Skip to main content

Advertisement

Log in

Tungsten-based photocatalysts with UV–Vis–NIR photocatalytic capacity: progress and opportunity

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

Semiconductor photocatalysis is proven to be one of the potential approaches to solve energy crisis and environmental problems. Efficient solar energy utilization and superior charge carrier separation capacity are two crucial aspects in photocatalysis. Herein, the photocatalytic performances of the pristine and modified tungsten-based materials with mixed valence state are summarized concisely. The narrow band gap energy, coexistence of W5+/W6+ and the oxygen vacancies all contribute to the pristine tungsten-based photocatalysts with unique ultraviolet (UV), visible (Vis), and near-infrared (NIR) light-induced photocatalytic activities. Furthermore, the enhanced localized surface plasmonic resonance (LSPR) effect, improved charge carrier separation efficiency and prolonged charge carrier lifetime all boost the performances of modified tungsten-based heterojunction photocatalysts. Moreover, multifunctional tungsten-based photocatalysts with mixed valence state are established to realize the full utilization of solar energy authentically. Concluding perspectives on the challenges and opportunities for the further exploration of tungsten-based photocatalysts are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Li H, Zhou Y, Tu W, Ye J, Zou Z. State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv Funct Mater. 2015;25(7):998.

    Article  CAS  Google Scholar 

  2. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA. Heterojunction photocatalysts. Adv Mater. 2017;29(20):1601694.

    Article  CAS  Google Scholar 

  3. Meng A, Zhang L, Cheng B, Yu J. Dual cocatalysts in TiO2 photocatalysis. Adv Mater. 2019;31(30):1807660.

    Article  CAS  Google Scholar 

  4. Liu T, Ma X, Yang L, Li H, Li H, Lee S, Wang Y. Highly enhanced photocatalytic activity of CaSn(OH)6 through tuning CaSn(OH)6/SnO2 heterostructural interaction and optimizing Fe3+ doping concentration. Appl Catal B. 2017;217:256.

    Article  CAS  Google Scholar 

  5. Yang Y, Wang Y, Yin S. Oxygen vacancies confined in SnO2 nanoparticles for desirable electronic structure and enhanced visible light photocatalytic activity. Appl Surf Sci. 2017;420:399.

    Article  CAS  Google Scholar 

  6. Manfredi N, Monai M, Montini T, Peri F, De Angelis F, Fornasiero P, Abbotto A. Dye-sensitized photocatalytic hydrogen generation: efficiency enhancement by organic photosensitizer-coadsorbent intermolecular interaction. ACS Energy Lett. 2018;3(1):85.

    Article  CAS  Google Scholar 

  7. Yuan YP, Yin LS, Cao SW, Xu GS, Li CH, Xue C. Improving photocatalytic hydrogen production of metal–organic framework UiO-66 octahedrons by dye-sensitization. Appl Catal B. 2015;168–169:572.

    Article  CAS  Google Scholar 

  8. Li H, Yu H, Quan X, Chen S, Zhao H. Improved photocatalytic performance of heterojunction by controlling the contact facet: high electron transfer capacity between TiO2 and the {110} facet of BiVO4 caused by suitable energy band alignment. Adv Funct Mater. 2015;25(20):3074.

    Article  CAS  Google Scholar 

  9. Zou X, Wang PP, Li C, Zhao J, Wang D, Asefa T, Li GD. One-pot cation exchange synthesis of 1D porous CdS/ZnO heterostructures for visible-light-driven H2 evolution. J Mater Chem A. 2014;2(13):4682.

    Article  CAS  Google Scholar 

  10. Ma X, Li H, Wang Y, Li H, Liu B, Yin S, Sato T. Substantial change in phenomenon of “self-corrosion” on Ag3PO4/TiO2 compound photocatalyst. Appl Catal B. 2014;158–159:314.

    Google Scholar 

  11. Dong P, Wang Y, Li H, Li H, Ma X, Han L. Shape-controllable synthesis and morphology-dependent photocatalytic properties of Ag3PO4 crystals. J Mater Chem A. 2013;1(15):4651.

