Skip to main content
Log in

A short review on the role of alloying elements in duplex stainless steels

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

Duplex stainless steels consisting of ferrite and austenite are widely used due to their excellent mechanical properties and corrosion resistance. Compared with ferritic stainless steels, duplex stainless steels have better plasticity, toughness, and welding performance. They also possess higher strength and better resistance to stress, pitting, and crevice corrosion than austenitic stainless steels. In addition to the above-mentioned properties, there are cost-saving advantages in duplex stainless steels due to their lower nickel content. Today, the types of duplex stainless steel are mainly divided into four categories: lean duplex stainless steel, standard duplex stainless steel, super duplex stainless steel, and hyper duplex stainless steel. Alloying design of duplex stainless steel is an important strategy to achieve high performance. In the last two decades, significant progress has been made in both theoretical calculations and experiments. By adjusting alloying elements such as chromium, nickel, molybdenum, nitrogen, copper, tungsten and rare earth, etc., the mechanical properties and/or corrosion resistance of the duplex stainless steels can be further improved. Summarizing the comprehensive progress of alloying design of duplex stainless steel is of great significance in providing a data basis for establishing the corresponding relationship between chemical compositions and properties. Therefore, this paper reveals the specific roles of alloying elements in the duplex stainless steels and provides a reference for alloying design with different performance requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2011 Elsevier

Fig. 3

Copyright 2012 Elsevier

Fig. 4

Copyright 2012 Elsevier

Fig. 5

Copyright 2015 Elsevier

Fig. 6

Copyright 2015 Elsevier

Fig. 7

Copyright 2013 Elsevier

Fig. 8
Fig. 9

Copyright 2019 Elsevier

Fig. 10

Copyright 2019 Elsevier

Fig. 11

Copyright 2019 Elsevier

Fig. 12

Copyright 2018 Elsevier

Fig. 13
Fig. 14

Copyright 2013 Elsevier

Fig. 15

Similar content being viewed by others

References

  1. Boillot P, Peultier J. Use of stainless steels in the industry: recent and future developments. Procedia Engineering. 2014;83:309.

    CAS  Google Scholar 

  2. Michalska J, Sozańska M. Qualitative and quantitative analysis of σ and χ phases in 2205 duplex stainless steel. Mater Charact. 2006;56(4–5):355.

    CAS  Google Scholar 

  3. Bae SH, Lee HW. Effect of Mo contents on corrosion behaviors of welded duplex stainless steel. Met Mater Int. 2013;19(3):563.

    CAS  Google Scholar 

  4. Gunn R. Duplex stainless steels: microstructure, properties and applications. Cambridge: Woodhead Publishing; 1997.

    Google Scholar 

  5. Hsieh YC, Zhang L, Chung TF, Tsai YT, Yang JR, Ohmura T, Suzuki T. In-situ transmission electron microscopy investigation of the deformation behavior of spinodal nanostructured δ-ferrite in a duplex stainless steel. Scripta Mater. 2016;125:44.

    CAS  Google Scholar 

  6. Francis R, Byrne G. Duplex stainless steels—alloys for the 21st century. Metals. 2021;11(5):836.

    CAS  Google Scholar 

  7. Xu D, Xia J, Zhou E, Zhang D, Li H, Yang C, Li Q, Lin H, Li X, Yang K. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm. Bioelectrochemistry. 2017;113:1.

    CAS  Google Scholar 

  8. Gunn R. Duplex stainless steels: microstructure, properties and applications. Anticorros Methods Mater. 2003. https://doi.org/10.1108/acmm.1998.12845bae.001

    Article  Google Scholar 

  9. Lee KM, Cho HS, Choi DC. Effect of isothermal treatment of SAF 2205 duplex stainless steel on migration of δ/γ interface boundary and growth of austenite. J Alloys Compd. 1999;285(1–2):159.

    Google Scholar 

  10. Yang Y, Yan B. The microstructure and flow behavior of 2205 duplex stainless steels during high temperature compression deformation. Mater Sci Eng, A. 2013;579:194.

    CAS  Google Scholar 

  11. Zhang W, Jiang L, Hu J, Song H. Effect of ageing on precipitation and impact energy of 2101 economical duplex stainless steel. Mater Charact. 2009;60(1):50.

    CAS  Google Scholar 

  12. Lo KH, Shek CH, Lai JKL. Recent developments in stainless steels. Mater Sci Eng, R. 2009;65(4–6):39.

    Google Scholar 

  13. Jiang DW, Ge CS, Zhao XJ, Li J, Shi LI, Xiao XS. 22Cr high-Mn-N low-Ni economical duplex stainless steels. J Iron Steel Res Int. 2012;19(2):50.

    CAS  Google Scholar 

  14. Li J, Ma Z, Xiao X, Zhao J, Jiang L. On the behavior of nitrogen in a low-Ni high-Mn super duplex stainless steel. Mater Des. 2011;32(4):2199.

    CAS  Google Scholar 

  15. Choi JY, Ji JH, Hwang SW, Park K-T. Strain induced martensitic transformation of Fe–20Cr–5Mn–0.2Ni duplex stainless steel during cold rolling: effects of nitrogen addition. Mater Sci Eng, A. 2011;528(18):6012.

    CAS  Google Scholar 

  16. Wang C, Cao W, Shi J, Huang C, Dong H. Deformation microstructures and strengthening mechanisms of an ultrafine grained duplex medium-Mn steel. Mater Sci Eng, A. 2013;562:89.

    CAS  Google Scholar 

  17. Chail G, Kangas P. Super and hyper duplex stainless steels: structures, properties and applications. Procedia Struct Integr. 2016;2:1755.

    Google Scholar 

  18. Wu J, Liu E. Development of duplex stainless steel at home and abroad. Stainless. 2008;8(3):13.

    Google Scholar 

  19. Ezubera HM, El-Houd A, El-Shawesh F. Effects of sigma phase precipitation on seawater pitting of duplex stainless steel. Desalination. 2007;207(1–3):268.

    Google Scholar 

  20. Tani J-I, Mayuzumi M, Hara N. Stress corrosion cracking of stainless-steel canister for concrete cask storage of spent fuel. J Nucl Mater. 2008;379(13):42.

