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Abstract
The ecological transition calls for an increasing need for local climate services. A fine 
spatial characterization of atmospheric relevant quantities (temperature, precipitation, hu-
midity, wind, solar radiation, etc.) at long-term climatological scales is typically based on 
observational networks run by public entities such as the European Union (e.g. Copernicus 
services) and national and regional Agencies (e.g. National Met Office, Hydrographic Of-
fices). The aim of this work is to verify if the density of these networks is adequate to 
represent the variability over the territory, with particular regard to a complex terrain area 
such as the Aterno river Valley in Abruzzo, Central Italy. We use a combination of public 
networks and the available dense amateur network of weather stations. We subject the 
database to careful data quality check both in terms of temporal and spatial anomalies. We 
found that the public network is generally adequate to represent the spatial and temporal 
variability over the area in terms of temperature and precipitation, but this is not the case 
for wind and relative humidity for the lack of sensors. We suggest that an integration of 
public and non-institutional observational networks is desirable for a finer climatological 
characterization of a complex territory and for allowing the description of more phenom-
ena, in order to better inform adaptation measures with respect to climate change.

1 Introduction

According to the latest IPCC report (IPCC 2021), the Earth’s climate system is undergoing 
a warming that is unprecedented at least in the last millennia in terms of rapidity and extent. 
The human contribution to this global change is unequivocal and it is due to artificially 
increased greenhouse gas concentrations in the atmosphere. Since the warming and the 
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associated hazardous effects are projected to continue in the upcoming decades, adaptation 
actions are deemed as necessary to reduce exposure and vulnerability to climate change 
(IPCC 2022). There is thus a growing interest in high-resolution climate monitoring and 
modelling in order to provide suitable local information to the adaptation planning both in 
urban and rural areas (Bhatta et al. 2020; Eingrüber et al. 2022; Marchi et al. 2020). In this 
context, there is an emerging use of quality data from densely distributed amateur weather 
stations to complement the usually sparse institutional networks (de Vos et al. 2018; Frustaci 
et al. 2022; Giazzi et al. 2022). Here we explore the potential added value of this kind of 
combined network in the Aterno Valley in Central Italy.

A climate adaptation strategy includes four main sequential elements: risk assessment, 
sectorial impact, economic assessment, decision support systems (European Commission 
et al., 2021). The results from each phase feeds the following and the quality of the input 
data are crucial. The first stage of the process, risk assessment, is where the contribution 
of climate data is more relevant. The main climate-related risks considered are heatwaves 
(Arbuthnott et al. 2016), droughts (Hagenlocher et al. 2019), forest fires (Moritz et al. 2014), 
desertification, heavy precipitation (Wheaton and Kulshreshtha 2017), windstorms, hail-
storms, floods (Wilby and Keenan 2012), landslides (Gariano and Guzzetti 2016), sea level 
rise (Azevedo De Almeida and Mostafavi, 2016; Graham et al. 2013). The sectors for which 
the impact may be relevant include water supply (Short et al. 2012; Wheeler and von Braun 
2013), agriculture (Olesen and Bindi 2002; Porter and Semenov 2005), forestry (Kolström 
et al. 2011), energy (Varianou Mikellidou et al. 2018; Viguié et al. 2021), tourism (Soon-
tiens-Olsen et al. 2023; Steiger et al. 2023), urban areas (Hunt and Watkiss 2011), cultural 
heritage (Tansey 2015; Xia et al. 2012), critical infrastructures (Wells et al. 2022), transport 
(Gössling et al. 2023) and health (Levy et al. 2016; Luber and McGeehin 2008; Tirado et 
al. 2010).

In this context, there is a growing need for data quality assurance (Acosta-Morel et al. 
2021; Giazzi et al. 2022; Xiong et al. 2022) and high temporal/spatial resolution of climate 
data (Amengual et al. 2012; Berne et al. 2004; Bruni et al. 2015; Cheng et al. 2012; Cunsolo 
Willox et al. 2012; de Vos et al. 2018; Frustaci et al. 2022). This is especially true recogniz-
ing the importance of citizen involvement and capacity building in the adaptation planning 
development and application (Chapman et al. 2017; Cornes et al. 2020; de Vos et al. 2017; 
Gharesifard et al. 2017; Meier et al. 2017; Mitheu et al. 2022; Runkle et al. 2018; Yvonne et 
al. 2020). The advent of Internet-of-Things (IoT) technologies is also a clear call for more 
accurate and local data (Gharesifard and Wehn 2016; Kamel Boulos et al. 2011; Mohamed 
Firdhous and Sudantha, 2020; Ren et al. 2021). Indeed, the added value of amateur weather 
observational networks to institutional networks is an emerging element aimed at improving 
the density and the local representativeness of climate data.

