Skip to main content

Advertisement

Log in

Ultrasonic Atomizer for Aeroponic Cultivation: Effect of Nutrient Solution Dosage, Voltage, and Horn Dimensions

  • Original Article
  • Published:
Journal of Biosystems Engineering Aims and scope Submit manuscript

Abstract

Purpose

Due to the advantages of aeroponic compared to other cultivation systems, the advantages of piezoelectric ultrasonic compared to other mist makers, and lack of research done to study the parameters affecting the misting rate of nutrient solutions with the approach used in aeroponic systems, the current work was carried out.

Methods

The effects of dosage of nutrient solution, voltage, horn diameter, and horn height on the misting rate, circuit current, power consumption, amplitude of sound waves, Δ pH, Δ EC (electrical conductivity), and Δ TDS (total dissolved solids) were investigated. Physical properties of the solution (density, viscosity, surface tension, and speed of sound) were measured. Moreover, optimization was performed to determine suitable ranges of independent variables.

Results

Obtained results showed that the four mentioned independent variables significantly affect the six dependent variables (P<1%). The misting rate was in the range of 96 to 411.6 g h−1. At the temperature of 25 °C and for different concentrations of fertilizer, the density, surface tension, viscosity, speed of sound in the solution, initial TDS, and initial pH varied between 1002.3–1004.8 kg m−3, 73.33–74.42 mN m−1, 1.009–1.395 mPa s, 1489–1502 m s−1, 1323–8865 mg L−1, and 6.18–6.84, respectively. Also, theoretically calculated mist mean droplet diameter was in the range of 2.868 to 2.880 μm for different fertilizer doses.

Conclusion

Mist generation by piezoelectric ceramics is an efficient method for use in aeroponic systems. Although the obtained misting rates in this study differ from the industrial values, the use of several piezoelectric ceramics is the simplest solution to this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abedi, K. J., & Mesforoush, M. (2009). Evaluation of superabsorbent polymer application on yield, water and fertilizer use efficiency in cucumber (Cucumis sativus). Iranian Journal of Irrigation and Drainage, 2(3), 100–111.

    Google Scholar 

  • Amdoun, R., Khelifi, L., Khelifi-Slaoui, M., Amroune, S., Asch, M., Assaf-Ducrocq, C., & Gontier, E. (2018). The desirability optimization methodology; a tool to predict two antagonist responses in biotechnological systems: Case of biomass growth and hyoscyamine content in elicited datura starmonium hairy roots. Iranian Journal of Biotechnology, 16(1), 11–19.

    Article  Google Scholar 

  • Arcas-Pilz, V., Parada, F., Villalba, G., Rufí-Salis, M., Rosell-Melé, A., & Gabarrell Durany, X. (2021). Improving the fertigation of soilless urban vertical agriculture through the combination of struvite and rhizobia inoculation in Phaseolus vulgaris. Frontiers in Plant Science, 12, 952. https://doi.org/10.3389/fpls.2021.649304

    Article  Google Scholar 

  • Avvaru, B., Patil, M. N., Gogate, P. R., & Pandit, A. B. (2006). Ultrasonic atomization: effect of liquid phase properties. Ultrasonics, 44(2), 146–158. https://doi.org/10.1016/j.ultras.2005.09.003

    Article  Google Scholar 

  • Badjakov, I., Georgiev, V., Georgieva, M., Dincheva, I., Vrancheva, R., Ivanov, I., Georgiev, D., Hristova, D., Kondakova, V., & Pavlov, A. (2021). Bioreactor technology for in vitro berry plant cultivation. Plant Cell and Tissue Differentiation and Secondary Metabolites: Fundamentals and Applications, 383–431. https://doi.org/10.1007/978-3-030-30185-9_18

  • Baganz, G. F. M., Junge, R., Portella, M. C., Goddek, S., Keesman, K. J., Baganz, D., Staaks, G., Shaw, C., Lohrberg, F., & Kloas, W. (2021). The aquaponic principle—It is all about coupling. Reviews in Aquaculture, 14, 252–264. https://doi.org/10.1111/raq.12596

    Article  Google Scholar 

  • Barla, S.-A., Salachas, G., & Abeliotis, K. (2020). Assessment of the greenhouse gas emissions from aeroponic lettuce cultivation in Greece. Euro-Mediterranean Journal for Environmental Integration, 5(2), 1–7. https://doi.org/10.1007/s41207-020-00168-w

    Article  Google Scholar 

  • Barreras, F., Amaveda, H., & Lozano, A. (2002). Transient high-frequency ultrasonic water atomization. Experiments in Fluids, 33(3), 405–413.

