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Abstract
The paper deals with the classical two-sample problem for the combined location-
scale and Lehmann alternatives, known as the versatile alternative. Recently, a 
combination of the square of the standardized Wilcoxon, the standardized Ansari–
Bradley and the standardized Anti-Savage statistics based on the Euclidean distance 
has been proposed. The Anti-Savage test is the locally most powerful rank test for 
the right-skewed Gumbel distribution. Furthermore, the Savage test is the locally 
most powerful linear rank test for the left-skewed Gumbel distribution. Then, a 
test statistic combining the Wilcoxon, the Ansari–Bradley, and Savage statistics is 
proposed. The limiting distribution of the proposed statistic is derived under the null 
and the alternative hypotheses. In addition, the asymptotic power of the suggested 
statistic is investigated. Moreover, an adaptive test is proposed based on a selection 
rule. We compare the power performance against various fixed alternatives using 
Monte Carlo. The proposed test statistic displays outstanding performance in certain 
situations. An illustration of the proposed test statistic is presented to explain a 
biomedical experiment. Finally, we offer some concluding remarks.
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1 Introduction

Classical two-sample comparisons between two populations have extensive 
applications in many scientific fields, including controlled experiments, 
biometry, psychology and industry. Many tests exist in the literature for assessing 
the difference in various parameters between two independent populations. 
Furthermore, the data used in control experiments cannot accurately estimate the 
population distribution because the sample size is too small, there might be a few 
outliers, or it could be a contaminated sample. A nonparametric test is preferable 
here, as we cannot assume normality or any other specific distribution.

Many researchers focus on designing a test for the difference in a single 
parameter, such as the location, scale, or shape parameter in a distribution-free 
setup. For example, the most famous tests for the two-sample location problem 
in the distribution-free setting are the Wilcoxon rank-sum test (Gibbons & 
Chakraborti, 2021), namely W , or the normal scores test (Gibbons & Chakraborti, 
2021). Assuming that the population distribution is normal, the asymptotic 
relative efficiency (ARE) of the Wilcoxon rank-sum test and the normal scores 
test relative to the t test are 0.955 and 1, respectively, indicating that they are 
not inferior to the t test. In addition, the ARE of the Wilcoxon rank-sum test to 
the t test is greater than or equal to about 0.864 for all continuous distributions. 
Therefore, the Wilcoxon rank-sum test is still widely utilized in many 
applications, see. e.g. Letshedi et al. (2021), Lin et al. (2021) and Dao (2022).

The parametric two-sample test for testing the variances of the normal 
distribution is the F test. The Ansari–Bradley, namely AB , and Mood tests 
(Gibbons & Chakraborti, 2021) are well-known nonparametric tests for the two-
sample scale problem. The ARE of the Ansari–Bradley test and the Mood test 
to the F test under the assumption of the normal distribution are 0.609 and 0.76, 
respectively. Although ARE of the Ansari–Bradley test is lower than that of the 
Mood test, the Ansari–Bradley is widely used in many applications, see, e.g. 
Lahmiri (2023) and Omer et al. (2023). The two location tests, based respectively 
on Wilcoxon and van der Waerden’s normal scores for two-sample problems, 
assume no scale difference in the population distributions. Likewise, the two 
scale tests, based respectively on Ansari–Bradley and Mood scores for two-
sample problems, assume no location difference in the population distributions. 
Actually, there are often differences in both location and scale in many practices.

Many researchers focus on designing a test for the difference in location and 
scale parameters between two populations simultaneously in a distribution-
free setup. The most well-known tests in this circumstance, the test for the 
location and scale simultaneously, are the Lepage (Neuhäuser, 2012) and the 
Cucconi (Neuhäuser, 2012) tests. The Lepage statistic combines the square 
of the standardized Wilcoxon rank-sum and the standardized Ansari–Bradley 
statistics. The Lepage-type statistic, which is a quadratic form of location and 
scale statistics, has been studied by many researchers. For example, Pettitt (1976) 
proposed the combination of the square of standardized Wilcoxon rank-sum and 
the square of standardized Mood statistics. Note that the statistic of Pettitt (1976) 
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is essentially equivalent to the statistic of Cucconi (Neuhäuser, 2012) under the 
continuous distributions; see Nishino and Murakami (2019). Since Murakami 
(2011) proposed an approximation to the distribution of the statistic of Pettitt 
(1976), we can apply the approximation distribution to the Cucconi statistic. 
For different versions of Lepage-type statistics, we refer to works of Büning 
and Thadewald (2000), Neuhäuser (2000), Kössler (2006), Murakami (2007), 
Murakami (2016) and Mukherjee and Marozzi (2019). Recently, Yamaguchi and 
Murakami (2023) discussed multi-aspect statistics generalizing the Lepage-type 
statistics in the presence of ties.

Kössler and Mukherjee (2020) recently noted that traditional two-sample 
simultaneous tests for location and scale parameters are silent about the shape of the 
distributions. A change in the shape of the distribution in a two-sample problem is 
addressed using the Lehmann alternative (Hájek et al., 1999) and is very common in 
many applications, see, e.g. Razzaghi (2014), Ng et al. (2021) and Chakraborty et al. 
(2023). For the Lehmann alternative, for example, the Anti-Savage test (Kössler & 
Mukherjee, 2020), namely AS , is widely used by many researchers. However, the 
difference in a single parameter is rare in many applications. It is more general and 
advisable to consider that at the same time, a shift may occur in one or more of the 
three parameters, namely, location, scale, and shape parameters. Therefore, we must 
focus on designing approaches for simultaneously testing many parameters between 
two populations. Note that Kössler and Mukherjee (2020) only consider the squares 
of Euclidean and Mahalanobis type distance between the Wilcoxon, Ansari–Bradley 
and Anti-Savage statistics. The Anti-Savage test is suitable for difference in location 
of the right-skewed data.

However, we sometimes encounter left-skewed data in practical analysis. In 
this case, the Savage test, namely S , is one of the preferred tests. In the theoretical 
background, the Savage test is the locally most powerful rank test for the left-skewed 
Gumbel distribution. Then, we may consider similar combinations using Wilcoxon, 
Ansari–Bradley and Savage statistics. Also, the null distribution may be symmetric, 
but the shape alternative could lead to a right or left-skewed population, and the 
shift direction is unknown a priori. Then, a question regarding the choice between 
these arises and is addressed in the current paper.

Recently, Yamaguchi and Murakami (2023) proposed the tie-adjusted version 
of the Euclidian and Mahalanobis distance-based statistics of some standardized 
linear rank statistics, that is the multi-aspect tests. However, in practical analysis, 
we must determine whether to use the Wilcoxon–Ansari–Bradley–Anti-Savage 
statistic or the Wilcoxon–Ansari–Bradley–Savage statistic before we treat the 
hypothesis test. To this end, we might consider a max-type test. The larger of the 
two statistics as the test statistic is the first and simple way to solve this problem. 
For example, Neuhäuser et al. (2004) and Welz et al. (2018) compared the validity 
of the maximum test with various nonparametric tests for the two-sample location 
problem. Additionally, Neuhäuser and Hothorn (2006) discussed that a maximum 
test is an adaptive permutation test. As another approach to solve this problem, we 
also consider an adaptive test, which selects the test statistic depending on the case 
grouping. Büning (1996) proposed an adaptive test for the multisample location 
problem based on selectors suggested by Hogg et al. (2018, pp. 622–623). In Büning 
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(2000), a selector of skewness and tail-weight using quantile points is proposed for 
this problem. Büning and Thadewald (2000) proposed the two-sample location-
scale adaptive test using a selector introduced by Büning (2000). For the two-sample 
scale problem, Kössler (1994) proposed the adaptive test based on new selectors 
for skewness and tail-weight. Neuhäuser et al. (2004) proposed an adaptive test for 
the two-sample location problem by using the selectors of Hogg et  al. (2018,  pp. 
622–623). For the one-sample location problem, recently, Kitani and Murakami 
(2022) proposed an adaptive test and new selectors. Although Yamaguchi and 
Murakami (2023) considered the multi-aspect test statistic based on some linear rank 
test statistics, maximum type and adaptive-type tests are not discussed. Therefore, 
we focus on designing one maximum-type and another adaptive-type procedure for 
the two-sample testing problem.

