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Abstract 

The retroreflectivity (RL) of road markings is important and should be inspected and maintained throughout their service life. The specifications are 

provided by European nations, the United States, and many other countries. Although acceptance tests ensure the good R L quality of newly placed road 

markings, the RL values of all in-service road markings are rather difficult to inspect by using currently available devices. This study, therefore, aims to 

determine the relationship between RL and corresponding image brightness of yellow road markings to evaluate their visibility by analyzing recorded images 

captured at night. An integrated algorithm was developed to analyze recorded images continuously for identifying road marking brightness 30 m away from 

a vehicle. Field experiments on three types of road marking materials were performed and repeated at four separate locations.  The findings provide a 

promising direction for using the image brightness of road markings to predict their field RL. However, limitations of this study are discussed and suggestions 

for future direction are presented. 
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1. Introduction 

Road markings play an important role in ensuring road safety. 

Therefore, the retroreflectivity (RL) and completeness of road 

markings should be maintained to an acceptable level throughout 

their entire service life to fulfill their functions. Related 

specifications are provided for newly painted or in-service road 

markings in most countries or regions. Although several materials, 

such as thermoplastic, paint, and preformed materials, are 

commonly used for road markings, they generally do not differ in 

RL quality requirements. 
RL indicates the coefficient of retroreflected luminance, which is 

measured in compliance with an international standard. The 

minimum accepted road marking reflectivity index increases with 

roadway speed limit to provide drivers with sufficient safety. The 

United States Manual on Uniform Traffic Control Devices 

(MUTCD) specifies the lowest maintained levels of dry nighttime 

visibility RL of 50 and 100 mcd/m2/lx for yellow road markings in 

roadways with speed limits of 35 to 50 and above 50 mph, 

respectively [1].  
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Other specifications or standards, such as the American Society 

of Testing Materials (ASTM) D7942, specifies that the RL 

requirement at 180 days after placement should be above 200 

mcd/m2/lx, and the maintenance minimum RL should be no less 

than 125 mcd/m2/lx [2]. The Central, East and West Nippon 

Expressway Company Limited and the Hong Kong Highways 

Department set the minimum RL values of yellow road markings 

to be 80 mcd/m2/lx [3,4]. European nations also laid down 

specifications CEN 1436 for yellow road marking RL, with the 

minimum levels of R1 (the lowest requirement) and R4 (the 

highest standard) set at 80 and 200 mcd/m2/lx, respectively [5]. 

Taiwan’s specification, CNS 15834, of road marking follows the 

EN1436; thus, the specified RL numbers of yellow marking R1 to 

R4 of both standards are exactly the same [6]. Although these 

mentioned specifications also indicate the required RL for white 

road markings, only yellow road markings are considered in the 

current study due to research constraints. 

Devices have been developed to measure road marking RL, and 

the commonly used measuring devices include two general types: 

handheld and mobile retroreflectometers. The former is usually 

handled manually to measure road marking RL from one location 

to another or mounted with moving wheels and pushed manually 

at a walking speed. The latter is mounted at one side of a vehicle, 

and the measurement is conducted while the vehicle runs up to 120 

km/h. Fig. 1 illustrates the various types of road marking 

retroreflectometers. Although the efficiency of the mobile type is 

much higher than that of the handheld type in terms of measuring 

speed,  the  high  cost  of  the mobile type limits its wide adoption.
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Fig. 1. Various types of retroreflectometers (a) handheld, (b) push 

type, and (c) vehicle mounted. 

Beside the instrumental measurements, the MUTCD suggests 

that the trained inspectors can provide stable evaluation through 

visual inspection; however, the training procedures and inspection 

vehicles should be standardized [1]. Benz et al. also stated that 

manual visual inspection of road marking retroreflectivity is a 

highly efficient, low cost, no device needed, and low traffic impact 

method [7]. However, the variation among subjective judgements 

may induce the inaccurate results. 

