Skip to main content
Log in

Overview of Active Disturbance Rejection Control for Permanent Magnet Synchronous Motors

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

The ubiquitous implementation of permanent magnet synchronous motors (PMSMs) in contemporary alternating current propulsion systems is widely acknowledged. As a superior control method that does not rely on a precise system mathematical model and has superior robustness, Active Disturbance Rejection Control (ADRC) is widely used to improve the overall control performance and efficiency of the PMSM drive system. Starting from three parts of ADRC, this paper comprehensively expounds on the advantages of the ADRC control strategy and its shortcomings in the application at present. The problems of too many parameters, not easily controlling the nonlinear part, and difficulty in adjusting the parameters are summarized. Then the performance improvement schemes of ADRC such as structure optimization, parameter tuning, nonlinear part optimization, and simplified parameters are summarized. Finally, the future development trend of the control algorithm is forecasted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu C, Luo G, Tu W (2021) Survey on active disturbance rejection control of permanent magnet synchronous motor for aviation electro-mechanical actuator. J Electric Eng 16(4):12–24

    Google Scholar 

  2. Li T, Sun X, Lei G, Guo Y, Yang Z, Zhu J (2022) Finite-control-set model predictive control of permanent magnet synchronous motor drive systems—An overview. IEEE/CAA J Automatica Sinica 9(12):2087–2105

    Google Scholar 

  3. Bin-wen Z, Wen T, Jian L, (2017) Comparative study of linear and nonlinear ADRC for an inverted pendulum, In: 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, pp. 704–708

  4. Shi Z, Sun X, Yang Z, Cai Y, Lei G, Zhu J, Lee CHT (2023) Design optimization of a spoke type axial-flux PM machine for in-wheel drive operation. IEEE Trans Trans Electrifi. https://doi.org/10.1109/TTE.2023.3310738

    Article  Google Scholar 

  5. Boukhriss A (2022) ADRC Control for a single-stage photovoltaic system connected to the three-phase electrical grid. In: 2022 IEEE Workshop on Complexity in Engineering (COMPENG), Florence, Italy, pp. 1–5

  6. Hou G, Wang M, Gong L, Zhang J, (2018) Parameters optimization of ADRC based on adaptive CPSO algorithm and its application in main-steam temperature control system. In: 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, pp. 497–501

  7. Ba X, Sun X, Gong Z, Guo Y, Zhang C, Zhu J (2023) A generalized per-phase equivalent circuit model of the PMSM with predictable core loss. IEEE/ASME Trans Mech 28(3):1512–1521

    Google Scholar 

  8. Geng Z (2017) Superconducting cavity control and model identification based on active disturbance rejection control. IEEE Trans Nucl Sci 64(3):951–958

    ADS  Google Scholar 

  9. Sun X, Zhu Y, Cai Y, Zhu Z, Xiong Y (2023) Speed Sensorless control of switched reluctance motors in full speed range based on inductance characteristics. Transport. Electrific, IEEE Trans. https://doi.org/10.1109/TTE.2023.3306876

    Book  Google Scholar 

  10. Abassi M, Khlaief A, Saadaoui O, Chaari A, Boussak M, (2015) Performance analysis of FOC and DTC for PMSM drives using SVPWM technique. In: 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Monastir, Tunisia, pp. 228–233

  11. Zhiwei N, Jianru W, Ang G, Mingshui L, (2011) Research on sliding mode variable structure rotational speed observer used in PMSM-DTC. In: 2011 4th International Conference on Power Electronics Systems and Applications, Hong Kong, pp. 1–5, China

  12. Yang Z, Ji J, Sun X, Zhu H, Zhao Q (2020) Active disturbance rejection control for bearingless induction motor based on hyperbolic tangent tracking differentiator. IEEE J Emerg Select Topics Power Electron 8(3):2623–2633

    Google Scholar 

  13. Petkar SG, Thippiripati VK (2023) A novel duty-controlled DTC of a surface PMSM drive with reduced torque and flux ripples. IEEE Trans Ind Electron 70(4):3373–3383

