Skip to main content

Advertisement

Log in

Interfacial engineering of heterostructured carbon-supported molybdenum cobalt sulfides for efficient overall water splitting

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

Constructing hetero-structured catalyst is promising but still challenging to achieve overall water splitting for hydrogen production with high efficiency. Herein, we developed a sulfide-based MoS2/Co1−xS@C hetero-structure for highly efficient electrochemical hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The carbon derived from the filter paper acts as a conducting carrier to ensure adequate exposure of the active sites guaranteed with improved catalytic stability. The unique hierarchical nano-sheets facilitate the charge and ion transfer by shortening the diffusion path during electro-catalysis. Meanwhile, the robust hetero-interfaces in MoS2/Co1−xS@C can expose rich electrochemical active sites and facilitate the charge transfer, which further cooperates synergistically toward electro-catalytic reactions. Consequently, the optimal MoS2/Co1−xS@C hetero-structures present small over-potentials toward HER (135 mV @ 10 mA·cm−2) and OER (230 mV @ 10 mA·cm−2). The MoS2/Co1−xS@C electrolyzer requires an ultralow voltage of 1.6 V at the current density of 10 mA·cm−2 with excellent durability, outperforming the state-of-the-art electro-catalysts. This work sheds light on the design of the hetero-structured catalysts with interfacial engineering toward large-scale water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Huang J, Sheng H, Ross RD, Han J, Wang X, Song B, Jin S. Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid. Nat Commun. 2021;12(1):3036.

    CAS  Google Scholar 

  2. Huo WY, Wang SQ, Zhu WH, Zhang ZL, Fang F, Xie ZH, Jiang JQ. Recent progress on high-entropy materials for electrocatalytic water splitting applications. Tungsten. 2021;3(2):161.

    Google Scholar 

  3. Song Y, Ji K, Duan H, Shao M. Hydrogen production coupled with water and organic oxidation based on layered double hydroxides. Exploration. 2021;1(3):20210050.

    Google Scholar 

  4. Luo M, Liu S, Zhu W, Ye G, Wang J, He Z. An electrodeposited MoS2-MoO3−x/Ni3S2 heterostructure electrocatalyst for efficient alkaline hydrogen evolution. Chem Eng J. 2022;428: 131055.

    CAS  Google Scholar 

  5. Dai L, Chen ZN, Li L, Yin P, Liu Z, Zhang H. Ultrathin Ni(0)-embedded Ni(OH)2 heterostructured nanosheets with enhanced electrochemical overall water splitting. Adv Mater. 2020;32(8):1906915.

    CAS  Google Scholar 

  6. Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y, Qiao SZ. Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev. 2018;118(13):6337.

    CAS  Google Scholar 

  7. Wu Y, Li F, Chen W, Xiang Q, Ma Y, Zhu H, Tao P, Song C, Shang W, Deng T, Wu J. Coupling interface constructions of MoS2/Fe5Ni4S8 heterostructures for efficient electrochemical water splitting. Adv Mater. 2018;30(38):1803151.

    Google Scholar 

  8. Qin C, Fan A, Zhang X, Wang S, Yuan X, Dai X. Interface engineering: few-layer MoS2 coupled to a NiCo-sulfide nanosheet heterostructure as a bifunctional electrocatalyst for overall water splitting. J Mater Chem A. 2019;7(48):27594.

    CAS  Google Scholar 

  9. Hu F, Yu D, Ye M, Wang H, Hao Y, Wang L, Li L, Han X, Peng S. Lattice-matching formed mesoporous transition metal oxide heterostructures advance water splitting by active Fe–O–Cu bridges. Adv Energy Mater. 2022;12(19):2200067.

    CAS  Google Scholar 

  10. Xi W, Ren Z, Kong L, Wu J, Du S, Zhu J, Xue Y, Meng H, Fu H. Dual-valence nickel nanosheets covered with thin carbon as bifunctional electrocatalysts for full water splitting. J Mater Chem A. 2016;4(19):7297.

    CAS  Google Scholar 

  11. Shit S, Chhetri S, Jang W, Murmu NC, Koo H, Samanta P, Kuila T. Cobalt sulfide/nickel sulfide heterostructure directly grown on nickel foam: an efficient and durable electrocatalyst for overall water splitting application. ACS Appl Mater Interfaces. 2018;10(33):27712.