In 2006, Horberry et al. applied driving simulation analysis to 

study the possible safety benefits by enhancing road markings with 

large glass beads. It was found that the enhanced roadway 

markings tend to help drivers receive better marking’s visibility 

and keep the vehicle within the traffic lane [8]. Autonomous 

vehicle technology has rapidly developed in recent years with 

corresponding progress in image processing and machine learning 

algorithms, which apply to automatic road marking recognition. 

Therefore, the visibility of road marking has become more and 

more important for the autonomous vehicle industry [9]. 

Considering the possible positive correlation between the concepts 

of road marking RL and image characteristics, this study aims to 

study the feasibility of using road marking image brightness 

captured from video recording devices to analyze RL and increase 

the efficiency of the RL evaluating of in-service road markings. 

2. Data acquisition systems  

In this study, two types of data were collected for algorithm 

development. The following sections describe the data features 

and corresponding devices adopted for data acquisition. 

2.1. Road marking retroreflectivity, RL 

The first type of data included RL, which were collected by 

devices manufactured in compliance with international 

specifications/standards, such as CEN 1436 (RL) [5], ASTM 

E1710 (RL) [10], and ASTM E2177 (RL wet) [11]. Fig. 2 illustrates 

the standard geometry of RL measurement. The simulation 

assumes that a driver’s eye height and vehicle headlight height are 

1.2 m and 0.65 m above the ground, respectively. The regulated 

visibility of surface road marking at 30 m in front of a vehicle 

should be considered. Therefore, the geometric locations among 

the driver, headlights, and road marking create a driver’s 

observation angle of 2.29° and an illumination angle of 1.24°. The 

coefficient of retroreflected luminance is calculated on the basis of 

the given circumstances with vehicle headlight only. Various 

brands of RL-measuring devices have been designed, 

manufactured, and sold commercially. In the current study, a 

portable handheld device that meets the specifications of CEN 

1436 (RL) [5], ASTM E1710 (RL) [10], and ASTM E2177 (RL wet) 

[11] was adopted for RL data collection. Table 1 provides the 

general technical specifications of the device. 

2.2. Road marking images 

The second type of data included road marking images, which 

were collected using video cameras. Imaging techniques were 

applied for road marking recognition, brightness detection, and 

distance measurement.  

2.2.1. Image processing algorithm 

Methodologies for image recognition and identification have 

been developed for more than three decades, and the algorithms 

are continuously improved over the years. In general, two major 

types of image processing algorithms are used, namely, traditional 

and machine learning methods. The three typical traditional image 

processing algorithms are threshold segmentation, edge detection, 

and regional growth method. Studies in various fields have applied 

one or more of these algorithms to solve research problems 

successfully. The traditional methods are typically used to identify 

and recognize a single object in a given region. Targeting objects 

under certain circumstances, such as those with sizes and/or angles 

that vary significantly, and the simultaneous targeting of multiple 

types of objects are both considered relatively difficult. However, 

these problems have been overcome in recent years, given the 

rapid improvements in machine learning techniques.  

Convolutional neural networks (CNNs) have become the 

standard for image classification. Several CNNs, such as regional 

CNN (R-CNN)  [12],  fast R-CNN  [13],  faster R-CNN  [14],  and  

 

Fig. 2. Standard 30-Meter Geometry of RL. 

Table 1 

General specifications of portable handheld retroreflectometers. 

Standards EN 1436 (RL), ASTM E1710(RL),  

ASTM E2177 (RL

 

wet) 
Observation angle 2.29° 

Illumination angle RL 1.24° 

Equivalent observation 

distance 

30 m 

Measuring area (W × L) 52 mm × 218 mm (2.05" × 8.58") 

Measuring range (RL) 0 – 4,000 mcd/m2/lx 

Measuring time (RL) ≈ 2 s 

Operating temperature −10 °C ± 50 °C (14 °F – 122 °F) 

(a) (b) 

(c) 
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mask R-CNN [15], have been developed. Mask R-CNN, an 

updated CNN developed by He et al. in 2017, has an algorithm that 

is based on faster R-CNN, but it creates an additional CNN to form 

a mask for identifying individual targeted objects. During the 

training process, the mask of the least systemic losses is selected 

to obtain the best results [15]. In this study, mask R-CNN was 

adopted for processing road marking images. 