    Google Scholar 

  14. Sun X, Zhu Y, Cai Y, Yao M, Sun Y, Lei G (2023) Optimized-sector-based model predictive torque control with sliding mode controller for switched reluctance motor. IEEE Trans Energy Convers. https://doi.org/10.1109/TEC.2023.3301000

    Article  Google Scholar 

  15. Rehman AU, Basit BA, Choi HH, Jung JW (2022) Computationally efficient deadbeat direct torque control considering speed dynamics for a surface-mounted PMSM drive. IEEE/ASME Trans Mechatronics 27(5):3407–3418

    Google Scholar 

  16. Wang X, Wang Z, Xu Z (2019) A hybrid direct torque control scheme for dual three-phase PMSM drives with improved operation performance. IEEE Trans Power Electron 34(2):1622–1634

    ADS  Google Scholar 

  17. Yang Z, Jia J, Sun X, Xu T (2022) A fuzzy-ELADRC method for a bearingless induction motor. IEEE Trans Power Electron 37(10):11803–11813

    ADS  Google Scholar 

  18. Tang Z, Akin B (2018) A new LMS algorithm based deadtime compensation method for PMSM FOC drives. IEEE Trans Ind Appl 54(6):6472–6484

    Google Scholar 

  19. Wang Z, Chen J, Cheng M, Chau KT (2016) Field-oriented control and direct torque control for paralleled VSIs fed PMSM drives with variable switching frequencies. IEEE IEEE Trans Power Electron 31(3):2417–2428

    ADS  Google Scholar 

  20. Wu Z, Yang Z, Ding K, He G (2022) Transfer mechanism analysis of injected voltage harmonic and its effect on current harmonic regulation in FOC PMSM. IEEE Trans Power Electron 37(1):820–829

    ADS  Google Scholar 

  21. Li T, Sun X, Yao M, Guo D, Sun Y (2023) Improved finite control set model predictive current control for permanent magnet synchronous motor with sliding mode observer. IEEE Trans Transport Electrific. https://doi.org/10.1109/TTE.2023.3293510

    Article  Google Scholar 

  22. Nasr A, Gu C, Wang X, Buticchi G, Bozhko S, Gerada C (2022) Torque-performance improvement for direct torque-controlled PMSM drives based on duty-ratio regulation. IEEE Trans Power Electron 37(1):749–760

    ADS  Google Scholar 

  23. Sun X, Zhang Y, Lei G, Guo Y, Zhu J (2022) An improved deadbeat predictive stator flux control with reduced-order disturbance observer for in-wheel PMSMs. IEEE/ASME Trans Mechatronics 27(2):690–700

    Google Scholar 

  24. Zhou Y, Chen G (2018) Predictive DTC strategy with fault-tolerant function for six-phase and three-phase PMSM series-connected drive system. IEEE Trans Ind Electron 65(11):9101–9112

    Google Scholar 

  25. Niu F, Wang B, Babel AS, Li K, Strangas EG (2016) Comparative evaluation of direct torque control strategies for permanent magnet synchronous machines. IEEE IEEE Trans Power Electron 31(2):1408–1424

    ADS  Google Scholar 

  26. Kakodia SK, Giribabu D, Ravula RK, (2022) Torque ripple minimization using an artificial neural network based speed sensor less control of SVM-DTC fed PMSM drive. In: 2022 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, pp. 1–6

  27. L. Zhai, S. Dong, L. Su, and R. Gao, (2012) Optimal DTC strategy of PMSM in electric vehicle. In: Proceedings of the 10th World Congress on Intelligent Control and Automation, Beijing, China, pp. 2447–2451

  28. Sun X, Cao J, Lei G, Guo Y, Zhu J (2021) A robust deadbeat predictive controller with delay compensation based on composite sliding-mode observer for PMSMs. IEEE Trans Power Electron 36(9):10742–10752

    ADS  Google Scholar 

  29. Hao X, Luo Y (2022) An SMC-ESO-based distortion voltage compensation strategy for PWM VSI of PMSM. IEEE J Emerg Select Topics Power Electronics 10(5):5686–5697