The rest of the paper is organized as follows. We discuss statistical preliminaries, 
introduce a test statistic and derive the limiting distribution of the proposed statistic 
under the null hypothesis in Sect. 2. In addition, we derive the limiting distribution 
of the suggested statistic under the alternative hypothesis and investigate asymptotic 
power in Sect.  3.1. Section  4 introduces a maximum test and an adaptive test 
based on a selecting rule. We present some numerical results via Monte Carlo in 
Sect.  5. The proposed test statistics are compared with the classical omnibus test 
statistics Kolmogorov–Smirnov (Gibbons & Chakraborti, 2021), Cramér–von Mises 
(Anderson, 1962) and Anderson–Darling (Pettitt, 1976) as well with the test statistic 
of Boos (1986). Section 6 is devoted to illustrations of the proposed test. We offer 
some concluding remarks in Sect. 7.

2  Simultaneous statistic for the location‑scale‑shape parameters

Let X1 = (X11,… ,X1n1
) and X2 = (X21,… ,X2n2

) be two random samples of size 
n1 and n2 from absolutely continuous populations with the cumulative distribution 
functions (cdf) F1 and F2 , respectively. Consider the pooled sample of size 
N = n1 + n2 and let Vi , i = 1,… ,N be 1 if the ith smallest of N observations is from 
X1 , and otherwise 0. Then, a two-sample linear rank statistic is given by

where the ai are appropriate scores. As noted before, we test the location � , scale 
e� and shape e� parameters at the same time. Then we are interested in testing the 
hypothesis

LRT =

N∑
i=1

aiVi,

(1)

H0 ∶ F2(x) = F1(x)

against

H1 ∶ F2(x) =
[
F1

(x − �

e�

)]e�
, at least one of � ≠ 0, � ≠ 0, � ≠ 0.
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Under this setup, we propose a new statistic for (1) in Sect. 2.1. Furthermore, we 
derive the limiting null distribution of the proposed test statistic in Sect. 2.2.

2.1  A test statistic for the versatile alternative

Kössler and Mukherjee (2020) recently noted that traditional two-sample Lepage-
type statistics are silent about the shape of the distributions. However, in various 
applications, a change in the shape of the distribution along with the location 
and scale is also widespread. Then, Kössler and Mukherjee (2020) proposed the 
Euclidean-type statistic for the test problem (1) as follows:

where

Remark that, see, e.g. Kössler and Mukherjee (2020), the Anti-Savage test ( AS ) 
is the locally most powerful rank test for location under the right-skewed Gumbel 
distribution with cdf

However, there exists the left-skewed Gumbel distribution given by

Then, the Savage test is the locally most powerful linear rank test for location if FL 
is the underlying cdf. see, e.g. Hájek et al. (1999, pp. 105–106). Therefore, in this 
paper, we consider another type of tri-aspect statistic for test problem (1) as follows:

T1 =

�
W − E[W]√

V[W]

�2

+

�
AB − E[AB]√

V[AB]

�2

+

�
AS − E[AS]√

V[AS]

�2

,

W =

N∑
i=1

iVi, E[W] =
n1(N + 1)

2
, V[W] =

n1n2(N + 1)

12
,

AB =
n1(N + 1)

2
−

N∑
i=1

||||i −
N + 1

2

||||Vi,

E[AB] =

{
n1(N+2)

4
if N is even ,

n1(N+1)
2

4N
if N is odd ,

V[AB] =

{
n1n2(N

2−4)

48(N−1)
if N is even ,

n1n1(N+1)(N
2+3)

48N2
if N is odd ,

AS =

N∑
i=1

(
1 −

N∑
j=i

1

j

)
Vi, E[AS] = 0, V[AS] =

n1n2

N − 1

(
1 −

HN

N

)
,

HN =

N∑
j=1

1

j
.

FR(x) = exp{− exp(−x)}, fR(x) = exp{− exp(−x) − x}, x ∈ ℝ.

FL(x) = 1 − exp{− exp(x)}, fL(x) = exp{− exp(x) + x}, x ∈ ℝ.
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where

In addition, Kössler and Mukherjee (2020) proposed the Mahalanobis-type statistic 
T3 as follows:

where

See, Remark of 3.1 of Mukherjee et al. (2021) for the details of the expression of 
�AB,AS.

Similarly to T2 , we consider the another-type of statistic based on the Mahalanobis 
distance as follows:

where

(2)T2 =

�
W − E[W]√

V[W]

�2

+

�
AB − E[AB]√

V[AB]

�2

+

�
S − E[S]√

V[S]

�2

,

S =

N∑
i=1

(
N∑

j=N+1−i

1

j

)
Vi, E[S] = n1, V[S] =

n1n2

N − 1

(
1 −

HN

N

)
.

(3)T3 = TM1
�
−1
M1
T
�
M1
,

TM1
=

�
W − E[W]√

V[W]
,
AB − E[AB]√

V[AB]
,
AS − E[AS]√

V[AS]

�
,

�M1
=

⎛⎜⎜⎝

1 0 �W,AS

0 1 �AB,AS
�W,AS �AB,AS 1

⎞⎟⎟⎠
,

�W,AS =

√
3

2

�
N − 1

N + 1

�
1 −

HN

N

�−
1

2

,

�AB,AS =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−

�
3N2

N2 − 4

�
1 −

HN

N

�−1⎛⎜⎜⎝
1

2
− HN +

N

2�
j=1

1

j

⎞⎟⎟⎠
if N is even ,

−

�
3(N2 − 1)

N2 + 3

�
1 −

HN

N

�−1
⎡
⎢⎢⎢⎣

N + 3

2(N + 1)
−

⎧
⎪⎨⎪⎩
HN −

N−1

2�
j=1

1

j

⎫
⎪⎬⎪⎭

⎤
⎥⎥⎥⎦

if N is odd ,

(4)T4 = TM2
�
−1
M2
T
�
M2
,
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Note that T1 , T2 , T3 and T4 are special cases of Yamaguchi and Murakami (2023).

2.2  The limiting null distributions of T
2
 and T

4

The test statistic’s distribution plays a vital role in testing the hypothesis. Using the 
exact permutation method, we can derive the exact distribution of a test statistic for 
small sample sizes. However, deriving the exact distribution is often difficult when 
the sample sizes are moderate to large. Then, in this section, we derive the limiting 
distributions of T2 and T4 under the null hypothesis.

Let �i, i = 1, 2, 3 be the eigenvalues of the asymptotic correlation matrix �S

Since the eigenvalues of matrix (5) are equal to that of the matrix (17) in Kössler 
and Mukherjee (2020), we immediately obtain the following two theorems by a 
similar procedure to that of Kössler and Mukherjee (2020).

Theorem 1 Assume that n1∕N ∈ (0, 1) as min(n1, n2) → ∞ . The limiting null distri-
bution of T2 is approximately equivalent to 1.7299Z + 0.2692 , where Z ∼ �2

df
 is a chi 

square random variable with df = 1.5786 degrees of freedom.

Proof See the Appendix 1.   ◻

Then, as a consequence of Theorem 1, we get the following corollary.

Corollary 1 Assume that n1∕N ∈ (0, 1) as min(n1, n2) → ∞ . The level � critical point 
of T2 can be approximated by

TM2
=

�
W − E[W]√

V[W]
,
AB − E[AB]√

V[AB]
,
S − E[S]√

V[S]

�
,

�M2
=

⎛
⎜⎜⎝

1 0 �W,S

0 1 �AB,S
�W,S �AB,S 1

⎞
⎟⎟⎠
,

�W,S = �W,AS,

�AB,S = −�AB,AS.