    Article  Google Scholar 

  • Biswas, A. K., & Tortajada, C. (2019). Water crisis and water wars: Myths and realities. https://doi.org/10.1080/07900627.2019.1636502

    Book  Google Scholar 

  • Chang, Y.-Y., Wu, M.-Y., Hung, Y.-L., & Lin, S.-Y. (2011). Accurate surface tension measurement of glass melts by the pendant drop method. Review of Scientific Instruments, 82(5), 55107.

    Article  Google Scholar 

  • Chaudhry, A. R., & Mishra, V. P. (2019). A comparative analysis of vertical agriculture systems in residential apartments. 2019 Advances in Science and Engineering Technology International Conferences (ASET), 1–5. https://doi.org/10.1109/ICASET.2019.8714358

  • Chowdhury, M., Islam, M. N., Reza, M. N., Ali, M., Rasool, K., Kiraga, S., Lee, D., & Chung, S.-O. (2021). Sensor-based nutrient recirculation for aeroponic lettuce cultivation. Journal of Biosystems Engineering, 46(1), 81–92. https://doi.org/10.1007/s42853-021-00089-8

    Article  Google Scholar 

  • Cooper, A. (1988). 1. The system. 2. Operation of the system. The ABC of NFT. Nutrient Film Technique. .

    Google Scholar 

  • Corzo, O., & Gomez, E. R. (2004). Optimization of osmotic dehydration of cantaloupe using desired function methodology. Journal of Food Engineering, 64(2), 213–219.

    Article  Google Scholar 

  • Dalmoro, A., Barba, A. A., & D’Amore, M. (2013). Analysis of size correlations for microdroplets produced by ultrasonic atomization. The Scientific World Journal, 2013, 1–7. https://doi.org/10.1155/2013/482910

    Article  Google Scholar 

  • Demirbaş, N. (2019). Vertical agriculture: A review of developments. Cataloging-In-Publication Data, 633–639.

  • Donnelly, T. D., Hogan, J., Mugler, A., Schubmehl, M., Schommer, N., Bernoff, A. J., Dasnurkar, S., & Ditmire, T. (2005). Using ultrasonic atomization to produce an aerosol of micron-scale particles. Review of Scientific Instruments, 76(11), 113301. https://doi.org/10.1063/1.2130336

    Article  Google Scholar 

  • Drews, M., Larsen, M. A. D., & Balderrama, J. G. P. (2020). Projected water usage and land-use-change emissions from biomass production (2015–2050). Energy Strategy Reviews, 29, 100487. https://doi.org/10.1016/j.esr.2020.100487

    Article  Google Scholar 

  • Dritsa, V., Rigas, F., Doulia, D., Avramides, E. J., & Hatzianestis, I. (2009). Optimization of culture conditions for the biodegradation of lindane by the polypore fungus Ganoderma australe. Water, Air, and Soil Pollution, 204(1), 19–27.

    Article  Google Scholar 

  • Dupuis, E. D., Momen, A. M., Patel, V. K., & Shahab, S. (2018). Ultrasonic piezoelectric atomizers: Electromechanical modeling and performance testing. Smart Materials, Adaptive Structures and Intelligent Systems, 51944, V001T04A027. https://doi.org/10.1115/SMASIS2018-8262

    Article  Google Scholar 

  • Faraway, J. J. (2002). Practical regression and ANOVA using R (Vol. 168).

    Google Scholar 

  • Forde, G., Friend, J., & Williamson, T. (2006). Straightforward biodegradable nanoparticle generation through megahertz-order ultrasonic atomization. Applied Physics Letters, 89(6), 64105.

