Skip to main content

Advertisement

Log in

Nanocrystalline WSe2 excels at high-performance anode for Na storage via a facile one-pot hydrothermal method

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

For the next large-scale energy storage systems, sodium-ion batteries (SIBs) with excellent electrochemical performance are promising. However, the exploration of anode materials with high specific capacity, fascinating cycling stability and rate capability is still restricted. Among transition metal dichalcogenides (TMDs), tungsten diselenide (WSe2) has been regarded as an effective anode material for SIBs and has been extensively studied, due to high theoretical capacity and unique two-dimensional layered structure. Herein, nanocrystalline WSe2 is prepared by a facile one-pot hydrothermal method. Compared with the micro-scale WSe2, benefiting from the high specific surface area of highly ordered nano-flake structures and short ion/electron transport paths, nanocrystalline WSe2 shows excellent electrochemical performance in Na storage. After 1000 cycles at a current density of 2 A·g−1, a high specific capacity of 264.4 mA·h·g−1 is still maintained. The full cell matched with the Na3V2(PO4)3 cathode can deliver an excellent reversible specific capacity of 196.5 mA·h·g−1 after 100 cycles at 0.5 A·g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huang ZX, Wang ZX, Tian BF, Xu TT, Ma CY, Zhang ZF, Zang JH, Kong DZ, Li XJ, Wang Y. Three-dimensional Au/carbon nanotube-graphene foam hybrid nanostructure for dendrite free sodium metal anode with long cycle stability. J Mater Sci Technol. 2022;118:199.

    Article  CAS  Google Scholar 

  2. Chu S, Cui Y, Liu N. The path towards sustainable energy. Nat Mater. 2016;16(1):16.

    Article  PubMed  ADS  Google Scholar 

  3. Wang D, Liu YM, Li GW, Qin CC, Huang L, Wu YP. Liquid metal welding to suppress Li dendrite by equalized heat distribution. Adv Funct Mater. 2021;31(47):2106740.

    Article  CAS  Google Scholar 

  4. Qin CC, Wang D, Liu YM, Yang PK, Xie T, Huang L, Zou HY, Li GW, Wu YP. Tribo-electrochemistry induced artificial solid electrolyte interface by self-catalysis. Nat Commun. 2021;12(1):7184.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Liu SJ, Liu XF, Chen MF, Wang D, Ge X, Zhang W, Wang XY, Wang CH, Qin TT, Qin HZ, Qiao L, Zhang D, Ou X, Zheng WT. High-density/efficient surface active sites on modified separators to boost Li-S batteries via atomic Co3+-Se termination. Nano Res. 2022;15(8):7199.

    Article  CAS  ADS  Google Scholar 

  6. Nitta N, Wu FX, Lee JT, Yushin G. Li-ion battery materials: present and future. Mater Today. 2015;18(5):252.

    Article  CAS  Google Scholar 

  7. Cheng Y, Sun Y, Chu CT, Chang LM, Wang ZM, Zhang DY, Liu WQ, Zhuang ZC, Wang LM. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Res. 2022;15(5):4091.

    Article  CAS  ADS  Google Scholar 

  8. Zhang Q, Dou Y, He QM, Deng SY, Huang QH, Huang SZ, Yang YK. Emerging carbonyl polymers as sustainable electrode materials for lithium-free metal-ion batteries. Energy Environ Mater. 2022. https://doi.org/10.1002/eem2.12275.

    Article  Google Scholar 

  9. Liang YL, Yao Y. Positioning organic electrode materials in the battery landscape. Joule. 2018;2(9):1690.

    Article  CAS  Google Scholar 

  10. Bauer A, Song J, Vail S, Pan W, Barker J, Lu YH. The scale-up and commercialization of nonaqueous Na-ion battery technologies. Adv Energy Mater. 2018;8(17):1702869.

    Article  Google Scholar 

  11. Wang ZX, Huang ZX, Wang H, Li WD, Wang BY, Xu JM, Xu TT, Zang JH, Kong DZ, Li XJ, Yang HY, Wang Y. 3D-printed sodiophilic V2CTx/rGO-CNT MXene microgrid aerogel for stable Na metal anode with high areal capacity. ACS Nano. 2022;16:9105.

    Article  CAS  PubMed  Google Scholar 

  12. Hirsh HS, Li YX, Tan DHS, Zhang MH, Zhao EY, Meng YS. Sodium-ion batteries paving the way for grid energy storage. Adv Energy Mater. 2020;10(32):2001274.