In this work, we test the added value of amateur weather network in the Aterno Valley 
of the Central Italian Apennines. In the recent decades, mean temperatures in the region are 
rising at a rate of about 4 °C/century (Curci et al. 2021; Scorzini et al. 2018) and precipita-
tion shows a tendency to decrease, especially in winter (Scorzini and Leopardi 2019). This 
broad information should be specialized in the local context using more local dense local 
observations, which are expected to improve the accuracy of climate information, especially 
for precipitation (Di Luca et al. 2012).

In the manuscript, we first illustrate the data sources and the methods used for quality 
assurance. We then show sample analysis of the weather variables considered (temperature, 
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humidity, wind and precipitation) in order to check which advantages could be gained when 
the dataset is hypothetically used for climate risk assessment.

2 Methods

2.1 Location and data

The area of interest selected for this work is a mountain valley in central Italy around the 
city of L’Aquila (Fig. 1). The valley is crossed by the Aterno river and has a floor at about 
650–750 m a.s.l. The valley is confined by two mountain ranges, the Gran Sasso massif to 
the North-East having average altitude of about 2000 m a.s.l. and the Sirente-Velino massif 
to the South-West of about 1500 m a.s.l. The total area in the figure is about 50 × 50 or 2500 
km2, and the most urbanized part of the valley axis, centered on the city of L’Aquila, is about 
20 km long and 4 km wide, thus with an approximate extent of 80 km2.

We use four data sources of observations from ground-based automated weather stations 
(Table 1; Fig. 1). The first two, which we term “institutional” in this work, are run by the 
public office for the hydrological service of the Abruzzo Region (19 stations) and by the 
University of L’Aquila (1 station). The former dataset is the same used at daily frequency 
in past work that included quality check and homogenization in order to be suitable for 
long-term climate analysis (Curci et al. 2021). The other two are from “non-institutional” 
networks, namely the amateur association MeteoAquilano (11 stations) and the private 
foundation Osservatorio Milano Duomo (1 station).

The total number of institutional stations is 20 and those non-institutional is 12 over the 
full area of interest of Fig. 1: the addition of non-institutional stations implies an increase 
of about 50% of the sites, which translates in an average station density increased from 
0.84 ha− 1 to 1.3 ha− 1. Considering the main urban area around the city of L’Aquila, the 
number of stations increases from 5 to 15 (+ 200%), when adding the non-institutional sites, 
yielding an average station density passing from 6.2 ha− 1 to 18.7 ha− 1. Indeed, most non-
institutional stations (10 out of 12) are located in the main urban area.

All 32 stations are equipped with a thermometer and a pluviometer (12 of which non-
institutional), 18 with an anemometer (12 non-institutional), 20 with a hygrometer (12 non-
institutional), only 2 with pyranometer (both institutional). In addition to the augmented 
station density, the non-institutional network promises to significantly improve the monitor-
ing of wind and humidity conditions in the valley.

We use three years of data,, from 2017 to 2019.

2.2 Quality checks

The raw data are reported and stored with variable time averages, spanning from 1 min to 
1 h. We average all data over 1-hour time slots for subsequent analysis. In general, quality 
check procedures are divided in two main categories: the first is applied to single stations 
and checks the presence of unphysical values and of anomalous temporal sequences (e.g. 
many repeated values, abrupt jumps, etc.), while the second is applied to groups of nearby 
stations in order to test the spatial consistency of the data.
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The data from the Abruzzo Region database (ABR) were previously screened and 
homogenized on a daily basis according to international standards as reported in Curci et al. 
(2021): we exclude from the analysis the data of those days that were flagged as problematic 
for the stations of the ABR network.