    Google Scholar 

  30. Jiang Y, Xu W, Mu C, Liu Y (2018) Improved deadbeat predictive current control combined sliding mode strategy for PMSM drive system. IEEE Trans Veh Technol 67(1):251–263

    Google Scholar 

  31. Sun X, Jin Z, Xue M, Tian X (2024) Adaptive ECMS with gear shift control by grey wolf optimization algorithm and neural network for plug-in hybrid electric buses. IEEE Trans Ind Electron 71(1):667–677

    Google Scholar 

  32. Junejo AK et al (2022) Novel fast terminal reaching law based composite speed control of PMSM drive system. IEEE Access 10:82202–82213

    Google Scholar 

  33. Liu X, Yu H, Yu J, Zhao L (2018) Combined speed and current terminal sliding mode control with nonlinear disturbance observer for PMSM drive. IEEE Access 6:29594–29601

    Google Scholar 

  34. Xu B, Zhang L, Ji W (2021) Improved non-singular fast terminal sliding mode control with disturbance observer for PMSM drives. IEEE Trans Transport Electrific 7(4):2753–2762

    ADS  Google Scholar 

  35. Sun X, Cao J, Lei G, Guo Y, Zhu J (2021) A composite sliding mode control for SPMSM drives based on a new hybrid reaching law with disturbance compensation. IEEE Trans Transport Electrific 7(3):1427–1436

    Google Scholar 

  36. Apte A, Joshi VA, Mehta H, Walambe R (2020) Disturbance-observer-based sensorless control of PMSM using integral state feedback controller. IEEE Trans Power Electron 35(6):6082–6090

    ADS  Google Scholar 

  37. Sun X, Shi Z, Zhu J (2021) Multiobjective design optimization of an IPMSM for EVs based on fuzzy method and sequential Taguchi method. IEEE Trans Ind Electron 68(11):10592–10600

    Google Scholar 

  38. Li T, Sun X, (2023) Robust model predictive control with continuous control set for PMSM. In: 2023 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), Wuhan, China, pp. 1–5.

  39. Abu-Ali M, Berkel F, Manderla M, Reimann S, Kennel R, Abdelrahem M (2022) Deep learning-based long-horizon MPC: robust, high performing, and computationally efficient control for PMSM drives. IEEE Trans Power Electron 37(10):12486–12501

    ADS  Google Scholar 

  40. Li X, Xie M, Ji M, Yang J, Wu X, Shen G (2023) Restraint of common-mode voltage for PMSM-inverter systems with current ripple constraint based on voltage-vector MPC. IEEE J Emerg Select Topics Indust Electronics 4(2):688–697

    Google Scholar 

  41. Sun X, Li T, Tian X, Zhu J (2022) Fault-tolerant operation of a six-phase permanent Magnet synchronous hub motor based on model predictive current control with virtual voltage vectors. IEEE Trans Energy Convers 37(1):337–346

    ADS  Google Scholar 

  42. Bai Y et al (2022) High-gain nonlinear active disturbance rejection control strategy for traction permanent magnet motor drives. IEEE Trans Power Electron, Article 37(11):13135–13146

    ADS  Google Scholar 

  43. Lu H, Li S, Feng B, Li J (2022) An enhanced sensorless control based on active disturbance rejection controller for a PMSM system: design and hardware implementation. Assem Autom 42(4):445–457

    Google Scholar 

  44. Feng L, Sun X, Yang Z, Diao K (2023) Optimal torque sharing function control for switched reluctance motors based on active disturbance rejection controller. IEEE/ASME Trans Mechatronics. https://doi.org/10.1109/TMECH.2023.3240986

    Article  Google Scholar 

  45. Li M, Wu ZH, Deng F, Guo BZ (2023) Active disturbance rejection control to consensus of second-order stochastic multiagent systems. IEEE Trans Control Network Syst 10(2):993–1004

