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Abstract
For high-dimensional classification, interpolation of training data manifests as the 
data piling phenomenon, in which linear projections of data vectors from each class 
collapse to a single value. Recent research has revealed an additional phenomenon 
known as the ‘second data piling’ for independent test data in binary classification, 
providing a theoretical understanding of asymptotically perfect classification. 
This paper extends these findings to multi-category classification and provides a 
comprehensive characterization of the double data piling phenomenon. We define 
the maximal data piling subspace, which maximizes the sum of pairwise distances 
between piles of training data in multi-category classification. Furthermore, we 
show that a second data piling subspace that induces data piling for independent 
data exists and can be consistently estimated by projecting the negatively-ridged 
discriminant subspace onto an estimated ‘signal’ subspace. By leveraging this 
second data piling phenomenon, we propose a bias-correction strategy for class 
assignments, which asymptotically achieves perfect classification. The present 
research sheds light on benign overfitting and enhances the understanding of perfect 
multi-category classification of high-dimensional discrimination with a help of 
high-dimensional asymptotics.

Keywords  Ridge estimation · Data piling · HDLSS · Multiclass classification · Bias 
correction

1  Introduction

High-dimension, low-sample size (HDLSS) data analysis is becoming increasingly 
popular in statistical machine learning. In high-dimensional classification, it is well-
known that linear classifiers are usually affected by data piling phenomenon (Ahn & 
Marron, 2010; Marron et al., 2007; Huang et al., 2013; Chang et al., 2021). The data 
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piling phenomenon occurs when projections of training data from the same class 
onto the normal vector of the separating hyperplane are piled on a same location in 
binary classification (Marron et  al., 2007). Ahn and Marron (2010) characterized 
the maximal data piling (MDP) direction, defined as:

where SW is the p × p within-scatter matrix and SB is the p × p between-scatter 
matrix of the training data. As long as the linear constraint in (1) is met for some 
v ∈ ℝ

d , data piling phenomenon occurs as training data projects onto only two 
points on v , one for each class. In particular, the MDP direction uniquely exists if 
p > n − 2 since the rank of SW is at most min{p, n − 2} . The maximal data piling 
direction is optimal among directions exhibiting data piling in the sense that it 
maximizes the distance between two piles of training data. Figure  1a shows that 
projections of the training data onto w

MDP
 are located at exactly two points, one 

for each class. Numerous works showed the usefulness of utilizing wMDP in high-
dimensional data analysis (Ahn & Marron, 2010; Ahn et  al., 2012; Jung, 2018; 
Ahn et al., 2019; Chung & Ahn, 2021). On the other hand, the maximal data piling 
direction has been regarded as an undesirable classifier since it fits all the noise in 
the training data and incurs overfitting (Lee et al., 2013; Marron et al., 2007; Huang 
et al., 2013).

Recently, Chang et al. (2021) showed that a second data piling phenomenon for 
independent test data is possible under the HDLSS asymptotic regime where the 
dimension p goes to infinity while the sample size n is fixed. More noticeably, they 
showed that a ridged linear discriminant vector projected onto a low-dimensional 
subspace with a negative ridge parameter can yield second data piling and asymptot-
ically achieve zero classification error. These results are in line with recent growing 
literature on high-dimensional linear regression models where optimal regulariza-
tion can be nearly zero or even negative (Bartlett et al., 2020; Muthukumar et al., 
2020; Kobak et  al., 2020; Tsigler & Bartlett, 2020; Wu & Xu, 2020). Figure  1b 

(1)wMDP = argmax
v∈ℝp∶‖v‖2=1

v�SBv subject to v�SWv = 0,

Fig. 1   Toy data example illustrating double data piling phenomenon. Circles: Training data. Crosses: 
Test data. Colors represent different classes. a The original data piling phenomenon for training data. b 
Double data piling phenomenon for both training and test data. c General double data piling phenomenon 
for multi-category classification. (Here, �𝛼̂,i ∝ PSL𝛼̂,i ; see Sect. 3.2.)
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indicates that the projected ridged linear discriminant vector ��,1 with some nega-
tive ridge parameter 𝛼̂ < 0 appears to be orthogonal to the parallel lines formed by 
independent test data and thus yields second data piling. While Chang et al. (2021) 
provided compelling insights on double data piling phenomenon, their discussion 
was limited to the binary classification setting. In this work, we extend the findings 
of Chang et  al. (2021) to the multi-category case. Our main goal is to define and 
estimate the subspace exhibiting second data piling for multi-category classification 
as shown in Fig. 1c and construct a new classification rule based on such a subspace.

1.1 � Related work

Benign overfitting Recent analyses have demonstrated that overparametrized 
deep neural network models that interpolate training data can achieve successful 
generalization performances (Zhang et  al., 2017; Belkin et  al., 2019). This 
phenomenon, called benign overfitting, challenges the classical wisdom of bias-
variance trade-off and has motivated theoretical and empirical research to understand 
why overparametrization can be beneficial (Belkin et al., 2020; Bartlett et al., 2021; 
Belkin, 2021). One line of work is on linear regression models (Bartlett et  al., 
2020; Muthukumar et al., 2020; Tsigler & Bartlett, 2020; Mei & Montanari, 2021; 
Hastie et al., 2022; Montanari et al., 2023; Mahdaviyeh & Naulet, 2020), showing 
that interpolating least squares estimator can achieve nearly perfect generalization 
performances. Another line of research has analyzed the asymptotic error bounds 
of the maximum margin classifier, demonstrating that the phenomenon of benign 
overfitting also occurs in binary classification (Chatterji & Long, 2021; Cao et al., 
2021; Wang & Thrampoulidis, 2022). Wang et  al. (2021) recently investigated 
sufficient conditions for multi-category classifiers under which benign overfitting 
occurs. We note that the majority of existing work has focused on regression or 
binary classification settings, which share formulaic similarities. This work will 
shed light on the benign overfitting phenomenon in the multi-category classification 
setting.

Data piling The data piling phenomenon has been a key to understanding the 
unique challenges in HDLSS classification. Marron et  al. (2007) pointed out that 
the support vector machine (SVM) is likely to suffer from data piling in the HDLSS 
settings, resulting in poor generalization performance. Some research attempted to 
avoid data piling by regularizing the degrees of data piling (Lee et al., 2013; Ahn 
& Jeon, 2015) or using methods based on distance-weighted discrimination (DWD) 
(Marron et al., 2007; Huang et al., 2013; Qiao & Zhang, 2015), which was purposely 
developed to avoid data piling. However, recent studies have shown that, with 
sufficient overparametrization, hard-margin SVM can achieve good generalization 
even when every training point becomes a support vector, called the support 
vector proliferation (SVP) (Muthukumar et  al., 2021; Hsu et  al., 2022; Ardeshir 
et  al., 2021). Moreover, they revealed that the hard-margin SVM is equivalent to 
the minimum-norm least squares regression under certain conditions. In this work, 
we provide a complete geometrical characterization of data piling as well as its 
extension to independent test data.
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Asymptotic perfect classification It has been known that asymptotic perfect 
classification is possible in high or infinite dimensional classification problems if 
the high dimensionality is well exploited. Hall et  al. (2005) showed that classical 
classifiers such as SVM, DWD, and the nearest neighbor classifier can achieve 
perfect classification under the HDLSS asymptotic regime. Delaigle and Hall (2012) 
showed that ‘nearly’ perfect classification is possible for functional data using simple 
linear classifiers when the standard deviation of the leading principal component 
scores are of the same order as, or smaller than, the population mean differences. 
Dai et al. (2017) proposed a functional nonparametric Bayes classifier based on the 
density ratios of projection scores on common eigenfunctions, and showed that it can 
achieve asymptotic perfect classification under certain conditions. Xue et al. (2023) 
suggested an optimal linear classifier for high-dimensional functional data that 
achieves asymptotically zero prediction error. We observe that perfect classification 
in the multi-category classification setting has not been addressed in the literature. 
Our study aims to demonstrate that asymptotic perfect classification is attainable in 
multi-category classification by leveraging the second data piling phenomenon.

1.2 � Our contributions

We extend the discussions on the double data piling phenomenon to the general 
multi-category classification problem. Firstly, among subspaces exhibiting data pil-
ing, we identify the first maximal data piling (MDP) subspace which yields the max-
imum distances between piles of training data. We show that this MDP subspace 
is not necessarily spanned by MDP directions from binary problems. Secondly, we 
characterize all second data piling (SDP) subspaces onto which projections of inde-
pendent test data from each class are piled on top of each other. We consider a com-
mon high-dimensional spiked covariance model (Johnstone, 2001; Jung & Marron, 
2009; Shen et al., 2016; Wang & Fan, 2017) where several leading eigenvalues are 
significantly large and the rest of eigenvalues are nearly constant at 𝜏2 > 0 . We show 
that the SDP subspaces are asymptotically perpendicular to the leading population 
eigenvectors.

Among the SDP subspaces, we identify an optimal subspace that asymptotically 
induces the maximal separation between the classes. This maximal SDP subspace 
exists within S , the ‘signal’ subspace that is generated by the MDP subspace and 
the leading sample eigenvectors. Moreover, we show that the maximal SDP sub-
space can be consistently estimated: A negatively ridged linear discriminant sub-
space projected on S yields SDP. The negative ridge phenomenon where the optimal 
ridge penalty can be negative was first studied by Kobak et al. (2020) using a single 
spiked covariance model in the overparametrized regime. We further establish that 
the negative ridge phenomenon also occurs in the multi-category classification set-
ting under a general multi-spiked covariance model.

In multi-category classification, assigning class labels to the data projected onto a 
discriminant subspace is sometimes a non-trivial task. Pairwise comparisons or one-
vs-rest comparisons are often attempted without proper justification. We present a 
novel classification rule for multi-category problems that corrects the asymptotic bias 
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in order to achieve perfect classification. The proposed bias-corrected nearest centroid 
classification rule considers all classes simultaneously and is theoretically shown to 
yield asymptotic perfect classification.

Figure 2 displays a roadmap of how we proceed to characterize the double data pil-
ing phenomenon for multi-category classification. In Sect. 2.2, we review the SDP phe-
nomenon for binary classification. We generalize MDP from binary to multi-category 
classification in Sect. 2.3. Based on these foundations, we characterize the SDP sub-
spaces for multi-category classification and propose a projected negatively-ridged dis-
criminant subspace to estimate the maximal SDP subspace. In Sect. 4, we show that 
the bias-corrected classifier based on the maximal SDP subspace achieves asymptotic 
perfect classification. We demonstrate the theoretical findings with simulation and real 
data in Sect. 5. Technical details and proofs are deferred to Appendix A.