    Article  CAS  Google Scholar 

  12. Liu TY, Zhang XQ, Zhao F, Wang YH. Targeting inside charge carriers transfer of photocatalyst: selective deposition of Ag2O on BiVO4 with enhanced UV–Vis-NIR photocatalytic oxidation activity. Appl Catal B. 2019;251:220.

    Article  CAS  Google Scholar 

  13. Zhao F, Li H, Liu T, Wang Y. Spatially separated CdS hollow spheres with interfacial charge transfer and cocatalyst for enhancing photocatalytic hydrogen evolution. Mol Catal. 2019;474:110418.

    Article  CAS  Google Scholar 

  14. Ma X, Zhao F, Qiang Q, Liu T, Wang Y. Fabrication of selective interface of ZnO/CdS heterostructures for more efficient photocatalytic hydrogen evolution. Dalton Trans. 2018;47(35):12162.

    Article  CAS  Google Scholar 

  15. Liu T, Liu B, Yang L, Ma X, Li H, Yin S, Sato T, Sekino T, Wang Y. RGO/Ag2S/TiO2 ternary heterojunctions with highly enhanced UV-NIR photocatalytic activity and stability. Appl Catal B. 2017;204:593.

    Article  CAS  Google Scholar 

  16. Cai X, Zhu M, Elbanna OA, Fujitsuka M, Kim S, Mao L, Zhang J, Majima T. Au nanorod photosensitized La2Ti2O7 nanosteps: successive surface heterojunctions boosting visible to near-infrared photocatalytic H2 evolution. ACS Catal. 2017;8(1):122.

    Article  CAS  Google Scholar 

  17. Wei N, Cui H, Song Q, Zhang L, Song X, Wang K, Zhang Y, Li J, Wen J, Tian J. Ag2O nanoparticle/TiO2 nanobelt heterostructures with remarkable photo-response and photocatalytic properties under UV, visible and near-infrared irradiation. Appl Catal B. 2016;198:83.

    Article  CAS  Google Scholar 

  18. Chen Y, Zhu G, Hojamberdiev M, Gao J, Zhu R, Wang C, Wei X, Liu P. Three-dimensional Ag2O/Bi5O7I pn heterojunction photocatalyst harnessing UV–Vis-NIR broad spectrum for photodegradation of organic pollutants. J Hazard Mater. 2018;344:42.

    Article  CAS  Google Scholar 

  19. Sang Y, Zhao Z, Zhao M, Hao P, Leng Y, Liu H. From UV to near-infrared, WS2 nanosheet: a novel photocatalyst for full solar light spectrum photodegradation. Adv Mater. 2015;27(2):363.

    Article  CAS  Google Scholar 

  20. Xu X, Luo F, Tang W, Hu J, Zeng H, Zhou Y. Enriching hot electrons via NIR-photon-excited plasmon in WS2@Cu hybrids for full-spectrum solar hydrogen evolution. Adv Funct Mater. 2018;28(43):1804055.

    Article  CAS  Google Scholar 

  21. Tian J, Sang Y, Yu G, Jiang H, Mu X, Liu H. A Bi2WO6-based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Adv Mater. 2013;25(36):5074.

    Article  Google Scholar 

  22. Xu DX, Lian ZW, Fu ML, Yuan B, Shi JW, Cui HK. Advanced near-infrared-driven photocatalyst: fabrication, characterization, and photocatalytic performance of β-NaYF4:Yb3+ , Tm3+@TiO2 core@shell microcrystals. Appl Catal B. 2013;142–143:377.

    Article  CAS  Google Scholar 

  23. Wang W, Ding M, Lu C, Ni Y, Xu Z. A study on upconversion UV–Vis-NIR responsive photocatalytic activity and mechanisms of hexagonal phase NaYF4:Yb3+, Tm3+@TiO2 core–shell structured photocatalyst. Appl Catal B. 2014;144:379.