2.2.2. Distance measurement algorithm 

Video images have been used for decades for distance detection. 

In a past study, the images from a single camera were used to 

analyze 3-dimensional information; however, the data obtained did 

not satisfy the accuracy of computing distance [16]. Pollefeys et al. 

highlighted that a single camera image yields a relative scale factor 

of distance rather than the actual distance [17]. Olaverri-Monreal 

et al. used two nearby cameras to capture an image of the same 

object and compute the distance through triangulation [18].  

With a stereo camera, two two-dimensional (2D) photos can be 

reconstructed into a three-dimensional (3D) photo. The distance 

calculated between two cameras and an object is much more 

accurate than that obtained from a single camera. In this study, a 

dual-camera Raspberry Pi module was adopted and installed on a 

vehicle’s rearview mirror to capture road marking images. The 

distance measurement theory by dual-camera images proposed by 

Olaverri-Monreal [18] is applied to calculate the distance between 

the cameras and the target road marking. Only the area where the 

images of both cameras overlap can be calculated. The distance 

between a vehicle and any specific road marking point within an 

overlapping area was computed by triangulation analysis using Eq. 

(1) [18]. Fig. 3 displays a close-up picture of the dual-camera 

Raspberry Pi module, and Table 2 provides basic information on 

this module. 

𝐷𝑜𝑏𝑗𝑒𝑐𝑡  =
𝐷𝑐𝑎𝑚𝑒𝑟𝑎𝑠×𝑃𝑥ℎ

2 tan(
ϕ0 

2
 )×(𝑃𝑥𝐿−𝑃𝑥𝑅)

               (1) 

where, Dobject : distance between the cameras and the object; 

Dcameras: distance between dual cameras; Pxh: horizontal pixel 

resolution (pixel number); PxL: pixel number at the left picture; 

PxR: pixel number at the right picture; ϕ0: horizontal field of view 

angle. 

In our system, the distance between cameras (Dcameras) is 6 cm, 

the horizontal field of view (ϕ0) is 60°, the horizontal pixel 

resolution (Pxh) is 1280, and the horizontal pixel difference to the 

same object in both pictures in pixels is PxL−PxR. 

2.3. Integrated algorithm for the road marking image analysis 

Fig. 4 displays a flowchart of an integrated algorithm for road 

marking image processing. A preprocessing step was conducted 

prior to the mark R-CNN analysis. The pixel intensity of raw 

images was preprocessed via gamma correction, as shown in Eq. 

(2). This step aimed to compensate for human sensitivity to visual  

 

Fig. 3. Actual photo of the dual-lens module. 

Table 2 

Detailed parameters of the dual-lens module. 

Model no. HBV-1780-2 S2.0 

Model size 80 mm×22 mm×25 mm 

(distance between cameras is 6 cm) 

Sensor OV9732 

Interface MINI USB 2.0 

Display field of 

view (DFOV) 

60° 

Video format MJPG 

Output format 2560×720 (default)  

30 fps 

1280×720  

30 fps 

1280×480 30 fps 640×480 30 fps 

640×240 30 fps 320×240 30 fps 

Focus Fixed focus 

 

Fig. 4. Flowchart of the integrated algorithm. 

brightness and grey level, which is typically nonlinear and close to 

gamma distribution. 

𝑉𝑜𝑢𝑡 = 𝐴𝑉𝑖𝑛
𝛾                (2) 

where, Vout: output image pixel intensity after gamma correction; 

Vin: input image pixel intensity before gamma correction; A: 

constant coefficient; : selected value. 

