conditions 
imposed by the problem under consideration. The new proposed method is fully conserva-
tive, since the sediments and the velocity field are integrated for each element where they 
are defined over the advected volume. The new deformed volume is obtained by computing 
the feet of the characteristics arising from the vertexes of each element. High-order recon-
struction of both the sediment concentration and the velocity field allows the Lagrangian 
trajectories of the flow particles to be integrated, and the quantities at the feet of the char-
acteristics to be properly interpolated. In a second part, we have shown that the theoretical 

(83)�0(x, y) = 1 + A exp

(
−
(x − xO)

2 + (y − yO)
2

s

)
,
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Fig. 15  Sediment concentration for the point source test. Initial evolution
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Fig. 17  Sediment transport with settling velocity ws = 0.25 . Evolution of sediment concentration at time 
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order of accuracy is reached at numerical level by the scheme both for the fluid as well 
as for the solid phase and, at the same time, very good results in terms of precision are 
obtained. In particular, we have shown that the proposed semi-Lagrangian method outper-
forms other standard high-order semi-Lagrangian methods recently proposed in terms of 
precision and for long time simulations.

In the future, we would like to go deeper into the modeling aspects related to the trans-
port of sediment realizing a fully morphodynamic model which also includes a proper 
treatment of wetting and drying fronts [21]. We want to take into account the influence of 
the sediments on the fluid phase due to deposition over the bottom and the non-negligible 
turbulence effects caused by the suspended particles over the liquid motion. Finally, further 
investigations are also planned to find a remedy for the appearance of degenerated trans-
ported volumes that can arise from the backward integration of characteristics in the semi-
Lagrangian approach.
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Fig. 23  Comparison of free surface profiles for the coupled and the uncoupled water-sediment models. 
Gaussian pulse test
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