    MathSciNet  Google Scholar 

  46. Zou S, Zhao W, Wang C, Liang W, Chen F (2023) Tracking and synchronization control strategy of vehicle dual-motor steer-by-wire system via active disturbance rejection control. IEEE/ASME Trans Mechatronics 28(1):92–103

    Google Scholar 

  47. Liang S, Song B, Xuan J (2020) Active disturbance rejection attitude control for a bird-like flapping wing micro air vehicle during automatic landing. IEEE Access 8:171359–171372

    Google Scholar 

  48. Sun X, Hu C, Lei G, Yang Z, Guo Y, Zhu J (2020) Speed sensorless control of SPMSM drives for EVs with a binary search algorithm-based phase-locked loop. IEEE Trans Veh Technol 69(5):4968–4978

    Google Scholar 

  49. Wu G, Huang S, Wu Q, Rong F, Zhang C, Liao W (2020) Robust predictive torque control of N*3-phase PMSM for high-power traction application. IEEE Trans Power Electron 35(10):10799–10809

    ADS  Google Scholar 

  50. Yu Y et al (2020) A stator current vector orientation based multi-objective integrative suppressions of flexible load vibration and torque ripple for PMSM considering electrical loss. CES Trans Electrical Mach Syst 4(3):161–171

    Google Scholar 

  51. Sun X et al (2019) (2019) MPTC for PMSMs of EVs with multi-motor driven system considering optimal energy allocation. IEEE Trans Magn 55(7):1–6

    Google Scholar 

  52. Han J (2009) From PID to active disturbance rejection control. IEEE Trans Ind Electron 56(3):900–906

    Google Scholar 

  53. Hao Z et al (2021) Linear/nonlinear active disturbance rejection switching control for permanent magnet synchronous motors. IEEE Trans Power Electron 36(8):9334–9347

    ADS  Google Scholar 

  54. Sun X, Zhu Y, Cai Y, Xiong Y, Yao M, Yuan C (2023) Current fault tolerance control strategy for 3-phase switched reluctance motor combined with position signal reconstruction. IEEE Trans Energy Convers 38(3):1679–1690

    ADS  Google Scholar 

  55. Hezzi A, Ben Elghali S, Bensalem Y, Zhou Z, Benbouzid M, Abdelkrim MN (2020) ADRC-based robust and resilient control of a 5-Phase PMSM driven electric vehicle. Machines 8(2):17

    Google Scholar 

  56. Zhu L et al (2022) Nonlinear active disturbance rejection control strategy for permanent magnet synchronous motor drives. IEEE Trans Energy Convers 37(3):2119–2129

    Google Scholar 

  57. Zhang G, Wang G, Yuan B, Liu R, Xu D (2018) Active disturbance rejection control strategy for signal injection-based sensorless IPMSM drives. IEEE Trans. Transport. Electrific 4(1):330–339

    Google Scholar 

  58. Sun X, Wu J, Lei G, Cai Y, Chen X, Guo Y (2021) Torque modeling of a segmented-rotor SRM using maximum-correntropy-criterion-based LSSVR for torque calculation of EVs. IEEE J Emerg Sel Topics Power Electron 9(3):2674–2684

    Google Scholar 

  59. Wang Y, Fang S, Hu J, Huang D (2023) Multiscenarios parameter optimization method for active disturbance rejection control of PMSM based on deep reinforcement learning. IEEE Trans Ind Electron 70(11):10957–10968

    Google Scholar 

  60. Chen P, Luo Y, Peng Y, Chen Y (2021) Optimal fractional-order active disturbance rejection controller design for PMSM speed servo system. Entropy 23(3):262

    ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  61. Sun X, Wu M, Lei G, Guo Y, Zhu J (2021) An improved model predictive current control for PMSM drives based on current track circle. IEEE Trans Ind Electron 68(5):3782–3793

    Google Scholar 

  62. Tian M, Wang B, Yu Y, Dong Q, Xu D (2022) Discrete-time repetitive control-based ADRC for current loop disturbances suppression of PMSM drives. IEEE Trans. Ind. Informat 18(5):3138–3149