2 � Preliminaries

2.1 � Data models

For each k = 1,… ,K , let Xk1,… ,Xknk
∈ ℝ

p be independent and identically distrib-
uted random vectors from an absolutely continuous distribution with mean �k and 
covariance matrix � . Let X = [X1,… ,XK] be the p × n training data matrix, where 
Xk = [Xk1,… ,Xknk

] is the data matrix of the kth class and n =
∑K

k=1
nk . For class-wise 

sample mean vectors X̄k = n−1
k

∑nk
j=1

Xkj , let X̃k be the class-wise centered data matrix 
of the kth class, obtained by replacing Xkj in Xk by Xkj − X̄k , and X̃ = [X̃1,… , X̃K] . 
Furthermore, let M be the p × K matrix whose kth column is 

√
nk(X̄k − X̄) where 

X̄ = n−1
∑K

k=1

∑nk
j=1

Xkj is the total mean vector of the training data. We define the 
within-scatter matrix SW = X̃X̃

�
=
∑K

k=1
X̃kX̃

�

k
 and the between-scatter matrix 

SB = MM� . Denote the (n − 1)-dimensional sample space of training data by

Assuming p > n , we write an eigen-decomposition of SW as column space of SW 
is of rank n − K with probability one.) Also, we write the eigen-decomposition 
of the common covariance matrix � as � = U�U� where U = [u1,… , up] and 

(2)SX = span(SW ) + span(SB) = span{Xkj − X̄ ∶ k = 1,… ,K, j = 1,… , nk}.

Fig. 2   Organization of the paper
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� = diag(�1,… , �p) arranged in descending order. We assume the following for the 
data model.

Assumption 1  (Non-degenerate Mean Differences) The class-wise population 
mean vectors �k are in general position, that is, no three points are collinear. For 
1 ≤ i < j ≤ K , �ij ∶= �i − �j and p−1∕2‖�ij‖ converges to a positive constant as 
p → ∞.

Assumption 2  (Multi-spiked Covariance Model) For a fixed integer m ≥ 1 and 
𝜎2
1
> ⋯ > 𝜎2

m
> 0 , �i = �2

i
p for i = 1,… ,m . The rest of the eigenvalues �m+1,… , �p 

are uniformly bounded, and 
∑p

i=m+1
�i∕p → �2 ∈ (0,∞).

Assumption  1 requires that the pairwise population mean differences do not 
degenerate as the dimension p increases (Hall et al., 2005; Qiao et al., 2010; Jung, 
2018). Assumption 2 specifies the spiked covariance model for � where the first m 
eigenvalues diverge at the order of p while the rest of eigenvalues are nearly con-
stant (Ahn et al., 2007; Jung et al., 2012; Shen et al., 2016; Jung, 2022). We call the 
first m eigenvalues and their corresponding eigenvectors of � leading eigenvalues 
and eigenvectors, respectively. Moreover, Um = span(

{
ui
}m

i=1
) is called the leading 

eigenspace.
We write the angle between two vectors w, v ∈ ℝ

p⧵{0p} as 
Angle(w, v) = arccos{w�v∕(‖w‖2 ⋅ ‖v‖2)} ∈ [0,�] . For a vector w ∈ ℝ

p and a sub-
space V of ℝp , we write PV for the orthogonal projection matrix onto V , and PVw for 
the orthogonal projection of w onto V . We write the angle between w and a subspace 
V as Angle(w,V) = arccos {w�PVw∕(‖w‖2 ⋅ ��PVw

��2)} . The discrepancy between 
two subspaces V and Ṽ can be measured by several canoncial angles (Stewart & 
Sun, 1990; Jung et al., 2012), and we use the largest canonical angle. Let V and Ṽ 
be any orthonormal bases for V and Ṽ , respectively. The largest canonical angle is 
Angle(V, Ṽ) = arccos (𝛾1) , where �1 is the smallest singular value of V′Ṽ.

Assumption 3  (Eigenspace Mean Difference Separability) For each 1 ≤ i ≤ m and 
1 ≤ j ≤ K , Angle(ui,�j) has a limit as p → ∞ . Moreover, there exists 𝜖 > 0 such that 
lim
p→∞

Angle(�ij,PUm
�ij) > 𝜖 for all 1 ≤ i < j ≤ K.

Assumption 3 extends Assumption 3 of Chang et al. (2021) to a multi-category 
setting. The first part, regarding the existence of limiting angles, is mostly due to 
technical reasons and appears unavoidable. The second part mandates that the pair-
wise population mean difference vectors form non-degenerate angles with the lead-
ing eigenspace. Put differently, as per Assumption  1, p−1��

ij
PU

⟂
m
�ij converges to a 

positive quantity. Here, U⟂
m
 represents the orthogonal complement of Um , signifying 

the subspace with relatively smaller noise. The limit of the quantity p−1��
ij
PU

⟂
m
�ij 

represents the (scaled) projected population mean difference and plays a key role in 
distinguishing two different classes when projected onto the proposed discriminant 
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hyperplane (see Lemma  3). Therefore, Assumption  3 may not be necessary to 
observe the second data piling phenomenon; rather, it is intended to rule out the 
cases where two distinct classes are being piled to the same point.

Finally, we control the dependency among the true principal component scores 
in zkj = �

−1∕2U�(Xkj − �k) ∈ ℝ
p by the �-mixing condition (Jung & Marron, 2009; 

Chang et  al., 2021). The �-mixing condition enables us to weaken the normality 
assumption for the data or independence assumption on the principal component 
scores. For detailed explanations of the �-mixing condition, see Kolmogorov and 
Rozanov (1960).

Assumption 4  The elements of the p-vector zkj have uniformly bounded fourth 
moments, and for each p, zkj consists of the first p elements of an infinite random 
sequence (zk1, zk2, ...)j , which is �-mixing under some permutation.

2.2 � Second data piling for binary classification

In this subsection, we temporarily assume K = 2 and review the second data piling 
(SDP) phenomenon occurring in a binary classification problem. The term ‘second’ 
data piling was introduced in Chang et al. (2021) to distinguish it from the concept 
of the ‘first’ data piling. The first data piling represents a finite-sample phenomenon 
where the training data X  projects onto either of two points along a specified vector, 
such as MDP defined in (1), whenever p > n − 2 (Ahn et al., 2012). In contrast, the 
SDP refers to a data piling tendency of independent test data Y , which are drawn 
from the same model as the training data X  . Importantly, the SDP is an HDLSS-
asymptotic phenomenon where p tends to infinity while n is fixed. We provide a 
formal definition of the SDP phenomenon for the binary classification setting. For 
any random observation X ∈ ℝ

p , we write �(X) = k if X comes from the kth class. 
Recall that SX is the subspace spanned by training data (2).

Definition 1  (Second data piling for binary classification (Chang et al., 2021)) We 
say that a vector v ∈ SX induces second data piling (SDP) if p−1∕2v�(Y − Y∗)

P
������→ 0 as 

p → ∞ for any independent observations Y , Y∗ ∈ Y with �(Y) = �(Y∗).

Definition  1 implies that v ∈ SX is a SDP vector if projections of independent 
test data from the same class onto v are piled on a same location asymptotically. 
Chang et  al. (2021) showed that a SDP vector can be estimated purely from the 
training data, and utilizing the estimated SDP vector enables an asymptotic perfect 
classification. Their findings on the SDP phenomenon are summarized as follows:

•	 Projections of independent test data Y onto the subspace 
S = span(wMDP)⊕ span(

{
ûi
}m

i=1
) tend to be respectively distributed along two 

parallel affine subspaces T1, T2 . Hence, any vector v ∈ S yields SDP if v is 
asymptotically perpendicular to both T1 and T2.
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•	 Let a ridge discriminant vector be defined as w𝛼 ∝ 𝛼p(SW + 𝛼pIp)
−1(X̄1 − X̄2) , 

where �p = �p for a ridge parameter � ∈ (−∞,∞) . The ridge discriminant vec-
tor projected on S , v� = PSw� , yields SDP when the ridge parameter � is chosen 
to be � = −�2 , resulting in v−�2.

•	 A linear classification rule utilizing the projected negatively-ridged discriminant 
vector v−�2 can achieve asymptotic perfect classification.

Extending the above results to the multi-category classification setting is somewhat 
demanding. For example, the maximal data piling subspace WMDP for multi-category 
classification may not be a natural extension of wMDP . Also, after reconstructing 
the signal subspace S with WMDP instead of wMDP , we need to confirm whether 
projecting the ridged linear discriminant subspace onto S contributes to yield SDP 
in the context of multi-category classification. Moreover, developing a new linear 
classification rule that can correctly separate multiple piles of independent test data 
on an SDP subspace is another difficult problem in multi-category classification.

2.3 � Maximal data piling for multi‑category classification

We first define the maximal data piling (MDP) subspace for multi-category 
classification. Let O(p, d) ∶= {V ∈ ℝ

p×d ∶ V�V = Id} . If p > n − K , then 
for any d = 1,… ,K − 1 , data piling occurs for any V ∈ O(p, d) satisfying 
trace (V�SWV) = 0 . For d = 1,… ,K − 1 , the MDP subspace Wd ∶= Wd(X) of 
dimension d is defined as the subspace spanned by Ṽd:

Among the subspaces inducing data piling, the MDP subspace Wd maximizes the 
sum of pairwise distances among class-wise sample vectors projected onto the 
subspace since

where V = span(V) . We give an explicit solution to the constrained maximization 
problem (3). Let A† stand for the Moore–Penrose pseudoinverse of a real-valued 
matrix A.

Lemma 1  The solution to (3) is the matrix of left singular vectors of 
(Ip − X̃X̃

†
)M = (Ip − ÛWÛ

�

W
)M , corresponding to the d largest singular values.

The matrix Ip − X̃X̃
†
= Ip − ÛWÛ

�

W
 is the projection matrix onto the subspace with 

zero within-class variance. Since there is no within-class scatter along the projected 
mean difference subspace span{(Ip − X̃X̃

†
)M} , data piling occurs. The reason we con-

sider d ≤ K − 1 for the dimension of the MDP subspace Wd is clear from Lemma 1 as 

(3)Ṽd ∈ argmax
V∈O(p,d)

trace (V�SBV) subject to trace (V�SWV) = 0.

trace (V�SBV) =
1

2n

K∑
i=1

K∑
j=1

ninj
‖‖‖PVX̄i − PVX̄j

‖‖‖
2

2
,
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(Ip − ÛWÛ
�

W
)M is of rank K − 1 at most. When the n observations in the training data 

are projected onto Wd , they pile up on exactly K points in Wd , one for each class; all 
nk observations from the kth class are projected onto PWd

X̄k = ṼdṼ
�

d
X̄k . Note that the 

solution of (3) obtained by Lemma 1, Ṽd , is an orthogonal basis of Wd with a nestedness 
property: For d1 ≤ d , one can easily check that d1 columns of Ṽd form Ṽd1

 . We remark 
that analyzing Wd through all pairwise MDP directions 

{
wMDP,ij ∶ 1 ≤ i < j ≤ K

}
 , 

where wMDP,ij is the MDP direction for the training data from the ith and jth classes, is 
generally not possible. In Appendix A.1, we include a detailed explanation of the rela-
tionship between pairwise MDP directions and the MDP subspace.

In the following sections, we assume that (Ip − ÛWÛ
�

W
)M is of rank K − 1 , and 

examine the SDP phenomenon in the multi-category classification setting using the 
(K − 1)-dimensional MDP subspace WMDP ∶= WK−1.