    Article  Google Scholar 

  • Ghatee, M. H., Zare, M., Zolghadr, A. R., & Moosavi, F. (2010). Temperature dependence of viscosity and relation with the surface tension of ionic liquids. Fluid Phase Equilibria, 291(2), 188–194. https://doi.org/10.1016/j.fluid.2010.01.010

    Article  Google Scholar 

  • Gianino, C. (2006). Measurement of surface tension by the dripping from a needle. Physics Education, 41(5), 440–444. https://doi.org/10.1088/0031-9120/41/5/010

    Article  Google Scholar 

  • He, L., Du, Y., Wu, S., & Zhang, Z. (2021). Evaluation of the agricultural water resource carrying capacity and optimization of a planting-raising structure. Agricultural Water Management, 243, 106456. https://doi.org/10.1016/j.agwat.2020.106456

    Article  Google Scholar 

  • Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water (Vol. 2254). Department of the Interior, US Geological Survey. Google Books URL: https://books.google.com/books?hl=en&lr=&id=1k9GAAAAYAAJ&oi=fnd&pg=PR3&dq=%3Cdiv+class%3D%22NodiCopyInline%22%3E+%3Ci%3EStudy+and+interpretation+of+the+chemical+characteristics+of+natural+water%3C/i%3E+(Vol.+2254).%3C/div%3E&ots=RYM_uLgvUe&sig=TnvtP7VqWiDSHqE3tKXA9udlC2o#v=onepage&q&f=false

  • Hoagland, D. R., & Arnon, D. I. (1938). Growing plants without soil by the water-culture method. Growing Plants without Soil by the Water-Culture Method.

  • Javidan, S. M., & Mohamadzamani, D. (2021). Design, construction, and evaluation of automated seeder with ultrasonic sensors for row detection. Journal of Biosystems Engineering, 46, 365–374. https://doi.org/10.1007/s42853-021-00113-x

    Article  Google Scholar 

  • Jung, C. G. H., Waldeck, P., Petrick, I., Braune, S., Küpper, J.-H., & Jung, F. (2021). Bioreactor for the cultivation of Arthrospira platensis under controlled conditions. Journal of Cellular Biotechnology, Preprint, 1–6, 7, 35–40. https://doi.org/10.3233/JCB-210032

    Article  Google Scholar 

  • Jůza, J. (2019). Surface tension measurements of viscous materials by pendant drop method: Time needed to establish equilibrium shape. Macromolecular Symposia, 384(1), 1800150.

    Article  Google Scholar 

  • Kanakoudis, V., Papadopoulou, A., Tsitsifli, S., Curk, B. C., Karleusa, B., Matic, B., Altran, E., & Banovec, P. (2017). Policy recommendation for drinking water supply cross-border networking in the Adriatic region. Journal of Water Supply: Research and Technology--AQUA, 66(7), 489–508. https://doi.org/10.2166/aqua.2017.079

    Article  Google Scholar 

  • Karuniawati, S., Putrada, A. G., & Rakhmatsyah, A. (2021). Optimization of grow lights control in IoT-based aeroponic systems with sensor fusion and random forest classification. International Symposium on Electronics and Smart Devices (ISESD), 2021, 1–6. https://doi.org/10.1109/ISESD53023.2021.9501863

    Article  Google Scholar 

  • Khmelev, V. N., Shalunov, A. V., Golykh, R. N., Nesterov, V. A., Dorovskikh, R. S., & Shalunova, A. V. (2017). Providing the efficiency and dispersion characteristics of aerosols in ultrasonic atomization. Journal of Engineering Physics and Thermophysics, 90(4), 831–844. https://doi.org/10.1007/s10891-017-1632-8

    Article  Google Scholar 

  • Kim, J. Y. (2020). Roadmap to high throughput phenotyping for plant breeding. Journal of Biosystems Engineering, 45(1), 43–55. https://doi.org/10.1007/s42853-020-00043-0

    Article  Google Scholar 

  • Kim, G., Cho, B.-K., Oh, S. H., & Kim, K.-B. (2020). Feasibility study for the evaluation of chicken meat storage time using surface acoustic wave sensor. Journal of Biosystems Engineering, 45(4), 261–271. https://doi.org/10.1007/s42853-020-00066-7

    Article  Google Scholar 

  • Klarin, B., Garafulić, E., Vučetić, N., & Jakšić, T. (2019). New and smart approach to aeroponic and seafood production. Journal of Cleaner Production, 239, 117665. https://doi.org/10.1016/j.jclepro.2019.117665