(5)

�S = lim
min{n1,n2}→∞

�M2
= lim

min{n1,n2}→∞

⎛
⎜⎜⎝

1 0 �W,S

0 1 �AB,S
�W,S �AB,S 1

⎞⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝

1 0

√
3

2

0 1

√
3

2
(1 − 2 log 2)√

3

2

√
3

2
(1 − 2 log 2) 1

⎞⎟⎟⎟⎟⎠
.

tQ,1−� = 1.7299tZ,1−� + 0.2692,
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where tZ,1−� is the 1 − � quantile of the distribution of the random variable Z.

By replacing AS in Kössler and Mukherjee (2020) with S , we immediately obtain 
Lemma 1.

Lemma 1 Assume that n1∕N ∈ (0, 1) as min(n1, n2) → ∞ . The asymptotic null joint 
distribution of TM2

 is a trivariate normal with mean vector (0, 0, 0) and variance-
covariance matrix given by (5).

Theorem 2 Assume that n1∕N ∈ (0, 1) as min(n1, n2) → ∞ . The limiting null distri-
bution of T4 converges to a Chi-square distribution with three degrees of freedom.

Proof See Appendix 2.   ◻

3  The distribution of test statistics under the alternative hypothesis

The score generating functions of W , AB , AS and S are respectively given by

Remark that the score generating function of AB in Kössler and Mukherjee (2020) 
should have an opposite sign, see Kössler (2006). However, it does not affect the 
eigenvalues of the correlation matrix and asymptotic null distributions. Let the 
parameter vector ��

N
= (�̄�, �̄�, 𝛿)∕

√
N , � = n1∕N ∈ (0, 1) as min(n1, n2) → ∞ and 

the parameter vector �� = lim�
�
N
= (�, �, �) . Let be Score ∈ {W,AB,AS, S} , 

Shift ∈ {Location, Scale, Lehmann} and

�W(u) = 2u − 1,

�AB(u) = 1 − 2|2u − 1|,
�AS(u) = 1 + log(u),

�S(u) = −1 − log(1 − u),

u ∈ (0, 1).

CScore, Shift(f ) =
dScore, Shift(f )√

IScore

,

IScore = ∫
1

0

�2
Score

(u)du,

dScore, Location(f ) = ∫
1

0

��
Score

(u)f (F−1(u))du,

dScore, Scale(f ) = ∫
1

0

��
Score

(u)f (F−1(u))F−1(u)du,

dScore, Lehmann(f ) = −∫
1

0

��
Score

(u)u log(u)du.
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Similar to Kössler and Mukherjee (2020) and Mukherjee et al. (2021), to derive the 
asymptotic distribution and the asymptotic power of T2 or T4 , we define the matrix 
MS(f ) as

Note that Kössler and Mukherjee (2020) defined the corresponding matrix for T1 or 
T3 to derive the asymptotic power as follows:

For example, the matrices MAS(f ) and MS(f ) of the left- and right-skewed Gumbel 
distributions fL and fR , respectively, are as follows:

In Sects. 3.1 and 3.2, we discuss the distributions of T2 and T4 under the alternative 
hypothesis H1 , respectively.

3.1  The distribution of T
2
 under the alternative hypothesis

In addition, by a similar procedure to that of Kössler and Mukherjee (2020) and 
Mukherjee et al. (2021), we obtain the asymptotic distribution under the alternative 
hypothesis in Theorem 3.

Theorem  3 Assume again that �
�
N
= �̄

�∕
√
N = (�̄�, �̄�, 𝛿)∕

√
N and 

n1∕N → � ∈ (0, 1) as min(n1, n2) → ∞ . The statistic T2 may be approximated by a 
linear function of a noncentral �2 distributed random variable Z, that is 
T2 ≈ �1(�)Z + �0(�) , Z ∼ �2

df (�)
 for c2

3
(�)∕c3

2
(�) ≤ c4(�)∕c

2
2
(�) and 

MS(f ) =

⎛
⎜⎜⎝

CW, Location(f ) CW, Scale(f ) CW, Lehmann(f )

CAB, Location(f ) CAB, Scale(f ) CAB, Lehmann(f )

CS, Location(f ) CS, Scale(f ) CS, Lehmann(f )

⎞
⎟⎟⎠
.

MAS(f ) =

⎛
⎜⎜⎝

CW, Location(f ) CW, Scale(f ) CW, Lehmann(f )

CAB, Location(f ) CAB, Scale(f ) CAB, Lehmann(f )

CAS, Location(f ) CAS, Scale(f ) CAS, Lehmann(f )

⎞
⎟⎟⎠
.

MAS(fL) =

⎛
⎜⎜⎝

0.8660 − 0.2341 0.8660

0.3345 0.9879 − 0.3345

0.6449 − 0.6649 1.0000

⎞
⎟⎟⎠
and

MAS(fR) =

⎛⎜⎜⎝

0.8660 0.2341 0.8660

−0.3345 0.9879 − 0.3345

1.0000 − 0.4228 1.0000

⎞⎟⎟⎠
,

MS(fL) =

⎛⎜⎜⎝

0.8660 − 0.2341 0.8660

0.3345 0.9879 − 0.3345

1.0000 0.4228 0.6449

⎞⎟⎟⎠
and

MS(fR) =

⎛⎜⎜⎝

0.8660 0.2341 0.8660

−0.3345 0.9879 − 0.3345

0.6449 0.6649 0.6449

⎞⎟⎟⎠
.
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T2 ≈ ��
1
(�)Z� + ��

0
(�) , Z� ∼ �2

df �(�)
(nc) for c2

3
(�)∕c3

2
(�) > c4(�)∕c

2
2
(�) . The 

coefficients �0 , �1 , �′0 and �′
1
 are presented in Appendix 3.

Proof See Appendix 3.   ◻

Corollary 2 By Theorem 3, the asymptotic power of T2 is approximately

where tQ,1−� be the 1 − � quantile of T2.

Here, we show the asymptotic power functions of T1 and T2 for the left-
skewed Gumbel distribution and the right-skewed Gumbel distribution in Fig. 1.

Figure 1 indicates that we have to select AS or S before testing the hypothesis. 
Then, we discuss the selection of whether we use T1 or T2 in Sect. 4.

3.2  The distribution of T
4
 under the alternative hypothesis

In this section, we derive the limiting distribution of T4 under H1 . The 
limiting distribution of T4 is a chi-square distribution with three degrees of 
freedom under the null hypothesis by Theorem  2. Hence, it is important to 
determine the noncentral parameter under H1 . Again, let the parameter vector 
�

� = lim�
�
N
= (�, �, �) . As a similar procedure to that of Kössler and Mukherjee 

(2020), we define the noncentral parameter as nc = �(1 − �)��
MS(f )

��
−1
S
MS(f )� . 

Then, we obtain the following theorem by a similar procedure to that of Kössler 
and Mukherjee (2020) and Mukherjee et al. (2021).

Theorem  4 Assume that the parameter vector �
�
N
= (�̄�, �̄�, 𝛿)∕

√
N and 

� = n1∕N ∈ (0, 1) as min(n1, n2) → ∞ . Then the limiting distribution of T4 under 
the alternative hypothesis is noncentral chi-square distribution with three degrees 
of freedom and noncentral parameter nc = �(1 − �)��

MS(f )
��

−1
S
MS(f )� , where 

�
� = lim�

�
N
= (�, �, �).

Proof See Appendix 4.   ◻

Here, we show the asymptotic power of T3 and T4 for the left-skewed Gumbel 
distribution and the right-skewed Gumbel distribution in Fig. 2.

Figure  2 again indicates that we have to select AS or S before testing the 
hypothesis. Then, we discuss the selection of T3 or T4 in Sect. 4.