3 � Second data piling for multi‑category classification

In this section, we show that a subspace exhibiting SDP can be obtained purely from 
the training data X  . Moreover, we show that this subspace maximizes the sum of 
pairwise distances of class-wise independent test data Y among SDP subspaces. For 
this, we extend the definition of SDP for binary classification (Definition 1) to the 
multi-category case.

Definition 2  (Second data piling for multi-category classification) We say that 
a (K − 1)-dimensional subspace V ⊂ SX induces second data piling (SDP) if 
p−1∕2‖‖PV(Y − Y∗)‖‖2

P
������→ 0 as p → ∞ for any independent observations Y , Y∗ ∈ Y 

with �(Y) = �(Y∗) . Such a subspace V is called an SDP subspace.

Definition 2 implies that a (K − 1)-dimensional subspace V ⊂ SX is an SDP sub-
space if independent test data from the same class are asymptotically piled on a same 
location, one for each class. We write ℭSDP for the collection of (K − 1)-dimensional 
subspaces inducing SDP.

3.1 � Asymptotic SDP subspaces

We first define the signal subspace which captures a strong variation in the 
data for multi-category classification. Note that WMDP is orthogonal to the 
sample eigenvectors of SW , and we can decompose the sample space SX into 
SX = WMDP ⊕ span({ûi}

n−K
i=1

) . Among the sample eigenvectors of SW , the lead-
ing sample eigenvectors û1,… , ûm are capable of capturing important variability 
since the true leading eigenspace Um = span({ui}

m
i=1

) can be (partially) estimated 
by û1,… , ûm (the limiting distribution of Angle(ûi,uj) , for i, j = 1,… ,m , is non-
degenerate). In contrast, the other sample eigenvectors ûm+1,… , ûn−K are strongly 

inconsistent with the leading eigenvectors in the sense that Angle(ûi, uj)
P
������→ 𝜋∕2 for 
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i = m + 1,… , n − K and j = 1,… ,m ; see Appendix  A.2 and (Jung et  al., 2012). 
Removing the unimportant subspace S⟂ = span({ûi}

n−K
i=m+1

) from SX , we define 
S = WMDP ⊕ span({ûi}

m
i=1

) and call S the signal subspace of the sample space SX.
Within the signal subspace S , we show that a subspace orthogonal to the leading 

eigenspace Um = span({ui}
m
i=1

) yields SDP. For this, let T = span(
{
ui,S

}m

i=1
) where 

ui,S = PSui for i = 1,… ,m . Decompose S into the two subspaces T  (of dimension 
m) and H ∶= T

⟂|S = T
⟂ ∩ S (of dimension K − 1 ), so that S = T⊕H.

Theorem 1  Suppose that Assumptions 1–4 hold. Then for any Y ∈ Y with �(Y) = k,

as p → ∞ for all k = 1,… ,K . Hence, H is an SDP subspace, i,e., H ∈ ℭSDP.

Theorem 1 implies that projections of independent test data Y from the kth class 
onto S tend to lie on an m-dimensional affine subspace Tk ⊂ S given by

(4)p−1∕2‖‖PH(Y − �k)
‖‖2

P
������→ 0

Fig. 3   Projections of training data (circles) and independent test data (crosses) onto 
S = WMDP ⊕ span(û1) , where WMDP = span(p1,p2) . Colors code three different classes. In this case, H 
is 2-dimensional subspace which is the orthogonal complement of parallel lines Tk ( k = 1, 2, 3 ) within 
3-dimensional subspace S = WMDP ⊕ span(û1)
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Note that the m-dimensional affine subspace Tk is parallel to the subspace T  and 
to each other. Figure  3 demonstrates the SDP phenomenon using a single spiked 
covariance model with m = 1 . While the training data are piled on exactly K = 3 
points on WMDP , independent test data are not. Instead, they are concentrated along 
parallel lines Tk (k = 1, 2, 3) within S = WMDP ⊕ span(û1) , one for each class. These 
parallel lines are orthogonal to the SDP subspace H , and projections of independent 
test data onto H will be piled on top of each other, one for each class.

One may wonder whether there are other subspaces within the sample space 
SX = S⊕ S

⟂ that can yield SDP of independent test data. In fact, there are infinitely 
many such subspaces (Lemma  2), but H ⊂ S is maximal in the sense that when 
independent test data are projected onto the subspace, it induces the maximal 
separation among the class-wise projections of independent test data (Theorem 2).

Lemma 2  Suppose that Assumptions  1–4 hold. Then V ∈ ℭSDP if and only 
if ‖‖PVui,S

‖‖2
P
������→ 0 for all i = 1,… ,m as p → ∞ . Moreover, for any given 

V ∈ ℭSDP , there exists Ṽ ∈ B such that Angle(V, Ṽ)
P
������→ 0 as p → ∞ where 

B = {Ṽ ⊂ SX ∶ dim(Ṽ) = K − 1, Ṽ ⊂ H⊕ S
⟂}.

Lemma  2 states that the key condition for a subspace V ⊂ SX to achieve SDP: 
Asymptotic orthogonality to the leading eigenspace. Moreover, any SDP subspace 
lies in H⊕ S

⟂ . Since PS
⟂ui ≈ 0p for sufficiently large p for all i = 1,… ,m , any sub-

space in S⟂ induces SDP.
To show the maximality of H among SDP subspaces, we formally define an 

asymptotic distance between two piles of independent test data from two different 
classes. For V ∈ ℭSDP , let Dij(V) be the probability limit of p−1∕2‖‖‖PV(Yi − Yj)

‖‖‖2 as 
p → ∞ , if it exists for any independent test data Yi, Yj ∈ Y with �(Yi) = i and 
�(Yj) = j , 1 ≤ i ≠ j ≤ K.

Theorem 2  Suppose that Assumptions 1–4 hold. Then for any i ≠ j and V ∈ ℭSDP 
such that Dij(V) exists, Dij(V) ≤ Dij(H) with probability 1.

Theorem  2 implies that the SDP subspace H maximizes the sum of pairwise 
distances among different classes of projected test data, and in this sense, H may be 
called the maximal SDP subspace.

3.2 � Estimation of the maximal SDP subspace

In this subsection, we show that estimation of the maximal SDP subspace H = T
⟂|S 

is possible. Recent researches have shown that the optimal ridge parameter can be 
negative in the context of linear regression (Kobak et al., 2020; Tsigler & Bartlett, 
2020; Wu & Xu, 2020) and binary classification (Chang et al., 2021) to compensate 

(5)Tk =
{
v + (PS − PT)�k ∶ v ∈ T ⊂ ℝ

p
}
.
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an implicit regularization in the overparametrized regime. For multi-category clas-
sification, we show that a negatively ridged discriminant subspace can yield SDP 
when projected onto the signal subspace S . For a given ridge parameter � ∈ ℝ , let

where �p = �p and di = X̄i − X̄K for i = 1,… ,K − 1 . We note that the first MDP 
subspace WMDP is a limiting point of the ridged discriminant subspace

when � → 0 , since lim𝛼→0 L𝛼,i = (Ip − X̃X̃
†
)di and span(D) = span(M) where 

D = [d1,… , dK−1] . We define the projected ridged discriminant subspace to be

that is, H� is the subspace generated by projections of L�,i (i = 1,… ,K − 1) onto S . 
The following theorem shows that for a careful choice of � , the subspace H� approx-
imates the maximal SDP subspace H (asympotically) and it occurs when the ridge 
parameter � is set as a consistent estimate 𝛼̂ of the negative ridge parameter −�2 . 
Recall that �2 is the asymptotic average of the non-leading eigenvalues of the com-
mon covariance matrix � as mentioned in Assumption 2. Note that 𝛼̂ can be obtained 
purely from the training data since p−1𝜆i

P
������→ 𝜏2 as p → ∞ for i = m + 1,… , n − K 

(Jung et al., 2012). From now on, we fix

Theorem  3  Suppose that Assumptions 1—4 hold. Then (i) Angle(H𝛼̂ , T)
P
������→ 𝜋∕2 

as p → ∞ . Hence, H𝛼̂ is an SDP subspace, i.e., H𝛼̂ ∈ ℭSDP . (ii) The subspace 
H𝛼̂ is a consistent estimator of the maximal SDP subspace in the sense that 
Angle(H𝛼̂ ,H)

P
������→ 0 as p → ∞.

The use of the estimated SDP subspace H𝛼̂ is demonstrated in Fig. 1c, in which 
projections of independent test data onto H𝛼̂ are (asymptotically) piled on distinct 
points.

We remark that if m = 0 , then the maximal SDP subspace H = T
⟂|S naturally 

becomes S = WMDP . That is, when the variables are weakly correlated, WMDP yields 
both of the first data piling and SDP.

(6)L�,i = �p(SW + �pIp)
−1di

(7)L� = span({L�,i}
K−1
i=1

)

(8)H� = span({PSL�,i}
K−1
i=1

),

(9)𝛼̂ = −
1

n − m − K

n−K∑
i=m+1

𝜆i

p
.



1 3

Journal of the Korean Statistical Society	

4 � Bias‑corrected nearest centroid classifier on a projected ridge 
subspace

In this section, we provide a new multi-category classification rule using the 
estimated SDP subspace H𝛼̂ , defined in Sect.  3.2, and show that it achieves 
asymptotic perfect classification. This classification rule is modified from the well-
known nearest centroid classification rule, which assigns new independent 
observation Y to the label of the class of the training data whose centroid is nearest 
to Y. We show that a typical nearest centroid classification rule may not achieve suc-
cessful classification performances due to a bias, but this bias can be  
adjusted and thus asymptotic perfect classification is possible. Let �(k, j) be a  
(K − 1)-vector whose ith coordinate is lim

p→∞
p−1(�i − �K)

�PU
⟂
m
(�k − �j) , where 

U
⟂
m
= span(

{
ui
}p

i=m+1
) , the orthogonal complement of the leading eigenspace. That 

is, �(k, j) represents the limit of scaled inner products between the expectation of the 
matrix of the sample mean differences D = [d1,… , dK−1] (recall that di = X̄i − X̄K 
for i = 1,… ,K − 1 ) and the true mean difference of the kth and jth classes when 
they are projected onto U⟂

m
 . Lemma 3 shows that the empirical mean differences pro-

jected onto the estimated SDP subspace H𝛼̂ are asymptotically decomposed into the 
sum of the ‘true’ mean differences and a bias term. We write H� = [��,1,… ,��,K−1] 
where ��,i = p−1∕2PSL�,i for i = 1,… ,K − 1 so that H� = span(H�) . Recall that H� 
is the projected ridged discriminant subspace defined in (8).

Lemma 3  Suppose that Assumptions 1—4 hold. For any independent observation 
Y ∈ Y and j = 1,… ,K,

as p → ∞ where �j = −n−1
j
�2ej if j = 1,… ,K − 1 and �j = n−1

j
�21 if j = K . Here, 

ej ∈ ℝ
K−1 is the jth standard unit vector in ℝK−1 , and 1 = (1,… , 1)� ∈ ℝ

K−1.