    CAS  Google Scholar 

  12. Niu Y, Gong S, Liu X, Xu C, Xu M, Sun S-G, Chen Z. Engineering iron-group bimetallic nanotubes as efficient bifunctional oxygen electrocatalysts for flexible Zn–air batteries. eScience. 2022;2(5):546.

    Google Scholar 

  13. Xin Y, Kan X, Gan LY, Zhang Z. Heterogeneous bimetallic phosphide/sulfide nanocomposite for efficient solar-energy-driven overall water splitting. ACS Nano. 2017;11(10):10303.

    CAS  Google Scholar 

  14. Zhang W, Han N, Luo J, Han X, Feng S, Guo W, Xie S, Zhou Z, Subramanian P, Wan K, Arbiol J, Zhang C, Liu S, Xu M, Zhang X, Fransaer J. Critical role of phosphorus in hollow structures cobalt-based phosphides as bifunctional catalysts for water splitting. Small. 2022;18(4):2103561.

    CAS  Google Scholar 

  15. Chen D, Lu R, Pu Z, Zhu J, Li H-W, Liu F, Hu S, Luo X, Wu J, Zhao Y, Mu S. Ru-doped 3D flower-like bimetallic phosphide with a climbing effect on overall water splitting. Appl Catal B: Environ. 2020;279: 119396.

    CAS  Google Scholar 

  16. Guo X, Wan X, Liu Q, Li Y, Li W, Shui J. Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction. eScience. 2022;2(3):304.

    Google Scholar 

  17. Li L, Yu D, Li P, Huang H, Xie D, Lin CC, Hu F, Chen HY, Peng S. Interfacial electronic coupling of ultrathin transition-metal hydroxide nanosheets with layered MXenes as a new prototype for platinum-like hydrogen evolution. Energy Environ Sci. 2021;14(12):6419.

    CAS  Google Scholar 

  18. Jiao C, Bo X, Zhou M. Electrocatalytic water splitting at nitrogen-doped carbon layers-encapsulated nickel cobalt selenide. J Energy Chem. 2019;34:161.

    Google Scholar 

  19. Deng L, Hu F, Ma M, Huang SC, Xiong Y, Chen HY, Li L, Peng S. Electronic modulation caused by interfacial Ni–O–M (M = Ru, Ir, Pd) bonding for accelerating hydrogen evolution kinetics. Angew Chem Int Ed. 2021;60(41):22276.

    CAS  Google Scholar 

  20. Zhou YN, Zhu YR, Chen XY, Dong B, Li QZ, Chai YM. Carbon–based transition metal sulfides/selenides nanostructures for electrocatalytic water splitting. J Alloys Compd. 2021;852: 156810.

    CAS  Google Scholar 

  21. Guo Y, Park T, Yi JW, Henzie J, Kim J, Wang Z, Jiang B, Bando Y, Sugahara Y, Tang J, Yamauchi Y. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv Mater. 2019;31(17):1807134.

    Google Scholar 

  22. Wang M, Zhang L, He Y, Zhu H. Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting. J Mater Chem A. 2021;9(9):5320.

    CAS  Google Scholar 

  23. Xiong Q, Wang Y, Liu PF, Zheng LR, Wang G, Yang HG, Wong PK, Zhang H, Zhao H. Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting. Adv Mater. 2018;30:1801450.

    Google Scholar 

  24. Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R, Liu S, Zhuang X, Feng X. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew Chem Int Ed. 2016;55(23):6702.

    CAS  Google Scholar 

  25. Li Z, Hu M, Wang P, Liu J, Yao J, Li C. Heterojunction catalyst in electrocatalytic water splitting. Coord Chem Rev. 2021;439: 213953.

    CAS  Google Scholar 

  26. Xiong P, Zhang X, Wan H, Wang S, Zhao Y, Zhang J, Zhou D, Gao W, Ma R, Sasaki T, Wang G. Interface modulation of two-dimensional superlattices for efficient overall water splitting. Nano Lett. 2019;19(7):4518.

    CAS  Google Scholar 

  27. Jiao J, Yang W, Pan Y, Zhang C, Liu S, Chen C, Wang D. Interface engineering of partially phosphidated Co@Co-P@NPCNTs for highly enhanced electrochemical overall water splitting. Small. 2020;16(41):2002124.