ℙ(T2 > tQ,1−𝛼) ≈ ℙ(𝛽1(�)Z + 𝛽0(�) > tQ,1−𝛼) = ℙ

(
Z >

tQ,1−𝛼 − 𝛽0(�)

𝛽1(�)

)

= 1 − FZ

(
tQ,1−𝛼 − 𝛽0(�)

𝛽1(�)

)
,
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4  Maximum test and adaptive test

In practical analysis, we have to determine whether to use T1 ( T3 ) or T2 ( T4 ) before 
we treat the hypothesis test. Hence, we propose the maximum- and adaptive-type 
test based on T1 ( T3 ) and T2 ( T4).

Fig. 1  Asymptotic power functions of T1 and T2 for F
L
 (left) and F

R
 (right) with various (�̄�, �̄�, 𝛿)
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4.1  Maximum test

A simple way to solve this problem is to use the larger of the two statistics as the 
test statistic. Then, we propose two maximum test statistics as follows:

Herein, we list the critical values of T(1)
max

 and T(2)
max

 for selected sample sizes in 
Table  1. We can derive the exact distribution of test statistics for small sample 
sizes using all possible permutations. However, deriving the exact distribution is 

T(1)
max

=max{T1, T2},

T(2)
max

=max{T3, T4}.

Fig. 2  Asymptotic power functions of T3 and T4 for F
L
 (left) and F

R
 (right) with various (�̄�, �̄�, 𝛿)
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difficult when the sample sizes are moderate to large. Therefore, we estimate the 
critical value of T(1)

max
 and T(2)

max
 for the moderate to large sample sizes by 1,000,000 

times permutations. An approximate permutation test with a random sample of, e.g., 
1,000,000 permutations, can evaluate the p-value fairly for practical applications.

4.2  Adaptive test

In this section, we introduce a selection rule. Hogg et al. (2018, pp. 622) gave the 
selector statistic as

Table 1  Critical values of T(1)

max
 

and T(2)

max

n1 n2 ℙ(T(1)
max

≥ t1) t1 ℙ(T(2)
max

≥ t2) t2

30 15 0.100 7.7336 0.100 6.6962
0.050 9.9333 0.050 8.0155
0.025 12.1283 0.025 9.2720
0.010 14.9487 0.010 10.8786

30 30 0.100 7.7801 0.100 6.5899
0.050 10.0266 0.050 7.9297
0.025 12.2492 0.025 9.2397
0.010 15.1372 0.010 10.9479

50 25 0.100 7.8009 0.100 6.8288
0.050 10.0871 0.050 8.2394
0.025 12.3458 0.025 9.5891
0.010 15.3791 0.010 11.2941

50 50 0.100 7.8177 0.100 6.7640
0.050 10.1579 0.050 8.1362
0.025 12.4568 0.025 9.4950
0.010 15.4916 0.010 11.2655

100 50 0.100 7.8353 0.100 6.9125
0.050 10.1807 0.050 8.4159
0.025 12.5367 0.025 9.8669
0.010 15.6894 0.010 11.7068

100 100 0.100 7.8528 0.100 6.9401
0.050 10.2121 0.050 8.3908
0.025 12.6089 0.025 9.7817
0.010 15.7519 0.010 11.5916

200 100 0.100 7.8464 0.100 6.9930
0.050 10.2259 0.050 8.5363
0.025 12.6259 0.025 10.0108
0.010 15.7965 0.010 11.9570

200 200 0.100 7.8470 0.100 7.0283
0.050 10.2510 0.050 8.5361
0.025 12.6589 0.025 9.9906
0.010 15.8052 0.010 11.8875
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The statistic Q̂1 measures skewness, and L̂𝛾 , M̂𝛾 and Û𝛾 denote the average of the 
smallest, middle and largest �N order statistics, respectively. If Q̂1 > 2 , then the right 
tail of the distribution seems longer than the left tail; that is, there is an indication 
that the distribution is skewed to the right. On the other hand, if Q̂1 < 1∕2 , the 
sample indicates that the distribution may be skewed to the left. Let be

• N(�, �2) : normal distribution with mean � and variance �2.
• GL(�, �) : left-skewed Gumbel distribution with location � and scale �.
• GR(�, �) : right-skewed Gumbel distribution with location � and scale �.
• U(a, b) : uniform distribution with interval (a, b).
• Exp(�) : exponential distribution with rate �.
• t� : t distribution with � degrees of freedom.
• C(�, �) : Cauchy distribution with median � and scale �.
• �2

�  : chi square distribution with � degrees of freedom.
• LG(�, �) : logistic distribution with location � and scale �.
• LA(�, �) : Laplace distribution with location � and scale �.
• Ga(�, �) : gamma with shape � and rate �.
• BE(a, b) : beta distribution with shapes a and b.
• CN1(�1, �

2
1
,�2, �

2
2
) : mixture normal distribution with 0.9N(�1, �

2
1
) + 0.1N(�2, �

2
2
)

.
• CN2(�1, �

2
1
,�2, �

2
2
) : mixture normal distribution with 0.5N(�1, �

2
1
) + 0.5N(�2, �

2
2
)

.

We list the theoretical value of Q1 for the specific distributions in Table 2. The values 
of Q1 for some distributions may be found in Neuhäuser et al. (2004).

The Savage and Anti-Savage tests are useful location tests for the left-skewed and 
right-skewed distributions, respectively. When the theoretical value of Q1 is greater 
(less) than 1, the selector statistic indicates that the distribution is right-skewed (left-
skewed) distribution. Large (small) values of Q2 in Hogg et al. (2018, pp. 623) indicate 

Q̂1 =
Û0.05 − M̂0.5

M̂0.5 − L̂0.05

.

Table 2  Theoretical values of Q1 
of various distributions

Distribution Q1 Distribution Q1

N(0, 1) 1.0000 LG(0, 1) 1.0000
GL(0, 1) 0.4893 LA(0, 1) 1.0000
GR(0, 1) 2.0439 Ga(5, 1) 1.8787
U(0, 1) 1.0000 BE(2, 2) 1.0000
Exp(2) 4.5689 BE(0.5, 2) 4.6395
t2 1.0000 BE(2, 0.5) 0.2155
C(0, 1) 1.0000 CN1(0, 1, 0, 9) 1.0000
�2

3
3.3515 CN2(1, 4,−1, 1) 1.6748
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that the distribution is heavy-tailed (light-tailed) distribution. In this paper, we replace 
the Anti-Savage test with the Savage test. The tail-weight does not play any role here. 
Therefore, we use only one statistic for simplicity instead of Q1 and Q2 . Hogg et  al. 
(2018, pp. 623) indicated that the distribution’s right tail seems longer than the left tail 
when Q̂1 is large (2 or more). On the other hand, the distribution may be skewed to 
the left when Q̂1 < 1∕2 . We then used these values as a cutoff point. In this paper, we 
denote the combined sample V = (X1,X2) and propose the selector statistic based on Q̂1 
and Table 2 as follows:

where

Then, we suggest two statistics AD1 and AD2 for the adaptive tests based on a new 
selector by

where

Note that the principle of Hogg et  al. (2018,  pp. 622–623) is based on the 
independence of rank and order statistics of the full sample. However, in our 
selection rule, in Q̂1(X1) and Q̂1(X2) we use order statistics of both single samples 
separately. Therefore the independence property is not satisfied and we have to 
check whether the use of the (exact or asymptotic) critical values for T1 and T3 are 
applicable to that for AD1 and AD2.