Table 1 List of the sites of weather stations used in this study. The owner short names denote the hydrological 
office of the Abruzzo Region (ABR), University of L’Aquila (UNI), the amateur association MeteoAquilano 
(MAQ), the private foundation Osservatorio Milano Duomo (OMD). The first two are classified as “institu-
tional” (type “I”), the second two “non-institutional” (type “N”). The last five columns report the presence 
(X) or absence (-) of sensors of temperature (Temp), precipitation (Prec), wind speed and direction (Wind), 
relative humidity (Hum), and global downward solar radiation (SRad).
N. Site Lon Lat Alt 

(m 
a.s.l.)

Owner Type Temp Prec Wind Hum SRad

1 ARSITA 13.7981 42.5 586 ABR I X X - - -
2 Assergi 13.5072 42.4134 880 MAQ N X X X X -
3 ASSERGI 13.5181 42.4197 992 ABR I X X - - -
4 ATERNO A 

FAGNANO
13.5672 42.2481 560 ABR I X X - - -

5 BARISCIANO 13.5739 42.3236 978 ABR I X X - - -
6 CAMPO 

IMPERATORE
13.5578 42.4439 2125 ABR I X X X X -

7 CASTEL DEL 
MONTE

13.7236 42.3669 1346 ABR I X X - - -

8 CELANO 13.5369 42.0739 718 ABR I X X X X -
9 Civita di Bagno 13.4411 42.3091 637 MAQ N X X X X -
10 COLLARMELE 13.6258 42.06 836 ABR I X X X - -
11 Colle di Preturo 13.2984 42.3886 680 MAQ N X X X X -
12 Colle di Roio 13.346 42.3409 800 MAQ N X X X X -
13 Collebrincioni 13.4154 42.3977 1090 MAQ N X X X X -
14 COLLEPIETRO 13.78 42.2211 841 ABR I X X X - -
15 COPPITO 13.3492 42.3689 685 UNI I X X X X X
16 GORIANO SICOLI 13.7989 42.0822 958 ABR I X X - - -
17 Grotte di Stiffe 13.5435 42.2604 557 MAQ N X X X X -
18 L’AQUILA 13.4286 42.3342 595 ABR I X X X X X
19 L’Aquila centro 13.3999 42.3556 735 OMD N X X X X -
20 L’AQUILA CF 13.3744 42.3567 650 ABR I X X - X -
21 L’Aquila Torretta 13.4204 42.3431 690 MAQ N X X X X -
22 MONTEREALE 13.2414 42.5261 913 ABR I X X - - -
23 OVINDOLI 13.5131 42.155 1371 ABR I X X - - -
24 Paganica 13.4685 42.353 645 MAQ N X X X X -
25 PIZZOLI 13.3175 42.4286 765 ABR I X X - - -
26 Pizzoli Cermone 13.3052 42.4114 679 MAQ N X X X X -
27 Poggio Picenze 13.5145 42.3012 570 MAQ N X X X X -
28 Scoppito 13.2659 42.364 720 MAQ N X X X X -
29 SCOPPITO 13.255 42.3722 780 ABR I X X - X -
30 TAGLIACOZZO 13.2653 42.0678 735 ABR I X X - X -
31 TORNIMPARTE 13.3017 42.2886 873 ABR I X X - X -
32 VILLA S.LUCIA 13.7794 42.3336 895 ABR I X X - - -
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For hourly or subhourly timeseries of weather variables, several authors suggested QC 
procedures which are similar to those applied to daily data, but that account for the gener-
ally higher variability of subdaily data (Cerlini et al. 2020; DeGaetano 1997; Estévez et al. 
2011; Giazzi et al. 2022; Lewis et al. 2021). For the detection of temporal (single-station) 
and spatial (stations intercomparison) outliers, we adopt a control method similar to that 
suggested by Giazzi et al. (2022), which is based on the check of the distribution of the 
anomalies (z-score) of the timeseries. The main reason for this choice is to keep the number 
of control parameters and thresholds at a minimum.

The first check on hourly data is for impossible values. Temperatures lower than − 40 °C 
and higher than 50 °C are excluded. Negative values of precipitation, wind speed and solar 
radiation are also excluded. Wind direction is checked to be in the range 0-360° and records 
with negative wind speed are removed. Relative humidity is retained only in the range 
5-100%.

The second check is on abrupt jumps in consecutive values. We found that only tempera-
ture and humidity needed such a check and we excluded records with temperature differ-
ences higher than 15 °C between consecutive values, and relative humidity with differences 
higher than 50%.