    Article  CAS  Google Scholar 

  24. Li C, Wang F, Zhu J, Yu JC. NaYF4:Yb, Tm/CdS composite as a novel near-infrared-driven photocatalyst. Appl Catal B. 2010;100(3–4):433.

    Article  CAS  Google Scholar 

  25. Li H, Liu R, Liu Y, Huang H, Yu H, Ming H, Lian S, Lee ST, Kang ZH. Carbon quantum dots/Cu2O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior. J Mater Chem. 2012;22(34):17470.

    Article  CAS  Google Scholar 

  26. Takanabe K, Kamata K, Wang X, Antonietti M, Kubota J, Domen K. Photocatalytic hydrogen evolution on dye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine. Phys Chem Chem Phys. 2010;12(40):13020.

    Article  CAS  Google Scholar 

  27. Zhang Z, Wang W, Jiang D, Xu J. CuPc sensitized Bi2MoO6 with remarkable photo-response and enhanced photocatalytic activity. Catal Commun. 2014;55:15.

    Article  CAS  Google Scholar 

  28. Chen X, Liu L, Huang F. Black titanium dioxide (TiO2) nanomaterials. Chem Soc Rev. 2015;44(7):1861.

    Article  CAS  Google Scholar 

  29. Wang W, Huang W, Ni Y, Lu C, Xu Z. Different upconversion properties of β-NaYF4:Yb3+, Tm3+/Er3+ in affecting the near-infrared-driven photocatalytic activity of high-reactive TiO2. ACS Appl Mater Inter. 2014;6(1):340.

    Article  CAS  Google Scholar 

  30. Liu B, Yin S, Wu X, Wang Y, Huang Y, Wu J, Sekino T, Matsushita J, Lee SW, Kobayashi M, Kakihana M, Sato T. Graphene/MxWO3 (M = Na, K) nanohybrids with excellent electrical properties. Carbon. 2015;94:309.

    Article  CAS  Google Scholar 

  31. Liu B, Yin S, Wang Y, Guo C, Wu X, Dong Q, Kobayashi M, Kakihana M, Sato T. A facile one-step solvothermal synthesis and electrical properties of reduced graphene oxide/rod-shaped potassium tungsten bronze nanocomposite. J Nanosci Nanotechnol. 2015;15(9):7305.

    Article  CAS  Google Scholar 

  32. Moshofsky B, Mokari T. Electrochromic active layers from ultrathin nanowires of tungsten oxide. J Mater Chem C. 2014;2(18):3556.

    Article  CAS  Google Scholar 

  33. Runnerstrom EL, Llordes A, Lounis SD, Milliron DJ. Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals. Chem Commun. 2014;50(73):10555.

    Article  CAS  Google Scholar 

  34. Liu BJ, Zheng J, Wang JL, Xu J, Li HH, Yu SH. Ultrathin W18O49 nanowire assemblies for electrochromic devices. Nano Lett. 2013;13(8):3589.

    Article  CAS  Google Scholar 

  35. Guo C, Yin S, Huang L, Sato T. Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property. ACS Appl Mater Inter. 2011;3(7):2794.

    Article  CAS  Google Scholar 

  36. Guo C, Yin S, Zhang P, Yan M, Adachi K, Chonan T, Sato T. Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process. J Mater Chem. 2010;20(38):8227.

    Article  CAS  Google Scholar 

  37. Guo C, Yin S, Dong Q, Sato T. Simple route to (NH4)xWO3 nanorods for near infrared absorption. Nanoscale. 2012;4(11):3394.

    Article  CAS  Google Scholar 

  38. Guo C, Yin S, Dong Q, Sato T. Near-infrared absorption properties of RbxWO3 nanoparticles. CrystEngComm. 2012;14(22):7727.