I(S∗, AS∗) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

AS∗, if Q̂1(X1) > 2 and Q̂1(X2) > 2

or Q̂1(X1) > 2 and Q̂1(X2) <
1

2
and Q̂1(V) > 2

or Q̂1(X1) <
1

2
and Q̂1(X2) > 2 and Q̂1(V) > 2,

S∗, if Q̂1(X1) <
1

2
and Q̂1(X2) <

1

2

or Q̂1(X1) > 2 and Q̂1(X2) <
1

2
and Q̂1(V) <

1

2

or Q̂1(X1) <
1

2
and Q̂1(X2) > 2 and Q̂1(V) <

1

2
,

randomly select AS∗ or S∗, each with probability
1

2
, otherwise

S∗ =

�
S − E[S]√

V[S]

�2

, AS∗ =

�
AS − E[AS]√

V[AS]

�2

.

AD1 =

�
W − E[W]√

V[W]

�2

+

�
AB − E[AB]√

V[AB]

�2

+ I(S∗, AS∗),

AD2 = T
∗
M2
�
∗−1
M2

T
∗�

M2
,

T
∗
M2

=

�
W − E[W]√

V[W]
,
AB − E[AB]√

V[AB]
, I(

√
S∗,

√
AS∗)

�
,

�
∗
M2

=

⎛⎜⎜⎝

1 0 �W,I(S,AS)

0 1 �AB,I(S,AS)
�W,I(S,AS) �AB,I(S,AS) 1

⎞⎟⎟⎠
.
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5  Numerical results

5.1  Robustness

We investigate the robustness for various distributions to propose the adaptive test 
based on the selector statistic. In this paper, we compare the performances of T1 , T2 , 
T3 , T4 , T

(1)
max

 , T(2)
max

 , AD1 and AD2 . We use the exact critical values listed in Table 3 
when the sample sizes are (n1, n2) = (10, 10), (10, 5) . On the other hand, when the 
sample sizes are (n1, n2) = (100, 50), (100, 100), (200, 100), (200, 200) , we use the 
95% point of the limiting null distribution given in Theorems 1 and 2. In addition, 
from the results of Kössler and Mukherjee (2020) and Theorems 1 and 2 in this 
paper, the limiting null distributions of T1 and T3 are same as those of T2 and T4 , 
respectively. Therefore, we use the asymptotic critical values for T1 , T3 , AD1 and 
AD2 . For T(1)

max
 and T(2)

max
 , we use the estimated critical values listed in Table 1.

We show the type-I error rates (5%) for various test statistics in Table  4. 
Although the competing statistics T1 , T2 , T3 , T4 , T

(1)
max

 and T(2)
max

 are distribution-
free under the null hypothesis, the independence between the selector and AD1 or 
AD2 is not guaranteed. Therefore, we investigated the type-I error rates of AD1 and 
AD2 to ensure they are safely used. The simulated results are based on 1,000,000 
replications of Monte-Carlo simulations.

Table  4 indicates that the type-I errors of statistics are around the significance 
level as expected because exact critical values are used for small sample sizes. For 
larger sample sizes, since the type-I error begins to converge, the estimated critical 
values for some selected sample sizes and the asymptotic critical values are useful. 
In practice, an approximate permutation test with a random sample is possible for 
evaluating p value for other sample sizes. From the numerical results, we can also 
see that the null distribution of T1 and T2 and the null distribution of T3 and T4 are 
the same. Then, we can select T1 or T2 and T3 or T4 by our selecting rule.

We also estimated rejection probabilities when populations deviate from the 
assumed location-scale-shape family. However, we only comment on the results to 
save the space. In this paper, we focus on the following pairs of distributions, N(0, 1) 
with LG(0,

√
3

�
) , N(0, 3

2
) with t6 , U(0,

�
3

5
) +

5−
√
15

10
 with Be(2, 2) and LG(0, 3√

2�
) 

with t6 . In these cases, both populations’ mean, variance and skewness are same but 
the distributions are different. Therefore, our proposed test may not be suitable if the 
alternative is not in the location-scale-shape family. But we should also note that the 
Kolmogorov–Smirnov, the Cramér–von Mises or the Anderson–Darling tests 

Table 3  The exact and asymptotic critical values ( � = 0.05)

–, the asymptotic critical value is not known

(n1, n2) T1 T2 T3 T4 T
(1)
max

T
(2)
max

AD1 AD2

(10, 10) 8.7025 8.7025 6.8516 6.8516 9.5411 7.4987 8.7025 6.8516
(10, 5) 8.1898 8.1898 6.6579 6.6579 8.8160 7.2161 8.1898 6.6579
(∞,∞) 9.1715 9.1715 7.8147 7.8147 – – 9.1715 7.8147
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Table 4  Type-I error of various test statistics for various densities

(n1, n2) N(0, 1) GL(0, 1) GR(0, 1) U(0, 1) Exp(2) t2 C(0, 1) �2

3

(10, 10) T1 0.0501 0.0502 0.0501 0.0500 0.0501 0.0502 0.0503 0.0498
T2 0.0501 0.0502 0.0500 0.0503 0.0502 0.0499 0.0503 0.0499
T3 0.0502 0.0501 0.0498 0.0499 0.0500 0.0501 0.0503 0.0500
T4 0.0502 0.0501 0.0503 0.0500 0.0499 0.0502 0.0503 0.0496
T
(1)
max

0.0503 0.0500 0.0501 0.0501 0.0502 0.0499 0.0503 0.0498

T
(2)
max

0.0501 0.0500 0.0499 0.0498 0.0500 0.0504 0.0503 0.0498
AD1 0.0510 0.0525 0.0525 0.0505 0.0536 0.0512 0.0512 0.0534
AD2 0.0462 0.0466 0.0465 0.0469 0.0486 0.0469 0.0484 0.0477

(10, 5) T1 0.0505 0.0507 0.0506 0.0504 0.0505 0.0506 0.0503 0.0508
T2 0.0504 0.0509 0.0505 0.0502 0.0505 0.0505 0.0501 0.0509
T3 0.0511 0.0509 0.0504 0.0505 0.0507 0.0507 0.0505 0.0506
T4 0.0508 0.0509 0.0507 0.0503 0.0505 0.0505 0.0506 0.0508
T
(1)
max

0.0501 0.0505 0.0501 0.0501 0.0501 0.0500 0.0497 0.0506

T
(2)
max

0.0504 0.0505 0.0504 0.0502 0.0501 0.0503 0.0502 0.0505
AD1 0.0513 0.0524 0.0522 0.0508 0.0532 0.0517 0.0510 0.0533
AD2 0.0471 0.0473 0.0471 0.0470 0.0487 0.0476 0.0488 0.0482

(100, 50) T1 0.0482 0.0482 0.0479 0.0479 0.0476 0.0481 0.0484 0.0478
T2 0.0480 0.0480 0.0478 0.0476 0.0476 0.0480 0.0486 0.0479
T3 0.0453 0.0453 0.0452 0.0452 0.0449 0.0454 0.0451 0.0449
T4 0.0455 0.0453 0.0449 0.0453 0.0449 0.0456 0.0450 0.0450
T
(1)
max

0.0500 0.0501 0.0500 0.0505 0.0500 0.0500 0.0502 0.0505

T
(2)
max

0.0499 0.0497 0.0503 0.0500 0.0498 0.0499 0.0498 0.0500
AD1 0.0483 0.0497 0.0493 0.0478 0.0476 0.0483 0.0490 0.0482
AD2 0.0456 0.0450 0.0447 0.0455 0.0449 0.0454 0.0458 0.0463

(100, 100) T1 0.0482 0.0483 0.0481 0.0478 0.0483 0.0484 0.0483 0.0486
T2 0.0485 0.0483 0.0483 0.0481 0.0484 0.0485 0.0484 0.0482
T3 0.0455 0.0454 0.0452 0.0454 0.0453 0.0452 0.0456 0.0451
T4 0.0454 0.0455 0.0454 0.0452 0.0452 0.0451 0.0455 0.0449
T
(1)
max