    Article  Google Scholar 

  • Kozuka, T., Ando, J., Sato, M., Hatanaka, S.-I., & Yasui, K. (2019). Effect of horn and liquid height in ultrasonic atomization. Japanese Journal of Applied Physics, 58(SG), SGGD18. https://doi.org/10.7567/1347-4065/ab1bd4

    Article  Google Scholar 

  • Lakhiar, I. A., Gao, J., Syed, T. N., Chandio, F. A., & Buttar, N. A. (2018). Modern plant cultivation technologies in agriculture under controlled environment: A review on aeroponics. Journal of Plant Interactions, 13(1), 338–352. https://doi.org/10.1080/17429145.2018.1472308

    Article  Google Scholar 

  • Lakhiar, I. A., Gao, J., Syed, T. N., Chandio, F. A., Tunio, M. H., Ahmad, F., & Solangi, K. A. (2020). Overview of the aeroponic agriculture–An emerging technology for global food security. International Journal of Agricultural and Biological Engineering, 13(1), 1–10.

    Article  Google Scholar 

  • Lang, R. J. (1962). Ultrasonic atomization of liquids. The Journal of the Acoustical Society of America, 34(1), 6–8. https://doi.org/10.1121/1.1909020

    Article  Google Scholar 

  • Li, Q., Li, X., Tang, B., & Gu, M. (2018). Growth responses and root characteristics of lettuce grown in aeroponics, hydroponics, and substrate culture. Horticulturae, 4(4), 35.

    Article  Google Scholar 

  • Liu, X., Wang, G., & Gao, J. (2018). Experimental study of ultrasonic atomizer effects on values of EC and pH of nutrient solution. International Journal of Agricultural and Biological Engineering, 11(5), 59–64.

    Article  Google Scholar 

  • Loudari, A., Benadis, C., Naciri, R., Soulaimani, A., Zeroual, Y., El Gharous, M., Kalaji, H. M., & Oukarroum, A. (2020). Salt stress affects mineral nutrition in shoots and roots and chlorophyll a fluorescence of tomato plants grown in hydroponic culture. Journal of Plant Interactions, 15(1), 398–405. https://doi.org/10.1080/17429145.2020.1841842

    Article  Google Scholar 

  • Manaa, A., Mimouni, H., Terras, A., Chebil, F., Wasti, S., Gharbi, E., & Ben Ahmed, H. (2014). Superoxide dismutase isozyme activity and antioxidant responses of hydroponically cultured Lepidium sativum L. to NaCl stress. Journal of Plant Interactions, 9(1), 440–449. https://doi.org/10.1080/17429145.2013.850596

    Article  Google Scholar 

  • Martinez-Ruiz, A., Lopez-Cruz, I. L., Ruiz-Garcia, A., Pineda-Pineda, J., Sanchez-Garcia, P., & Mendoza-Perez, C. (2021). Uncertainty analysis of the HORTSYST model applied to fertigated tomatoes cultivated in a hydroponic greenhouse system. Spanish Journal of Agricultural Research, 19(3).

  • Meneghelli, C. M., Fontes, P. C. R., Milagres, C. d. C., da Silva, J. M., & Junior, E. G. (2021). Zinc-biofortified lettuce in aeroponic system. Journal of Plant Nutrition, 44, 2146–2156. https://doi.org/10.1080/01904167.2021.1889587

    Article  Google Scholar 

  • Mirzabe, A. H., Hajiahmad, A., Fadavi, A., & Rafiee, S. (2020). Ultrasonic production of plant nutrients mist to use in aeroponic systems: Feasibility and investigation of some effective parameters. Iranian Journal of Biosystems Engineering, 51(3), 585–598. https://doi.org/10.22059/IJBSE.2020.295739.665263

    Article  Google Scholar 

  • Misak, M. D. (1968). Equations for determining 1/H versus S values in computer calculations of interfacial tension by the pendent drop method. JCIS, 27(1), 141–142.

    Google Scholar 

  • Niam, A. G., & Sucahyo, L. (2020). Ultrasonic atomizer application for low cost aeroponic chambers (LCAC): A review. IOP Conference Series: Earth and Environmental Science, 542(1), 12034. https://doi.org/10.1088/1755-1315/542/1/012034

    Article  Google Scholar 

  • Niederhauser, D. O., & Bartell, F. E. (1950). Report of progress-fundamental research on the occurrence and recovery of petroleum (p. 114).