    CAS  Google Scholar 

  28. Wang W, Dong J, Ye X, Li Y, Ma Y, Qi L. Heterostructured TiO2 nanorod@nanobowl arrays for efficient photoelectrochemical water splitting. Small. 2016;12(11):1469.

    CAS  Google Scholar 

  29. Zhang J, Zhang Q, Feng X. Support and interface effects in water-splitting electrocatalysts. Adv Mater. 2019;31(31):1808167.

    Google Scholar 

  30. Li Y, Yin J, An L, Lu M, Sun K, Zhao YQ, Gao D, Cheng F, Xi P. FeS2/CoS2 Interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting. Small. 2018;14(26):1801070.

    Google Scholar 

  31. Shit S, Bolar S, Murmu NC, Kuila T. Tailoring the bifunctional electrocatalytic activity of electrodeposited molybdenum sulfide/iron oxide heterostructure to achieve excellent overall water splitting. Chem Eng J. 2021;417: 129333.

    CAS  Google Scholar 

  32. Liu J, Wang J, Zhang B, Ruan Y, Wan H, Ji X, Xu K, Zha D, Miao L, Jiang J. Mutually beneficial Co3O4@MoS2 heterostructures as a highly efficient bifunctional catalyst for electrochemical overall water splitting. J Mater Chem A. 2018;6(5):2067.

    CAS  Google Scholar 

  33. Wang L, Hao Y, Deng L, Hu F, Zhao S, Li L, Peng S. Rapid complete reconfiguration induced actual active species for industrial hydrogen evolution reaction. Nat Commun. 2022;13(1):5785.

    CAS  Google Scholar 

  34. Aftab U, Tahira A, Mazzaro R, Morandi V, Abro MI, Baloch MM, Syed JA, Nafady A, Ibupoto ZH. Facile NiCo2S4/C nanocomposite: an efficient material for water oxidation. Tungsten. 2020;2(4):403.

    Google Scholar 

  35. An K, Zheng Y, Xu X, Wang Y. Filter paper derived three-dimensional mesoporous carbon with Co3O4 loaded on surface: an excellent binder-free air-cathode for rechargeable Zinc-air battery. J Solid State Chem. 2019;270:539.

    CAS  Google Scholar 

  36. Xu B, Chen Z, Yang X, Wang X, Huang Y, Li C. Electronic modulation of carbon-encapsulated NiSe composites via Fe doping for synergistic oxygen evolution. Chem Commun. 2018;54(65):9075.

    CAS  Google Scholar 

  37. Wang W, Wang Z, Hu Y, Liu Y, Chen S. A potential-driven switch of activity promotion mode for the oxygen evolution reaction at Co3O4/NiOxHy interface. eScience. 2022;2(4):438.

    Google Scholar 

  38. Li Y, Liu Y, Xing D, Wang J, Zheng L, Wang Z, Wang P, Zheng Z, Cheng H, Dai Y, Huang B. 2D/2D heterostructure of ultrathin BiVO4/Ti3C2 nanosheets for photocatalytic overall Water splitting. Appl Catal B: Environ. 2021;285: 119855.

    CAS  Google Scholar 

  39. Wang J, Du CF, Xue Y, Tan X, Kang J, Gao Y, Yu H, Yan Q. MXenes as a versatile platform for reactive surface modification and superior sodium-ion storages. Exploration. 2021;1(2):20210024.

    Google Scholar 

  40. Li Q, Li L, Yu X, Wu X, Xie Z, Wang X, Lu Z, Zhang X, Huang Y, Yang X. Ultrafine platinum particles anchored on porous boron nitride enabling excellent stability and activity for oxygen reduction reaction. Chem Eng J. 2020;399: 125827.

    CAS  Google Scholar 

  41. Wang L, Yu H, Zhao S, Ma H, Li L, Hu F, Li L, Pan H, El-Khatib KM, Peng S. Electronic modulation of cobalt–molybdenum oxide via Te doping embedded in a carbon matrix for superior overall water splitting. Inorg Chem Front. 2022;9(15):3788.

