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Abstract

We introduce a novel numerical method for solving two-sided space fractional partial dif-
ferential equations in two-dimensional case. The approximation of the space fractional Rie-
mann-Liouville derivative is based on the approximation of the Hadamard finite-part inte-
gral which has the convergence order O(h*~%), where / is the space step size and a € (1,2)
is the order of Riemann-Liouville fractional derivative. Based on this scheme, we intro-
duce a shifted finite difference method for solving space fractional partial differential
equations. We obtained the error estimates with the convergence orders O(r + i3~ + h),
where 7 is the time step size and § > 0 is a parameter which measures the smoothness of
the fractional derivatives of the solution of the equation. Unlike the numerical methods for
solving space fractional partial differential equations constructed using the standard shifted
Griinwald-Letnikov formula or higher order Lubich’s methods which require the solution
of the equation to satisfy the homogeneous Dirichlet boundary condition to get the first-
order convergence, the numerical method for solving the space fractional partial differential
equation constructed using the Hadamard finite-part integral approach does not require the
solution of the equation to satisfy the Dirichlet homogeneous boundary condition. Numeri-
cal results show that the experimentally determined convergence order obtained using the
Hadamard finite-part integral approach for solving the space fractional partial differential
equation with non-homogeneous Dirichlet boundary conditions is indeed higher than the
convergence order obtained using the numerical methods constructed with the standard
shifted Griinwald-Letnikov formula or Lubich’s higher order approximation schemes.
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1 Introduction

Consider the following space fractional partial differential equation, with 1 < a < 2,
0<xy<1,0<r<T:

u,(t,x,y) = gD;’u(t, xy) + fD’fu(t,x, y)

+ gD‘y’u(t, xy)+ fD‘fu(t, xy) +f(t,xy), M
u(t,0,y) = @,(,y), u(t,1,y) = @,(t,y), )
u(t,x,0) =y (t,x), u(t,x,1) =y,(t,x), 3)

M(O,X, y) = MO(X, y)’ (4)

where fis a source/sink term and u,, @, @,, ¥, ¥, are well-defined initial and boundary
values, respectively. Here the Riemann-Liouville left-sided fractional derivative gD)‘jf(x)
is defined by

1

Rpya
oD gx) = T2—wde

/ (x—&'"g(&) de. 5)
Similarly, we may define the Riemann-Liouville right-sided fractional derivative as
follows:
D50 = o / (& =01 =g(&) dz. ©)
There are several ways to approximate the Riemann-Liouville fractional derivative in the
literature. Meerschaert and Tadjeran [30] used the Griinwald—Letnikov formula to obtain
the first-order scheme O(h) to approximate the Riemann—Liouville fractional derivative.
Lubich [27] introduced the higher order schemes with order O(h”),p = 1,2, --- 6, to approx-
imate the Riemann-Liouville fractional derivative. Diethelm [9, 10] obtained the scheme
to approximate the Riemann—Liouville fractional derivative with the convergence order
O(h*~%),0 < a < 2 using the Hadamard finite-part integral approach; see other higher order
schemes to approximate the Riemann-Liouville fractional derivative in Li and Zeng [22].
Based on the different schemes for approximating the Riemann—Liouville fractional deriv-
atives, many numerical methods are introduced for solving space fractional partial differen-
tial Egs. (1)—(4): finite difference methods [4-6, 1518, 21, 24, 25, 28, 29, 31-40], finite
element methods [1-3, 7, 8, 11-14, 23, 26] and spectral methods [19, 20]. Meerschaert and
Tadjeran [30] introduced a shifted finite difference method based on the Griinwald—Letnikov
formula for solving the two-sided space fractional partial differential equation in one-dimen-
sional case and proved that the convergence order of the numerical method is O(h). Meer-
schaert and Tadjeran [29] also considered the finite difference method for solving the frac-
tional advection—dispersion equation in one-dimensional case using the Griinwald—Letnikov
formula. The second-order shifted finite difference methods for solving fractional partial
differential equations based on the Griinwald—Letnikov formula are discussed in both one-
and two-dimensional cases in Tadjeran et al. [35] and Tadjeran and Meerschaert [34]. Now
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we turn to the Lubich’s higher order schemes. When Lubich’s higher order schemes with no
shifts are applied for solving space fractional partial differential equations, the obtained finite
difference methods are unstable as for using the Griinwald-Letnikov formula. With shifted
Lubich higher order methods, it shows that the corresponding numerical methods for solv-
ing space fractional partial differential equations have only first-order accuracy; see [4, 5]. In
[22, Section 2.2], Li and Zeng introduced other higher order schemes, for example, L2, L2C
schemes, to approximate the Riemann-Liouville fractional derivative. However, to the best of
our knowledge, there are no works available in the literature to use the L2 and L2C methods
for solving space fractional partial differential equations. The numerical methods discussed
in [22, Chapter 4] for solving space fractional partial differential equations are also based on
the Griinwald—Letnikov formula and Lubich’s higher order schemes; see other recent works
for solving space fractional partial differential equations in [1-3, 5, 21, 24, 25, 39, 40]. All
the numerical methods constructed using the Griinwald—Letnikov formula or Lubich’s higher
order methods for solving space fractional partial differential equations require the solution of
the equation satisfies the homogeneous Dirichlet boundary condition. Otherwise, the experi-
mentally determined convergence orders of such numerical methods are very low, e.g., see
Table 4 in Example 2 in Sect. 3. Therefore, it is interesting to design some numerical meth-
ods which have the higher order convergence for solving the space fractional partial differen-
tial equation with respect to both homogeneous and non-homogeneous Dirichlet boundary
conditions. The purpose of this paper is to introduce such finite difference methods for solv-
ing the space fractional partial differential equation.