    Google Scholar 

  • Oladejo, A. O. (2020). Process optimization of ultrasound-assisted osmotic dehydration of yellow cassava using response surface methodology. Journal of Biosystems Engineering, 45(3), 167–174. https://doi.org/10.1007/s42853-020-00058-7

    Article  Google Scholar 

  • Ozdemir, O., Karakashev, S. I., Nguyen, A. V, & Miller, J. D. (2009). Adsorption and surface tension analysis of concentrated alkali halide brine solutions. Minerals Engineering, 22(3), 263–271. https://doi.org/10.1016/j.mineng.2008.08.001

  • Pfister, S., Bayer, P., Koehler, A., & Hellweg, S. (2011). Projected water consumption in future global agriculture: scenarios and related impacts. Science of the Total Environment, 409(20), 4206–4216. https://doi.org/10.1016/j.scitotenv.2011.07.019

    Article  Google Scholar 

  • Phanphanit, P., & Cooper, D. (2005). Ultrasonic atomization of salt water. ILASS Conference, Sept, 8–10.

  • Rainwater, F. H., & Thatcher, L. L. (1960). Methods for collection and analysis of water samples (Issues 1454–1458). US Government Printing Office.

  • Ramisetty, K. A., Pandit, A. B., & Gogate, P. R. (2013). Investigations into ultrasound induced atomization. Ultrasonics Sonochemistry, 20(1), 254–264.

    Article  Google Scholar 

  • Rooney, J. A. (1981). 6. Nonlinear phenomena. In Methods in Experimental physics (Vol. 19, pp. 299–353). Elsevier. https://doi.org/10.1016/S0076-695X(08)60337-3

  • Rusydi, A. F. (2018). Correlation between conductivity and total dissolved solid in various type of water: A review. IOP Conference Series: Earth and Environmental Science, 118(1), 12019. https://doi.org/10.1088/1755-1315/118/1/012019

    Article  Google Scholar 

  • Saufie, S., Estim, A., Shaleh, S. R. M., & Mustafa, S. (2020). Production efficiency of green beans integrated with tilapia in a circular farming system of media-filled aquaponics. Spanish Journal of Agricultural Research, 18(3), 26.

    Article  Google Scholar 

  • Shajari, M. A., Fallahi, H.-R., Sahabi, H., Kaveh, H., & Branca, F. (2021). Production systems and methods affect the quality and the quantity of saffron (Crocus sativus L.). Spanish Journal of Agricultural Research, 19(1), 901.

    Google Scholar 

  • Simon, J. C., Sapozhnikov, O. A., Khokhlova, V. A., Crum, L. A., & Bailey, M. R. (2015). Ultrasonic atomization of liquids in drop-chain acoustic fountains. Journal of Fluid Mechanics, 766, 129–146. https://doi.org/10.1017/jfm.2015.11

    Article  Google Scholar 

  • Song, J.-S., Jung, S., Jee, S., Yoon, J. W., Byeon, Y. S., Park, S., & Kim, S. B. (2021). Growth and bioactive phytochemicals of Panax ginseng sprouts grown in an aeroponic system using plasma-treated water as the nitrogen source. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-82487-8

    Article  Google Scholar 

  • Stauffer, C. E. (1965). The measurement of surface tension by the pendant drop technique. The Journal of Physical Chemistry, 69(6), 1933–1938.

    Article  Google Scholar 

  • Steiner, A. A. (1984). The universal nutrient solution, International Congress on Soilless Culture. ISOSC The Netherlands.