We remark that if k = j , then �(k, j) = 0K−1 . In contrast, if k ≠ j , then �(k, j) ≠ 0K−1 
since Assumption 3 implies Angle(�kj,PU

⟂
m
�kj) ↛ �∕2 as p → ∞ . Heuristically, the 

asymptotic distance between projections of the mean of training data of the jth class 
X̄j and independent test data Y onto H𝛼̂ can be completely decomposed into the 
projection of true mean differences �(�(Y), j) and the bias term �j . The bias term �j 
does not depend on the class of Y, but inevitably exists due to the accumulated noise 
under the HDLSS asymptotic regime. Nevertheless, the bias �j can be consistently 
estimated by �̂j , obtained by replacing �2 in �j with −𝛼̂ . Subtract �̂j from the projec-
tions (10), we obtain a bias-corrected (coordinate-wise) signed distances to the jth 
class

for j = 1,… ,K . Based on the above construction, we define a bias-corrected nearest 
centroid classification rule �PRS−BCNC,� using (11), for given � , by

(10)p−1∕2H�
𝛼̂
(Y − X̄j)

P
������→ �(𝜋(Y), j) + �j,

(11)g𝛼̂,j(Y;X) = p−1∕2H�
𝛼̂
(Y − X̄j) − �̂j,
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This classification rule utilizes the fact that the distance between new independent 
observation and the centroid can be estimated on the subspace H𝛼̂ . The following 
theorem states that �PRS−BCNC,� can achieve asymptotic perfect classification when 
we use the negative ridge parameter 𝛼 = 𝛼̂ < 0.

Theorem  4  Suppose that Assumptions 1—4 hold. Then 
lim
p→∞

ℙ{𝜙PRS−BCNC,𝛼̂(Y;X) ≠ 𝜋(Y)} = 0.

5 � Numerical studies

We conduct numerical studies to show that �PRS−BCNC,� achieves asymptotic per-
fect multi-category classification when we use the negative ridge parameter 𝛼̂ , 
which is a consistent estimate of −�2 . First, we provide a simulation experiment 
result. We assume K = 3 , and for i = 1, 2, 3 and j = 1,… , 20 , let Xij ∼ Np(�i,�) 
where �1 = (1p∕2,

√
31p∕2)

� , �2 = (
√
31p∕2,−1p∕2)

� , �3 = 0p , and � = 20Ip + 1p1
�
p
 . 

We compare �PRS−BCNC,� with �NC (nearest centroid classification rule), �MDP−NC 
(nearest centroid classification rule on WMDP ), and �PRS−NC,� (nearest centroid clas-
sification rule on the projected ridge subspace H� ). Using these classification rules, 
we obtain classification error rates using 1,500 independent observations (500 inde-
pendent observations for each class). This procedure is repeated for 100 times and 
we report the average of the repetitions. Figure 4a shows that �PRS−BCNC,� achieves 

(12)�PRS−BCNC,�(Y;X) = argmin
j=1,…,K

‖‖‖g�,j(Y;X)
‖‖‖2.

Fig. 4   a The classification error rates of �NC , �MDP−NC , 𝜙PRS−NC,𝛼̂ and 𝜙PRS−BCNC,𝛼̂ for 
p = 200, 800, 2000, 5000, 10000 . b The classification error rates of �PRS−BCNC,� over a fine grid of 
� ∈ [−45, 15]
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nearly perfect classification for sufficiently large p when we use 𝛼 ∶= 𝛼̂ < 0 while 
the other classification rules do not. This result implies that both of the SDP phe-
nomenon occurring on H𝛼̂ and the bias-correction strategy contribute to achiev-
ing perfect classification. We also check the classification error of �PRS−BCNC,� 
over a fine grid of � ∈ [−45, 15] . Figure 4b indicates that �PRS−BCNC,� achieves its 
minimum (and nearly zero) classification error with the negative ridge parameter 
𝛼 = −𝜏2 = −20 < 0 when p is sufficiently large, which justifies that the optimal 
ridge parameter can be negative in high-dimensional classification. Table 1 displays 
classification error bars of �NC , �MDP−NC , 𝜙PRS−NC,𝛼̂ and 𝜙PRS−BCNC,𝛼̂ for the sim-
ulation study. This result clearly shows that only 𝜙PRS−BCNC,𝛼̂ achieves nearly per-
fect classification as the dimension p increases among the four classification rules. 
Nearly identical conclusions were obtained under a two-component spiked covari-
ance model and a four-category classification situation K = 4.

Moreover, we show that the negative ridge phenomenon can also be observed 
with �PRS−BCNC,� using random Fourier features on MNIST dataset (LeCun et  al., 
2010). After normalizing the 784 pixel intensity values of each image to [−1, 1] , we 
calculate exp (−iX�W) where W ∈ ℝ

784×2000 is a random matrix whose each element 
is independent and identically distributed from N(0, 0.12) , as done in Chang et al. 
(2021). We regard the real and imaginary parts as separate variables so that the fea-
ture space has dimension p = 4, 000 . We convert the original ten-category classifi-
cation problem to 10C3 = 120 three-category classification problems. For each class, 

Table 1   Classification error bars ( 95% confidence intervals) of the four classification rules

p �
NC

�
MDP−NC 𝜙

PRS−NC,𝛼̂ 𝜙
PRS−BCNC,𝛼̂

200 0.236 ± 0.031 0.282 ± 0.040 0.372 ± 0.061 0.330 ± 0.060

800 0.184 ± 0.035 0.167 ± 0.022 0.278 ± 0.063 0.154 ± 0.041

2000 0.178 ± 0.034 0.146 ± 0.022 0.236 ± 0.066 0.067 ± 0.031

5000 0.177 ± 0.040 0.136 ± 0.023 0.181 ± 0.052 0.013 ± 0.010

10000 0.176 ± 0.027 0.133 ± 0.024 0.137 ± 0.077 0.001 ± 0.001

Fig. 5   The classification error rates of �PRS−BCNC,� over a fine grid of � ∈ [−1, 2] for three-category clas-
sification problems of the MNIST dataset using random Fourier features with m = 1, 2, 3 . The minimum 
classification error rate of each problem is marked as a star
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we randomly choose 100 images as training data, and the remaining images are used 
as test data. The classification error of �PRS−BCNC,� is evaluated using the test data 
over a fine grid of � ∈ [−1, 2] . We repeat this procedure ten times and report the 
average of the repetitions. Figure  5 shows that, when we assume m = 1, 2, 3 , the 
minimum classification error is achieved when negative ridge parameters are used 
for nearly all classification problems.

6 � Conclusion

The double data piling phenomenon uncovered in this study refers to two distinct 
phenomena: The first data piling, observed in finite-dimensional cases during the 
training phase, and the second data piling, which occurs asymptotically when the 
dimension tends to infinity during the testing phase. While existing research on 
double data piling has focused on binary classification problems, its applicability 
is limited when it comes to real-world classification scenarios involving multiple 
categories or classes. We address this limitation by providing a comprehensive 
characterization of the asymptotic perfect classification of high-dimensional data, 
encompassing multi-category classification problems.

As the present work assumes homogeneous covariance for each class, further 
generalization can be pursued in various directions of heterogeneous covariance 
structures: different numbers of spikes, varying leading eigenvalues and/or 
eigenvectors, or the size of the noise components. In fact, our claims in this article 
can be further extended to heterogeneous spiked covariance models (Kim et  al., 
2022). For the ith class covariance matrix �(i) , write the eigen-decomposition 
�(i) = U(i)�(i)U

�
(i)

 where �(i) = diag ({�(i),j}
p

j=1
) arranged in descending order and 

U(i) = [u(i),1,… , u(i),p] . For each class (i.e., each i), assume the first mi eigenvalues 
increase at the order of p, that is, �(i),j = �2

(i),j
p for j = 1,… ,mi , while 

p−1
∑p

j=mi+1
�(i),j → �2 ∈ (0,∞) as p → ∞ . Define the common leading eigenspace 

Um = span({U(i)}
K
i=1

) where U(i) = span({u(i),j}
mi

j=1
) and assume that the rank of Um is 

m. Then even if the number of spikes mi or the leading eigenspace of the ith class 
U(i) are different for all i = 1,… ,K , the negatively projected ridged subspace H𝛼̂ 
approximates the maximal second data piling subspace, and our proposed method 
utilizing H𝛼̂ achieves asymptotic multi-category perfect classification. However, 
when p−1

∑p

j=mi
�(i),j → �2

(i)
 as p → ∞ and �2

(i)
≠ �2

(j)
 for i ≠ j , our proposed strategy 

does not work successfully since H𝛼̂ does not yield second data piling. Nevertheless, 
we expect that a second data pilling subspace can be estimated in such general 
settings, and thus asymptotic perfect classification is possible. A comprehensive 
investigation of this matter remains a topic for future research.
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Technical details and proofs

Relationship between pairwise MDP directions and the MDP subspace

Suppose that we take any two classes (say, the ith and the jth classes), and exam-
ine the pairwise MDP direction for the subset of the training data correspond-
ing to the {i, j} pair of classes. The within-scatter matrix for the {i, j} pair is 
S{i,j} = X̃iX̃

�

i
+ X̃jX̃

�

j
, whose the orthogonal complement subspace, denoted by V⟂

{i,j}
 , 

is of dimension p − (ni + nj − 2) with probability one. In this case, the MDP direc-
tion is obtained by the orthogonal projection of X̄i − X̄j onto V⟂

{i,j}
:

Is wMDP,ij contained in the MDP subspace WMDP ? If the answer to this question 
is true, then one may try analyzing WMDP through all pairwise MDP directions 
{wMDP,ij ∶ 1 ≤ i < j ≤ K} . We show in the following that this is not the case, since 
wMDP,ij ∈ WMDP is generally not true. Fix i and j, and decompose the within-class 
scatter matrix by

and write ÛW and Û{i,j} be the orthogonal basis matrices for SW and S{i,j} , respec-
tively. Let Û{i,j}c be a full-rank orthogonal matrix satisfying

and Û
�

{i,j}
Û{i,j}c = 0 . We observe the following.

Proposition 1  Assume that the data are in general position, that is, no three points 
are collinear, and K ≥ 3 , nk ≥ 2 for all k = 1,… ,K . Then for any 1 ≤ i < j ≤ K , the 
pairwise MDP direction is not contained in the MDP subspace, (i.e., 
wMDP,ij ∉ WMDP ) if and only if Û

�

{i,j}c
(X̄i − X̄j) ≠ 0.

Proof of Proposition 1  The assumptions of general position and K ≥ 3 , nk ≥ 2 guar-
antee that Û{i,j}c has more than one column. By (A2), we have, for a normalizing 
constant c > 0,

Recall that WMDP = span{(Ip − ÛWÛ
�

W
)M} . Let bi = (0,… , 0, ni

−1∕2, 0,… , 0)� ∈ ℝ
K 

whose ith element is nonzero. Since w1 = c(Ip − ÛWÛ
�

W
)M(bi − bj) , w1 ∈ WMDP . 

wMDP,ij ∶= PV
⟂
{i,j}
(X̄i − X̄j)∕

‖‖‖PV
⟂
{i,j}
(X̄i − X̄j)

‖‖‖2.