    Article  CAS  Google Scholar 

  39. Guo C, Yin S, Dong Q, Sato T. The near infrared absorption properties of W18O49. RSC Adv. 2012;2(12):5041.

    Article  CAS  Google Scholar 

  40. Guo C, Yin S, Yan M, Kobayashi M, Kakihana M, Sato T. Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties. Inorg Chem. 2012;51(8):4763.

    Article  CAS  Google Scholar 

  41. Yang L, Liu B, Liu T, Ma X, Li H, Yin S, Sato T, Wang Y. A P25/(NH4)xWO3 hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Sci Rep. 2017;8:45715.

    Article  CAS  Google Scholar 

  42. Zhang N, Zhao Y, Lu Y, Zhu G. Preparation of aligned W18O49 nanowire clusters with high photocatalytic activity. Mater Sci Eng B. 2017;218:51.

    Article  CAS  Google Scholar 

  43. Liu J, Yu S, Zhu W, Yan X. Oxygen vacancy-enhanced visible light-driven photocatalytic activity of TiO2 sphere–W18O49 nanowire bundle heterojunction. App Catal A. 2015;500:30.

    Article  CAS  Google Scholar 

  44. Bao Y, Zhang Z, Cao B, Liu Y, Shang J, Yang Y, Dong B. Energy transfer from Er to Nd ions by the thermal effect and promotion of the photocatalysis of the NaYF4:Yb, Er, Nd/W18O49 heterostructure. Nanoscale. 2019;11(15):7433.

    Article  CAS  Google Scholar 

  45. Wu J, Zhang Z, Liu B, Fang Y, Wang L, Dong B. UV–Vis-NIR-driven plasmonic photocatalysts with dual-resonance modes for synergistically enhancing H2 generation. Solar RRL. 2018;2(6):180036.

    Google Scholar 

  46. Yan J, Wang T, Wu G, Dai W, Guan N, Li L, Gong J. Tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting. Adv Mater. 2015;27(9):1580.

    Article  CAS  Google Scholar 

  47. Gu Z, Ma Y, Zhai T, Gao B, Yang W, Yao J. A simple hydrothermal method for the large-scale synthesis of single-crystal potassium tungsten bronze nanowires. Chem-Eur J. 2006;12(29):7717.

    Article  CAS  Google Scholar 

  48. Guo C, Yin S, Sato T. Effects of crystallization atmospheres on the near-infrared absorbtion and electroconductive properties of tungsten bronze type MxWO3 (M = Na, K). J Am Ceram Soc. 2012;95(5):1634.

    Article  CAS  Google Scholar 

  49. Gao T, Jelle BP. Visible-light-driven photochromism of hexagonal sodium tungsten bronze nanorods. J Phys Chem C. 2013;117(26):13753.

    Article  CAS  Google Scholar 

  50. Li G, Guo C, Yan M, Liu S. CsxWO3 nanorods: realization of full-spectrum-responsive photocatalytic activities from UV, visible to near-infrared region. Appl Catal B. 2016;183:142.

    Article  CAS  Google Scholar 

  51. Yin S, Asakura Y. Recent research progress on mixed valence state tungsten based materials. Tungsten. 2019;1(1):5.

    Article  Google Scholar 

  52. Migas DB, Shaposhnikov VL, Borisenko VE. Tungsten oxides. II. The metallic nature of Magnéli phases. J Appl Phys. 2010;108(9):093714.

    Article  CAS  Google Scholar 

  53. Tahmasebi N, Madmoli S. Facile synthesis of a WOx/CsyWO3 heterostructured composite as a visible light photocatalyst. RSC Adv. 2018;8(13):7014.

    Article  CAS  Google Scholar 

  54. Zhang N, Jalil A, Wu D, Chen S, Liu Y, Gao C, Ye W, Qi Z, Ju H, Wang C, Wu X, Song L, Zhu J, Xiong Y. Refining defect states in W18O49 by Mo doping: a strategy for tuning N2 activation towards solar-driven nitrogen fixation. J Am Chem Soc. 2018;140(30):9434.