Recently, Ford et al. [17] considered the finite difference method for solving the
space fractional partial differential equation in one-dimensional case where the Rie-
mann—Liouville fractional derivative is approximated using the Hadamard finite-part
integral; see also [15, 16, 37]. The convergence order O(r + #3~% + h#),a € (1,2), > 0
of the numerical method in [17] is proved in the maximum norm for both homogeneous
and non-homogeneous Dirichlet boundary conditions. In this paper, we will extend the
method in Ford et al. [17] to solve space fractional partial differential equations in two-
dimensional case. The corresponding error estimates in this paper are proved using a com-
pletely different way from Ford et al. [17]. The error estimates with the convergence order
O(t + P~ + h¥), a € (1,2), f > 0 hold for both homogeneous and non-homogeneous Dir-
ichlet boundary conditions.

The main contributions of this paper are as follows.

(i) A new finite difference method for solving space fractional partial differential
equations in two-dimensional case is introduced and the convergence order is
O(r + W + h¥*),a € (1,2), f > 0, where the Riemann—Liouville fractional deriva-
tive is approximated using the Hadamard finite-part integral approach.

(ii)) The convergence order of the finite difference method introduced in this paper is
valid for both homogeneous and non-homogeneous Dirichlet boundary conditions.

The paper is organized as follows. In Sect. 2, we introduce the shifted finite difference
methods for solving (1)—(4) and the error estimates are proved. In Sect. 3, we consider
four numerical examples in both homogeneous and non-homogeneous Dirichlet boundary
conditions with the different smoothness for the solution of the equation and show that the
numerical results are consistent with the theoretical analysis.
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2 The Finite Difference Method

In this section, we shall extend the method in Ford et al. [17] for solving the space frac-
tional partial differential equation in one-dimensional case to solve space fractional partial
differential equations (1)—(4) in two-dimensional case. For simplicity with the notations,
we also assume that the boundary values are equal to 0, i.e., ¢, = @, =y, =y, =0.

We have

Lemma 1 [17, Lemma 2.1] Let 1 < @ < 2 and let M = 2m,, where my, is a fixed positive
integer. Let 0 =xy <x| <Xy <+ <Xy <Xpjyq < - <xy =1 be a partition of [0, 1].
Assume that g € C?[0, 1]is a sufficiently smooth function. Then, with j = 1,2, - ,m,

x“’ 2
RD“g( ) = 1_,(_ )<Z ;;8(%pj_) + sz(g)>

—(l

=h" Z wy 2jg('x2j Z) + 2j(g)
and, with j=1,2,- ,my—1,
1 x'
RDa — / . _ —1-a d
78(x) . _F(—a) A (i1 — &)™ 7g(5) dS
R
T(—a) <Z @0118(Xoj41-) + R2j+1(8))
=0
=L / (s — &)1 g(&) dé
- F(—a) 0 2j+1 8
<l X1
+h Z Wi2je18(Xgjp1—) + =— T(—a) Ryi1(8),
1=0
where
27%a + 2), forl=0,
(—a)2>e, fori=1,
(—a)(=2"%a) + LF,(2), for 1 =2,
(—a)(—a + D(—a +2)(2)"ay = —F,(k), 2 forl=2k-1, k=2,3,j,
1 (Fy(k)+ Fo(k+ 1)), forl=2k, k=2,3,---,j—1,
z F(, Jor1=12j,