    CAS  Google Scholar 

  21. Bello J, Wood R, Wharton J. Synergistic effects of micro-abrasion–corrosion of UNS S30403, S31603 and S32760 stainless steels. Wear. 2007;263(1–6):149.

    CAS  Google Scholar 

  22. Nelson DE, Baeslack Iii WA, Lippold JC. Characterization of the weld structure in a duplex stainless steel using color metallography. Mater Charact. 1997;39(2–5):467.

    Google Scholar 

  23. Xiang H, Huang W, Liu D, He F. Effect of N content on microstructure and properties of 29Cr casting super duplex stainless steel. Acta Metall Sin. 2010;46(3):304.

    CAS  Google Scholar 

  24. Aval HJ. Microstructural evolution and mechanical properties of friction stir-welded C71000 copper–nickel alloy and 304 austenitic stainless steel. Int J Miner Metall Mater. 2018;25(11):1294.

    CAS  Google Scholar 

  25. Wan J, Ran Q, Li J, Xu Y, Xiao X, Yu H, Jiang L. A new resource-saving, low chromium and low nickel duplex stainless steel 15Cr–xAl–2Ni–yMn. Mater Des. 2014;53:43.

    CAS  Google Scholar 

  26. Yang Y, Cao J, Gu Y. Investigation on the solution treated behavior of economical 19Cr duplex stainless steels by Mn addition. Mater Des. 2015;83:820.

    CAS  Google Scholar 

  27. Papula S, Anttila S, Talonen J, Sarikka T, Virkkunen I, Hänninen H. Strain hardening of cold-rolled lean-alloyed metastable ferritic-austenitic stainless steels. Mater Sci Eng, A. 2016;677:11.

    CAS  Google Scholar 

  28. Ryś J, Cempura G. Microstructure and deformation behavior of metastable duplex stainless steel at high rolling reductions. Mater Sci Eng, A. 2017;700:656.

    Google Scholar 

  29. Ha H-Y, Lee T-H, Kim S-J. Effect of C fraction on corrosion properties of high interstitial alloyed stainless steels. Metall Mater Trans A. 2012;43(9):2999.

    CAS  Google Scholar 

  30. Dong F, Zhang H, Wu ZX, Chen JZ. Research progress on erosion-corrosion and cavitation erosion of duplex stainless steel. Total Corros Contr. 2009;4(1):15.

    Google Scholar 

  31. Dyja D, Stradomski Z. Solidification model of highly alloyed FE-Cr-Ni cast steels. Arch Foundry. 2006;6(19):81.

    CAS  Google Scholar 

  32. Stradomski Z, Dyja D,Stachura S. Technological problem in elaboration of massive casting from duplex cast steel. Stainless Steel World. 2005: 363.

  33. Stradomski Z, Dyja D. Influence of carbon content on the segregation process in duplex cast steel. Arch Foundry Eng. 2007;7(1):139.

    CAS  Google Scholar 

  34. Dyja D, Stradomski Z, Stachura S. Solidification structure of massive castings from duplex cast steel. Arch Foundry. 2005;5(15):79.

    CAS  Google Scholar 

  35. Li Y, Jiang W, Feng Y, Guo E, Jiang Y. Effect of C content on microstructure and properties of 00Cr22Ni5Mo3N duplex stainless steel. Heat Treat Met. 2015;40(7):55.

    Google Scholar 

  36. Nilsson J-O. Super duplex stainless steels. Mater Sci Technol. 1992;8(8):685.

    CAS  Google Scholar 

  37. Tomota Y, Tokuda H, Adachi Y, Wakita M, Minakawa N, Moriai A, Morii Y. Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction. Acta Mater. 2004;52(20):5737.

    CAS  Google Scholar 

  38. Cai ZH, Ding H, Misra RDK, Ying ZY. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content. Acta Mater. 2015;84:229.

    CAS  Google Scholar 

  39. Blondé R, Jimenez-Melero E, Zhao L, Wright JP, Brück E, van der Zwaag S, van Dijk NH. High-energy X-ray diffraction study on the temperature-dependent mechanical stability of retained austenite in low-alloyed TRIP steels. Acta Mater. 2012;60(2):565.

    Google Scholar 

  40. Yan K, Liss K-D, Timokhina IB, Pereloma EV. In situ synchrotron X-ray diffraction studies of the effect of microstructure on tensile behavior and retained austenite stability of thermo-mechanically processed transformation induced plasticity steel. Mater Sci Eng, A. 2016;662:185.

    CAS  Google Scholar 

  41. Tissier J, Balloy D, Dairon J, Dorlencourt S, Ninin J. Vacuum decarburization: a solution within reach of small foundries. Fonderie Fondeur d’Aujourd’hui. 2005;246:28.

    CAS  Google Scholar 

  42. Levey P, Van Bennekom A. A mechanistic study of the effects of nitrogen on the corrosion properties of stainless steels. Corrosion. 1995;51(12):911.

    CAS  Google Scholar 

  43. Hendry A. Developments in high-nitrogen stainless steels. Wire J Int. 1994;27(4):140.

    CAS  Google Scholar 

  44. Moverare JJ, Oden M. Influence of elastic and plastic anisotropy on the flow behavior in a duplex stainless steel. Metall Mater Trans A. 2002;33(1):57.

    Google Scholar 

  45. Fujisawa M, Mauchi R, Morikawa T, Tanaka M, Higashida K. Influence of strain-induced martensite on tensile properties of metastable duplex stainless steels consisting of Fe-Cr-Mn-Ni and Fe-Cr-Mn-N. Tetsu-to-Hagané. 2014;100(9):1140.

    CAS  Google Scholar 

  46. Choi JY, Ji JH, Hwang SW, Park K-T. Effects of nitrogen content on TRIP of Fe–20Cr–5Mn–xN duplex stainless steel. Mater Sci Eng, A. 2012;534:673.

    CAS  Google Scholar 

  47. Speidel M. New nitrogen-bearing austenitic stainless steels with high strength and ductility. Met Sci Heat Treat. 2005;47(11–12):489.