    Article  CAS  Google Scholar 

  13. Dewar D, Glushenkov AM. Optimisation of sodium-based energy storage cells using pre-sodiation: a perspective on the emerging field. Energy Environ Sci. 2021;14(3):1380.

    Article  CAS  Google Scholar 

  14. Yang CH, Liang XH, Ou X, Zhang QB, Zheng HS, Zheng FH, Wang JH, Huang K, Liu ML. Heterostructured nanocube-shaped binary sulfide (SnCo)S2 interlaced with S-doped graphene as a high-performance anode for advanced Na+ batteries. Adv Funct Mater. 2019;29(9):1807971.

    Article  Google Scholar 

  15. Wu F, Jiang Y, Ye ZQ, Huang YX, Wang ZH, Li SJ, Mei Y, Xie M, Li L, Chen RJ. A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion batteries. J Mater Chem A. 2019;7(3):1315.

    Article  CAS  Google Scholar 

  16. Tan CL, Zhang H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem Soc Rev. 2015;44(9):2713.

    Article  CAS  PubMed  Google Scholar 

  17. Choi W, Choudhary N, Han GH, Park J, Akinwande D, Lee YH. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater Today. 2017;20(3):116.

    Article  CAS  Google Scholar 

  18. Varghese SS, Varghese SH, Swaminathan S, Singh KK, Mittal V. Two-dimensional materials for sensing: graphene and beyond. Electronics. 2015;4(3):651.

    Article  CAS  Google Scholar 

  19. Ratha S, Rout CS. Supercapacitor electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a facile hydrothermal method. ACS Appl Mater Interfaces. 2013;5(21):11427.

    Article  CAS  PubMed  Google Scholar 

  20. Nam JH, Jang MJ, Jang HY, Park W, Wang XL, Choi SM, Cho B. Room-temperature sputtered electrocatalyst WSe2 nanomaterials for hydrogen evolution reaction. J Energy Chem. 2020;47:107.

    Article  Google Scholar 

  21. Choudhary N, Patel MD, Park J, Sirota B, Choi W. Synthesis of large scale MoS2 for electronics and energy applications. J Mater Res. 2016;31(7):824.

    Article  CAS  ADS  Google Scholar 

  22. Da Silveira Firmiano EG, Rabelo AC, Dalmaschio CJ, Pinheiro AN, Pereira EC, Schreiner WH, Leite ER. Supercapacitor electrodes obtained by directly bonding 2D MoS2 on reduced graphene oxide. Adv Energy Mater. 2014;4(6):1301380.

    Article  Google Scholar 

  23. Roy A, Ghosh A, Kumar A, Mitra S. A high-performance sodium anode composed of few-layer MoSe2 and N, P doped reduced graphene oxide composites. Inorg Chem Front. 2018;5(9):2189.

    Article  CAS  Google Scholar 

  24. Eftekhari A. Tungsten dichalcogenides (WS2, WSe2, and WTe2): materials chemistry and applications. J Mater Chem A. 2017;5(35):18299.

    Article  CAS  Google Scholar 

  25. Zhou PS, Collins G, Hens Z, Ryan KM, Geaney H, Singh S. Colloidal WSe2 nanocrystals as anodes for lithium-ion batteries. Nanoscale. 2020;12(43):22307.

    Article  CAS  PubMed  Google Scholar 

  26. Lee YY, Park GO, Choi YS, Shon JK, Yoon J, Kim KH, Yoon WS, Kim H, Kim JM. Mesoporous transition metal dichalcogenide ME2 (M = Mo, W; E = S, Se) with 2-D layered crystallinity as anode materials for lithium ion batteries. RSC Adv. 2016;6(17):14253.

    Article  CAS  ADS  Google Scholar 

  27. Zheng MB, Tang H, Hu Q, Zheng SS, Li LL, Xu J, Pang H. Tungsten-based materials for lithium-ion batteries. Adv Funct Mater. 2018;28(20):1707500.

    Article  Google Scholar 

  28. Chen XX, Muheiyati H, Sun XP, Zhou P, Wang PC, Ding XY, Qian YT, Xu LQ. Rational design of tungsten selenide @ N-doped carbon nanotube for high-stable potassium-ion batteries. Small. 2022;18(5):2104363.