Fo(k) = 2k = D)™ = 2k = D)™ ) (—a + 1)(~a +2)
— ((2k = 1)+ 2)((2k) ™ = 2k — D)™ )(—a)(~a +2)
+ ()™ = 2k — D)) (—a)(—a + 1),
Fy(k) = 2k — 2)(2k)((2k) ™" — 2k — 2)™)(—a + D)(—a + 2)
— (k= 2) +2k) (@)™ = 2k = 2™ (—a)(—a +2)
+ (207 = (2k = 2 (—a)(—a + 1),
Fy(k) = (2k — 2)(2k — D((20)™% = 2k = 2)™ ) (—a + D)(—a + 2)
— ((2k = 2) + 2k — D)((2k) ™! — 2k = 2)™ D) (—a)(—a + 2)
+ (202 — 2k = 2)""* ) (—a)(—a + 1).
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Further, we have, withl=0,1,2,---,2j,

[@—aw,y = (—a)(—a + D(—a +2)(2) a5, (7)

and

Xrjr1 = 1> Wigje1 = Wiy (3

The remainder term R/(g) satisfies, for every g € C3(0, 1),

R(2)] < CH*1g" |, 1 =2,3,4, -, MwithM = 2my,.

Similarly, we may consider the approximation of the right-sided Riemann-Liouville frac-
tional derivative RD”g(x) atx=x,[=0,1,2,-+,2my — 2. Using the same argument as for
the approximation of R ch‘f (x) at x = x;, we can show that, with j =0, 1,2, --- ,m — 1,

M-2j —a

Digw)| _ =h 2, a8 + g R
and, with j =0,1,2, .-+ ,my — 2,

iDfg()

1 e e
= m/XM](f—xsz) ~g(&)dg

X=Xoip1
M—-(2j+1)-1

—a 2j+1
+h ; Wim—-i+1)8Xojp140) + = (=) Ryj11(8).

Let M = 2m0 Let 0=xp <x; <xy <+ <x;<-<xy=1land 0=y, <y <y, <

<y << yM = 1 be the partitions of [0, 1] and h the space step size. Let0 =1, <1, <t,
<.+ <t, <. <ty=T be the time partition of [0, 7] and 7 the time step size. At the
point (., x;,y,,), where [, m will be specified later, we have

R R
ut(tn+1’xl’ym) = Dau(tn+1’xl’ym) + Dau(tn+l’xl’ym)

" )
RD u(tn+1,xl,ym)+ D“u(tn+l,x,,ym)+ +l

where f;"“ = [ty 1> Xps Yn)-
To obtain a stable finite difference method, we will consider the following shifted equation:

R R
Mt(tn+l’xl’ym) - (]Df:u(tn+l’xl+l’ym) - th]lu(tn+1"xl l’ym)

1 (10)
- ngu(tn+l’xl’ym+l) - fD(fu(th’xl’ym—l) fn+1 +o)
where the errors produced by the shifted terms are denoted by
‘77:,1 O DUyt %75 V) = (D15 X1 Vi)
+ fDlu(tn+l7xl7ym) - th]lu(tn+1’x1—l’ym) (11)

Rya Rya
+ oDy Uty 1> X Yn) = gDty Xps Vit

R R
+ yDTu(tn+l7xl’ym) - yDtllu(tn+1’x[’ym—1)'
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We assume that gD}‘:u(t, x,), gD‘y’u(t, x,) satisfy the following Holder conditions.

Assumption 1 For any x*, x**, y*, y** € R, there exist constants C > 0 and # > 0 such that
|§D§u([,x*,y) - gDzu(t,x**,y)’ < Clx* —x*™|#,

|§D;’u(t,x,y*) - gD‘y’u(t,x,y**) < Cly* —y**|*.

We also assume that f D‘fu(t, X, ), fD‘fu(t, x, y) satisfy the following Holder conditions.

Assumption 2 For any x*, x**,y*,y** € R, there exist constants C > 0 and # > 0 such that
| EDfutr.x",y) = KDfu(e . y)| < Cla* =1,

|fD‘;‘u(t,x,y*) - ‘;D‘;’u(t,x,y**) < Cly* —y* .

Remark 1 To make Assumptions 1 and 2 hold, we need to assume that the solution u satis-
fies some regularity conditions. In some circumstances, such conditions are easy to check,
for example, when KD?v(x) € C'[0, 1], we have, with g = 1,

gD}"c’v(x*) - gD’;v(x**) < Clx* = x|,
Similarly, we can consider fD‘fv(x).