    CAS  Google Scholar 

  48. Simmons J. Overview: high-nitrogen alloying of stainless steels. Mater Sci Eng, A. 1996;207(2):159.

    Google Scholar 

  49. Fujisawa M, Kato Y, Ujiro T. Mechanical properties and stress corrosion cracking receptivity of metastable Cr-Mn-N duplex stainless steels. CAMP-ISIJ. 2009;22:1163.

    Google Scholar 

  50. Remy L, Pineau A. Twinning and strain-induced F.C.C. ~ H.C.P. transformation in the Fe-Mn-Cr-C System. Mater Sci Eng. 1997;28(1):99.

    Google Scholar 

  51. Byun TS. On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels. Acta Mater. 2003;51(11):3063.

    CAS  Google Scholar 

  52. Park K-T, Kim G, Kim SK, Lee SW, Hwang SW, Lee CS. On the transitions of deformation modes of fully austenitic steels at room temperature. Met Mater Int. 2010;16(1):1.

    CAS  Google Scholar 

  53. Herrera C, Ponge D, Raabe D. Design of a novel Mn-based 1GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability. Acta Mater. 2011;59(11):4653.

    CAS  Google Scholar 

  54. Choi JH, Jo MC, Lee H, Zargaran A, Song T, Sohn SS, Kim NJ, Lee S. Cu addition effects on TRIP to TWIP transition and tensile property improvement of ultra-high-strength austenitic high-Mn steels. Acta Mater. 2019;166:246.

    CAS  Google Scholar 

  55. Choi JY, Hwang SW, Ha MC, Park K-T. Extended strain hardening by a sequential operation of twinning induced plasticity and transformation induced plasticity in a low Ni duplex stainless steel. Met Mater Int. 2014;20(5):893.

    CAS  Google Scholar 

  56. Choi JY, Hwang SW, Park K-T. Twinning-induced plasticity aided high ductile duplex stainless steel. Metall Mater Trans A. 2012;44(2):597.

    Google Scholar 

  57. Choi JY, Ji JH, Hwang SW, Park K-T. TRIP aided deformation of a near-Ni-free, Mn–N bearing duplex stainless steel. Mater Sci Eng, A. 2012;535:32.

    CAS  Google Scholar 

  58. Vasilakos AN, Ohlert J, Giasla K, Haidemenopoulos GN, Bleck W. Low-alloy TRIP steels: a correlation between mechanical properties and the retained austenite stability. Steel Res Int. 2002;73(67):245.

    Google Scholar 

  59. Grässel O, Krüger L, Frommeyer G, Meyer LW. High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application. Int J Plast. 2000;16(10–11):1391.

    Google Scholar 

  60. Sabzi HE, Zarei Hanzaki A, Abedi HR, Soltani R, Mateo A, Roa JJ. The effects of bimodal grain size distributions on the work hardening behavior of a TRansformation-TWinning induced plasticity steel. Mater Sci Eng, A. 2016;678:23.

    CAS  Google Scholar 

  61. Allain S, Chateau JP, Bouaziz O, Migot S, Guelton N. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys. Mater Sci Eng, A. 2004;387–389:158.

    Google Scholar 

  62. Lee T-H, Oh C-S, Kim S-J. Effects of nitrogen on deformation-induced martensitic transformation in metastable austenitic Fe–18Cr–10Mn–N steels. Scripta Mater. 2008;58(2):110.

    CAS  Google Scholar 

  63. Galindo-Nava EI, Rivera-Díaz-del-Castillo PEJ. Understanding martensite and twin formation in austenitic steels: a model describing TRIP and TWIP effects. Acta Mater. 2017;128:120.

    CAS  Google Scholar 

  64. Ding H, Ding H, Song D, Tang Z, Yang P. Strain hardening behavior of a TRIP/TWIP steel with 18.8% Mn. Mater Sci Eng, A. 2011;528(3):868.

    Google Scholar 

  65. Frommeyer G, Brüx U, Neumann P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int. 2003;43(3):438.

    CAS  Google Scholar 

  66. Tang ZY, Misra RDK, Ma M, Zan N, Wu ZQ, Ding H. Deformation twinning and martensitic transformation and dynamic mechanical properties in Fe–0.07C–23Mn–3.1Si–2.8Al TRIP/TWIP steel. Mater Sci Eng, A. 2015;624:186.

    CAS  Google Scholar 

  67. Sahraoui T, Hadji M, Yahi M. Design and deformation behavior of high strength Fe–Mn–Al–Cr–C duplex steel. Mater Sci Eng, A. 2009;523(1–2):271.

    Google Scholar 

  68. Rahimi R, Ullrich C, Rafaja D, Biermann H, Mola J. Microstructural evolution of an Al-alloyed duplex stainless steel during tensile deformation between 77 and 473 K (−196 and 200 °C). Metall Mater Trans A. 2016;47(6):2705.

    CAS  Google Scholar 

  69. Hutchinson WB, Ushioda K, Runnsjö G. Anisotropy of tensile behaviour in a duplex stainless steel sheet. Mater Sci Technol. 2013;1(9):728.

    Google Scholar 

  70. Hilkhuijsen P, Geijselaers HJM, Bor TC, Perdahcıoğlu ES, vd Boogaard AH, Akkerman R. Strain direction dependency of martensitic transformation in austenitic stainless steels. Mater Sci Eng, A. 2013;573:100.

    CAS  Google Scholar 

  71. Chou S-L, Tsai M-J, Tsai W-T, Lee J-T. Effect of nitrogen on the electrochemical behavior of 301LN stainless steel in H2SO4 solutions. Mater Chem Phys. 1997;51(2):97.

    CAS  Google Scholar 

  72. Ha H-Y, Lee T-H, Kim S-J. Role of nitrogen in the active–passive transition behavior of binary Fe–Cr alloy system. Electrochim Acta. 2012;80:432.

    CAS  Google Scholar 

  73. Ha H, Jang H, Kwon H, Kim S. Effects of nitrogen on the passivity of Fe–20Cr alloy. Corros Sci. 2009;51(1):48.

    CAS  Google Scholar 

  74. Jargelius-Pettersson R. Electrochemical investigation of the influence of nitrogen alloying on pitting corrosion of austenitic stainless steels. Corros Sci. 1999;41(8):1639.