  • Su, M. H., Azwar, E., Yang, Y., Sonne, C., Yek, P. N. Y., Liew, R. K., Cheng, C. K., Show, P. L., & Lam, S. S. (2020). Simultaneous removal of toxic ammonia and lettuce cultivation in aquaponic system using microwave pyrolysis biochar. Journal of Hazardous Materials, 396, 122610. https://doi.org/10.1016/j.jhazmat.2020.122610

    Article  Google Scholar 

  • Sulistyowati, C. A., & Nurhasana, R. (2022). Food crisis transformation to sustainable urban agriculture in Cuba: Lessons for Indonesia. In Sustainable Architecture and Building Environment (Vol. 161, pp. 161–169). https://doi.org/10.1007/978-981-16-2329-5_18

  • Tafesse, E. G., Aidoo, M. K., Lazarovitch, N., & Rachmilevitch, S. (2021). Aeroponic systems: A unique tool for estimating plant water relations and NO3 uptake in response to salinity stress. Plant Direct, 5(4), e00312. https://doi.org/10.1002/pld3.312

    Article  Google Scholar 

  • Tunio, M H, Gao, J., Lakhiar, I. A., Solangi, K. A., Qureshi, W. A., Shaikh, S. A., & Chen, J. (2021a). Influence of atomization nozzles and spraying intervals on growth, biomass yield, and nutrient uptake of butter-head lettuce under aeroponics system. Agronomy 2021, 11, 97 (pp. 1–17). Agronomy.

  • Tunio, M. H., Gao, J., Lakhiar, I. A., Solangi, K. A., Qureshi, W. A., Shaikh, S. A., & Chen, J. (2021b). Influence of atomization nozzles and spraying intervals on growth, biomass yield, and nutrient uptake of butter-head lettuce under aeroponics system. Agronomy, 11(1), 97.

    Article  Google Scholar 

  • Uddin, M. R., & Suliaman, M. F. (2021). Energy efficient smart indoor fogponics farming system. IOP Conference Series: Earth and Environmental Science, 673(1), 12012. https://doi.org/10.1088/1755-1315/673/1/012012

    Article  Google Scholar 

  • Walton, N. R. G. (1989). Electrical conductivity and total dissolved solids—What is their precise relationship? Desalination, 72(3), 275–292. https://doi.org/10.1016/0011-9164(89)80012-8

    Article  Google Scholar 

  • Yang, T., & Kim, H.-J. (2020). Comparisons of nitrogen and phosphorus mass balance for tomato-, basil-, and lettuce-based aquaponic and hydroponic systems. Journal of Cleaner Production, 274, 122619. https://doi.org/10.1016/j.jclepro.2020.122619

    Article  Google Scholar 

  • Yasuda, K., Honma, H., Asakura, Y., & Koda, S. (2010). 2P-37 Effect of frequency on ultrasonic atomization. Proceedings of Symposium on Ultrasonic Electronics, 31, 363–364. https://doi.org/10.24492/use.31.0_363

    Article  Google Scholar 

  • Zheng, M., Tian, J., & Mulero, Á. (2013). New correlations between viscosity and surface tension for saturated normal fluids. Fluid Phase Equilibria, 360, 298–304. https://doi.org/10.1016/j.fluid.2013.09.045

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of Tehran and Farvardin Azma Tajhiz Co. for supporting this work. The authors would also like to thank Prof. Ali Rajabipour and Dr. Mohammad Hassan Torabi for their technical support.

Funding

This work is based upon research funded by Iran National Science Foundation under project number 99022977.

Author information

Authors and Affiliations

Authors

Contributions

Amir Hossein Mirzabe: software, visualization, providing setup, acquisition of data; data analysis, drafting of the manuscript.

Ali Hajiahmad: providing setup, data analysis, supervising the work.

Ali Fadavi: revision of the manuscript, technical support.

Shahin Rafiee: revision of the manuscript, technical support.

Corresponding author

Correspondence to Ali Hajiahmad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Highlights

1. Designing aeroponic cultivation system based on the ultrasonic technology was investigated.

2. Effects of nutrient solution dosage, voltage, and horn dimensions on misting rate were studied.

3. Density, viscosity, surface tension, and speed of sound of the solutions were measured.

4. Modeling of mechanical properties of the solutions as well as misting rate has been performed.

5. Optimization of the ultrasonic mist making process was performed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzabe, A.H., Hajiahmad, A., Fadavi, A. et al. Ultrasonic Atomizer for Aeroponic Cultivation: Effect of Nutrient Solution Dosage, Voltage, and Horn Dimensions. J. Biosyst. Eng. 47, 130–151 (2022). https://doi.org/10.1007/s42853-022-00135-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42853-022-00135-z

Keywords

Navigation