In this study, thousands of road marking images were captured 

in a totally dark environment with only vehicle headlights. This 

experiment was conducted at the National Taiwan University Palm 

Boulevard, a four-lane undivided straight road of approximately 

450 m. The center yellow road markings were reconstructed with 

three types of materials. Data collection was executed after 

midnight, and all streetlights were turned off. 

Fig. 5(a) and 5(c) show the typical raw image collected in this 

study and its corresponding pixel intensity histogram distributions 

and cumulative frequencies. As can be seen, the pixel intensity 

histogram concentrates on a bandwidth between 0.0 and 0.2. This 

result commonly occurs in all of the raw images acquired in this 

study. This bandwidth is too narrow to sufficiently identify road 

marking images from the dark background. Therefore, Eq. (2) was 

applied to the raw images, and the value was tested from 0.1 to 

1.0 at an increment interval of 0.1 to investigate the optimum pixel 

intensity distribution for further study.  
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Fig. 5. Pixel intensity histogram distributions and cumulative frequencies (a) original camera image, (b) gamma-corrected camera image, 

(c) original image intensity histogram, and (d) gamma-corrected image intensity histogram.

The results indicate that  = 0.5 provides the best enhancement of 

pixel intensity. As shown in Fig. 5(b) and 5(d), the distinguishable 

pixel intensity distribution increases the efficiency of the following 

analysis steps. 

2.3.1. Mask R-CNN.  

After gamma correction was applied on each raw image, mask 

R-CNN was performed for image processing. Mask R-CNN is the 

latest development of CNN. It uses R-CNN as the base and adds 

object masks to image processing to increase the efficiency and 

accuracy of target image recognition and identification. Images 

with or without road markings are processed and classified into 

two groups. In this study, a total of 6415 images captured during 

the experiment, and Table 3 shows the numbers of images used in 

the training and testing. A confusion matrix [19,20] was adopted 

to evaluate the precision of analyzed results. Precision is defined 

in Eq. (3), and the terms of TP and FP are defined below. As 

indicated by the results, the images with and without road 

markings are successfully identified with precision rates of 83% 

and 92%, respectively. The overall precision rate is 87%. In 

general, the mask R-CNN method provides good results for 

identifying road marking images, which are retained for further 

analysis. 

               (3) 

In the equation above, TP is true positive, and FP is false positive. 

2.3.2. Brightness and distance detection 

For the image identification, the brightness levels of the 

suspected road marking pixels were investigated. Fig. 6 displays 

the brightness histogram of a typical road marking image. Only the 

pixels of road marking area are retained after applying the mask 

R-CNN on the raw image; thus, more than 70% of the pixel 

brightness intensity is concentrated between 200 and 225. The 

average brightness of the retained pixels was computed to 

represent the specific road marking brightness. The distance 

between the vehicle and the farthest point within the mask was then 

calculated using the distance measurement algorithm and Eq. (1). 

Therefore, the distance and brightness of each road marking image 

were paired for further analysis. It should be mentioned that the 

calculated brightness is based on the experimental device used in 

this study. A variety of factors, such as brand and model of the 

dual-lens module or exposure time setting, may affect the capture 

image brightness. Further study should focus on how these factors 

will affect the results. However, all parameters are fixed in the 

following analyses. 

Table 3 

Train and test dataset used in mask R-CNN. 

Type With markings (frames) No markings (frames) Total 

train 4907 1271 6178 

test 206 31 237 

 

Fig. 6. Brightness histogram intensity of a typical road marking 

image. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

(a) (b) 

(c) (d) 
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3. Field experiments and data analysis 

The field experiments were conducted along the 450 m-long 

National Taiwan University Palm Boulevard. All the experiments 

were executed after midnight with the streetlights off and a specific 

traffic control condition to study the relationship between the road 

markings' RL and their corresponding image brightness levels. 