0.0501 0.0499 0.0497 0.0504 0.0496 0.0497 0.0499 0.0501

T
(2)
max

0.0500 0.0497 0.0496 0.0498 0.0495 0.0494 0.0495 0.0499
AD1 0.0484 0.0497 0.0495 0.0480 0.0483 0.0486 0.0485 0.0486
AD2 0.0454 0.0453 0.0449 0.0453 0.0453 0.0468 0.0474 0.0451

(200, 100) T1 0.0486 0.0485 0.0481 0.0484 0.0486 0.0485 0.0484 0.0482
T2 0.0486 0.0485 0.0481 0.0483 0.0485 0.0482 0.0483 0.0480
T3 0.0476 0.0474 0.0469 0.0467 0.0472 0.0471 0.0472 0.0472
T4 0.0474 0.0471 0.0468 0.0470 0.0471 0.0479 0.0471 0.0474
T
(1)
max

0.0500 0.0500 0.0498 0.0498 0.0504 0.0501 0.0501 0.0503

T
(2)
max

0.0498 0.0500 0.0499 0.0497 0.0499 0.0500 0.0496 0.0499
AD1 0.0485 0.0497 0.0492 0.0483 0.0486 0.0483 0.0486 0.0481
AD2 0.0473 0.0466 0.0463 0.0467 0.0472 0.0471 0.0482 0.0472
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Table 4  (continued)

(n1, n2) N(0, 1) GL(0, 1) GR(0, 1) U(0, 1) Exp(2) t2 C(0, 1) �2

3

(200, 200) T1 0.0483 0.0486 0.0485 0.0485 0.0485 0.0486 0.0485 0.0484
T2 0.0483 0.0487 0.0483 0.0483 0.0483 0.0488 0.0483 0.0483
T3 0.0478 0.0468 0.0476 0.0477 0.0475 0.0476 0.0473 0.0477
T4 0.0476 0.0472 0.0477 0.0474 0.0476 0.0476 0.0475 0.0478
T
(1)
max

0.0500 0.0502 0.0500 0.0499 0.0499 0.0498 0.0499 0.0500

T
(2)
max

0.0500 0.0499 0.0501 0.0501 0.0500 0.0497 0.0501 0.0497
AD1 0.0484 0.0497 0.0495 0.0484 0.0485 0.0487 0.0485 0.0484

AD2 0.0478 0.0467 0.0471 0.0475 0.0475 0.0486 0.0496 0.0477

LG(0, 1) LA(0, 1) Ga(5, 1) BE(2, 2) BE(0.5, 2) BE(2, 0.5) CN1(0, 1, 0, 9) CN2(1, 4,−1, 1)

(10, 10) T1 0.0495 0.0505 0.0502 0.0501 0.0500 0.0499 0.0501 0.0499
T2 0.0498 0.0502 0.0505 0.0501 0.0502 0.0499 0.0500 0.0499
T3 0.0501 0.0501 0.0498 0.0496 0.0501 0.0500 0.0504 0.0503
T4 0.0504 0.0500 0.0495 0.0500 0.0500 0.0497 0.0501 0.0509
T
(1)
max

0.0497 0.0503 0.0504 0.0501 0.0501 0.0501 0.0501 0.0499

T
(2)
max

0.0505 0.0500 0.0497 0.0496 0.0498 0.0497 0.0502 0.0506
AD1 0.0506 0.0516 0.0524 0.0506 0.0531 0.0530 0.0510 0.0524
AD2 0.0463 0.0457 0.0462 0.0466 0.0491 0.0487 0.0467 0.0469

(10, 5) T1 0.0509 0.0504 0.0507 0.0507 0.0511 0.0508 0.0507 0.0509
T2 0.0508 0.0502 0.0506 0.0508 0.0511 0.0505 0.0506 0.0511
T3 0.0504 0.0507 0.0504 0.0501 0.0503 0.0506 0.0506 0.0509
T4 0.0505 0.0506 0.0504 0.0507 0.0503 0.0507 0.0507 0.0507
T
(1)
max

0.0505 0.0499 0.0504 0.0504 0.0508 0.0503 0.0502 0.0506

T
(2)
max

0.0504 0.0504 0.0502 0.0504 0.0499 0.0502 0.0502 0.0506
AD1 0.0520 0.0516 0.0521 0.0513 0.0540 0.0536 0.0516 0.0527
AD2 0.0466 0.0465 0.0467 0.0468 0.0488 0.0492 0.0471 0.0476

(100, 50) T1 0.0479 0.0481 0.0480 0.0486 0.0480 0.0475 0.0479 0.0478
T2 0.0479 0.0479 0.0479 0.0485 0.0480 0.0475 0.0481 0.0479
T3 0.0452 0.0449 0.0449 0.0451 0.0459 0.0448 0.0450 0.0449
T4 0.0452 0.0450 0.0451 0.0453 0.0453 0.0451 0.0449 0.0450
T
(1)
max

0.0501 0.0501 0.0499 0.0504 0.0498 0.0499 0.0501 0.0501

T
(2)
max

0.0497 0.0497 0.0498 0.0498 0.0498 0.0498 0.0499 0.0494
AD1 0.0479 0.0482 0.0488 0.0485 0.0480 0.0475 0.0481 0.0487
AD2 0.0450 0.0446 0.0442 0.0453 0.0459 0.0451 0.0444 0.0463
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designed for general alternatives are also not very practical in these cases and future 
researches on this are highly warranted.

5.2  Power comparison

Kössler and Mukherjee (2020) and Mukherjee et  al. (2021) compared the powers 
of T1 and T3 with various existing statistics and they showed the validity of T1 or 
T3 for various distributions. Therefore, we focus on comparing the power of T1 , T2 , 
T3 , T4 , T

(1)
max

 , T(2)
max

 , AD1 , AD2 , the statistic of Boos (1986), abbreviated by BOOS , 
the Kolmogorov–Smirnov statistic (Gibbons & Chakraborti, 2021) (KS), the 
Cramér–von Mises statistic (Anderson, 1962) (CvM), and the Anderson–Darling 
statistic (Pettitt, 1976) (A–D), for (n1, n2) = (10, 10) and (10, 5) in this section. Note 
that the test statistic of Boos (1986) is a combination of several multisample linear 
rank statistics. It capitalizes the notion of the Legendre polynomials to construct a 
multisample statistic. Based on the first three Legendre polynomials, the test statistic 
of Boos (1986) is a test statistic for location, scale and skew parameters as follows:

Table 4  (continued)

LG(0, 1) LA(0, 1) Ga(5, 1) BE(2, 2) BE(0.5, 2) BE(2, 0.5) CN1(0, 1, 0, 9) CN2(1, 4,−1, 1)

(100, 100) T1 0.0480 0.0484 0.0482 0.0476 0.0482 0.0485 0.0485 0.0484
T2 0.0481 0.0483 0.0482 0.0478 0.0480 0.0484 0.0485 0.0484
T3 0.0455 0.0449 0.0451 0.0451 0.0455 0.0452 0.0456 0.0453
T4 0.0455 0.0454 0.0454 0.0448 0.0452 0.0453 0.0453 0.0456
T
(1)
max

0.0498 0.0498 0.0500 0.0496 0.0499 0.0497 0.0498 0.0500

T
(2)
max

0.0496 0.0500 0.0499 0.0491 0.0494 0.0492 0.0495 0.0497
AD1 0.0479 0.0484 0.0490 0.0476 0.0482 0.0484 0.0485 0.0490
AD2 0.0457 0.0455 0.0448 0.0450 0.0455 0.0453 0.0464 0.0477

(200, 100) T1 0.0479 0.0480 0.0488 0.0485 0.0479 0.0488 0.0484 0.0480
T2 0.0478 0.0482 0.0483 0.0489 0.0481 0.0486 0.0484 0.0481
T3 0.0470 0.0469 0.0471 0.0472 0.0474 0.0470 0.0476 0.0472
T4 0.0470 0.0472 0.0472 0.0470 0.0474 0.0470 0.0474 0.0470
T
(1)
max