    Google Scholar 

  63. Wang Y, Fang S, Hu J (2023) active disturbance rejection control based on deep reinforcement learning of PMSM for more electric aircraft. IEEE Trans Power Electron, Article 38(1):406–416

    ADS  Google Scholar 

  64. Zhiqiang, W., Jiashu, W., Hanjun, G. (2008). Design of the expert ADRC. In (2008) Chinese Control and Decision Conference. Yantai, Shandong

    Google Scholar 

  65. S. Zhong and Y. Huang, “Comparison of the Phase Margins of Different ADRC Designs,” in (2019) Chinese Control Conference (CCC). Guangzhou, China 2019:1280–1285

    Google Scholar 

  66. Chen L, Xu H, Sun X, Cai Y (2021) Three-vector-based model predictive torque control for a permanent magnet synchronous motor of EVs. IEEE Trans Transport Electrific 7(3):1454–1465

    Google Scholar 

  67. Che Z, Yu H, Mobayen S, Ali M, Yang C, Bartoszewicz A (2022) An improved extended state observer-based composite nonlinear control for permanent magnet synchronous motor speed regulation systems. Energies 15(15):5699

    Google Scholar 

  68. Shi DF, Hou RM, Gao Y, Gu XH, Hou YL (2022) Super-twisting hybrid control for ship-borne PMSM. IEEE Open Journal of Intelligent Transportation Systems 3:81–88

    Google Scholar 

  69. Z. Hu, H. Gao, H. Du, M. Fan, “Research on SVM-DTC Control Strategy of PMSM Based on Super-Twisting Sliding Mode Active Disturbance Rejection Control,” in (2022) IEEE 5th International Electrical and Energy Conference (CIEEC). Nangjing, China 2022:636–640

    Google Scholar 

  70. Nguyen VT, Lin CY, Su SF, Sun W, Er MJ (2021) Global finite time active disturbance rejection control for parallel manipulators with unknown bounded uncertainties. IEEE Trans Syst, Man, Cybernetics: Syst 51(12):7838–7849

    Google Scholar 

  71. Sun X, Li T, Zhu Z, Lei G, Guo Y, Zhu J (2021) Speed sensorless model predictive current control based on finite position set for PMSHM drives. IEEE Trans Transport Electrific 7(4):2743–2752

    Google Scholar 

  72. Wang Y, Feng Y, Zhang X, Liang J (2019) A new reaching law for antidisturbance sliding-mode control of PMSM speed regulation system. IEEE Trans Power Electronics 35(4):4117–4126

    ADS  Google Scholar 

  73. Wu Z, Chen Z, Xu B, Pang S, Lin F (2023) Realization of control algorithm for vehicle optoelectronic tracking platform based on sliding mode control and active disturbance rejection control optimized by differential evolution algorithm. IEEE Access 11:60386–60397

    Google Scholar 

  74. Han Y, Li J, Wang B (2022) Event-triggered active disturbance rejection control for hybrid energy storage system in electric vehicle. IEEE Trans Transportation Electrif 9(1):75–86

    Google Scholar 

  75. Sun X, Xiong Y, Yao M, Tang X (2022) A hybrid control strategy for multimode switched reluctance motors. IEEE/ASME Trans Mechatronics 27(6):5605–5614

    Google Scholar 

  76. Zheng Y et al (2021) Power system load frequency active disturbance rejection control via reinforcement learning-based memetic particle swarm optimization. IEEE Access 9:116194–116206

    Google Scholar 

  77. Wu M, Sun X, Zhu J, Lei G, Guo Y (2021) Improved model predictive torque control for PMSM drives based on duty cycle optimization. IEEE Trans Magn 57(2):1–5

    CAS  Google Scholar 

  78. Liu YC, Laghrouche S, Depernet D, Djerdir A, Cirrincione M (2021) Disturbance-observer-based complementary sliding-mode speed control for PMSM drives: a super-twisting sliding-mode observer-based approach. IEEE J Emerg Select Topics Power Electronics 9(5):5416–5428