Thus, test vehicle headlights were the only light source for 

illuminating road markings as the video images were captured.  

Three types of road marking materials were selected and placed 

for the field experiments. Two of which, A and B, were 

thermoplastic materials with different types of beads and anti-skid 

additives, and C was a preformed pavement marking tape. The 

major difference between the beads used in types A and B was the 

reflective index (RI). Type A includes mixed conventional beads 

(RI = 1.5) and high-RI beads (RI = 1.64) internally and high-RI 

external drop-off beads. Type B is a widely used commercial 

product that uses conventional beads internally and externally. Fig. 

7 shows the construction of thermoplastic type and preformed tape. 

Table 4 provides the specifications of the three materials. Every 

type of road marking was placed at four separate locations along 

the test road, and the RL tests were conducted using the handheld 

retroreflectometer for 46 test points.  

During the field experiment, videos were recorded by a dual-lens 

camera in totally dark environments with only vehicle headlights. 

The researchers videotaped the setup while a vehicle was moving 

from 150 m away toward each type of road marking at an average 

running speed of 40 km/h (25 mi/h, 11.1 m/s). The camera taping 

frequency was 30 fps. Thus, each frame covering range had 

approximately 37 cm variation. For every test run, all placed road 

markings were covered with black tapes, except for the targeted 

one. 

Given that the testing runs always started far away from the 

target, the first few hundreds of picture frames did not include any 

road marking image. When the vehicle gradually approached the 

target, the frames then started to include the road marking images 

 

Fig. 7. Field construction of (a) thermoplastic road markings and 

(b) preformed pavement marking tapes. 

from far to near. Fig. 8 shows the typical analyzed results of the 

relationship between paired distance and brightness of one driving 

test. As indicated by the results, the average brightness of the road 

marking pixels tends to increase as the vehicle gets closer to the 

analyzed target.  

Three types of road markings were tested separately, and each 

type was tested in four placed locations, resulting in 12 test runs. 

Similar to the data in Fig. 8, the relationship between paired 

distance and brightness resulting from the 12 test runs clearly show 

that the brightness of the road markings increases as the vehicle 

gets closer to the analyzed target. This finding is consistent 

regardless of the road marking type.  

Meanwhile, Type C has the highest brightness at any giving 

distance, indicating that it can be seen more easily at night than the 

two other types. The sequence of brightness of the three road 

marking types is C > A > B. Type B which uses conventional beads 

internally and externally has the lowest performance, in terms of 

image brightness and measured RL, given that the conventional 

beads have low RI. It should be mentioned that the RL requirement 

is not yet regulated in existing road marking acceptance 

specifications in Taiwan, so type B occupies the most market share 

for its low cost. In order to analyze the correlation between image 

brightness and road marking RL, the brightness values at a distance 

of 30 m of each test, the same distance applied to determine the RL 

simulated by the retroreflectometer, are marked for further analysis. 

The RL measurements were conducted simultaneously with 

image tests. Table 5 provides the paired measured RL and image 

brightness values of the three types of test road markings placed at 

four locations. The values of brightness represent the images 

collected by the dual-lens camera and analyzed by the developed 

algorithm 30 m ahead of the test vehicle. Once again, Type C 

provides the highest RL and image brightness. 

From the 12 sets of RL measurements and image brightness 

values, data can be easily clustered into three road marking groups, 

 

Fig. 8. Relationship between paired distance and brightness of one 

typical example. 

Table 4 

Three types of road marking materials used in the field study. 

Type Internal additives External drop-off 

Conventional beads* High reflective index beads** High reflective index beads** Quartz sand Conventional beads* 

A 30% 

30% 

10% 160 g/m2 160 g/m2 N/A 

B N/A N/A N/A 160 g/m2  

C Preformed pavement marking tape 
* Regular beads: AASHTO M247-13 type 1, reflective index: RI=1.5 [21]. 