0.0498 0.0497 0.0501 0.0498 0.0502 0.0500 0.0501 0.0496

T
(2)
max

0.0498 0.0494 0.0497 0.0496 0.0500 0.0497 0.0504 0.0494
AD1 0.0478 0.0481 0.0493 0.0487 0.0479 0.0486 0.0484 0.0483
AD2 0.0470 0.0472 0.0459 0.0471 0.0474 0.0470 0.0470 0.0490

(200, 200) T1 0.0484 0.0485 0.0485 0.0483 0.0482 0.0486 0.0482 0.0481
T2 0.0483 0.0483 0.0483 0.0483 0.0480 0.0482 0.0483 0.0484
T3 0.0477 0.0474 0.0473 0.0473 0.0473 0.0475 0.0478 0.0476
T4 0.0478 0.0474 0.0474 0.0475 0.0477 0.0477 0.0477 0.0475
T
(1)
max

0.0502 0.0494 0.0502 0.0501 0.0500 0.0499 0.0501 0.0499

T
(2)
max

0.0499 0.0494 0.0502 0.0500 0.0505 0.0497 0.0501 0.0497
AD1 0.0483 0.0484 0.0489 0.0484 0.0482 0.0482 0.0481 0.0482
AD2 0.0479 0.0475 0.0463 0.0472 0.0473 0.0477 0.0479 0.0504
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There are broadly seven possible types of shifts, three of which are an isolated shift 
in one of the three parameters, location, scale and shape; another three are mixed 
shifts involving any two out of three parameters, and a situation with a shift in all the 
three parameters. We use the normal and the logistic distributions as examples for 
symmetric distributions. In addition, we use left-skewed and right-skewed Gumbel 
distributions as examples of asymmetric distributions. The power patterns of five 
statistics under various alternatives are similar to these four distributions. Therefore, 
to save space, we only display the results of normal, logistic, left-skewed Gumbel 
and right-skewed Gumbel distribution. We show the results for the symmetric 
distributions and the asymmetric distributions in Tables 5, 6, 7, 8, respectively.

The statistics T1 and T2 (or T3 and T4 ) differ only by the components AS and 
S designed for deviations in shape parameters. Therefore, there is no difference in 
the powers of T1 , T2 , AD1 and T(1)

max
 (or T3 , T4 , AD2 and T(2)

max
 ) for the pure location 

or the pure scale parameter in symmetric distributions with equal sample sizes. 
From Tables 5, 6, 7 and 8, altogether T1 is better than T2 which is in accordance 
with the theory since test AS is optimal for Lehmann alternatives. Further, in 
most cases the power of AD1 ( AD2 ) is between that of T1 and T2 ( T3 and T4 ) as 
expected. Tests based on the Euclidean distance seem to be better than that based 
on the Mahalanobis distance. The winner of our study is test T(1)

max
 densely followed 

by T1 . The adaptive test AD1 is on the third place. The other tests are worse. The 
max-test includes the better of the two tests AS and S for the current situation. The 
Adaptive test might be considered as a competitor which might be improved by a 
possibly better selecting rule. Nevertheless, we suggest to apply the Max test T(1)

max
 

as it is simpler and better than the adaptive test in many situations. Furthermore, 
compared to the goodness-of-fit tests, in many cases, the power of T(1)

max
 is greater 

than or similar to the maximal power of the three tests CvM , KS , and A–D. In 
fact, we computed the ranks of the statistics according to the simulated power. For 
each alternative configuration, the worst power is assigned the rank one, that with 
the largest power is assigned the rank 12. Thus, the test statistics with the largest 
rank sums are the best. In Table 9, we list the rank sums of statistics over all 17 
considered alternatives for (n1, n2) = (10, 10) and (10, 5).

Table 9 shows that T(1)
max

 has the largest rank sum for normal, logistic, left-skewed 
Gumbel and right-skewed Gumbel distributions. Further, the rank sum of AD1 
( AD2 ) is between that of T1 and T2 ( T3 and T4).

BOOS =
12

n1n2(N + 1)

{
N∑
i=1

(
i −

N + 1

2

)
Vi

}2

+
180

n1n2(N + 1)(N2 − 4)

{
N∑
i=1

[(
i −

N + 1

2

)2

−
N2 − 1

12

]
Vi

}2

+
7

n1n2(N + 1)(N2 − 4)(N2 − 9)

{
N∑
i=1

[
20

(
i −

N + 1

2

)3

−(3N2 − 7)
(
i −

N + 1

2

)]
Vi

}2
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6  Illustration

In this section, we illustrate the proposed test with real data sets. We use the Aspar-
tate Aminotransferase (AST) and the �-glutamyl transpeptidase (GGT) blood con-
centration data. The data are derived from Ralf et al. (2020, https:// doi. org/ 10. 24432/ 
C5D612). Values of blood tests are essential in the study of non-invasive techniques. 
AST is involved in protein metabolism and serves as an indicator of liver function 
and heart muscle damage when measured. GGT plays a critical role in antioxidant 
stress and is an indicator of atherosclerosis, renal disorders, Parkinson’s disease, and 
multidrug resistance in cancer cells. Here, we examine whether AST and GGT in 
blood levels are comparable between patients with hepatitis and cirrhosis. Figures 3 
and 4 give an impression of their distributions. The figures show that our model is 
adequate here, differences in location or shape may occur.

We compute the p value based on 1,000,000 permutations. As before, we use 
the standardized form of the Wilcoxon, Ansari–Bradley, Anti-Savage, Savage 
and Lepage ( L ) tests to compute the p value of the isolated tests. We present the 
computational details of AST in Table 10.

From Table 10, we see that, for this example, W , T1 , AD1 , CvM , KS and A–D 
reject the null hypothesis at the level of 0.05, but the others do not. In more detail, 
from Fig. 3, the range of AST for hepatitis is similar to that of cirrhosis. In addition, 
the skewness of AST for hepatitis and cirrhosis are not much different. In fact, 
the skewness of AST for hepatitis and cirrhosis are 2.146 and 1.371, respectively. 
Therefore, in this case, it looks similar to the case (1, 0, 0) for GR(0, 1) in Table 8. 
From our simulation results, AD1, T

(1)
max

, CvM,KS and A–D are useful statistics for 
this case.

Additionally, we present the computational details of GGT in Table 11.
Table 11 reveals that W , AS , T1 , AD1 , CvM and KS reject the null hypothesis at the 

level of 0.1 in this example; the others do not. From Fig. 4, we see that the location 

Table 9  Rank sums of the 
twelve tests

Null distributions

N(0, 1) LG(0, 1) GL(0, 1) GR(0, 1)

T1 285 287 285 285
T2 235 236 254 233
T3 173 189 185 178
T4 227 219 219 211
AD1 257 256 263 260
AD2 205 215 211 208
T
(1)
max

306 298 317 295

T
(2)
max

146 157 143 154
BOOS 184 192 183 189
CvM 217 206 203 209
KS 156 150 133 177
A–D 261 247 256 252

https://doi.org/10.24432/C5D612
https://doi.org/10.24432/C5D612
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Fig. 3  Density estimation and box plot for AST

Fig. 4  Density estimation and box plot for GGT 
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and scale of GGT for hepatitis differ from those of cirrhosis. However, the skewness of 
GGT for hepatitis is similar to that of cirrhosis. In fact, the skewness of GGT for hepati-
tis and cirrhosis are 2.304 and 2.223, respectively. This case looks similar to the case of 
(1,−1, 0) for GR(0, 1) in Table 8.

Note that the presentation of p values is only for illustration of the considered tests. 
A clear decision based on all nine tests cannot be drawn. Since we suggested to apply 
test T(1)

max
 the null hypothesis is rejected for the AST data at the 0.1 level, but for the 

GGT data not.