(A1)SW = S{i,j} +
∑

k∉{i,j}

X̃kX̃
�

k
,

(A2)ÛWÛ
�

W
= Û{i,j}Û

�

{i,j}
+ Û{i,j}cÛ

�

{i,j}c
,

wMDP,ij = c(Ip − Û{i,j}Û
�

{i,j}
)(X̄i − X̄j)

= c(Ip − ÛWÛ
�

W
)(X̄i − X̄j) + cÛ{i,j}cÛ

�

{i,j}c
(X̄i − X̄j)

=∶ w1 + w2.
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However, since (Ip − ÛWÛ
�

W
)Û{i,j}c = 0 again by (A2), w2 ∉ WMDP . Thus 

wMDP,ij ∈ WMDP if and only if ‖‖w2
‖‖2 = 0 , or if Û

�

{i,j}c
(X̄i − X̄j) = 0.

Note that the condition Û
�

{i,j}c
(X̄i − X̄j) ≠ 0 holds generically. For example, if the 

data for each class are sampled from a continuous distribution with a full-rank 
covariance matrix, the condition holds with probability one.

Asymptotic properties of high‑dimensional sample within‑scatter matrix

In this section, we focus on asymptotic properties of eigenvalues and eigenvectors of 
the sample within-scatter matrix SW = X̃X̃

� . Note that the centered data matrix X̃ can 
be expressed as X̃ = X(In − J) where X is the p × n data matrix and J is an n × n block 
diagonal matrix,

Here, 1l is an l-dimensional vector with ones. Recall that we write an eigen-decom-
position of SW as SW = ÛW�̂WÛ

�

W
 . Also, the eigen-decomposition of the common 

covariance matrix � is � = U�U� . Let Z be the standardized principal components 
of X,

where zi,j ∈ ℝ
ni is the jth principal component scores of the ith class. Then the ele-

ments of Z have mean zero and unit variance and are uncorrelated. We write 
z̄i = n−1z�

i
1n and z̄i,j = n−1

i
z�
i,j
1ni . For a square matrix M , we denote �i(M) and vi(M) 

as the ith largest eigenvalue of M and corresponding eigenvector, respectively. Also, 
let vij(M) be the jth coefficient of vi(M).

Lemma 4  Suppose that Assumptions 1–4 hold. Let an n × m matrix of the leading 
m component scores as W = [�1z1,… , �mzm] and � = W�(In − J)W . Then, the fol-
lowing hold as p → ∞ . 

	 (i)	 p−1𝜆i converges to (a) �i(�) + �2 for i = 1,… ,m and to (b) �2 for 
i = m + 1,… , n − K in probability.

	 (ii)	 û′
i
uj converges to (a) vij(�)

√
�i(�)∕(�i(�) + �2) for i, j = 1,… ,m and to (b) 

0 for i = m + 1,… , n − K and j = 1,… ,m in probability.

J = diag

(
1

ni
1ni1

�
ni

)

i=1,…,K

.

Z = �
−1∕2U�(X − 𝔼(X)) =

⎡⎢⎢⎣

z�
1

⋮

z�
p

⎤⎥⎥⎦
=

⎡⎢⎢⎣

z�
1,1

… z�
K,1

⋮ ⋮ ⋮

z�
1,p

… z�
K,p

⎤⎥⎥⎦
∈ ℝ

p×n
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Proof of Lemma 4  The sample within-scatter matrix SW shares its nonzero eigenval-
ues with the n × n dual matrix SD = X̃

�
X̃ . Under Assumptions 1–4, Theorem 1 of 

Jung and Marron (2009) gives

as p → ∞ . Hence, we get p−1�i(SD)
P
������→ �i(S0) and vi(SD)

P
������→ vi(S0) for 

i = 1,… , n − K as p → ∞ . Since � = W�(In − J)W is of rank m with probability 
1 and (In − J)WW�(In − J) shares its nonzero eigenvalues with � , we have (b) 
of (i). To show (a) of (i), we claim that for i = 1,… ,m , �i(S0) = �i(�) + �2 . 
To show this, let � be a nonzero eigenvalue of (In − J)WW�(In − J) and v be its 
corresponding eigenvector. Then, there exists u ∈ ℝ

n satisfying v = (In − J)u , and 
thus (In − J)WW�(In − J)u = �(In − J)u . Hence,

and we have �i(S0) = �i(�) + �2 for i = 1,… ,m.
Now, we aim to show (b). Note that vi(�) , vi(S0) , and 

√
�i(�) are the ith right-

singular vector, left-singular vector, and singular value of (In − J)W , respectively. 
Therefore, we have (In − J)Wvi(�) = �i(�)1∕2vi(S0) for i = 1,… , n − K . Hence, 
for i, j = 1,… ,m,

as p → ∞ . Here, em,j is the jth standard vector in ℝm . Meanwhile, since 
(In − J)WW�(In − J) is of rank m with probability 1, vi(S0) is orthogonal to the 
column space of (In − J)WW�(In − J) for i = m + 1,… , n − K . In other words, 
vi(S0)

�(In − J)W = 0 for i = m + 1,… , n − K . Hence, for i = m + 1,… , n − K and 
j = 1,… ,m,

as p → ∞.

Throughout, we assume �K = 0p without loss of generality. For 1 ≤ i ≤ K − 1 , 
there exists 𝛿i > 0 such that p−1∕2‖�i‖ → �i as p → ∞ . Also, for 1 ≤ i, j ≤ K − 1 , 
there exists �i,j ∈ ℝ such that p−1��

i
�j → �i,j as p → ∞ . For each 1 ≤ i ≤ m and 

1 ≤ j ≤ K − 1 , there exists �i,j ∈ [0,�] such that Angle(ui,�j) → �i,j as p → ∞ . 
Recall that we denote the sample mean difference matrix as D = [d1,… , dK−1] where 
dj = X̄j − X̄K for j = 1,… ,K − 1 . Then note that WMDP = span{(Ip − ÛWÛ

�

W
)D}.

(A3)
SD∕p = (In − J)Z�

�Z(In − J)∕p
P
������→ (In − J)(WW� + �2In)(In − J) =∶ S0

S0v = (In − J)(WW� + �2In)(In − J)u = (� + �2)(In − J)u = (� + �2)v

u�
j
ûi = 𝜆̂

−1∕2

i
𝜆
1∕2

j
z�
j
(In − J)vi(SD)

P
������→

𝜎jz
�
j
(In − J)

√
𝜑i(�) + 𝜏2

(In − J)W√
𝜑i(�)

vi(�)

=
e�
m,j
�vi(�)

√
𝜑i(�)(𝜑i(�) + 𝜏2)

=
𝜑i(�)e�

m,j
vi(�)

√
𝜑i(�)(𝜑i(�) + 𝜏2)

=

�
𝜑i(�)

𝜑(�) + 𝜏2
vij(�)

u�
j
ûi

P
������→

𝜎jz
�
j
(In − J)

√
𝜑i(�)

vi(S0) =
e�
m,j
W�(In − J)
√
𝜑i(�)

vi(S0) = 0
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Lemma 5  Suppose that Assumptions 1–4 hold. Then, the following hold as p → ∞ . 

	 (i)	 For j = 1,… ,K − 1 , 

 if i = 1,… ,m and p−1∕2��
j
ûi

P
������→ 0 if i = m + 1,… , n − K.

	 (ii)	 For j = 1,… ,K − 1 , 

 if i = 1,… ,m and p−1∕2d�
j
ûi

P
������→ 0 if i = m + 1,… , n − K.

	 (iii)	 D�(Ip − ÛWÛ
�

W
)D∕p

P
������→ � where � = (�i,j) ∈ ℝ

(K−1)×(K−1) and 

 for i, j = 1,… ,K − 1 . Here, 
ki,j = lim

p→∞
p−1��

i
PU

⟂
m
�j = �i,j −

∑m

l=1
cos �l,i cos �l,j�i�j , and Ii,j = 1 if i = j and 

Ii,j = 0 if i ≠ j.

Proof of Lemma  5  First, we extend the results of Lemma  C.1 (b) of Chang et  al. 
(2021) which leads that

as p → ∞ . Combining this with Lemma 4 gives that for j = 1,… ,K − 1,

as p → ∞ and we have (i). Next, let aj = (a1j,… , anj)
� where

p−1∕2��
j
ûi

P
������→

√
𝜑i(�)

𝜑i(�) + 𝜏2

m∑
l=1

cos 𝜃l,j𝛿jvil(�)

p−1∕2d�
j
ûi

P
������→

√
𝜑i(�)

𝜑i(�) + 𝜏2

m∑
l=1

{𝜎l(z̄j,l − z̄K,l) + cos 𝜃l,j𝛿j}vil(�)

𝜔i,j = ki,j + (n−1
i
Ii,j + n−1

K
)𝜏2 +

[
m∑
𝜄=1

𝜏2

𝜑𝜄(�) + 𝜏2

×

m∑
l=1

m∑
l�=1

{𝜎l(z̄i,l − z̄K,l) + cos 𝜃l,i𝛿i}{𝜎l� (z̄j,l� − z̄K,l� ) + cos 𝜃l�,j𝛿j}v𝜄l(�)v𝜄l� (�)

]

p−1��
j
U�1∕2Z

P
������→

m∑
l=1

�l cos �l,j�jz
�
l

(A4)

p−1∕2��
j
ûi = p−1∕2𝜆̂

−1∕2

i
�
�
j
U�1∕2Z(In − J)vi(SD)

P
������→

m�
l=1

cos 𝜃l,j𝛿j
𝜎lz

�
l
(In − J)

√
𝜑i(�) + 𝜏2

(In − J)W√
𝜑i(�)

vi(�)

=

�
𝜑i(�)

𝜑i(�) + 𝜏2

m�
l=1

cos 𝜃l,j𝛿jvil(�)
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for j = 1,… ,K − 1 so that dj = Xaj = U�1∕2Zaj + �j . It can be shown using 
Lemma C.1 (d) of Chang et al. (2021) that

for j = 1,… ,K − 1 as p → ∞ . Adding (A4) and (A5) gives that

as p → ∞ and we have (ii).
Next, note that D�(Ip − ÛWÛ

�

W
)D∕p is a (K − 1) × (K − 1) matrix whose (i,  j)-

coordinate is p−1d�
i
(Ip − ÛWÛ

�

W
)dj for i, j = 1,… ,K − 1 . Lemma C.1 (b) and (d) of 

Chang et al. (2021) give

where Ii,j = 1 if i = j and Ii,j = 0 if i ≠ j . Then combining (A7) and (ii) gives 

D�(I − ÛWÛ
�

W
)D∕p

P
������→ � where � = (�i,j) and

aij =

⎧
⎪⎨⎪⎩

1∕nj, if i ∈ (
∑j−1

k=1
nk,

∑j

k=1
nk]

−1∕nK , if i ∈ (
∑K−1

k=1
nk, n]