** High reflective index beads: AASHTI M247-13 type, reflective index: RI=1.64 [21].
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Table 5 

Paired RL and image brightness of types A, B, and C road markings. 

Road marking type 

A B C 

RL (mcd/m2/lx) Brightness RL (mcd/m2/lx) Brightness RL (mcd/m2/lx) Brightness 

141 126 50 67 310 166 

118 129 38 69 321 154 

139 121 50 72 318 150 

119 130 63 66 309 171 

A, B, and C, as shown in Fig. 9. This result also indicates that the 

performance of each road marking in terms of RL is very consistent 

at four locations. An exponential regression equation is shown in 

Eq. (4). The correlation coefficient of this non-linear equation is 

0.93, which provides a relatively good explanation between these 

two variables. The corresponding brightness values that match the 

five classes of RL, which we determined using Eq. (4), are 

presented in Table 6. For example, a yellow road marking image 

with a brightness of ≥95 indicates a corresponding RL of ≥80 

mcd/m2/lx. 

𝑌 = 12.9315𝑒0.0192𝑋                (4) 

In the equation above, Y: predicted road marking RL, mcd/m2/lx; 

X: computed road marking brightness. 

4. Discussions and conclusions 

The RL of road markings is a key parameter that indicates their 

visibility at dry nighttime, particularly when no other light except 

vehicle   headlights   resource   are   available.   The   construction 

 

Fig. 9. Relationship between yellow road marking brightness and 

RL. 

Table 6 

Corresponding retroreflectivity classes of EN 1436/CNS15834 

and yellow marking image brightness. 

EN 1436/ CNS 15834  Marking image 

brightness Class Yellow marking RL (mcd/m2/lx) 

R0 No performance determined < 95 

R1 ≥ 80 ≥ 95 

R2 - - 

R3 ≥ 150 ≥ 130 

R4 ≥ 200 ≥ 145 

acceptance specifications of required RL ensure the good quality of 

newly placed road markings. However, the entire population of in-

service road markings is rather difficult to inspect by using 

currently available devices.  

This study aims to establish a reliable relationship between RL 

and the image brightness of a road marking so that the latter can 

be used as an efficient indicator to screen the RL of in-service road 

network markings. The field experiments were conducted to 

collect road marking images at night using the dual-lens camera. 

The integrated algorithm was developed for analyzing the image 

brightness of the road markings at a distance 30 m ahead of a 

vehicle being driven. The designated 30 m is exactly the same 

distance as the simulated RL measured by certified devices.  

The results show a relatively high correlation between these two 

parameters, providing a promising research direction of using road 

marking image brightness to forecast the field RL. However, given 

the constraints of the research scale, several restrictions and 

limitations exist in the study, which require further investigation. 

These are listed below.  

1. Additional types of road marking materials should be 

included. In this study, only three types of yellow road 

markings were used. Although they were easily 

distinguishable, additional types of road markings can 

better provide further information to regression curves in 

terms of image brightness and RL. Furthermore, white lane 

line road markings should also be analyzed in future studies. 

2. A testing vehicle was used to capture the road marking 

images during the field experiments. The analyzed results 

were based on the given vehicle’s headlights luminance. 

Given that the luminance of vehicle headlights varies by 

vehicle brand and model, the illumination of road markings 

may thus differ with various vehicles. Therefore, further 

studies should focus on how headlight luminance affects 

image brightness and distance relation and the consequent 

relationship between road marking RL and image 

brightness. 

3. A dual-lens camera with 6 cm lateral distance between 

lenses was adopted for road marking image recording. 

Theoretically, the lateral distance may influence the 

accuracy of longitudinal distance calculation of an image. 

In addition, the quality and image exposure condition of 

dual-lens may affect the calculated brightness. It is 

suggested that to use a wide dual-lens camera and specify 

the required specifications for image collection in the 

future study.  
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