    CAS  Google Scholar 

  42. Pan ZY, Tang Z, Zhan YZ, Sun D. Three-dimensional porous CoNiO2@reduced graphene oxide nanosheet arrays/nickel foam as a highly efficient bifunctional electrocatalyst for overall water splitting. Tungsten. 2020;2(4):390.

    Google Scholar 

  43. Babar P, Patil K, Mahmood J, Kim S-J, Kim JH, Yavuz CT. Low-overpotential overall water splitting by a cooperative interface of cobalt-iron hydroxide and iron oxyhydroxide. Cell Rep Phys Sci. 2022;3(2):100762.

    CAS  Google Scholar 

  44. Yin D, Cao YD, Chai DF, Fan LL, Gao GG, Wang ML, Liu H, Kang Z. A WOx mediated interface boosts the activity and stability of Pt-catalyst for alkaline water splitting. Chem Eng J. 2022;431: 133287.

    CAS  Google Scholar 

  45. Yu D, Ma Y, Hu F, Lin CC, Li L, Chen HY, Han X, Peng S. Dual-sites coordination engineering of single atom catalysts for flexible metal–air batteries. Adv Energy Mater. 2021;11(30):2101242.

    CAS  Google Scholar 

  46. Wang A, Cheng L, Shen X, Chen X, Zhu W, Zhao W, Lv C. Porphyrin coordination polymer/Co1−xS composite electrocatalyst for efficient oxygen evolution reaction. Chem Eng J. 2020;400: 125975.

    CAS  Google Scholar 

  47. Xue Y, Min S, Meng J, Liu X, Lei Y, Tian L, Wang F. Light-induced confined growth of amorphous Co doped MoSx nanodots on TiO2 nanoparticles for efficient and stable in situ photocatalytic H2 evolution. Int J Hydrog Energy. 2019;44(16):8133.

    CAS  Google Scholar 

  48. Liu R, Fei HL, Ye GL. Recent advances in single metal atom-doped MoS2 as catalysts for hydrogen evolution reaction. Tungsten. 2020;2(2):147.

    Google Scholar 

  49. Li XX, Liu XC, Liu C, Zeng JM, Qi XP. Co3O4/stainless steel catalyst with synergistic effect of oxygen vacancies and phosphorus doping for overall water splitting. Tungsten. 2023;5:100.

    Google Scholar 

  50. Shit S, Bolar S, Murmu NC, Kuila T. Minimal lanthanum-doping triggered enhancement in bifunctional water splitting activity of molybdenum oxide/sulfide heterostructure through structural evolution. Chem Eng J. 2022;428: 131131.

    CAS  Google Scholar 

  51. Han WK, Wei JX, Xiao K, Ouyang T, Peng X, Zhao S, Liu ZQ. Activating lattice oxygen in layered lithium oxides through cation vacancies for enhanced urea electrolysis. Angew Chem Int Ed. 2022;61:202206050.

    Google Scholar 

  52. Wei JX, Xiao K, Chen YX, Guo XP, Huang B, Liu ZQ. In-situ precise anchoring of Pt single atoms in spinel Mn3O4 for a highly efficient hydrogen evolution reaction. Energy Environ Sci. 2022;15:4592.

    CAS  Google Scholar 

  53. Xiao K, Lin RT, Wei JX, Li N, Li H, Ma T, Liu ZQ. Electrochemical disproportionation strategy to in-situ fill cation vacancies with Ru single atoms. Nano Res. 2022;15:4980.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51871119, 22075141, and 22101132), Scientific and Technological Innovation Special Fund for Carbon Peak and Carbon Neutrality of Jiangsu Province (BK20220039), Jiangsu Provincial Founds for Natural Science Foundation (BK20180015 and BK20210311), China Postdoctoral Science Foundation (2021M691561 and 2021T140319), Jiangsu Postdoctoral Research Fund (2021K547C) and the Fundamental Research Funds for the Central Universities (kfjj20180605).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Hu or Sheng-Jie Peng.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3263 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, MY., Yu, HZ., Deng, LM. et al. Interfacial engineering of heterostructured carbon-supported molybdenum cobalt sulfides for efficient overall water splitting. Tungsten 5, 589–597 (2023). https://doi.org/10.1007/s42864-023-00212-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-023-00212-6

Keywords

Navigation