The third check is on consecutive repeated values. We allow a maximum number of 
identical values of 6 for temperature, 2880 (120 days) for precipitation, 12 for wind speed 
and relative humidity, 24 for solar radiation. These thresholds are selected based on visual 
inspection of the data and the timings of typical daily cycles and extended dry periods in the 
case of precipitation.

The fourth check is on excessive anomaly of the data. We first transform the variables in 
order to have more symmetric distributions, applying the logarithm to non-zero precipita-
tion, and a power transformation to the others, with the exception of temperature which was 
not transformed. The exponent of the power transformation is 0.5 for wind speed, 2 for rela-
tive humidity and 0.25 for wind speed. We then compute the z-score for each transformed 
variable x  as:

Fig. 1 Location of the weather stations 
used in this study. In red the “institution-
al” stations, in blue the “non-institutional” 
stations. The reference numbers are those 
listed in Table 1. In the small panel on the 
top-right the approximate location of the 
area in central Italy. The rectangle around 
the city of L’Aquila denotes the approxi-
mate extent of the main urban area
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z − score =

x − median

IQR

where IQR  is the interquartile range. The z-score is calculated from medians and IQRs as 
a function of month and hour of the day. We exclude from the analysis all records with a 
z-score higher than 3.

The fifth and last check is on spatial consistency of the data and also based on the z-score 
of transformed variables. For each station, we compute the 1st and the 99th percentiles of 
the z-score of the nearby stations in a radius of 50 km, and their standard deviations. We 
exclude from the analysis all records having a z-score higher than 99th percentile plus Y  
times the standard deviation, and lower than the 1st percentile minus Y  times the standard 
deviation. We selected a multiplication factor Y  of the standard deviation equal to 2 for 
temperature and precipitation, and to 4 for relative humidity and wind speed. We do not 
apply the spatial consistency check to solar radiation, since only two stations are available.

In Table 2 we report the percentage of data excluded after the quality check procedures, 
for each step of the process. Less than 1% of temperature, precipitation and solar radiation 
data were flagged, less than 4% of relative humidity data (mostly because of repeated values 
and of single-station z-score exceedances), and about 6% of wind data (mostly because of 
repeated values). Illustrative examples of records flagged after the quality check procedures 
are displayed in Figure S1 in the supplementary material.

In Figure S2 we display all the timeseries available, with histograms of the values after 
the quality checks. The timeseries for the stations of Scoppito, Tagliacozzo and Tornimparte 
are not complete for the three-year period and they cover just the last half of the period: for 
that reason we exclude these stations from the analyses over the whole period and we retain 
them only for specific short periods. In Figure S3 we display the monthly mean values at all 
stations for the period 2017–2019. The precipitation data at Aterno a Fagnano, Castel del 
Monte and Collepietro are unrealistically low, so we exclude them from further analysis.

3 Results

We analyze the datasets in order to highlight the representation of the spatial variability in 
the Aterno Valley, employing alternatively sensors from only institutional, only non-insti-
tutional, and mixed networks. This way, the possible added value of the non-institutional 
networks should emerge. We analyze both the “climatological” averages of spatial features, 
such as the urban heat island, and the reconstruction of specific short-term episodes, such 
as a heat wave period. We present the results organized for variables, namely temperature, 

Variable Impos-
sible 
value

Jump Repeated 
values

z-score Spa-
tial 
z-
score

Temperature 0.27 0.004 0.007 0.028 0.15
Precipitation - - - 0.042 0.16
Wind Speed - - 5.8 0.35 0.05
Relative Hum. 0.66 0.005 1.5 1.3 0.13
Solar Rad. - - - 0.88 -

Table 2 Percentage of data 
flagged for each quality test 
and variable, on the timeseries 
2017–2019 of all stations
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precipitation, wind and relative humidity. We do not analyze solar radiation, since only the 
time series of two sensors, both institutional, are available.

3.1 Temperature

First we look at the urban heat island (UHI) effect using the full dataset 2017–2019. We cal-
culate monthly mean temperatures at each station and visualize the data on selected stations 
alternatively along or across the valley axis as a function of the month. We also compute 
the hourly average of the temperature difference between pair of stations representative of 
urban and rural areas, as a function of the month, in order to visualize the intensity of UHI. 
The idea is derived from the seminal work of (Colacino and Lavagnini 1982).