We now turn to the discretization scheme of (10). Discretizing u, at t = ¢, ; using the back-
ward Euler method and discretizing (DY, ¥D{, (DY, XD at X =X, 1,X = X_1,¥ = Y1,
Y = Y, respectively, using the Diethem’s finite dlfference method introduced in Lemma 1,

we obtain

-1
T Uty X V) = Uty X1, Y,))
e

:
—a ) -
—h Zwk,l+1”(fn+1’xl+1—k’ym —-h Zwkm+1u(tn+l’xl’ym+l—k)
k=0

o e (12)
J
— 3) - 4)
-h ZWkM - 1) +1’xl 1+k’ym)_h Z kM (m— 1)u(zn+1’xl’ym—1+k)
k=0

=[N+ S+ O + 1P+ 1),

Lm

where S;‘“ can be defined as S”frl in [17, (27)] and the weights w]((ll)ﬂ,wl({z’)n +1’W§31)v1—(1—1)’

Wy in (12) are defined by (7) and (8) Further, we denote £, %, m", m® by the
fol’lowing, withi=1,2,-,my—1, j=1,2,,my— 1,

l(l) _ 2i, [=2i, m(l) _ 2j, m = 2j,

i 2i+2, [=2i+1, i 2j+2, m=2j+1,

and
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@_ M=-Qi-D-1 1=2 o _[M-Qj-D-1 m=2
i T\ M=2i, 1=2i+]1, i T\ M=2i, m=2j+1.

Then we have

Lemma2 [17, Lemma 2.3] Let1 < a < 2. The coefficients wl(f;p,s =1,2,3,4, p=1,2,,my
defined in (12) satisfy '

(5)
Wi, <0, (13)
w, >0, k#1,k=0,2,3,-.2p, (14)
(5)
1“(3‘»—05)Zwk2 (15)

Let U] = u(t,,x;,y,,) denote the approximate solution of u(z,, x;, y,,). We define the fol-
lowing ﬁnlte difference method for solving (1)—(4):

-1 n+1 n
T <U1,+ Ulm)

o

(1)
i J
_ (1) n+1 _ Z (2) n+1

h Zwkl+1Ul+l o = h Wit U1k
k=0 k=0 (16)
Z(Z) (2)

—a 5) Ut e ) !

—h™ ZWkM an Ui = ¢ WkM =) Ulm—14k

fn+l n+l

Lm ’

where Q;’;l is some approximation of Sf;l, defined as in [17, (30)] which satisfies

n+1 n+l _ 3—a
0/ Sl,m = Oh"™%).
Now we come to our main theorem in this work.
Theorem 1 Assume that u(t,,x,,y,,) and U} are the solutions of (12) and (16), respec-
tively. Assume that Assumptions 1 and 2 hold Then there exists a norm|| - || such that
lle"ll = |U" = u(t,)|l < C(zr +h>~* + hP).

Proof Lete) =u(t,.x;,y,)— U} .Subtracting (16) from (12), we get the following error
equation, Wlth A=1/h*™

(0]

o m
i J
n+l _ oy 1) n+l Z (2) n+1
(€l — €)= 4 Zwk,l+]el+l—k,m+ Wiem1 €lme1—k
k=0 k=0

a7

@

i J

3) n+l 2 (4) n+l _ n+1

A ZWkM =€ 1+km T 20 Wirt—m-1yClm—1+k | = TR >
k=0 k=0
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where

R = 0@ + 1 + 177,

Rearranging (17), we get

(1) 3) 2) 4) n+1
<1 — Ay Ao, g Al - /le,M—(m—l)>el,m
141 M—(I=1)
1)+l 3) n+1
-4 Z O 141€141-km T Z DO M==1)C1=1+km
= =
m+l M—(m-1) (18)
(2) n+1 4) n+1
-4 Z O 1 €mei—k T Z D M=m=1)Clm—1+k
=2 k=2
1) n+l 3) n+1 (2) n+1 (4) n+1
= A0 115 ™ AP0 1€t ™ AP0 1 €t ™ AP0 p—ne1) €1
_ n n
= ’Z'Rl’m +e
that is,
(1) 3) 2) (4) n+1
<l —ADy y T AO oy T AR /lwl,M—(m—l)>el,m
1) n+l 1) n+l (1) n+1
= A0 11 € = O = AWy € T T AW o
(2) n+1 (2) n+1 (2) n+1
= AW 1€t — O = AW T T AW 1 €l0 (19)
3) n+1 3) n+1 3) n+1
= A0 @it — O AOs € T T A0 e M
(4) n+l1 ) n+1 (4) n+1
= A0 1t eyt O = A0y 1€t T T AO Y M ne1y €M
_n n+1
=€, + 'rRl’m .
More precisely, we have, for/ =1,m=1,2,--- , M — 1,
(1) (3) (2) (4) n+1
(1 — Ao, = Aoy, = Ao] = j’wl,M—(m—l))el,m
(1) i ) _n+l
= w5y, —0—Awyser
(2) n+1 (2) n+1 (2) n+1
= AW 1€t O AW e T T AW i€l (20)
(3) n+l (3) n+l 3)  n+l
= Aoy en, — 0= Aoy el — = Aoy e
4) n+1 4) n+1 (4) n+1
= A0 1y €1 O = AOy e €T T T ADY  ne1y€

_n n+1
=e, T TRLM.