    Article  CAS  Google Scholar 

  55. Xi G, Ouyang S, Li P, Ye J, Ma Q, Su N, Bai H, Wang C. Ultrathin W18O49 nanowires with diameters below 1 nm: synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew Chem Int Ed. 2012;51(10):2395.

    Article  CAS  Google Scholar 

  56. Lin B, Li H, An H, Hao W, Wei J, Dai Y, Ma C, Yang G. Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards high-efficiency photocatalytic hydrogen evolution. Appl Catal B. 2018;220:542.

    Article  CAS  Google Scholar 

  57. Wang S, Guan B, Lou X. Construction of ZnIn2S4-In2O3 Hierarchical Tubular Heterostructures for Efficient CO2 Photoreduction. J Am Chem Soc. 2018;140(15):5037.

    Article  CAS  Google Scholar 

  58. Li Z, Xiong S, Wang G, Xie Z, Zhang Z. Role of Ag2S coupling on enhancing the visible-light-induced catalytic property of TiO2 nanorod arrays. Sci Rep. 2016;6:19754.

    Article  CAS  Google Scholar 

  59. Meng S, Zhang J, Chen S, Zhang S, Huang W. Perspective on construction of heterojunction photocatalysts and the complete utilization of photogenerated charge carriers. Appl Surf Sci. 2019;476:982.

    Article  CAS  Google Scholar 

  60. Shi A, Li H, Yin S, Zhang J, Wang Y. H2 Evolution over g-C3N4/CsxWO3 under NIR light. Appl Catal B. 2018;228:75.

    Article  CAS  Google Scholar 

  61. Chala TF, Wu CM, Motora KG. RbxWO3/Ag3VO4 nanocomposites as efficient full-spectrum (UV, visible, and near-infrared) photocatalysis. J Taiwan Inst Chem E. 2019;102:465.

    Article  CAS  Google Scholar 

  62. Li H, Tu W, Zhou Y, Zou Z. Z-scheme photocatalytic systems for promoting photocatalytic performance: recent progress and future challenges. Adv Sci. 2016;3(11):1500389.

    Article  CAS  Google Scholar 

  63. Zhou C, Wang S, Zhao Z, Shi Z, Yan S, Zou Z. A facet-dependent schottky-junction electron shuttle in a BiVO4{010}-Au-Cu2O Z-scheme photocatalyst for efficient charge separation. Adv Funct Mater. 2018;28(31):180214.

    Google Scholar 

  64. Huang ZF, Song J, Wang X, Pan L, Li K, Zhang X, Wang L, Zou JJ. Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution. Nano Energy. 2017;40:308.

    Article  CAS  Google Scholar 

  65. Miyauchi M, Nukui Y, Atarashi D, Sakai E. Selective growth of n-type nanoparticles on p-type semiconductors for Z-scheme photocatalysis. ACS Appl Mater Inter. 2013;5(19):9770.

    Article  CAS  Google Scholar 

  66. Zhang Z, Huang J, Fang Y, Zhang M, Liu K, Dong B. A nonmetal plasmonic Z-scheme photocatalyst with UV- to NIR-driven photocatalytic protons reduction. Adv Mater. 2017;29(18):1606688.

    Article  CAS  Google Scholar 

  67. Li Y, Wu X, Li J, Wang K, Zhang G. Z-scheme g-C3N4@CsxWO3 heterostructure as smart window coating for UV isolating, Vis penetrating, NIR shielding and full spectrum photocatalytic decomposing VOCs. Appl Catal B. 2018;229:218.

    Article  CAS  Google Scholar 

  68. Cui G, Wang W, Ma M, Xie J, Shi X, Deng N, Xin J, Tang B. IR-driven photocatalytic water splitting with WO2–NaxWO3 hybrid conductor material. Nano Lett. 2015;15(11):7199.

    Article  CAS  Google Scholar 

  69. Zhang Z, Liu Y, Fang Y, Cao B, Huang J, Liu K, Dong B. Near-infrared-plasmonic energy upconversion in a nonmetallic heterostructure for efficient H2 evolution from ammonia borane. Adv Sci. 2018;5(9):1800748.