In the first row of Fig. 2 we show the along-axis transect of monthly mean temperature, 
respectively using institutional only, non-institutional only, and mixed type sensors. The 
institutional network spans a larger area than non-institutional, thus the UHI effect is better 
visualized with the former dataset. However, the magnitude of UHI, of the order of + 2 °C 
in the warm months and + 1 °C in the cold months, is similar in the two datasets. Mixing the 
station types, a slightly more refined view, because of the higher station density, for example 
highlighting a relative minimum in the UHI effect in the urban center, which is slightly 
cooler than the surrounding urban area. From Figure S4 we may see that the UHI effect 
is most effective at night, as shown by the daily minimum temperature field, while during 
daytime the temperature is more uniform in the valley, with daily maximum temperature 
slightly lower in around the city center with respect to the surroundings.

The cross-axis transect of mean temperature, displayed in the second row of Fig. 2, shows 
that the temperature in the valley is on average higher by more than 2 °C with respect to 
the adjacent slopes. The inclusion of the non-institutional network allows also in this case a 
smoother representation of the spatial distribution. We notice that the effect highlighted here 
is a superimposition of the UHI and of the different altitudes of the stations (see Table 1).

In the third row of Fig. 2 we show the daily cycle of the UHI intensity as a function of 
the month. For this purpose, we select the stations in L’Aquila (urban area) and Pizzoli 
(rural area, mostly upwind of the city), that have nearby institutional and non-institutional 
sensors in both locations. The mixed pair of the non-institutional station in the city and 
the institutional station in Pizzoli is the one with the most similar altitudes, thus the effect 
of UHI should be better isolated. All the combinations of networks show a positive UHI 
(urban warmer than rural) nighttime and a negative UHI (urban cooler than rural) daytime. 
There is a sharp transition just after the sunrise from positive to negative UHI, and then a 
more gradual switch from negative to positive near the sunset. The magnitude of the UHI 
effect is lower with institutional data and higher with non-institutional data, the mixed case 
is intermediate. The latter plot appears more regular than the others and probably more 
realistic, with UHI intensities in the range from − 3 °C to + 3 °C depending on the time of 
the day, consistent with UHI observed elsewhere (Di Bernardino et al. 2023; Oliveira et al. 
2021). The dependence of the UHI on the choice of the pair of urban-rural stations and the 
significant intensity detected using the non institutional stations certainly warrants further 
analysis in the future.

In Fig. 3 we illustrate the advantage of using a more dense station network, thanks to the 
addition of non-institutional to institutional sensors, in reconstructing the average tempera-
ture over the valley during a heat wave event (29 July– 10 August 2017). The map is pro-
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duced with a universal kriging algorithm using topography as auxiliary spatial field. With 
the institutional only stations the heat wave appears to be more intense, especially in the 
downslope valleys to the South-East of the city, while, adding the non-institutional stations, 
the maximum intensity is around the city core and decreases all around in the surroundings. 
The visual comparison of observed data denotes an unrealistically high temperature field in 
the valley when using the institutional only network, while it looks much more consistent 
with the spatial distribution of the observations when using all stations. The maps of kriging 
standard errors for the two images are shown in the supplement (Figure S5): it is estimated 
a reduction of the final uncertainty of more than 0.5 °C.

A more quantitative evaluation of the improvement is given in Table S1 in the supple-
mentary material, where we compare the average temperature observed at each site during 
the heat wave episode with the values interpolated at each location from the maps of Fig. 3. 

Fig. 2 Spatial distrbution of temperature around the city of L’Aquila in the Aterno Valley, using alter-
natively data from (a) institutional, (b) non-institutional, and (c) mixed networks. On the first row, the 
monthly along-axis valley transect (NW-SE) of mean temperature, on the second row the cross-axis 
valley transect (S-N), on the third row the daily cycle of the urban heat island intensity as a function of 
the month
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We found that in most cases there is an improvement of the comparison when adding the 
non-institutional stations, with a mean bias passing from 0.5 °C to 0.01 °C.