0, o.w

(A5)

p−1∕2a�
j
Z
�
�

1∕2
U

�
ûi = p−1∕2𝜆̂

−1∕2

i
a
�
j
Z
�
�Z(In − J)vi(SD)

P
������→

m�
l=1

𝜎la
�
j
zl

𝜎lz
�
l
(In − J)

√
𝜑i(�) + 𝜏2

(In − J)W√
𝜑i(�)

vi(�)

=

�
𝜑i(�)

𝜑i(�) + 𝜏2

m�
l=1

𝜎l(z̄j,l − z̄K,l)vil(�)

(A6)p−1∕2d�
j
ûi

P
������→

√
𝜑i(�)

𝜑i(�) + 𝜏2

m∑
l=1

{𝜎l(z̄j,l − z̄K,l) + cos 𝜃l,j𝛿j}vil(�)

(A7)

p−1d�
i
dj

= p−1
(
�
�
i
�j + �

�
i
U�

1∕2
Zaj + �

�
j
U�

1∕2
Zai + a

�
i
Z
�
�Zaj

)

P
������→ 𝜂i,j +

m∑
l=1

𝜎l(cos 𝜃l,i𝛿iz
�
l
aj + cos 𝜃l,j𝛿jz

�
l
ai + 𝜎la

�
i
zlz

�
l
aj) + 𝜏2a�

i
aj

= 𝜂i,j + (n−1
i
Ii,j + n−1

K
)𝜏2

+

m∑
l=1

𝜎l{cos 𝜃l,i𝛿i(z̄j,l − z̄K,l) + cos 𝜃l,j𝛿j(z̄i,l − z̄K,l) + 𝜎l(z̄i,l − z̄K,l)(z̄j,l − z̄K,l)}
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for i, j = 1,… ,K − 1 as p → ∞ where ki,j = �i,j −
∑m

l=1
cos �l,i cos �l,j�i�j . The last 

equality is due to the fact that 
∑m

�=1
v�l(�)v�l� (�) = Il,l�.

Write the singular value decomposition (Ip − ÛWÛ
�

W
)D =

∑K−1

i=1
𝜃ipiq

�
i
 where �i 

is the ith largest nonzero singular value and pi (or qi ) is the corresponding left (or 
right) singular vector. Then, for i = 1,… ,K − 1,

and

as p → ∞ . These convergences play a key role when analyzing the MDP subspace 
WMDP = span({pi}

K−1
i=1

) in the proofs of main results.

Equivalent definitions of second data piling

Recall that the collection of (K − 1)-dimensional subspaces inducing the second 
data piling is defined as

In this section, we introduce equivalent definitions of ℭSDP to provide a clear under-
standing of second data piling subspaces.

Lemma 6  Suppose that Assumptions 1–4 hold. Let

𝜔i,j = 𝜂i,j + (n−1
i
Ii,j + n−1

K
)𝜏2

+

m∑
l=1

𝜎l{cos 𝜃l,i𝛿i(z̄j,l − z̄K,l) + cos 𝜃l,j𝛿j(z̄i,l − z̄K,l) + 𝜎l(z̄i,l − z̄K,l)(z̄j,l − z̄K,l)}

−

m∑
𝜄=1

m∑
l=1

m∑
l�=1

𝜑𝜄(�)v𝜄l(�)v𝜄l� (�)

𝜑𝜄(�) + 𝜏2
{𝜎l(z̄i,l − z̄K,l) + cos 𝜃l,i𝛿i}{𝜎l� (z̄j,l� − z̄K,l� ) + cos 𝜃l�,j𝛿j}

= ki,j + (n−1
i
Ii,j + n−1

K
)𝜏2 +

[
m∑
𝜄=1

𝜏2

𝜑𝜄(�) + 𝜏2

×

m∑
l=1

m∑
l�=1

{𝜎l(z̄i,l − z̄K,l) + cos 𝜃l,i𝛿i}{𝜎l� (z̄j,l� − z̄K,l� ) + cos 𝜃l�,j𝛿j}v𝜄l(�)v𝜄l� (�)

]

(A8)�2
i
∕p

P
������→ �i(�),

(A9)qi
P
������→ vi(�),

ℭSDP = {V ⊂ SX ∶ dim(V) = K − 1 and for any Y , Y � ∈ Y with 𝜋(Y) = 𝜋(Y �),

p−1∕2‖‖PV(Y − Y �)‖‖2
P
������→ 0 as p → ∞}.
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Then, ℭSDP = ℭSDP,2 = ℭSDP,3 = ℭSDP,4.

Proof of Lemma  6  First, Chebyshev’s inequality gives ℭSDP,2 ⊂ ℭSDP and 
ℭSDP,4 ⊂ ℭSDP,3 . To show ℭSDP ⊂ ℭSDP,2 , we claim that for any Y , Y � ∈ Y with 
�(Y) = �(Y �) , a sequence {p−1∕2‖‖PV(Y − Y �)‖‖2} is uniformly integrable. We have

where M > 0 is an upper bound of 
{
�i
}p

i=m+1
 . Since a sequence with uniformly 

bounded second moments is uniformly integrable, from Vitali’s convergence theo-
rem (Bogachev, 2007), we have ℭSDP ⊂ ℭSDP,2 . Similarly, �(‖‖PVui

‖‖22) ≤ 1 guaran-
tees that ℭSDP,3 ⊂ ℭSDP,4 . Hence, ℭSDP = ℭSDP,2 and ℭSDP,3 = ℭSDP,4.

Next, we aim to show that ℭSDP,2 = ℭSDP,4 . For any V ∈ ℭSDP,2 and 1 ≤ i ≤ m , we 

have p−1∕2‖‖‖PVu
�
i
(Y − Y �)ui

‖‖‖2
L2

���������→ 0 as p → ∞ for any Y , Y � ∈ Y with �(Y) = �(Y �) . 

Then Lemma 3.3 of Chang et al. (2021) gives that u′
i
PVui

L2

���������→ 0 as p → ∞ , hence, 
ℭSDP,2 ⊂ ℭSDP,4 . To show ℭSDP,4 ⊂ ℭSDP,2 , write the principal component decompo-
sition of Y − Y � as 

∑p

i=1
�
1∕2

i
(�i − � �

i
)ui where �i and � ′

i
 denote the ith principal com-

ponent of Y and Y ′ , respectively. Then, �i, � ′i  are independent to the training data and 
to each other, and have mean zero and unit variance. Also, we can write

Here, it suffices to show that ‖‖A2
‖‖2

L2

���������→ 0 as p → ∞ , which is followed by

as p → ∞.

ℭSDP,2 = {V ⊂ SX ∶ dim(V) = K − 1 and for any Y , Y � ∈ Y with 𝜋(Y) = 𝜋(Y �),

p−1∕2‖‖PV(Y − Y �)‖‖2
L2

���������→ 0 as p → ∞},

ℭSDP,3 =

{
V ⊂ SX ∶ dim(V) = K − 1 and ‖‖PVui

‖‖2
P
������→ 0 as p → ∞ for i = 1,… ,m

}
,

ℭSDP,4 =

{
V ⊂ SX ∶ dim(V) = K − 1 and ‖‖PVui

‖‖2
L2

���������→ 0 as p → ∞ for i = 1,… ,m

}
.

p−1�
(‖‖PV(Y − Y �)‖‖22

)
≤ p−1�

(‖‖Y − Y �‖‖22
)
= p−1 trace (2�) ≤ 2

(
m∑
i=1

�2
i
+M

)
.

p−1∕2PV(Y − Y �) =

m∑
i=1

�iPVui(�i − � �
i
) + p−1∕2

p∑
i=m+1

�
1∕2

i
PVui(�i − � �

i
)

=∶ A1 + A2.

�(‖‖A2
‖‖22) = p−1�

‖‖‖‖‖

p∑
i=m+1

�
1∕2

i
PVui(�i − � �

i
)
‖‖‖‖‖

2

2

≤ p−1�

{
p∑

i=m+1

�i
‖‖PVui

‖‖22(�i − � �
i
)2 +

∑
i≠�

�
1∕2

i
�1∕2
�

‖‖PVui
‖‖2‖‖PVu�

‖‖2(�i − � �
i
)(�� − � �

�
)

}

≤ p−12M�

(
p∑

i=m+1

‖‖PVui
‖‖22
)

≤ p−12M�
{
trace

(
PV

)}
= p−12(K − 1)M → 0
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Proofs of main results

Proof of Lemma 1

Proof  Since SW has rank at most n − K , its orthogonal complement space has rank 
q ≥ p − (n − K) . Let ÛW⟂ be an orthonormal basis of the orthogonal complement 
space. Then the constraint trace (V�SWV) = 0 requires that candidates of (3) is of the 
form V = ÛW⟂O for O ∈ O(q, d) . Thus, (3) becomes, writing SB⧵W = Û

�

W⟂SBÛW⟂,

and the maximum is achieved by choosing the columns of O as the d leading 
eigenvectors of SB⧵W (Corollary 4.3.39, Horn & Johnson, 2012). Therefore

Note that ÛW⟂SB⧵WÛ
�

W⟂ = ÛW⟂Û
�

W⟂MM�ÛW⟂Û
�

W⟂ and that, for Ṽd defined in (A10), 
it can be checked that

Thus, the columns of Ṽd are the d leading eigenvectors of ÛW⟂SB⧵WÛ
′

W⟂ whose 
eigenvalues are exactly �i(SB⧵W )’s. Equivalently, Ṽd consists of the left singular vec-
tors of ÛW⟂Û

′

W⟂M corresponding to the d largest singular values. Note that ÛW⟂Û
′

W⟂ 
is the projection matrix onto the orthogonal complement space of SW . Since 
SW = X̃X̃

� , the orthogonal complement space of SW is the orthogonal complement 
space of X̃ . Thus, ÛW⟂Û

�

W⟂M = (Ip − X̃X̃
†
)M = (Ip − ÛWÛ

�

W
)M . 	�  ◻

Proof of Theorem 1

Proof  For any independent observation Y ∈ Y , assume �(Y) = k ( 1 ≤ k ≤ K ). 
Decompose p−1∕2(Y − �k) into two terms:

Projecting (A11) onto S = WMDP ⊕ span({ûi}
m
i=1

) , we have

max
O∈O(q,d)

trace (O�SB⧵WO) =

d∑
i=1

�i(SB⧵W ),

(A10)Ṽd = ÛW⟂[v1(SB⧵W ),… , vd(SB⧵W )].

Ṽ
�

d
ÛW⟂SB⧵WÛ

�

W⟂Ṽd = diag (𝜑1(SB⧵W ),… ,𝜑d(SB⧵W )).