    Google Scholar 

  79. Huang C, Zhuang J (2022) Error-based active disturbance rejection control for pitch control of wind turbine by improved coyote optimization algorithm. IEEE Trans Energy Convers 37(2):1394–1405

    ADS  Google Scholar 

  80. Li S, Li J (2017) Output predictor-based active disturbance rejection control for a wind energy conversion system with PMSG. IEEE Access 5:5205–5214

    Google Scholar 

  81. Yang Z, Zhang D, Sun X, Ye X (2018) Adaptive exponential sliding mode control for a bearingless induction motor based on a disturbance observer. IEEE Access 6:35425–35434

    Google Scholar 

  82. Qu L, Qiao W, Qu L (2021) Active-disturbance-rejection-based sliding-mode current control for permanent-magnet synchronous motors. IEEE Trans Power Electron, Article 36(1):751–760

    ADS  Google Scholar 

  83. Qu L, Qiao W, Qu L (2021) An extended-state-observer-based sliding-mode speed control for permanent-magnet synchronous motors. IEEE J Emerg Select Topics Power Electronics 9(2):1605–1613

    Google Scholar 

  84. Xie F, Hong W, Qiu C (2021) Speed fluctuation suppression of PMSM using active disturbance rejection and feedback compensation control. IET Electr Power Appl 15(8):1056–1067

    Google Scholar 

  85. Diao K, Bramerdorfer G, Sun X, Yang Z, Han S (2023) Multiobjective design optimization of a novel switched reluctance motor with unequal alternating stator yoke segments. IEEE Trans Transport Electrific 9(1):512–521

    Google Scholar 

  86. Liu G, Chen L, Zhao W, Jiang Y, Qu L (2013) Internal model control of permanent magnet synchronous motor using support vector machine generalized inverse. IEEE Trans Ind Informat 9(2):890–898

    Google Scholar 

  87. Zhang J, Chen Y, Gao Y, Wang Z, Peng G (2021) Cascade ADRC speed control base on FCS-MPC for permanent magnet synchronous motor. J Circuits, Syst Comput 30(11):2150202

    Google Scholar 

  88. Chen P, Luo Y (2022) A two-degree-of-freedom controller design satisfying separation principle with fractional-order PD and generalized ESO. IEEE/ASME Trans Mechatronics 27(1):137–148

    Google Scholar 

  89. Hou Q, Zuo Y, Sun J, Lee CHT, Wang Y, Ding S (2023) Modified nonlinear active disturbance rejection control for PMSM speed regulation with frequency domain analysis. IEEE Trans Power Electron 38(7):8126–8134

    ADS  Google Scholar 

  90. Sun X, Xiong Y, Yao M, Wu J (2022) High fault-tolerance evaluation on position signal for switched reluctance motor drives. IEEE Trans Energy Convers 37(3):1844–1853

    Google Scholar 

  91. Wang Y, Xu Y, Zou J (2019) ILC-based voltage compensation method for PMSM sensorless control considering inverter nonlinearity and sampling current DC bias. IEEE Trans Indust Electronics 67(7):5980–5989

    Google Scholar 

  92. Liu H, Li S (2012) Speed control for PMSM servo system using predictive functional control and extended state observer. IEEE Trans Ind Electron 59(2):1171–1183

    Google Scholar 

  93. Meng Y, Liu B, Wang L (2019) Speed control of PMSM based on an optimized ADRC controller. Math Prob Eng 2019:1–18

    Google Scholar 

  94. Yi L, Wang Y, Li W, Chen Z, Li J (2022) Improved monkey algorithm optimizes ADRC vector control strategy of PMSM. Trans Microsyst Technol 41(11):52–56

    Google Scholar 

  95. Sun X, Zhang Y, Tian X, Cao J, Zhu J (2022) Speed sensorless control for IPMSMs using a modified MRAS with gray wolf optimization algorithm. IEEE Trans Transport Electrific 8(1):1326–1337