3.2 Precipitation

In Fig. 4 we display the annual precipitation map for the year 2019, over the area of interest. 
Using the institutional network, the broad features emerging are a dry valley (year rain of 
about 600 mm/year) surrounded by wet mountains (up to more than 1200 mm/year), and a 
relatively wetter valley to the North-West, with respect to the South-East. With the addition 
of non-institutional network we have an even better representation of the large inhomogene-
ity of this complex terrain territory, with a restriction of the reconstructed drier area in the 

Fig. 4 Reconstructed annual precipitation in 2019 using alternatively (a) institutional only and (b) mixed 
institutional and non-institutional weather stations. The colored dots denote the observed values at the 
sensor locations

 

Fig. 3 Reconstructed mean temperature during a heat wave event (29 Jul– 10 Aug 2017) using alterna-
tively (a) institutional only and (b) mixed institutional and non-institutional weather stations. The colored 
dots denote the observed values at the sensor locations
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valley just around the city and in the hills to the South-East, and wetter slopes just nearby 
the city, to the South and to the North. The institutional network is thus sufficient to gather 
the general picture, but the non-institutional network may provide a better local character-
ization when needed.

In Fig. 5 we show an example of a specific rain event in the period 21–24 August 2019. 
The period was characterized by strong anticyclonic conditions, with a high-pressure sys-
tem extending from North Africa to Central Europe, and the intrusion of cold air in the 
middle troposphere, yielding favorable conditions for sparse showers and thunderstorms 
over the Appenines mountain. The map of the cumulated precipitation over the four days 
reconstructed using the institutional network nicely captures the narrow band where the 
storms impacted to the ground. Adding the non-institutional sensors we get an even more 
sharp reconstruction of the location impacted by the highest precipitation, in a quite limited 
area just to the North of the city. Although the kriging error remains similar in the two cases 
(Figure S6), the comparison of the observations with the values interpolated from the maps 
confirms the improvement gathered with the addition of non-institutional stations, espe-
cially in reproducing the high end of the distribution (see Table S2).

3.3 Wind

As reported in the data section, the institutional network contains 6 wind sensors while the 
non-institutional 12. In the main urban area there is only 1 institutional station providing 
wind data, while most of the non-institutional stations are located there. It is thus thanks to 
the non-institutional network that we are able to display a picture of the wind flow in the 
area.

In Fig. 6 we show the wind roses at the station locations on the map. The institutional 
station is near the center of the area and the solid lines denote the approximate profile of 
the valley walls. Considering the depth of the valley of about 800 m and its width of about 
10 km, in the absence of strong synoptic forcing (i.e. more than 0.5 hPa / 100 km) the onset 
of a local thermally-driven circulation is expected (Whiteman 1990). The typical mountain-
breeze system, with nighttime downslope katabatic flow and daytime upslope anabatic flow, 

Fig. 5 Reconstructed precipitation event (21–24 Aug 2019) using alternatively (a) institutional only and 
(b) mixed institutional and non-institutional weather stations. The colored dots denote the observed val-
ues at the sensor locations. Please note the different color scale in the two maps
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was actually observed in the area (Curci et al. 2012 and references therein). The system is 
nicely visualized using the institutional stations in and around the valley, as shown in the 
Fig. 6. Even without a careful screening of periods with low synoptic forcing, the average 
of the three years displays the prevalence of downslope light winds at night and the reverse 
upslope faster winds during the day.

In Fig. 7 we show the along axis transect of the average wind speed over the 2017–
2019 period as a function of the month, and the corresponding average daily cycle for three 
selected stations. We use again both institutional and non-institutional stations. The plot 
shows a clear acceleration of the wind to the South-East of the city, passing from values of 
about 0.6 m/s to values up to 1.5 m/s. This may be explained by the Venturi effect due to 

Fig. 7 Spatial distrbution of wind speed (m/s) around the city of L’Aquila in the Aterno Valley, using al-
ternatively data from both institutional and non-institutional networks. On the left, the monthly along-axis 
valley transect (NW-SE) of wind speed is shown. On the right, the average daily cycle at three selected 
stations is shown

 

Fig. 6 Wind roses at each station along the Aterno Valley using 2017–2019 data separated in nighttime 
(left) and daytime (right). The red lines denote the approximate contour of the valley walls and the arrows 
the typical directions of the wind flow. The day/night splitting is done based on the astronomical sunrise 
and sunset times at each location (Ropkins and Carslaw 2012)
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the narrowing of the valley walls downwind of the city for a flow that is prevailing from 
the North-West, as also illustrated in Fig. 6. We also note a further local acceleration of the 
wind in correspondence of the city center, which is located on a hill in the valley center at 
an elevation of about 50 m above the valley floor. This picture again nicely illustrates how 
the addition of data from the non-institutional network helps in better characterizing fine 
atmospheric features of the place.