Forl=2,m=1,2,.---,M — 1, we have
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(1-40) - 20, - 20 = dofl, )i
= Jog 3¢5, =0
- AWE)Z,;ﬂe;;zlﬂ -0~ Awéz,r)n+legjr—nl—l - Awﬁll,mﬂeg}r)l
- ﬂwg)?l)\/l—le";;: -0- iw(z?})\/l—legjnl - Aw}(l?l)—l,M—leZZ; @D
- Awf)&—(m—l)egjr:—l -0~ Aw(;l)vl—(m—l)eg:nLl
- /lwg\j)—(m—l),M—(m—l)egjk/}
=e, + TR;:;:.
In general, forl=M - 1,m=1,2,---,M — 1, we have
(1 - }”w(lli)w - )”w(lsi - }”w(fr)nﬂ - )'w(lzfl)l/l—(m—l))eﬁ—ll,m
- M’gLeHMtln -0- Aw(ztz)vz—leﬁflz,m - )”WI(\;?M—legj:nl
- )’Wg)i)n+lenM+—ll,m+1 -0~ Aw(zi)nﬂenMJr—ll,m—l - /lwij-)i—l,m+lenM+—ll,0
— Ao, —0—dwet! — = Jwy et (22)
- Awf)‘,‘/)l/l—(m—l)elrll;——ll,m—l -0- Aw;‘fl)\l—(m—l) X;r—ll,mﬂ
- /lwl(jl)—(m—l),M—(m—])eZ;——ll,M
=é, + rRZ;l.
Thus, we may write (18) as the following matrix form:
Ae™! =" + TR, (23)

where
en+l Rn+l
1 1
| n+1 | Rn+l
+ +

e R A S R
n+1 n+1
-1 Ry
n+1 n+1
e R
L1 L1

| en+l Rn+l
+1 __ +1 _

e;‘ — 12 , R;’ — 1,:2 ,
rH:l rH‘—l
€I m-1 Ly

and
Ay A

Ayy Ay,
A = (a4 )m—1pxp—1 = . ;

AM—l,l AM—1,2

AI,M—I
AZ,M—I

: AM—],M—l (M=1)2x(M—1)2

@ Springer



514 Communications on Applied Mathematics and Computation (2019) 1:505-523

Here
@ @ @ “
@ a @) o2 = A <_2>/1W3’M @ o M(sz)d_l’M
A, = =AW = AWg an = AWes = AWy g T AW
@ @ @ _ @
—AWylim — AWy oM =AWy = W5 Ay
where
_ (1) (3) 2) )
ay =1=2w,, = Aoy, = A0 — Ao,
— (1) 3) (2) )
ay =1 =Aw, = Aoy, ., — Aoy — Aoy, o,
— (1) 3) (2) 4)
ay_iyr = L= A0y = Aoy, = Aoy, = Ao,
and, with £ = L vxa-1y
1 3
Ay = (=40, = dooly, | DE, 1=2,3,- M1,
— (1) —
Ayo=—i) E. 1=3,4 M~1,
A =—w) E I=M-1
L-M-2) = ~ MWyt LT )
1 3
Ay = (Ao, — Aoy, | DE, 1=1,2,- M =2,
— (3) _
Al,l+2 - _ﬂ(US’M_H_lE, = 1>27 7M - 3,
— (3) —
A= =20 B 1= 1.
We shall show that there exists a norm || - || such that
A7) < 1. 24)

Assume (24) holds at the moment, we have, by (23), noting thatnz =¢, < T,

1 -
e < HATHI (eIl + 2 IR™HT) < eIl + IR

IA

IA

Il + ((n + 1)7) max ||R"|| < C(z + I + ¥,
1<n<N
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where we use the fact e® = 0.

It remains to show (24). It suffices to show all the eigenvalues of A are greater than or
equal to 1, which implies that all the eigenvalues of A~! are less than or equal to 1. If all the
eigenvalues of A~! are less than or equal to 1, then there exists some norm || - || such that
IA~1]| < 1[33]. To show all the eigenvalues of A are greater than or equal to 1, we may use
the well-known Gershgorin lemma.