    CAS  Google Scholar 

  75. Ha H-Y, Lee C-H, Lee T-H, Kim S. Effects of nitrogen and tensile direction on stress corrosion cracking susceptibility of Ni-free FeCrMnC-based duplex stainless steels. Materials. 2017;10(3):294.

    Google Scholar 

  76. Matsunaga H, Sato Y, Kokawa H, Kuwana T. Effect of nitrogen on corrosion of duplex stainless steel weld metal. Sci Technol Weld Join. 1998;3(5):225.

    CAS  Google Scholar 

  77. Fang YL, Liu ZY, Xue WY, Song HM, Jiang LZ. Precipitation of secondary phases in lean duplex stainless steel 2101 during isothermal ageing. ISIJ Int. 2010;50(2):286.

    CAS  Google Scholar 

  78. Huang C-S, Shih C-C. Effects of nitrogen and high temperature aging on σ phase precipitation of duplex stainless steel. Mater Sci Eng, A. 2005;402(1–2):66.

    Google Scholar 

  79. Merello R, Botana F, Botella J, Matres M, Marcos M. Influence of chemical composition on the pitting corrosion resistance of non-standard low-Ni high-Mn–N duplex stainless steels. Corros Sci. 2003;45(5):909.

    CAS  Google Scholar 

  80. Park Y-H, Lee Z-H. The effect of nitrogen and heat treatment on the microstructure and tensile properties of 25Cr–7Ni–1.5 Mo–3W–xN duplex stainless steel castings. Mater Sci Eng, A. 2001;297(12):78.

    Google Scholar 

  81. Wei Z, Chen X, Zhong H, Zhai Q. Effect of N content on microstructure of Fe-21Cr-3Ni-1Mo-N duplex stainless steel. J Shanghai Univ (Nat Sci). 2018;24(6):955.

    Google Scholar 

  82. Charles J. Duplex stainless steels-a review after DSS ‘07 held in Grado. Steel Res Int. 2008;79(6):455.

    CAS  Google Scholar 

  83. Nilsson J, Wilson A, Josefsson B, Thorvaldsson T. Proceedings of the applications of stainless steel. Mater Sci Technol. 1992;8:685.

    CAS  Google Scholar 

  84. Mozhi TA, Clark W, Nishimoto K, Johnson W, Macdonald D. The effect of nitrogen on the sensitization of AISI 304 stainless steel. Corrosion. 1985;41(10):555.

    CAS  Google Scholar 

  85. Sedriks A. 1989 speller award lecture: new stainless steels for seawater service. Corrosion. 1989;45(6):510.

    CAS  Google Scholar 

  86. Pramanik A, Littlefair G, Basak A. Weldability of duplex stainless steel. Mater Manuf Process. 2015;30(9):1053.

    CAS  Google Scholar 

  87. Kim S-C, Zhang Z, Furuya Y, Kang C-Y, Sung J-H, Ni Q-Q, Watanabe Y, Kim I-S. Effect of precipitation of σ-phase and N addition on the mechanical properties in 25Cr–7Ni–4Mo–2W super duplex stainless steel. Mater Trans. 2005;46(7):1656.

    CAS  Google Scholar 

  88. Palit G, Kain V, Gadiyar H. Electrochemical investigations of pitting corrosion in nitrogen-bearing type 316LN stainless steel. Corrosion. 1993;49(12):977.

    CAS  Google Scholar 

  89. Newman R, Shahrabi T. The effect of alloyed nitrogen or dissolved nitrate ions on the anodic behaviour of austenitic stainless steel in hydrochloric acid. Corros Sci. 1987;27(8):827.

    CAS  Google Scholar 

  90. Potgieter J, Olubambi P, Cornish L, Machio C, Sherif E-SM. Influence of nickel additions on the corrosion behaviour of low nitrogen 22% Cr series duplex stainless steels. Corros Sci. 2008;50(9):2572.

    CAS  Google Scholar 

  91. Oblonsky L, Devine T. A surface enhanced Raman spectroscopic study of the passive films formed in borate buffer on iron, nickel, chromium and stainless steel. Corros Sci. 1995;37(1):17.

    CAS  Google Scholar 

  92. Alvarez-Armas I. Duplex stainless steels: brief history and some recent alloys. Recent Pat Mech Eng. 2008;1(1):51.

    CAS  Google Scholar 

  93. Pilhagen J, Sandström R. Influence of nickel on the toughness of lean duplex stainless steel welds. Mater Sci Eng, A. 2014;602:49.

    CAS  Google Scholar 

  94. Kang D, Lee H. Study of the correlation between pitting corrosion and the component ratio of the dual phase in duplex stainless steel welds. Corros Sci. 2013;74:396.

    CAS  Google Scholar 

  95. Miura M, Koso M, Kudo T, Tsuge H. The effects of nickel and nitrogen on the microstructure and corrosion resistance of duplex stainless steel weldments. Weld Int. 1990;4(3):200.

    Google Scholar 

  96. Shek C, Wong K, Lai J, Li D. Hot tensile properties of 25Cr-8Ni duplex stainless steel containing cellular (σ+ γ2) structure after various thermal treatments. Mater Sci Eng, A. 1997;231(1–2):42.

    Google Scholar 

  97. Pohl M, Storz O. Sigma-phase in duplex-stainless steels. Int J Mater Res. 2004;95(7):631.

    CAS  Google Scholar 

  98. Komizo Y, Ogawa K, Azuma S. HAZ embrittlement in high Cr-Mo duplex stainless steel and the effects of Ni and N. Weld Int. 1991;5(4):277.

    Google Scholar 

  99. Ha H-Y, Lee T-H, Kim S-D, Jang JH, Moon J. Improvement of the corrosion resistance by addition of Ni in lean duplex stainless steels. Metals. 2020;10(7):891.

    CAS  Google Scholar 

  100. Wessman S, Hertzman S, Pettersson R, Lagneborg R, Liljas M. On the effect of nickel substitution in duplex stainless steel. Mater Sci Technol. 2008;24(3):348.