    Google Scholar 

  96. Jin Z, Sun X, Lei G, Guo Y, Zhu J (2022) Sliding mode direct torque control of SPMSMs based on a hybrid wolf optimization algorithm. IEEE Trans Ind Electron 69(5):4534–4544

    ADS  Google Scholar 

  97. Cao Y, Zhao Q, Ye Y, Xiong Y (2020) ADRC-based current control for grid-tied Inverters: design, analysis, and verification. IEEE Trans Ind Electron 67(10):8428–8437

    Google Scholar 

  98. Grelewicz P, Nowak P, Czeczot J, Musial J (2021) Increment count method and its PLC-based implementation for autotuning of reduced-order ADRC with smith predictor. IEEE Trans Ind Electron 68(12):12554–12564

    Google Scholar 

  99. Li S, Li J, Mo Y (2014) Piezoelectric multimode vibration control for stiffened plate using ADRC-based acceleration compensation. IEEE Trans Ind Electron 61(12):6892–6902

    Google Scholar 

  100. Nguyen HV, Suleimenov K, Nguyen BH, Vo-Duy T, Ta MC, Do TD (2022) Dynamical delay unification of disturbance observation techniques for PMSM drives control. IEEE/ASME Trans Mechatronics 27(6):5560–5571

    Google Scholar 

  101. Qu J, Xia Y, Shi Y, Cao J, Wang H, Meng Y (2020) Modified ADRC for inertial stabilized platform with corrected disturbance compensation and improved speed observer. IEEE Access 8:157703–157716

    Google Scholar 

  102. Sun X, Xiong Y, Yang J, Tian X (2023) Torque ripple reduction for a 12/8 switched reluctance motor based on a novel sliding mode control strategy. IEEE Trans Transport Electrific 9(1):359–369

    Google Scholar 

  103. Li S, Cao M, Li J, Cao J, Lin Z (2019) Sensorless-based active disturbance rejection control for a wind energy conversion system with permanent magnet synchronous generator. IEEE Access 7:122663–122674

    Google Scholar 

  104. Lin S, Cao Y, Li C, Wang Z, Shi T, Xia C (2022) Two-degree-of-freedom active disturbance rejection current control for permanent magnet synchronous motors. IEEE Trans Power Electronics 38(3):3640–3652

    ADS  Google Scholar 

  105. Lu W et al (2021) Load adaptive PMSM drive system based on an improved ADRC for manipulator joint. IEEE Access, Article 9:33369–33384

    ADS  Google Scholar 

  106. Diao K, Sun X, Yao M (2022) Robust-oriented optimization of switched reluctance motors considering manufacturing fluctuation. IEEE Trans Transport Electrific 8(2):2853–2861

    Google Scholar 

  107. Meng Q, Hou Z (2021) Active disturbance rejection based repetitive learning control with applications in power inverters. IEEE Trans Control Syst Technol 29(5):2038–2048

    Google Scholar 

  108. She J, Miyamoto K, Han QL, Wu M, Hashimoto H, Wang QG (2023) Generalized-extended-state-observer and equivalent-input-disturbance methods for active disturbance rejection: deep observation and comparison. IEEE/CAA J Automatica Sinica 10(4):957–968

    Google Scholar 

  109. Sun X, Tang X, Tian X, Ji Wu, Zhu J (2022) Position sensorless control of switched reluctance motor drives based on a new sliding mode observer using Fourier flux linkage model. IEEE Trans Energy Convers 37(2):978–988

    ADS  Google Scholar 

  110. Wang B, Tian M, Yu Y, Dong Q, Xu D (2022) Enhanced ADRC with quasi-resonant control for PMSM speed regulation considering aperiodic and periodic disturbances. IEEE Trans. Transport. Electrific 8(3):3568–3577

    Google Scholar 

  111. Pu Z, Yuan R, Yi J, Tan X (2015) A class of adaptive extended state observers for nonlinear disturbed systems. IEEE Trans Ind Electron 62(9):5858–5869

    Google Scholar 

  112. Su ZG, Sun Y, Zhu X, Chen Z, Sun L (2022) Robust tuning of active disturbance rejection controller for time-delay systems with application to a factual electrostatic precipitator. IEEE Trans Control Syst Technol 30(5):2204–2211