In Fig. 8 we illustrate the data detected at three stations during a sample high wind day 
(22nd December 2019). A low pressure system passed over Italy inducing a fast northwest-
erly flow over the valley, with wind speed higher than 6 m/s during the central part of the 
day. The wind is well aligned with the main NE-SE valley axis, as displayed by the wind 
roses. The direction is very similar at the station on the West (Pizzoli) and the one in the city 
center, while it is slightly rotated to the North at the station to the East (Poggio Picenze), 
possibly due to local orographic effect. The acceleration downwind of the valley is again 
evident also during this episode, with speeds higher in the South-East.

Fig. 8 Illustration of a sample high wind episode in the Aterno Valley on 22/12/2019. In the upper panel 
the wind speed time series (m/s) at three selected stations, in the bottom panel the corresponding wind 
rose

 

1 3

    3  Page 12 of 18



Bull. of Atmos. Sci.& Technol.

3.4 Humidity

In Fig. 9 we show the effect of the city on humidity levels, the so called urban dry or 
moisture islands (UDIs, UMIs) (Huang and Song 2023), using both institutional and non-
institutional networks. As for the wind, this evaluation is allowed by the usage of the latter. 
We may notice a substantial drying effect of the city of about − 20% at night and − 10% 
during the day in terms of relative humidity. The difference is enhanced during the warmest 
months. The phenomenon is in broad agreement with observations worldwide (Meili et al. 
2022) and it certainly deserves more careful inspection in future work.

In Fig. 10 we show the comparison of the reconstructed average temperature and the 
average Humidex during the same heat wave period illustrated in Fig. 3. The Humidex 
index (Barnett et al. 2010) combines temperature and relative humidity in order to have 
a better prediction of the thermal comfort of an average person. As previously noted, the 
highest temperature was experienced in the city core and in the Eastern downwind area. 
Considering humidity, we see that the thermal discomfort is mitigated in the city core by 

Fig. 10 Reconstructed (a) mean temperature and (b) Humidex index during a heat wave event (29 Jul– 10 
Aug 2017) using both institutional and non-institutional stations in the area around the city center

 

Fig. 9 Same as Figure 7, but for relative humidity (%).
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lower humidity, while it is further enhanced in the downwind area to the East. A decreased 
discomfort on the slopes around the valley floor is also emerging from the Humidex map. 
Such evaluation is only possible with the aid of the relative humidity sensors of the non-
institutional network.

4 Conclusions

We analyzed three years of data collected in the Aterno Valley around the city of L’Aquila in 
central Italy in order to verify the potential added value of combining institutional and non-
institutional near-surface weather station networks. The non-institutional data were found of 
good quality, because only a relatively small fraction of them were discarded after temporal 
and spatial quality checks.

One main advantage of adding the non-institutional sensors to the database is the pres-
ence of many more observations of wind and relative humidity: indeed, only a limited num-
ber of institutional sensor monitor those variables in the area of interest.

For temperature and precipitation, the number of institutional sensors is already adequate 
to describe the spatial characteristics of the related fields, however, the complement of the 
non-institutional stations helps in better characterize the spatial features over both long and 
short time scales. For example, the extent and intensity of the urban heat island can be better 
identified and the areas most impacted by a rainstorm better delimited.

The combined use of institutional and non-institutional wind observations allows the 
description of the wind flow in the valley. For example, we were able to visualize the broad 
features of the typical mountain-valley breeze system and the acceleration of the flow when 
passing through the narrowing of the valley.

The additional data on relative humidity allowed diagnostics that were not feasible with 
the institutional network only. We were able to detect the urban dry island effect and to cal-
culate a thermal comfort index (Humidex) during a heat wave period.

In conclusion, the first analysis presented here showed that there is a clear potential for 
added value of non-institutional network in improving the description of fine spatial fea-
tures of temperature and precipitation fields and in allowing the spatial characterization of 
wind and humidity fields. Indeed, more in depth analysis is warranted at least for the phe-
nomena related to the last two variables. The collaboration of public institutions with non-
institutional entities in this context is thus highly encouraged, also in view of the increasing 
institutional effort in guiding the climate adaptation planning.
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