    CAS  Google Scholar 

  101. Sohn SS, Hong S, Lee J, Suh B-C, Kim S-K, Lee B-J, Kim NJ, Lee S. Effects of Mn and Al contents on cryogenic-temperature tensile and Charpy impact properties in four austenitic high-Mn steels. Acta Mater. 2015;100:39.

    CAS  Google Scholar 

  102. Li J, Xu Y, Xiao X, Zhao J, Jiang L, Hu J. A new resource-saving, high manganese and nitrogen super duplex stainless steel 25Cr–2Ni–3Mo–xMn–N. Mater Sci Eng, A. 2009;527(1–2):245.

    Google Scholar 

  103. Liljas M, Johansson P, Liu HP, Olsson COA. Development of a lean duplex stainless steel. Steel Res Int. 2008;79(6):466.

    CAS  Google Scholar 

  104. Yang Y, Ni K. Investigation on the precipitation and corrosion behaviour of 19% Cr economical duplex stainless steel with Mn addition by aging at 800 °C. Ironmaking Steelmaking. 2021;48(2):200.

    CAS  Google Scholar 

  105. Feng Z, Yang Y, Wang J. Effect of Mn addition on the precipitation and corrosion behaviour of 22% Cr economical duplex stainless steel after isothermal aging at 800 °C. J Alloys Compd. 2017;699:334.

    CAS  Google Scholar 

  106. Wang L, Dong W, Guo E, Jiang W, Feng Y. Effect of Mn content on microstructure and properties of 00Cr22Ni5Mo3Mnx duplex stainless steel. Hot Work Technol. 2013;42(2):63.

    Google Scholar 

  107. Jang YH, Kim SS, Lee JH. Effect of different Mn contents on tensile and corrosion behavior of CD4MCU cast duplex stainless steels. Mater Sci Eng, A. 2005;396(1–2):302.

    Google Scholar 

  108. Park J-Y, Ahn Y-S. Effect of Ni and Mn on the mechanical properties of 22Cr micro-duplex stainless steel. Acta Metallurgica Sinica (Engl Lett). 2015;28(1):32.

    CAS  Google Scholar 

  109. Toor I-U-H, Hyun PJ, Kwon HS. Development of high Mn–N duplex stainless steel for automobile structural components. Corros Sci. 2008;50(2):404.

    CAS  Google Scholar 

  110. Ran Q, Peng W, Xu Y, Li J, Xiao X, Yu H, Jiang L. Self-repairing behavior of oxidation diffusion layer and phase transformation mechanism during tensile test of 19Cr duplex stainless steels with various Mn content. Corros Sci. 2015;90:535.

    CAS  Google Scholar 

  111. Kubaschewski O, Smith JF, Bailey DM. A thermodynamic analysis of phase relationships in the iron-copper system/eine thermodynamische analyse der phasenbeziehungen in dem system eisen-kupfer. Int J Mater Res. 1977;68(7):495.

    CAS  Google Scholar 

  112. Banas J, Mazurkiewicz A. The effect of copper on passivity and corrosion behaviour of ferritic and ferritic–austenitic stainless steels. Mater Sci Eng, A. 2000;277(1–2):183.

    Google Scholar 

  113. de Lima HMLF, Tavares SSM, Martins M, Araujo WS. The effect of copper addition on the corrosion resistance of cast duplex stainless steel. J Market Res. 2019;8(2):2107.

    CAS  Google Scholar 

  114. Smuk O, Selleby M, Bergman B. The effect of copper on secondary phase precipitation in duplex stainless steel–a thermodynamic calculations approach. Int J Mater Res. 2005;96(8):918.

    CAS  Google Scholar 

  115. Zhao Y, Liu X, Li X, Wang Y, Zhang W, Liu Z. Pitting corrosion behavior in novel Mn–N alloyed lean duplex stainless steel containing Cu. J Mater Sci. 2018;53(1):824.

    CAS  Google Scholar 

  116. Fuertes N, Pettersson R. Passive film properties and electrochemical response of different phases in a Cu-alloyed stainless steel after long term heat treatment. J Electrochem Soc. 2016;163(7):C377.

    CAS  Google Scholar 

  117. Weber L, Uggowitzer P. Partitioning of chromium and molybdenum in super duplex stainless steels with respect to nitrogen and nickel content. Mater Sci Eng, A. 1998;242(1–2):222.

    Google Scholar 

  118. O’gorman J, Humphreys H. Application of copper to prevent and control infection. Where are we now? J Hosp Infect. 2012;81(4):217.

    Google Scholar 

  119. Monzen R, Jenkins M, Sutton A. The bcc-to-9R martensitic transformation of Cu precipitates and the relaxation process of elastic strains in an Fe-Cu alloy. Philos Mag A. 2000;80(3):711.

    CAS  Google Scholar 

  120. Bajguirani HH. The effect of ageing upon the microstructure and mechanical properties of type 15–5 PH stainless steel. Mater Sci Eng, A. 2002;338(1–2):142.

    Google Scholar 

  121. Holzer I, Kozeschnik E. Computer simulation of the yield strength evolution in Cu-precipitation strengthened ferritic steel. Mater Sci Eng, A. 2010;527(15):3546.

    Google Scholar 

  122. Stechauner G, Kozeschnik E. Simulation of Cu precipitation in the Fe-Cu binary system. Adv Mater Res. 2014;922:728.

    Google Scholar 

  123. Primig S, Leitner H. Transformation from continuous-to-isothermal aging applied on a maraging steel. Mater Sci Eng, A. 2010;527(16–17):4399.

    Google Scholar 

  124. Zhao J, Yang C, Zhang D, Zhao Y, Khan MS, Xu D, Xi T, Li X, Yang K. Investigation on mechanical, corrosion resistance and antibacterial properties of Cu-bearing 2205 duplex stainless steel by solution treatment. RSC Adv. 2016;6(114): 112738.