    Article  CAS  Google Scholar 

  70. Lu N, Zhang Z, Wang Y, Liu B, Guo L, Wang L, Huang J, Liu K, Dong B. Direct evidence of IR-driven hot electron transfer in metal-free plasmonic W18O49/Carbon heterostructures for enhanced catalytic H2 production. Appl Catal B. 2018;233:19.

    Article  CAS  Google Scholar 

  71. Purvis K, Lu G, Schwartz J, Bernasek S. Surface characterization and modification of indium tin oxide in ultrahigh vacuum. J Am Chem Soc. 2000;122(8):1808.

    Article  CAS  Google Scholar 

  72. Liu H, Zeng X, Kong X, Bian S, Chen J. A simple two-step method to fabricate highly transparent ITO/polymer nanocomposite films. Appl Surf Sci. 2012;258(22):8564.

    Article  CAS  Google Scholar 

  73. Adachi K, Miratsu M, Asahi T. Absorption and scattering of near-infrared light by dispersed lanthanum hexaboride nanoparticles for solar control filters. J Mater Res. 2011;25(3):510.

    Article  CAS  Google Scholar 

  74. Takeda H, Adachi K. Near infrared absorption of tungsten oxide nanoparticle dispersions. J Am Ceram Soc. 2007;90(12):4059.

    CAS  Google Scholar 

  75. Liu T, Liu B, Wang J, Yang L, Ma X, Li H, Zhang Y, Yin S, Sato T, Sekino T, Wang Y. Smart window coating based on F-TiO2-KxWO3 nanocomposites with heat shielding, ultraviolet isolating, hydrophilic and photocatalytic performance. Sci Rep. 2016;6:27373.

    Article  CAS  Google Scholar 

  76. Sun S, Chang X, Dong L, Zhang Y, Li Z, Qiu Y. W18O49 nanorods decorated with Ag/AgCl nanoparticles as highly-sensitive gas-sensing material and visible-light-driven photocatalyst. J Solid State Chem. 2011;184(8):2190.

    Article  CAS  Google Scholar 

  77. Wu X, Yin S, Xue D, Komarneni S, Sato T. A CsxWO3/ZnO nanocomposite as a smart coating for photocatalytic environmental cleanup and heat insulation. Nanoscale. 2015;7(40):17048.

    Article  CAS  Google Scholar 

  78. Wu X, Wang J, Zhang G, Katsumata K, Yanagisawa KI, Sato T, Yin S. Series of MxWO3/ZnO (M = K, Rb, NH4) nanocomposites: combination of energy saving and environmental decontamination functions. Appl Catal B. 2017;201:128.

    Article  CAS  Google Scholar 

  79. Asakura Y, Anada Y, Hamanaka R, Sato T, Katsumata KI, Wu XY, Yin S. Multifunctionality in coating films including Nb-doped TiO2 and CsxWO3: near infrared shielding and photocatalytic properties. Nanotechnology. 2018;29(22):224001.

    Article  CAS  Google Scholar 

  80. Miller DR, Akbar SA, Morris PA. Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sensor Actuat B: Chem. 2014;204:250.

    Article  CAS  Google Scholar 

  81. Li T, Zeng W, Wang Z. Quasi-one-dimensional metal-oxide-based heterostructural gas-sensing materials: a review. Sensor Actuat B: Chem. 2015;221:1570.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Gansu Province Development and Reform Commission (NDRC, Grant No. 2013-1336) and the Light Function and Fight Conversion Material Discipline Innovation Base Cultivation Project (Grant No. G20190028011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhua Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, T., Li, H. et al. Tungsten-based photocatalysts with UV–Vis–NIR photocatalytic capacity: progress and opportunity. Tungsten 1, 247–257 (2019). https://doi.org/10.1007/s42864-020-00031-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-020-00031-z

Keywords

Navigation