Let
M—1y
r= Z lal.
k=1,k#l
‘We have

_ (1 2) ) 4) 3) 3)
r = /16002 + /1600’2 + /l(a)z’M + -+ a)M_l’M> + ’1(6"2,1\/1 + -+ a)M_LM),

—1— 2D — 3,3 _ 9. 2 _ @
ay =1-lo, —lo, —lo, —io ),

ry = i) + A(a)(;; + a)(z)) + A(a)(4) +04+0® 4+t )

0,2 23 0,M—-1 2.M—-1 M-2M-1
(3) (3)
+ @S, + ) ),

— (1) 3) 2) )
ay,=1- AaJL2 - )”wuw - AaJL3 - ﬁa)l’M_l,

— (1) (1) (3)
Tou—1y = i(‘”z,M + -+ a)M_]’M> + /1coQ2
(2) (2 (€]

+ A<w2,M + -+ wM—l,M) + Awy ;.

—_ 1 _ 1 _ 3) _ 2 _ @) _ 2 _ 4)
a(M_l)z’(M_l)z—l Aa)l,M /la)h2 ﬂa)l’z )”wuw Aa)l,M Aw],z’

which imply that

— (1) (1) (2) 2
a,—r=1- )u(a)o,2 + wl,z) - /1(600’2 + wm)
(3) (3) (C)) (C))
— a0+l ) = Aol el ),

— (1) () (2) 2 (2)
yy—r=1- A(“’o,z +w ) - A<w0’3 +o;+ a)m)

1.2
(3) (3) (4) (4)
- /1<w1,M Tt wM—l,M) - /1<w0,M toeet wM—Z,M—l)’
M-1 M-1

_ M @
droiparetp = Torrp = L= A D oy =2 ) oy,

i=1 i=1

(3) 3) 4 4)
- A»(a)O,2 + com) - A(cooy2 + a)u).
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By Lemma 2, we get

ay—r>1, 1=12- ,(M=-1)

which implies that all the eigenvalues u of A satisfy, by Gershgorin lemma,
I<aq —-rn<wu<a;,+r,

that is, all the eigenvalues p of A are greater than 1 which implies (24).
Together these estimates complete the proof of Theorem 1.

3 Numerical Examples

We shall consider in this section four numerical examples to illustrate that the numerical

results are consistent with our theoretical results.
Example 1 Consider, withl < a < 2,0 < x,y <2 [6],

u(t,x,y) = KDu(t, x,y) + ED%u(t, x,y) +f(t,x,y), 0 <1< 1,

u(t,0,y) = u(t,2,y) = u(t,x,0) = u(t, x,2) =0,

u(0,x,y) = 4x*2 — x)%*(2 - y)%,

where

ft,x,y) =—4e7'x*2 - )2 —y)?

422 -y [4LCFD 2
de 0 y))<4r(2—a+1)x

rG+1) 5, T@+1 4_a)
—4———x e E——
TG-a+1) Td—a+1)

—ae 20—y (4 LEED 5.
4e (2 x))<4r(2_a+1)

L TG+D o, Té+D .,
TG-a+l) ' T@—a+0

It is easy to check that u(t, x, y) = 4e~'x*(2 — x)2y*(2 — y)? is the exact solution.

Note that the error estimate satisfies, by Theorem 1, with y = min(3 — a, f§),

eV = |UN = uty)|| < C(z + h").
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In the numerical method (16), we simply ignore the errors o'[’”r1 in (11) which are produced

by the shifted terms. Of course, if we use the numerical methods (16) to calculate the
approximate solutions, the spatial error should be O(h# + h3~%). Since the exact solutions
are given in our numerical examples, the errors o"’Jrl in (11) produced by the shifted terms
can be calculated exactly. Thus, the convergence order should be O(#*~®) if we include 6["+1
in the numerical method (16). In general, we do not know the exact solutions of the equa-
tion. In such case, we may approximate o"”rl using the computed solutions U” to improve
the convergence orders. In all our numerlcal simulations in this section, the numerical
method (16) will include o-"+' defined by (11), which makes the experimentally determined
order of convergence (EOC) independent of § > 0.

We will observe the convergence orders with respect to the space step size. To see
this, we shall choose sufficiently small time step size 7 = 2710 and the different space
step sizes h; = 271 1=12,3,4,5,6 such that the computational error is dominated by the

space step size O(h*~%),1 < a < 2. Denote ||e}'|| = |[UY — u(zy)|| the L* norm of the error
atty = 1 calculated with the step size &,. We then have
lleYll = Chy, 1=2,3,4,5,6, (28)
which implies that
N v
e,
el h,
Hence, the convergence order satisfies
|I€N I
y & log, (29)
e, I

The experimentally determined orders of convergence (EOC) for the numerical method
(16) are provided in Table 1 with respect to the different «. We observe that the conver-
gence order is indeed O(h3~%) which is consistent with Theorem 1.