    CAS  Google Scholar 

  125. Xu D, Zhou E, Zhao Y, Li H, Liu Z, Zhang D, Yang C, Lin H, Li X, Yang K. Enhanced resistance of 2205 Cu-bearing duplex stainless steel towards microbiologically influenced corrosion by marine aerobic Pseudomonas aeruginosa biofilms. J Mater Sci Technol. 2018;34(8):1325.

    CAS  Google Scholar 

  126. Ressel G, Gsellmann M, Brandl D, Landefeld A, Keplinger A, Zhang Z, Maier-Kiener V, Schnitzer R. Copper and its effects on microstructure and correlated tensile properties of super duplex stainless steels. Mater Sci Eng, A. 2021;821: 141544.

    CAS  Google Scholar 

  127. Pan M, Zhang X, Misra R. Effect of Cu on phase proportion, mechanical properties and corrosion properties of Fe-Cr-Mn-Al duplex stainless steel. SSRN J. 2022. https://doi.org/10.2139/ssrn.4010407.

    Article  Google Scholar 

  128. Ran Q, Li J, Xu Y, Xiao X, Yu H, Jiang L. Novel Cu-bearing economical 21Cr duplex stainless steels. Mater Des. 2013;46:758.

    CAS  Google Scholar 

  129. Shu J, Bi H, Li X, Xu Z. The effect of copper and molybdenum on pitting corrosion and stress corrosion cracking behavior of ultra-pure ferritic stainless steels. Corros Sci. 2012;57:89.

    CAS  Google Scholar 

  130. Jeon S-H, Park I-J, Kim H-J, Kim S-T, Lee Y-K, Park Y-S. Effect of Cu on the precipitation of deleterious phases and the mechanical properties of 27Cr–7Ni hyper duplex stainless steels. Mater trans. 2014;55(6):971.

    CAS  Google Scholar 

  131. Jeon S-H, Kim S-T, Lee I-S, Kim J-S, Kim K-T, Park Y-S. Effects of Cu on the precipitation of intermetallic compounds and the intergranular corrosion of hyper duplex stainless steels. Corros Sci. 2013;66:217.

    CAS  Google Scholar 

  132. Jeon S-H, Kim S-T, Kim J-S, Kim J-S, Kim K-T, Park Y-S. Effects of copper addition on the precipitation of chromium nitrides and the associated pitting corrosion resistance of the hyper duplex stainless steels. Mater Trans. 2012;53(12):2129.

    CAS  Google Scholar 

  133. Jeon S-H, Kim S-T, Lee I-S, Park J-H, Kim K-T, Kim J-S, Park Y-S. Effects of copper addition on the formation of inclusions and the resistance to pitting corrosion of high performance duplex stainless steels. Corros Sci. 2011;53(4):1408.

    CAS  Google Scholar 

  134. Kong K-H, Jeon S-H, Kim S-T, Kim D-H, Kim B-J, Guim H-U, Moon M-B, Park Y-S. Effects of Cu addition on the microstructure and localized corrosion resistance of hyper duplex stainless steels aged at 748 K. Mater trans. 2015;56(5):749.

    CAS  Google Scholar 

  135. Li X, Zhang D, Liu Z, Li Z, Du C, Dong C. Materials science: share corrosion data. Nature. 2015;527(7579):441.

    CAS  Google Scholar 

  136. AlAbbas FM, Bhola SM, Spear JR, Olson DL, Mishra B. The shielding effect of wild type iron reducing bacterial flora on the corrosion of linepipe steel. Eng Fail Anal. 2013;33:222.

    CAS  Google Scholar 

  137. Ha H-Y, Jang M-H, Lee T-H, Moon J. Interpretation of the relation between ferrite fraction and pitting corrosion resistance of commercial 2205 duplex stainless steel. Corros Sci. 2014;89:154.

    CAS  Google Scholar 

  138. Olsson J, Snis M. Duplex—A new generation of stainless steels for desalination plants. Desalination. 2007;205(1–3):104.

    CAS  Google Scholar 

  139. Sowards JW, Williamson C, Weeks TS, McColskey JD, Spear JR. The effect of Acetobacter sp and a sulfate-reducing bacterial consortium from ethanol fuel environments on fatigue crack propagation in pipeline and storage tank steels. Corros Sci. 2014;79:128.

    CAS  Google Scholar 

  140. Liu D, Jia R, Xu D, Yang H, Zhao Y, Saleem Khan M, Huang S, Wen J, Yang K, Gu Y. Biofilm inhibition and corrosion resistance of 2205-Cu duplex stainless steel against acid producing bacterium Acetobacter aceti. J Mater Sci Technol. 2019;35(11):2494.

    CAS  Google Scholar 

  141. Sun D, Babar Shahzad M, Li M, Wang G, Xu D. Antimicrobial materials with medical applications. Mater Technol. 2015;30(sup6):B90.

    Google Scholar 

  142. Xia J, Yang C, Xu D, Sun D, Nan L, Sun Z, Li Q, Gu T, Yang K. Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm. Biofouling. 2015;31(6):481.

    CAS  Google Scholar 

  143. Ravindranath K, Malhotra S. The influence of aging on the intergranular corrosion of 22 chromium-5 nickel duplex stainless steel. Corros Sci. 1995;37(1):121.

    CAS  Google Scholar 

  144. Iacoviello F, Casari F, Gialanella S. Effect of “475 C embrittlement” on duplex stainless steels localized corrosion resistance. Corros Sci. 2005;47(4):909.

    CAS  Google Scholar 

  145. Lee J-B. Effects of alloying elements, Cr, Mo and N on repassivation characteristics of stainless steels using the abrading electrode technique. Mater Chem Phys. 2006;99(2–3):224.

    CAS  Google Scholar 

  146. Brooks A, Clayton C, Doss K, Lu Y. On the role of Cr in the passivity of stainless steel. J Electrochem Soc. 1986;133(12):2459.

    CAS  Google Scholar 

  147. Zhang S, Li H, Jiang Z, Zhang B, Li Z, Wu J, Fan S, Feng H, Zhu H. Effects of Cr and Mo on precipitation behavior and associated intergranular corrosion susceptibility of superaustenitic stainless steel S32654. Mater Charact. 2019;152:141.