    Article  CAS  Google Scholar 

  29. Jiao XJ, Liu XJ, Wang BB, Wang G, Wang XJ, Wang H. A controllable strategy for the self-assembly of WM nanocrystals/nitrogen-doped porous carbon superstructures (M = O, C, P, S, and Se) for sodium and potassium storage. J Mater Chem A. 2020;8(4):2047.

    Article  CAS  Google Scholar 

  30. Liu B, Luo T, Mu GY, Wang XF, Chen D, Shen GZ. Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes. ACS Nano. 2013;7(9):8051.

    Article  CAS  PubMed  Google Scholar 

  31. Habib M, Khalil A, Muhammad Z, Khan R, Wang CD, Rehman Z, Masood HT, Xu WY, Liu HJ, Gan W, Wu CQ, Chen HP, Song L. WX2(X=S, Se) single crystals: a highly stable material for supercapacitor applications. Electrochim Acta. 2017;258:71.

    Article  CAS  Google Scholar 

  32. Wang XQ, He JR, Zheng BJ, Zhang WL, Chen YF. Few-layered WSe2 in-situ grown on graphene nanosheets as efficient anode for lithium-ion batteries. Electrochim Acta. 2018;283:1660.

    Article  CAS  Google Scholar 

  33. Wang QZ, Wang YC, Zhang X, Wang GK, Ji PG, Yin FX. WSe2/Reduced graphene oxide nanocomposite with superfast sodium ion storage ability as anode for sodium ion capacitors. J Electrochem Soc. 2018;165(16):3642.

    Article  Google Scholar 

  34. Wang YC, Zhang X, Xiong PX, Yin FX, Xu YH, Wan B, Wang QZ, Wang GK, Ji PG, Gou HY. Insight into the intercalation mechanism of WSe2 onions toward metal ion capacitors: sodium rivals lithium. J Mater Chem A. 2018;6(43):21605.

    Article  CAS  Google Scholar 

  35. Rehman J, Ali R, Ahmad N, Lv X, Guo CL. Theoretical investigation of strain-engineered WSe2 monolayers as anode material for Li-ion batteries. J Alloys Compd. 2019;804:370.

    Article  CAS  Google Scholar 

  36. Wang JB, Chen L, Zeng LX, Wei QH, Wei MD. In situ synthesis of WSe2/CMK-5 nanocomposite for rechargeable lithium-ion batteries with a long-term cycling stability. ACS Sustain Chem Eng. 2018;6(4):4688.

    Article  CAS  Google Scholar 

  37. Chen FJ, Wang J, Li B, Yao CH, Bao HF, Shi YF. Nanocasting synthesis of ordered mesoporous crystalline WSe2 as anode material for Li-ion batteries. Mater Lett. 2014;136:191.

    Article  CAS  Google Scholar 

  38. Kim I, Park SW, Kim DW. Carbon-coated tungsten diselenide nanosheets uniformly assembled on porous carbon cloth as flexible binder-free anodes for sodium-ion batteries with improved electrochemical performance. J Alloys Compd. 2020;827: 154348.

    Article  CAS  Google Scholar 

  39. Kang BY, Chen XC, Zeng LX, Luo FQ, Li XY, Xu LH, Yang MQ, Chen QH, Wei MD, Qian QR. In situ fabrication of ultrathin few-layered WSe2 anchored on N, P dual-doped carbon by bioreactor for half/full sodium/potassium-ion batteries with ultralong cycling lifespan. J Colloid Interface Sci. 2020;574:217.

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Share K, Lewis J, Oakes L, Carter RE, Cohn AP, Pint CL. Tungsten diselenide (WSe2) as a high capacity, low overpotential conversion electrode for sodium ion batteries. RSC Adv. 2015;5(123): 101262.

    Article  CAS  ADS  Google Scholar 

  41. Chun YG, Lee WJ, Lee M, Paek SM. Effect of long-range and local order of exfoliated and proton-beam-irradiated WSe2 nanosheets for sodium ion battery application. Bull Korean Chem Soc. 2018;39(5):665.

    Article  CAS  Google Scholar 

  42. Zhang Z, Yang X, Fu Y. Nanostructured WSe2/C composites as anode materials for sodium-ion batteries. RSC Adv. 2016;6(16):12726.

    Article  CAS  ADS  Google Scholar 

  43. Li J, Han SB, Zhang JW, Xiang JX, Zhu XQ, Liu P, Li XF, Feng C, Xiang B, Gu M. Synthesis of three-dimensional free-standing WSe2/C hybrid nanofibers as anodes for high-capacity lithium/sodium ion batteries. J Mater Chem A. 2019;7(34):19898.