Next, we solve the equation in Example 1 using the finite difference method intro-
duced in Meerschaert and Tadjeran [30] where the Riemann-Liouville fractional
derivatives are approximated using the Griinwald-Letnikov formula which requires the
solution of the equation satisfies the homogeneous Dirichlet boundary condition; see
some other shifted and weighted Griinwald difference operator to approximate the Rie-
mann-Liouville fractional derivative in [36]. The convergence order of the finite differ-
ence method in [30] is O(h) and we indeed observe this in Table 2 for solving (33)—(35).

Table 1. The experimentally Af h w=12 2= 14 =16 =18

determined orders of

convergence (EOC) in Example 1 9-10 9-3

using the numerical method (16)

att =1 2-10 2-4 1.4909 1.5103 1.4715 1.5439
2-10 2-5 1.586 3 1.499 8 1.363 2 1.3251
2-10 276 1.706 8 1.5197 1.356 2 1.246 8
2-10 277 1.813 6 1.628 5 1.3504 1.1915
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Table 2 The experimentally

A =12 =14 =1 =1

determined orders of ! h * ¢ * 6 * 8

convergence (EOC) in Example 2 9-10 9-3

using the shifted Griinwald—

Letnikov method at f = 1 2-10 274 0.8770 0.963 0 1.198 1 1.076 5
2710 23 0.920 4 0.998 7 1.086 8 1.069 2
2-10 2-6 0.967 1 1.010 4 1.0440 1.094 6
2-10 277 0.989 2 1.003 3 1.0156 1.067 6

From now on, we call the finite difference method in Meerschaert and Tadjeran [30] as
“the shifted Griinwald—Letnikov method .

Example 2 In this example, we will consider the following space fractional partial dif-
ferential equation with non-homogeneous Dirichlet boundary conditions, with 1 < a < 2,
0<x,y<2:

u,(t,x,y) = (Dyu(t,x,y) + ¢Djut,x,y) +f(t,x,y), 0<t<1, (30)
u(t,0,y) = u(t,2,y) = u(t,x,0) = u(t,x,2) = 5, (31)
u(0,x,y) = 4°(2 = x)’y*(2 - y)* +5, (32)

where

flt,x,y) = —4e7'x*2 - 0)H*(2 - y)?

—4eTY @y (‘lr(g(E Z Jlr)l)xz_a B 4F(I3j(i Z Jlr) 1)x3_a
r(lz;(i Z i)l )x4_a> * S%W

e - <4r(g(E : i)l)y - 4F(I3ﬂ(i jx- Jlr)l)y o
r(l;(i : i)l)yH) * S%W

It is easy to see that u(z,x,y) = 4e™"x*(2 — x)?>y*(2 — y)> + 5 is the exact solution of the
equation.

In Table 3, we show the convergence orders using the numerical method (16). We see
that for some «, the convergence orders can reach O(h3~%) and for some other a the con-
vergence orders are less than O(A*~®). But in most cases, the convergence orders of the
numerical method (16) are greater than 1 for solving (30)—(32) with the non-homogeneous
Dirichlet boundary conditions.

In Table 4, we use “the shifted Griinwald—Letnikov method” introduced in Meerschaert
and Tadjeran [30] for solving (30)-(32). We observe that the convergence orders are very
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Table 3 The experimentally Af h w=12 2= 14 =16 =18

determined orders of ) : ) )

convergence (EOC) in Example 2 _10 3

. 2 2

using (16) atr =1
2-10 24 1.4520 1.469 7 1.5579 1.6512
2-10 23 1.448 8 1.290 6 1.243 6 1.2130
2-10 2-6 1.378 6 1.104 9 09793 1.0137
2-10 277 1.067 7 0.8299 0.703 1 0.709 9

Table 4 The experimentally Ar h 2=12 a=14 a=16 =18

determined orders of ) : ) )

convergence (EOC) in Example 2 9-10 9-3

using the shifted Griinwald—

Letnikov method atf = 1 2710 274 0.792 1 0.354 8 0.6170 1.186 9
2-10 23 0.544 4 0.234 8 0.273 8 0.547 8
2710 276 0.4145 0.260 4 0.234 8 0.276 4
2-10 2-7 0.3811 0.329 1 0.278 0 0.1949

low because of the non-homogeneous boundary conditions. From Tables 3 and 4, we
observe that the numerical method (16) introduced in this paper has higher order conver-
gence than “the shifted Griinwald-Letnikov method” introduced in Meerschaert and Tad-
jeran [30] for solving space fractional partial differential equations with non-homogeneous
boundary conditions.