    CAS  Google Scholar 

  148. Chandra K, Singhal R, Kain V, Raja V. Low temperature embrittlement of duplex stainless steel: correlation between mechanical and electrochemical behavior. Mater Sci Eng, A. 2010;527(16–17):3904.

    Google Scholar 

  149. Yoshiie T, Xu Q. Effects of alloying elements Mn, Mo, Ti, Si, P and C on the incubation period of void swelling in austenitic stainless steels. Tungsten. 2021;3(1):3.

    Google Scholar 

  150. Zhao P. Application of molybdenum in stainless steel. China Molybd Ind. 2004;28(5):3.

    Google Scholar 

  151. Dong Y, Lin X, Jiang X. Effect of Cr, Mo on resistance to the corrosion and corrosion wear of stainless steels. Mater Mech Eng. 1997;21(6):29.

    CAS  Google Scholar 

  152. Kim N-H, Gil W, Lim H-D, Choi C-H, Lee H-W. Variation of mechanical properties and corrosion properties with Mo contents of hyper duplex stainless-steel welds. Metals Mater Int. 2019;25(1):193.

    CAS  Google Scholar 

  153. Sun Y-T, Tan X, Lei L-L, Li J, Jiang Y-M. Revisiting the effect of molybdenum on pitting resistance of stainless steels. Tungsten. 2021;3(3):329.

    Google Scholar 

  154. Schweitzer PA. Metallic materials: physical, mechanical, and corrosion properties. Florida: CRC Press; 2003.

    Google Scholar 

  155. Roberge PR. Corrosion engineering handbook. Florida: CRC Press; 1996.

    Google Scholar 

  156. Tian H, Cheng X, Wang Y, Dong C, Li X. Effect of Mo on interaction between α/γ phases of duplex stainless steel. Electrochim Acta. 2018;267:255.

    CAS  Google Scholar 

  157. Martins M, Casteletti LC. Heat treatment temperature influence on ASTM A890 GR 6A super duplex stainless steel microstructure. Mater Charact. 2005;55(3):225.

    CAS  Google Scholar 

  158. Sieurin H, Sandström R. Sigma phase precipitation in duplex stainless steel 2205. Mater Sci Eng, A. 2007;444(1–2):271.

    Google Scholar 

  159. Jiménez JA, Frommeyer G, Carsı́ M, Ruano OA,. Superplastic properties of a δ/γ stainless steel. Mater Sci Eng, A. 2001;307(1–2):134.

    Google Scholar 

  160. Clayton C, Lu Y. A bipolar model of the passivity of stainless steel: the role of Mo addition. J Electrochem Soc. 1986;133(12):2465.

    CAS  Google Scholar 

  161. Yoon B-J, Ahn Y-S. Effect of Mo addition on aging behavior of TRIP-aided duplex stainless steel. Mater Charact. 2021;173: 110946.

    CAS  Google Scholar 

  162. Malta PO, Dias FL, de Souza ACM, Santos DB. Microstructure and texture evolution of duplex stainless steels with different molybdenum contents. Mater Charact. 2018;142:406.

    CAS  Google Scholar 

  163. Yan H, Bi H, Li X, Xu Z. Microstructure and texture of Nb+ Ti stabilized ferritic stainless steel. Mater Charact. 2008;59(12):1741.

    CAS  Google Scholar 

  164. Jang Y, Kim S, Lee J. Effect of different Mo contents on tensile and corrosion behaviors of CD4MCU cast duplex stainless steels. Metall Mater Trans A. 2005;36(5):1229.

    Google Scholar 

  165. Kim J-S, Kwon H-S. Effects of tungsten on corrosion and kinetics of sigma phase formation of 25% chromium duplex stainless steels. Corrosion. 1999;55(5):512.

    CAS  Google Scholar 

  166. Kim J, Xiang P, Kim K. Effect of tungsten and nickel addition on the repassivation behavior of stainless steel. Corrosion. 2005;61(2):174.

    CAS  Google Scholar 

  167. Jeon S-H, Kim S-T, Lee I-S, Kim J-S, Kim K-T, Park Y-S. Effects of W substitution on the precipitation of secondary phases and the associated pitting corrosion in hyper duplex stainless steels. J Alloys Compd. 2012;544:166.

    CAS  Google Scholar 

  168. Kim K, Zhang P, Ha T, Lee Y. Electrochemical and stress corrosion properties of duplex stainless steels modified with tungsten addition. Corrosion. 1998;54(11):910.

    CAS  Google Scholar 

  169. Liu H, Zheng J, Ma M, Wei L, Chen L. Structure-mechanical property–formability relationships for 444-type W-containing ferritic stainless steels. J Mater Eng Perform. 2021;30(1):467.

    CAS  Google Scholar 

  170. Wei L, Chen L, Liu H, Misra R. Significant grain refinement in the simulated heat-affected zone (HAZ) of ferritic stainless steels by alloying with tungsten. Metall Mater Trans A. 2020;51(6):2719.

    CAS  Google Scholar 

  171. Liu H, Wei L, Ma M, Zheng J, Chen L, Misra RDK. Laves phase precipitation behavior and high-temperature strength of W-containing ferritic stainless steels. J Market Res. 2020;9(2):2127.

    CAS  Google Scholar 

  172. Ma M, He C, Chen L, Wei L, Misra RDK. Effect of W and Ce additions on the electrochemical corrosion behavior of 444-type ferritic stainless steel. Corros Eng, Sci Technol. 2018;53(3):199.

    CAS  Google Scholar 

  173. Wei L, Zheng J, Chen L, Misra RDK. High temperature oxidation behavior of ferritic stainless steel containing W and Ce. Corros Sci. 2018;142:79.

    CAS  Google Scholar 

  174. Ogawa K, Okamoto H, Ueda M, Igarashi M, Mori T, Kobayashi T. Effects of tungsten on pitting corrosion resistance and impact toughness in the HAZ of duplex stainless steel-study of weldability of high-tungsten duplex stainless steel (1st Report). Weld Int. 1996;10(6):466.