(A11)p−1∕2(Y − �k) = p−1∕2
m∑
i=1

u�
i
(Y − �k)ui + p−1∕2

p∑
i=m+1

u�
i
(Y − �k)ui

p−1∕2PS(Y − �k) = p−1∕2
m∑
i=1

u�
i
(Y − �k)PSui + p−1∕2

p∑
i=m+1

u�
i
(Y − �k)PSui.
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Note that for i = 1,… ,m , PSui = ui,S ∈ T = span({uj,S}
m
j=1

) . Hence, we claim that 
the second term in the above equation degenerates as p → ∞ . Let Û1 = [û1,… , ̂um] , 
U1 = [u1,… , um] and U2 = [um+1,… , up] . It suffices to show that

and

for i = 1,… ,K − 1 as p → ∞.
To show (A12), let � ∈ ℝ

p consists of the standardized true principal component 
scores of Y, that is, � = �

−1∕2U�(Y − �k) = (�1,… , �p)
� . Also, write � = (� �

1
, � �

2
)� 

where �1 ∈ ℝ
m and �2 ∈ ℝ

p−m . Note that the elements of � are uncorrelated and 
have mean zero and unit variance. Also,

where �2 = diag (�m+1,… , �p) . The ith coordinate of Û
�

1
U2�

1∕2

2
�2 is ∑p

j=m+1
(û�

i
uj)𝜆

1∕2

j
𝜁j for i = 1,… ,m . Then Chebyshev’s inequality gives

as p → ∞ where M > 0 is an upper bound of 
{
�i
}p

i=m+1
 , and (A12) follows.

To show (A13), recall the singular value decomposition 
(Ip − ÛWÛ

�

W
)D =

∑K−1

i=1
𝜃ipiq

�
i
 . For i = 1,… ,K − 1 , pi = 𝜃−1

i
(Ip − ÛWÛ

�

W
)Dqi 

holds. Therefore,

(A12)p−1∕2Û
�

1
U2U

�
2
(Y − �k)

P
������→ 0

(A13)p−1∕2p�
i
U2U

�
2
(Y − �k)

P
������→ 0

p−1∕2Û
�

1
U2U

�
2
(Y − �k) = p−1∕2Û

�

1
U2U

�
2
U�1∕2

� = p−1∕2Û
�

1
U2�

1∕2

2
�2

ℙ

�
p−1∕2

������

p�
j=m+1

(û�
i
uj)𝜆

1∕2

j
𝜁j

������
> 𝜖

�
≤ p−1𝜖−2𝔼

⎧
⎪⎨⎪⎩

�
p�

j=m+1

(û�
i
uj)𝜆

1∕2

j
𝜁j

�2⎫⎪⎬⎪⎭
≤ p−1𝜖−2M

p�
j=m+1

𝔼
�
(û�

i
uj)

2
�

≤ p−1𝜖−2M𝔼

���ûi��22
�
= p−1𝜖−2M → 0
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where A1 = p−1D�U2�
1∕2

2
�2 and A2 = p−1D�ÛWÛ

�

W
U2�

1∕2

2
�2 . For i = 1,… ,K − 1 , 

we already know that p−1∕2�i and qi converge to �i(�) and vi(�) , respectively. There-
fore, it remains to show that A1 − A2

P
������→ 0 . Meanwhile, we can show that A2 → 0 as 

p → ∞ immediately from Lemma 5 (ii) and (A12). For A1 , denote the ith column 
of U′

2
D as x(i) = (x

(i)

m+1
,… , x(i)

p
) . Then the ith coordinate of A1 is p−1x(i)��1∕2

2
�2 for 

i = 1,… ,K − 1 and we can show that

Combining Chebyshev’s inequality and (A14) gives A1

P
������→ 0 as p → ∞ , and thus 

(A13) follows. 	�  ◻

Proof of Lemma 2

Proof  For any V ∈ ℭSDP and 1 ≤ i ≤ m,

The second equality is due to PHui = PT
⟂|Sui = PT

⟂|SPSui = PT
⟂|Sui,S = 0p . 

Also, Lemma  4 (ii) gives u′
i
ûj

P
������→ 0 as p → ∞ for j = m + 1,… , n − K , and thus 

‖‖PS
⟂ui

‖‖2 → 0 as p → ∞ . Note that ‖‖PVui
‖‖2

P
������→ 0 as p → ∞ for 1 ≤ i ≤ m if and only 

p−1∕2p�
i
U2U

�
2
(Y − �k) = p−1∕2𝜃−1

i
q�
i
D�(Ip − ÛWÛ

�

W
)U2U

�
2
U�1∕2

�

= p−1∕2𝜃−1
i
q�
i
D�(Ip − ÛWÛ

�

W
)U2�

1∕2

2
�2

= (p−1∕2𝜃i)
−1q�

i
(A1 − A2),

(A14)

�

��
p−1x(i)

�
�

1∕2

2
�2

�2
�

= p−2�

⎧
⎪⎨⎪⎩

�
p�

j=m+1

x
(i)

j
�
1∕2

j
�j

�2⎫⎪⎬⎪⎭

≤ p−2M�

�
p�

j=m+1

(x
(i)

j
�j)

2 +
�
j≠j�

x
(i)

j
�jx

(i)

j�
�j�

�

= p−2M

p�
j=m+1

�

�
(x

(i)

j
)2
�
= p−2M�

����x
(i)���

2

2

�

≤ p−2M

�
��U�

2
�i
��22 + (p − m)

�
1

ni
+

1

nK

�
M

�
.

PVui = PVPHui + PVPTui + PVPS
⟂ui

= PVPTui,S + PVPS
⟂ui.
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if ‖‖PVui,S
‖‖2

P
������→ 0 as p → ∞ for 1 ≤ i ≤ m . Now, Lemma 6 gives that V ∈ ℭSDP if and 

only if ‖‖PVui,S
‖‖2

P
������→ 0 as p → ∞.

Next, for any given V ∈ ℭSDP , let V = {v1,… , vK−1} be an orthonormal basis for 
V . Write Bp = H⊕ S

⟂ . Then Lemma 3.3 of Chang et al. (2021) and ‖‖‖PVuj,S
‖‖‖2

P
������→ 0 

for all j = 1,… ,m lead to ‖‖‖PBp
vi
‖‖‖2

P
������→ 1 and ‖‖‖(Ip − PBp

)vi
‖‖‖2

P
������→ 0 as p → ∞ for 

i = 1,… ,K − 1 . Moreover, for 1 ≤ i ≠ j ≤ K − 1 , v�
i
PBp

vj = −v�
i
(Ip − PBp

)vj
P
������→ 0 as 

p → ∞ . Let Ṽ = span({PBp
vi}

K−1
i=1

) ⊂ Bp and 

ṽi =
���(Ip −

∑i−1

k=1
Pṽk

)PBp
vi
���
−1

2
(Ip −

∑i−1

k=1
Pṽk

)PBp
vi so that Ṽ = [ṽ1,… , ṽK−1] forms 

an orthonormal basis for Ṽ . Then V�Ṽ
P
������→ IK−1 and Angle(V, Ṽ)

P
������→ 0 as p → ∞ . 	�  ◻

Proof of Theorem 2

Proof  For any i ≠ j and V ∈ ℭSDP such that Dij(V) exists, the triangle inequality 
gives

where Yi, Yj ∈ Y with �(Yi) = i , �(Yj) = j and �ij ∶= �i − �j . It implies that 
p−1∕2

‖‖‖PV�ij
‖‖‖2 → Dij(V) as p → ∞ . Recall that we decompose the sample space SX 

into three subspaces T  , H and S⟂ . Denote V = V1 ⊕ V2 ⊕ V3 where V1 = V ∩ T  , 
V2 = V ∩H , and V3 = V ∩ S

⟂ . Since PV = PV1
⊕ PV2

⊕ PV3
 , the triangle inequality 

gives that

Lemma 2 gives that p−1∕2‖‖‖PV1
(Yi − Yj)

‖‖‖2
P
������→ 0 as p → ∞ . Also, the fact that V2 ≤ H 

leads that p−1∕2
‖‖‖PV2

(Yi − Yj)
‖‖‖2 ≤ p−1∕2

‖‖‖PH(Yi − Yj)
‖‖‖2 . We now claim that 

p−1∕2
‖‖‖PV3

(Yi − Yj)
‖‖‖2

P
������→ 0 as p → ∞ . Recall that V3 ≤ S

⟂ and the columns of 

Û2 = [ûm+1,… , ûn−K] forms an orthonormal basis of S
⟂ . Also, note that 

p−1∕2
‖‖‖Û2Û

�

2
(Y − �(Y))

‖‖‖2
P
������→ 0 as p → ∞ for any Y ∈ Y . Lemma  5 (i) gives that 

both of p−1∕2‖‖‖Û2Û
�

2
�i
‖‖‖2 and p−1∕2‖‖‖Û2Û

�

2
�j
‖‖‖2 converge to 0 in probability. Hence, 

p−1∕2
‖‖‖PV3

(Yi − Yj)
‖‖‖2 ≤ p−1∕2

‖‖‖PS
⟂(Yi − Yj)

‖‖‖2
P
������→ 0 as p → ∞ . 	�  ◻

p−1∕2
|||
‖‖‖PV�ij

‖‖‖2 −
‖‖‖PV(Yi − Yj)

‖‖‖2
|||

≤ p−1∕2‖‖PV(Yi − �i)
‖‖2 + p−1∕2

‖‖‖PV(Yj − �j)
‖‖‖2

p−1∕2
‖‖‖PV(Yi − Yj)

‖‖‖2 ≤
3∑

k=1

p−1∕2
‖‖‖PVk

(Yi − Yj)
‖‖‖2.
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Proof of Theorem 3

Proof  Let

for i = 1,… ,K − 1 , which is a scaled projection of L�,i onto S . Note that 
H� = span({��,i}

K−1
i=1

) and T = span({uj,S}
m
j=1

) . We claim that for a consistent esti-
mate 𝛼̂ of −�2 and for all i = 1,… ,K − 1 and j = 1,… ,m,

as p → ∞ . Then Angle(H𝛼̂ , T)
P
������→ 𝜋∕2 and H𝛼̂ ∈ ℭSDP . To show (A15), we will 

show that u�
j,S
�𝛼̂,i = u�

j
�𝛼̂,i

P
������→ 0 for all j = 1,… ,m , and ‖‖�𝛼̂,i

‖‖2 and ‖‖‖uj,S
‖‖‖2 do not 

degenerate as p → ∞ . First, combining Lemma 4 and Lemma 5 (ii) gives

as p → ∞ for all j = 1,… ,m . The last equality is due to the fact that ∑m

k=1
vkl(�)vkj(�) = Il,j . Next, combining Lemma 4, Lemma 5, (A8) and (A9) gives

and

�𝛼,i ∶=
1√
p
PSL𝛼,i =

m�
k=1

𝛼p

𝜆k + 𝛼p

�
1√
p
ûk

�
di

�
ûk +

1√
p
(Ip − ÛWÛ

�

W
)di

(A15)Angle(�𝛼̂,i, uj,S) = arccos

⎛
⎜⎜⎝

�
�
𝛼̂,i
uj,S

���𝛼̂,i
��2���uj,S

���2

⎞
⎟⎟⎠

P
������→ 𝜋∕2

u�
j
�𝛼̂,i =

m�
k=1

𝛼̂

𝜆k∕p + 𝛼̂

�
1√
p
ûk

�
di

�
(u�

j
ûk) +

1√
p
u�
j
(Ip − ÛWÛ

�

W
)di

=

m�
k=1

𝛼̂

𝜆k∕p + 𝛼̂

�
1√
p
ûk

�
di

�
(u�

j
ûk) +

1√
p
u�
j
di −

m�
k=1

�
1√
p
ûk

�
di

�
(u�

j
ûk) + op(1)