    Article  CAS  Google Scholar 

  44. Zhang GY, Zheng XL, Xu Q, Zhang JN, Liu W, Chen J. Carbon nanotube-induced phase and stability engineering: a strained cobalt-doped WSe2/MWNT heterostructure for enhanced hydrogen evolution reaction. J Mater Chem A. 2018;6(11):4793.

    Article  CAS  Google Scholar 

  45. Kim C, Jung JW, Yoon KR, Youn DY, Park S, Kim ID. A high-capacity and long-cycle-life lithium-ion battery anode architecture: silver nanoparticle-decorated SnO2/NiO nanotubes. ACS Nano. 2016;10(12):1317.

    Article  Google Scholar 

  46. Wang CH, Li GW, Qin HZ, Xiao ZM, Wang D, Zhang B, Ou X, Wu YP. Strain engineering of layered heterogeneous structure via self-evolution confinement for ultrahigh-rate cyclic sodium storage. Adv Energy Mater. 2022;12(22):2200403.

    Article  CAS  Google Scholar 

  47. Yang WF, Wang JW, Si CH, Peng ZQ, Zhang ZH. Tungsten diselenide nanoplates as advanced lithium/sodium ion electrode materials with different storage mechanisms. Nano Res. 2017;10(8):2584.

    Article  CAS  Google Scholar 

  48. Cho JS, Park SK, Jeon KM, Piao YZ, Kang YC. Mesoporous reduced graphene oxide/WSe2 composite particles for efficient sodium-ion batteries and hydrogen evolution reactions. Appl Surf Sci. 2018;459:309.

    Article  CAS  ADS  Google Scholar 

  49. Liu H, Guo H, Liu BH, Liang MF, Lv ZL, Adair KR, Sun XL. Few-layer MoSe2 nanosheets with expanded (002) planes confined in hollow carbon nanospheres for ultrahigh-performance Na-ion batteries. Adv Funct Mater. 2018;28(19):1707480.

    Article  Google Scholar 

  50. Chen XF, Huang Y, Zhang KC, Zhang WC. Cobalt fibers anchored with tin disulfide nanosheets as high-performance anode materials for lithium ion batteries. J Colloid Interface Sci. 2017;506:291.

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Chen RP, Xue XL, Lu JY, Chen T, Hu Y, Ma LB, Zhu GY, Jin Z. The dealloying-lithiation/delithiation-realloying mechanism of a breithauptite (NiSb) nanocrystal embedded nanofabric anode for flexible Li-ion batteries. Nanoscale. 2019;11(18):8803.

    Article  CAS  PubMed  Google Scholar 

  52. Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH, Abruna HD, Simon P, Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater. 2013;12(6):518.

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Dong XL, Chen L, Liu JY, Haller S, Wang YG, Xia YY. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Sci Adv. 2016;2(1):1501038.

    Article  ADS  Google Scholar 

  54. Chao DL, Zhu CR, Yang PH, Xia XH, Liu JL, Wang J, Fan XF, Savilov SV, Lin JY, Fan HJ, Shen ZX. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat Commun. 2016;7:12122.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  55. Brezesinski T, Wang J, Tolbert SH, Dunn B. Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater. 2010;9(2):146.

    Article  CAS  PubMed  ADS  Google Scholar 

  56. He HN, Huang D, Gan QM, Hao JN, Liu SL, Wu ZB, Pang WK, Johannessen B, Tang YG, Luo JL, Wang HY, Guo ZP. Anion vacancies regulating endows MoS/Se with fast and stable potassium ion storage. ACS Nano. 2019;13(10):11843.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Fundamental Research Funds for the Central Universities (531107051230), the National Natural Science Foundation of China (No. 51974115) and the Natural Science Foundation of Hunan Province of China (No. 2020JJ4145).

Author information

Authors and Affiliations

Authors

Contributions

HYZ, GY and DW conceived the idea. HYZ drafted the manuscript and participated in the experiments for sample preparation and characterization. DW revised this manuscript. All authors participated in the interpretation of the data and production of the final manuscript.

Corresponding authors

Correspondence to Gang Yu or Dong Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2565 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, HY., Fang, L., Yu, G. et al. Nanocrystalline WSe2 excels at high-performance anode for Na storage via a facile one-pot hydrothermal method. Tungsten 6, 248–258 (2024). https://doi.org/10.1007/s42864-022-00170-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-022-00170-5

Keywords

Navigation