In the next example, we shall investigate the convergence orders of the numerical
method (16) for solving space fractional partial differential equations where the solutions
of the equations are not sufficiently smooth.

Example 3 Consider, withl <« < 2,0 < x,y < 1[6],

u(t,x,y) = eDu(t,x,y) + gD;‘u(t, Y +ftxy), 0<x<l1, t>0, (33)
u(t,0,y) =0, ut,1,y) =e™'y", u(t,x,0) =0, u(t,x, 1) = e”'x™, (34)
u(0,x,y) = x"1y", 35)

where

I'la; +1)
tx, — e ¥ _ ot - o
%) ©x © I'le; +1—a)
_e_txalyal _e_tM X =0
I'a; +1-0a)

Here the exact solution has the form u(z, x, y) = e 'x*1y*1. We will consider two different a;:
the nonsmooth solution case with @; = a and the smooth solution case with @; = 3.

For the case ; = a, we have, there exists some constant C,
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Table 5 The experimentally
determined orders of
convergence (EOC) in Example 3
for @, = ausing (16) att =1

At h a=12 a=14 a=1.6 a=1.8

a =12 a =14 a, =16 a =18

2-10 7-3
2-10 24 1.2991 1.1489 1.047 5 0.968 3
2-10 25 1.464 9 1.3452 1.198 4 1.064 7
2-10 276 1.4415 1.4278 1.267 6 1.1459
2-10 277 1.2202 14328 1.3292 1.1451
Table 6. The experimentally Ar i a=12 a=14 a=16 2= 18
determined orders of
o
2-10 2-3
2-10 274 1.370 5 1.2376 1.150 2 1.104 5
2-10 23 1.580 0 1.389 1 1.3358 1.1011
2-10 26 1.716 3 1.502 8 1.3109 1.1540
2-10 277 1.8497 1.569 4 1.360 5 1.1700

1 X

Rya _ N2 (Rna-2 _ N2 1-

6DY(x™) = D*({DI7?) (x*) = D m/o (=)' dr
= CD*(x}) =C,

which implies that the following Lipschitz condition holds

EDRut, 2", y) ~ EDTu(t )| = 0 < Cla* —x)/

for any f > 0.

In Table 5, we obtain the experimentally determined orders of convergence (EOC)
for the different @« = 1.2,1.4,1.6,1.8. Since the solution is not sufficiently smooth, the
convergence orders are less than O(h3~%) as we expected.

For the smooth solution case with a; = 3, in Table 6, we observe that the conver-
gence orders are almost 3 — a as we expected.

In our final example, we consider a two-sided space fractional partial differential
equation.

Example 4 Consider, with1 < a < 2,0 < x,y <2 [30],

u(t,x,y) = £Du(t,x,y) + *Dju(t, x,y)

36
+ oDyu(t,x,y) + KDSu(t, %, y) +f(t,x,), 0 <1< 1, (56)

u(t,0,y) = u(t,2,y) = u(t,x,0) = u(t,x,2) =0, 37
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Table 7 The experimentally

A =12 =14 =1. =1.
determined orders of ! h ¢ * ¢ 6 ¢ 8
convergence (EOC) in Example 3 5-10 9-3
for @, =3 using (16) att =1
2-10 24 1.3792 1.248 1 1.179 1 1.1394
2-10 25 1.553 4 1.266 8 1.187 8 1.141 8
2-10 276 1.679 8 14201 1.256 7 1.1300
2-10 277 1.8092 1.508 0 1.206 1 1.189 1
u(0,%) = 4*2 — )22 — )%, (38)

where u(t, x,y) = 4e7x>(2 — x)>y*(2 — y)? is the exact solution.

In Table 7, we observe that the convergence orders of the numerical method (16) for
solving this equation are also O(h>~%) as we expected.

4 Conclusions

In this paper, we construct a new and reliable finite difference method for solving the space
fractional partial differential equations. The error estimates are proved and the convergence
order of the numerical method depends on the smoothness of the solution of the equation.
The convergence orders are proved for both homogeneous and non-homogeneous Dirichlet
boundary conditions. Numerical examples show that the proposed numerical method in
this paper has much higher convergence order than the shifted Griinwald—Letnikov method
proposed in Meerschaert and Tadjeran [30] for solving space fractional partial differential
equations with non-homogeneous boundary conditions.
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