P
������→

m�
k=1

m�
l=1

−𝜏2

𝜑k(�) + 𝜏2
{𝜎l(z̄i,l − z̄K,l) + cos 𝜃l,i𝛿i}vkl(�)vkj(�) + 𝜎j(z̄i,j − z̄K,j)

+ cos 𝜃j,i𝛿i −

m�
k=1

m�
l=1

𝜑k(�)

𝜑k(�) + 𝜏2
{𝜎l(z̄i,l − z̄K,l) + cos 𝜃l,i𝛿i}vkl(�)vkj(�)

= 0

���𝛼̂,i
��22 =

m�
k=1

�
𝛼̂

𝜆̂k∕p + 𝛼̂

�2�
1√
p
û
�
k
di

�2

+
1

p
d�
i
(Ip − ÛWÛ

�

W
)di

P
������→

m�
k=1

𝜏4

𝜑k(�)(𝜑k(�) + 𝜏2)

�
m�
l=1

{𝜎l(z̄i,l − z̄K,l) + cos 𝜃l,i𝛿i}vkl(�)

�2

+

�
1

ni
+

1

nK

�
𝜏2

+

�
1 −

m�
l=1

cos2 𝜃l,i

�
𝛿2
i
+

m�
k=1

𝜏2

𝜑k(�) + 𝜏2

�
m�
l=1

{𝜎l(z̄i,l − z̄K,l) + cos 𝜃l,i𝛿i}vkl(�)

�2

> 0
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as p → ∞ and (A15) follows. Since the (K − 1)-dimensional subspace H𝛼̂ is 
included in the (m + K − 1)-dimensional subspace S = T⊕H and is asymptotically 
orthogonal to any direction in the m-dimensional subspace T  , one can check that 
Angle(H𝛼̂ ,H)

P
������→ 0 as p → ∞ . 	�  ◻

Proof of Lemma 3

Proof  For any independent observation Y ∈ Y , assume �(Y) = y for some 
1 ≤ y ≤ K . To show Lemma 3, we claim the following hold as p → ∞ : 

	 (i)	 For i = 1,… ,K − 1 , 

 where Ai,y = lim
p→∞

p−1��
i
PU

⟂
m
(�y − �̄) and �̄ = n−1

∑K

k=1
nk�k.

	 (ii)	 For i = 1,… ,K − 1 and j = 1,… ,K , 

Then for i = 1,… ,K − 1 and j = 1,… ,K,

as p → ∞ where Ai,yj = lim
p→∞

p−1��
i
PU

⟂
m
(�y − �j) and Lemma 3 follows. To show (i), 

note that

‖‖‖uj,S
‖‖‖
2

2
=

K−1∑
i=1

(u�
j
pi)

2 +

m∑
k=1

(u�
j
ûk)

2

=

K−1∑
i=1

(p−1𝜃2
i
)−1

{
p−1∕2u�

j
(Ip − ÛWÛ

�

W
)Dqi

}2

+

m∑
k=1

(u�
j
ûk)

2

P
������→

K−1∑
i=1

1

𝜑i(�)

[
m∑
k=1

m∑
l=1

K−1∑
l�=1

𝜏2

𝜑k(�) + 𝜏2
{𝜎l(z̄l�,l − z̄K,l) + cos 𝜃l,l�𝛿l� }vkl(�)vkj(�)vil� (�)

]2

+

m∑
k=1

𝜑k(�)

𝜑k(�) + 𝜏2
v2
kj
(�) > 0

1√
p
�
�
𝛼̂,i
(Y − X̄)

P
������→ Ai,y.

1√
p
�
�
𝛼̂,i
(X̄j − X̄)

P
������→

⎧⎪⎨⎪⎩

Ai,j + n−1
j
𝜏2, if j = i,

Ai,j − n−1
K
𝜏2, if j = K,

Ai,j, o.w.

1√
p
�
�
𝛼̂,i
(Y − X̄j)

P
������→

⎧⎪⎨⎪⎩

Ai,yj − n−1
j
𝜏2, if j = i,

Ai,yj + n−1
K
𝜏2, if j = K,

Ai,yj, o.w
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From Lemma 4 (ii) and Lemma 5 (i), we obtain

as p → ∞ where we use the convention that cos �l,K = 0 and �K = 0 . Similarly,

as p → ∞ . Combining Lemma 4, Lemma 5 (ii), (A16) and (A17) gives

as p → ∞ due to the fact that 
∑m

k=1
vkl(�)vkl� (�) = Il,l� where Il,l� = 1 if l = l� and 

Il,l� = 0 if l ≠ l′ . Next, to show (ii), let cj = (c1j,… , cnj)
� where

1√
p
�
�
𝛼̂,i
(Y − X̄) =

m�
k=1

𝛼̂

𝜆k∕p + 𝛼̂

�
1√
p
ûk

�
di

�
1√
p
ûk

�(Y − X̄) +
1

p
d�
i
(Ip − ÛWÛ

�

W
)(Y − X̄).

(A16)

1√
p
ûk

�(Y − X̄) =
1√
p
ûk

�
�
U�1∕2

�
� −

1

n
Z1n

�
+ �y − �̄

�

=

m�
l=1

(ûk
�
ul)𝜎l(𝜁l − z̄l) +

1√
p
ûk

�
�y −

K�
𝜄=1

n𝜄

n

�
1√
p
û
�
k
�𝜄

�
+ op(1)

P
������→

�
𝜑k(�)

𝜑k(�) + 𝜏2

m�
l=1

�
𝜎l(𝜁l − z̄l) + cos 𝜃l,y𝛿y −

K�
𝜄=1

n𝜄

n
cos 𝜃l,𝜄𝛿𝜄

�
vkl(�)

(A17)

1

p
d�
i
(Y − X̄) =

1

p

(
U�1∕2Zai + �i

)�{
U�1∕2

(
� −

1

n
Z1n

)
+ �y − �̄

}
P
������→

Ai,y +

m∑
l=1

{
𝜎l(z̄i,l − z̄K,l) + cos 𝜃l,i𝛿i

}{
𝜎l(𝜁l − z̄l) + cos 𝜃l,y𝛿y −

K∑
𝜄=1

n𝜄

n
cos 𝜃l,𝜄𝛿𝜄

}

1√
p
�
�
𝛼̂,i
(Y − X̄)

P
������→

m�
k=1

−𝜏2

𝜑k(�)

�
m�

l�=1

�
𝜎l� (z̄i,l� − z̄K,l� ) + cos 𝜃l�,i𝛿i

�
�

𝜑k(�)

𝜑k(�) + 𝜏2
vkl� (�)

�

×

�
𝜑k(�)

𝜑k(�) + 𝜏2

m�
l=1

�
𝜎l(𝜁l − z̄l) + cos 𝜃l,y𝛿y −

K�
𝜄=1

n𝜄

n
cos 𝜃l,𝜄𝛿𝜄

�
vkl(�)

+

m�
l=1

�
𝜎l(z̄i,l − z̄K,l) + cos 𝜃l,i𝛿i

��
𝜎l(𝜁l − z̄l) + cos 𝜃l,y𝛿y −

K�
𝜄=1

n𝜄

n
cos 𝜃l,𝜄𝛿𝜄

�

+ Ai,y −

m�
k=1

m�
l�=1

�
𝜎l� (z̄i,l� − z̄K,l� ) + cos 𝜃l�,i𝛿i

�
�

𝜑k(�)

𝜑k(�) + 𝜏2
vkl� (�)

×

�
𝜑k(�)

𝜑k(�) + 𝜏2

m�
l=1

�
𝜎l(𝜁l − z̄l) + cos 𝜃l,y𝛿y −

K�
𝜄=1

n𝜄

n
cos 𝜃l,𝜄𝛿𝜄

�
vkl(�)

= Ai,y
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Using similar arguments to (i), we obtain

and

as p → ∞ . Here, we used the fact that

as p → ∞ . Then combining (A18), (A19), Lemma 4 and 5 gives (ii). 	�  ◻

Proof of Theorem 4

Proof  The classification error rate of �PRS−BCNC,� is

For any independent observation Y ∈ Y with �(Y) = y , Lemma 3 implies that

as p → ∞ where �(y, j) = (A1,yj,… ,AK−1,yj)
� ∈ ℝ

K−1 . Note that �(y, j) ≠ 0K−1 by 
Assumption 3. Hence,

cij =

�
1∕nj − 1∕n if i ∈ (

∑j−1

k=1
nk,

∑j

k=1
nk]

−1∕n o.w.

(A18)

1√
p
û
�
k
(X̄j − X̄) =

1√
p
û
�
k
U�1∕2Zcj +

1√
p
û
�
k
(�j − �̄)

P
������→

�
𝜑k(�)

𝜑k(�) + 𝜏2

m�
l=1

�
𝜎l(z̄j,l − z̄l) + cos 𝜃l,j𝛿j −

K�
𝜄=1

n𝜄

n
cos 𝜃l,𝜄𝛿𝜄

�
vkl(�)

(A19)

1

p
d�
i
(X̄j − X̄) =

1

p

(
U�1∕2Zai + �i

)�(
U�1∕2Zcj + �j − �̄

)

P
������→

m∑
l=1

{
𝜎l(z̄i,l − z̄K,l) + cos 𝜃l,i𝛿i

}{
𝜎l(z̄j,l − z̄l) + cos 𝜃l,j𝛿j −

K∑
𝜄=1

n𝜄

n
cos 𝜃l,𝜄𝛿𝜄

}

+ Ai,j +
𝜏2

ni
Ij,i −

𝜏2

nK
Ij,K

a�
i

(
1

p
Z�
�Z

)
cj

P
������→ a�

i

(
WW� + 𝜏2In

)
cj =

m∑
l=1

𝜎2
l
(z̄i,l − z̄K,l)(z̄j,l − z̄l) +

𝜏2

ni
Ij,i −

𝜏2

nK
Ij,K

ℙ{�PRS−BCNC,�(Y;X) ≠ �(Y)} = 1 −

K∑
y=1

ℙ{�PRS−BCNC,�(Y;X) = y|�(Y) = y}ℙ{�(Y) = y}.

g𝛼̂,j(Y;X)
P
������→

{
0K−1, j = y,

�(y, j), j ≠ y

���g𝛼̂,j(Y;X)
���2

P
������→

�
0, j = y,

‖�(y, j)‖2 > 0, j ≠ y
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as p → ∞ and ℙ{𝜙PRS−BCNC,𝛼̂(Y;X) = y|𝜋(Y) = y} → 1 as p → ∞ for all 
y = 1,… ,K . Therefore, ℙ{𝜙PRS−BCNC,𝛼̂(Y;X) ≠ 𝜋(Y)} → 0 as p → ∞ . 	�  ◻
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