7  Concluding remarks

For the past 50 years, there have been studies on simultaneously testing the two-sample 
location and the scale parameters. However, only a few pieces of literature consider 
simultaneous location, scale, and shape parameter testing. This paper introduced the 
distribution-free and robust adaptive tests AD1 and AD2 to test for the location, scale, 
or shape simultaneously. The test proposed by Kössler and Mukherjee (2020) is a 
combination of the standardized Wilcoxon, the standardized Ansari–Bradley and the 
standardized Anti-Savage tests.

In this paper, we additionally consider test statistics where the Anti-Savage test is 
replaced with the Savage test. We derive the asymptotic distribution of the proposed 
tests. In addition, we suggest a selection rule for an adaptive test. Moreover, we 
considered max-type tests. We investigate the behavior of the power of the tests for 
small sample sizes via Monte Carlo simulation. In average, the max-type test based on 
the Euclidean distances is shown to be the best. We also discussed specific data from 
biomedical experiments.

For future research, we may think of combining the Wilcoxon rank-sum test, the 
Ansari–Bradley test, the Anti-Savage test and the Savage test as the quad-aspect test 
statistics, as suggested by a referee. Another research topic may be, for example, a 
simple new study where the Ansari–Bradley test is replaced with another scale test. 
More generally, other rank scores for location and scales are also worth considering.

Appendix 1: Proof of Theorem 1

The statistic T2 can be written as a quadratic form of three independently and identically 
distributed standard normal variables, say Wi , i = 1, 2, 3 . Thus T2 =

∑3

i=1
�iW

2
i
∶= Q 

(say). Let tQ,1−� and tZ,1−� be the 1 − � quantiles; �Q and �Z be the means; and �Q and 
�Z be the standard deviations of the distribution of Q and Z, respectively. We apply 
the �2 approximation proposed by Liu et al. (2009) cf. also Yamaguchi and Murakami 
(2023). The eigenvalues of �S are

�1 = 1.9284, �2 = 1, �3 = 0.0716.
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The quadratic form Q is approximated by a �2 distribution suitably shifted and 
scaled. The degrees of freedom and the location and scale parameters are to be 
determined. Denote

In our case, we have

Following Liu et al. (2009), the df of Q are given by

and noncentrally parameter by zero. To determine location and scale, we note that

Let

be expectation and variance of Z, where Z ∼ �2
df

 and df = 1.5786 . For approximation 
of the quadratic form Q, we shall have

Then, the proof is completed.   ◻

Appendix 2: Proof of Theorem 2

This assertion follows immediately from Lemma 1 and from the decomposition

ck =

3∑
i=1

�k
i
, k = 1, 2, 3, 4, s2

1
=

c2
3

c3
2

, s2 =
c4

c2
2

.

s2
1
= 0.6335, and s2 = 0.6645, that is, s2

1
< s2.

df =
1

s2
1

= 1.5786,

�Q = E[Q] = c1 = 3, �Q =
√
V[Q] =

√
2c2 = 3.0737.

�Z = E[Z] = df = 1.5786, �Z =
√
V[Z] =

√
2df = 1.7769

Q − �Q

�Q
≈

Z − �Z

�Z

Q ≈
�Q

�Z
Z −

�Q

�Z
�Z + �Q

=

√
2c2√
2df

Z −

√
2c2√
2df

⋅ df + c1

=
√
c2s1Z −

√
c2

s1
+ c1

=
c3

c2
Z −

c2
2

c3
+ c1

≈ 1.7299Z + 0.2692.
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where Y ∼ N(0, I) .   ◻

Appendix 3: Proof of Theorem 3

Recall that T2 = TM2
T
�
M2

 . Then, we obtain the following lemma by replacing �j , 
j = 1, 2, 3 in Lemma 4.2 of Kössler and Mukherjee (2020) with � given in Lemma 
2.

Lemma 2 Under the sequence �
�
N
= �̄

�∕
√
N = (�̄�, �̄�, 𝛿)∕

√
N and with 

n1∕N → � ∈ (0, 1) as min(n1, n2) → ∞ the limiting distribution of T′
M2

 is N(��,�S) , 
with the asymptotic expectation � = (�W, �AB, �S) = (�W(f ), �AB(f ), �S(f )) with

Obviously, the asymptotic expectation can be written as

Recall �i are the eigenvalues of �S in (5). Let � = diag(�1, �2, �3) , and U be the 
matrix of eigenvectors of �S . With transformation

we convert the vector T′
M2

 to W ∼ N(�−
1

2U
�
�
�, I) . Therefore, we have for the 

expectation

Let us introduce

T4 = TM2
�
−1
M2
T
�
M2

= TM2
�
−1∕2

M2
�
−1∕2

M2
T
�
M2

= Y
�
Y,

𝛾W = 𝛾W(f ) = −
√
𝜆(1 − 𝜆) ⋅

�̄�dW,Location + �̄�dW, Scale + 𝛿dW, Lehmann√
IW

,

𝛾AB = 𝛾AB(f ) = −
√
𝜆(1 − 𝜆) ⋅

�̄�dAB, Location + �̄�dAB, Scale + 𝛿dAB, Lehmann√
IAB

,

𝛾S = 𝛾S(f ) = −
√
𝜆(1 − 𝜆) ⋅

�̄�dS, Location + �̄�dS, Scale + 𝛿dS, Lehmann√
IS

.

� = −
√
𝜆(1 − 𝜆)MS(f )�̄.

W = �
−

1

2U
�
T
�
M2
,

� ∶=

⎛
⎜⎜⎝

Δ1

Δ2

Δ3

⎞
⎟⎟⎠
= E[W] = �

−
1

2U
�
�
� = −

√
𝜆(1 − 𝜆)�−

1

2U
�
MS(f )�̄

= −
√
𝜆(1 − 𝜆)

⎛⎜⎜⎝

0.4750 − 0.1835 0.5092

0.3603 0.9328 0

−2.4650 0.9522 2.6425

⎞⎟⎟⎠
MS(f )

⎛⎜⎜⎝

�̄�

�̄�

𝛿

⎞⎟⎟⎠
.
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In addition, define that 

if  s2
1
(�) ≤ s2(�) , 

if  s2
1
(�) > s2(�) , 

  ◻

Appendix 4:  Proof of Theorem 4

Recall that TM2
=

�
W−E[W]√

V[W]
,
AB−E[AB]√

V[AB]
,
S−E[S]√

V[S]

�
 is the vector of the three components 

of T4 , � = E[TM2
] is its expectation vector, and �M2

 the correlation matrix of this 
vector. Recall that

This statistic is, under the alternative � , asymptotically �2 distributed with three 
degrees of freedom and noncentrality parameter

which can be seen from the decomposition

ck(�) =

3∑
i=1

�k
i
+ k

3∑
i=1

�k
i
Δ2

i
, s2

1
(�) =

c2
3
(�)

c3
2
(�)

, s2(�) =
c4(�)

c2
2
(�)

.

df (�) =
1

s2
1
(�)

,

�0(�) = c1(�) −
c2
2
(�)

c3(�)
,

�1(�) =
c3(�)

c2(�)
,

df �(�) = a2(�) − 2nc(�),

a(�) =
1

s1(�) −
�

s2
1
(�) − s2(�)

,

nc(�) = s2
1
(�)a3(�) − a2(�),

��
0
(�) = c1(�) − {df �(�) + nc(�)}

√
c2(�)

a(�)
,

��
1
(�) =

√
c2(�)

a(�)
.

T4 = TM2
�
−1
M2
T
�
M2
.

nc(f ) ∶= ��
−1
S
�
� = �(1 − �)��

MS(f )
�
�
−1
S
(f )MS(f )�,
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where Y = �
−1∕2

M2
T
�
M2

 and Y ∼ N(�
−1∕2

M2
�
�, I) .   ◻
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