    Google Scholar 

  175. Haugan EB, Næss M, Rodriguez CT, Johnsen R, Iannuzzi M. Effect of tungsten on the pitting and crevice corrosion resistance of type 25Cr super duplex stainless steels. Corrosion. 2017;73(1):53.

    CAS  Google Scholar 

  176. Torres C, Hazarabedian M-S, Quadir Z, Johnsen R, Iannuzzi M. The role of tungsten on the phase transformation kinetics and its correlation with the localized corrosion resistance of 25Cr super duplex stainless steels. J Electrochem Soc. 2020;167(8):081510.

    CAS  Google Scholar 

  177. Ahn Y, Kang J. Effect of aging treatments on microstructure and impact properties of tungsten substituted 2205 duplex stainless steel. Mater Sci Technol. 2000;16(4):382.

    CAS  Google Scholar 

  178. Ha H-Y, Lee T-H, Kim S. Effect of W on stress corrosion cracking susceptibility of newly developed Ni-saving duplex stainless steels. Met Mater Int. 2017;23(1):115.

    CAS  Google Scholar 

  179. Oh B, Kim J, Jeong S, Kwon H-S, Hong S, Kim Y. The influence of tungsten on corrosion resistance and sigma phase formation in duplex stainless steels. Process Mater: Innov Stainl Steel. 1993;3:3.

    Google Scholar 

  180. Tan H, Wang Z, Jiang Y, Yang Y, Deng B, Song H, Li J. Influence of welding thermal cycles on microstructure and pitting corrosion resistance of 2304 duplex stainless steels. Corros Sci. 2012;55:368.

    CAS  Google Scholar 

  181. Zhang ZX, Ran QX, Xu YL, Yu XJ, Jiang DW, Xiao XS. A new series of Mo-free 21.5 Cr-3.5 Ni-x W-0.2 N economical duplex stainless steels. J Iron Steel Res Int. 2014;21(1):69.

    Google Scholar 

  182. Chi RA, Li ZJ, Peng C, Zhu GC, Xu SM. Partitioning properties of rare earth ores in China. Rare Met. 2005;24(3):205.

    CAS  Google Scholar 

  183. Ma X, An Z, Chen L, Mao T, Wang J, Long H, Hongyan X. The effect of rare earth alloying on the hot workability of duplex stainless steel—a study using processing map. Mater Des. 2015;86:848.

    CAS  Google Scholar 

  184. Kim SM, Kim JS, Kim KT, Park K-T, Lee CS. Effect of Ce addition on secondary phase transformation and mechanical properties of 27Cr–7Ni hyper duplex stainless steels. Mater Sci Eng, A. 2013;573:27.

    CAS  Google Scholar 

  185. Park Y-S, Kim S-T, Lee I-S, Song C-B. Effects of rare earth metals addition and aging treatment on the corrosion resistance and mechanical properties of super duplex stainless steels. Met Mater Int. 2002;8(3):309.

    CAS  Google Scholar 

  186. Xiaofeng W, Weiqing C. Influence of cerium on hot workability of 00Cr25Ni7Mo4N super duplex stainless steel. J Rare Earths. 2010;28(2):295.

    Google Scholar 

  187. Kim S-T, Jeon S-H, Lee I-S, Park Y-S. Effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel–Part 1. Corros Sci. 2010;52(6):1897.

    CAS  Google Scholar 

  188. Wang L, Lin Q, Ji J, Lan D. New study concerning development of application of rare earth metals in steels. J Alloys Compd. 2006;408:384.

    Google Scholar 

  189. Yoo Y-H, Choi Y-S, Kim J-G, Park Y-S. Effects of Ce, La and Ba addition on the electrochemical behavior of super duplex stainless steels. Corros Sci. 2010;52(4):1123.

    CAS  Google Scholar 

  190. Shim S-I, Park Y-S, Kim S-T, Song C-B. Effects of rare earth metal addition on the cavitation erosion-corrosion resistance of super duplex stainless steels. Met Mater Int. 2002;8(3):301.

    CAS  Google Scholar 

  191. Ha H, Park C, Kwon H. Effects of misch metal on the formation of non-metallic inclusions and the associated resistance to pitting corrosion in 25% Cr duplex stainless steels. Scripta Mater. 2006;55(11):991.

    CAS  Google Scholar 

  192. Xiaoshen Z. Effect of Ce on inclusion and properties in medium plate of heat resisting steel 253MA. Special Steel. 2008;29(2):56.

    Google Scholar 

  193. Sun W, Ding G, Luo M, Wang Z, Song A. Behaviour of Ce in duplex stainless steel. Acta Metallurgica Sinica (China). 1996;32:245.

    CAS  Google Scholar 

  194. Sun W. Progress in duplex stainless steel and its application in ordnance industry. Mater Sci Eng. 2001;24(4):49.

    Google Scholar 

  195. Gong W, Wang P, Zhang L, Jiang Z. Effects of Ce on microstructure and mechanical properties of LDX2101 duplex stainless steel. Metals. 2020;10(9):1233.

    CAS  Google Scholar 

  196. Liu X, Wang LM. Effects of rare earth addition on the inclusions and mechanical properties of 2205 duplex stainless steel. Trans Tech Publ. 2012;503:463.

    Google Scholar 

  197. Choi Y, Moon BM, Sohn D-S. Fabrication of Gd containing duplex stainless steel sheet for neutron absorbing structural materials. Nucl Eng Technol. 2013;45(5):689.

    CAS  Google Scholar 

  198. Khan Z. Influence of gadolinium on the microstructure and mechanical properties of steel and stainless steel. J South Afr Inst Min Metall. 2012;112(4):309.

    CAS  Google Scholar 

  199. Ahn J-H, Jung H-D, Im J-H, Jung KH, Moon B-M. Influence of the addition of gadolinium on the microstructure and mechanical properties of duplex stainless steel. Mater Sci Eng, A. 2016;658:255.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 51974032, 52174355, 51604034, and 51701021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Han or Xu Ran.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Liu, ZH., Wu, CB. et al. A short review on the role of alloying elements in duplex stainless steels. Tungsten 5, 419–439 (2023). https://doi.org/10.1007/s42864-022-00168-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-022-00168-z

Keywords

Navigation