    Google Scholar 

  113. Sun X, Wu M, Yin C, Wang S (2021) Model predictive thrust force control for linear motor actuator used in active suspension. IEEE Trans Energy Convers 36(4):3063–3072

    ADS  Google Scholar 

  114. Jing L, Wang T, Tang W, Liu W, Qu R, (2023) Characteristic analysis of the magnetic variable speed diesel–electric hybrid motor with auxiliary teeth for ship propulsion, IEEE/ASME Trans Mechatronics, pp. 1–11, 2023.

  115. Su G (2011) Fuzzy ADRC controller design for PMSM speed regulation system. Adv Mater Res 201:2405–2408

    Google Scholar 

  116. Wen JP (2013) Fractional order nonlinear feedback controller design for PMSM drives. Math Prob Eng 2013:1–5

    MathSciNet  Google Scholar 

  117. Alonge F, Cirrincione M, D’Ippolito F, Pucci M, Sferlazza A (2017) Robust active disturbance rejection control of induction motor systems based on additional sliding-mode component. IEEE Trans Ind Electron 64(7):5608–5621

    Google Scholar 

  118. Sun X, Zhang Y, Cai Y, Tian X (2022) Compensated deadbeat predictive current control considering disturbance and VSI nonlinearity for in-wheel PMSMs. IEEE/ASME Trans Mechatronics 27(5):3536–3547

    Google Scholar 

  119. Cao Z, Chu Y (2020) Active disturbance rejection vector control system for PMSMs. Eng J Wuhan Univ 53(1):67–71

    Google Scholar 

  120. Chen P, Luo Y, Zheng W, Gao Z, Chen Y (2021) Fractional order active disturbance rejection control with the idea of cascaded fractional order integrator equivalence. ISA Trans 114:359–369

    PubMed  Google Scholar 

  121. Sun X, Xu N, Yao M (2023) Sequential subspace optimization design of a dual three-phase permanent magnet synchronous hub motor based on NSGA III. IEEE Trans Transport Electrific 9(1):622–630

    Google Scholar 

  122. Gao P, Su X, Pan Z, Xiao M, Zhang W, Liu R (2022) Active disturbance rejection control for speed control of PMSM based on auxiliary model and supervisory RBF. Appl Sci 12(21):10880

    CAS  Google Scholar 

  123. Wei D, Guo C, Shi Y, Guo C, Liu J (2023) A new composite control strategy of space laser pointing mechanism based on active disturbance rejection controller. IEEE Access 11:21081–21091

    Google Scholar 

  124. Qiu Z, Xiao J, Wang S (2015) Active-disturbance rejection control based on a novel sliding mode observer for PMSM speed and rotor position. J Vibroeng 17(8):4603–4617

    Google Scholar 

  125. Sun X, Tang X, Tian X, Lei G, Guo Y, Zhu J (2022) Sensorless control with fault-tolerant ability for switched reluctance motors. IEEE Trans Energy Convers 37(2):1272–1281

    ADS  Google Scholar 

  126. Wang S, Wu XN (2011) Active disturbance rejection controller based on neural network in the permanent magnetic synchronous motor servo system. Appl Mech Mater 63:874–877

    Google Scholar 

  127. Zhou K, Ai M, Sun Y, Wu X, Li R (2019) PMSM vector control strategy based on active disturbance rejection controller. Energies 12(20):3827

    Google Scholar 

  128. Lin P, Wu Z, Liu KZ, Sun XM (2021) A class of linear-nonlinear switching active disturbance rejection speed and current controllers for PMSM. IEEE Trans Power Electron 36(12):14366–14382

    ADS  Google Scholar 

  129. Du H, Wen G, Cheng Y, Lü J (2020) Design and implementation of bounded finite-time control algorithm for speed regulation of permanent magnet synchronous motor. IEEE Trans Indust Electronics 68(3):2417–2426

    Google Scholar 

  130. Shi Z, Sun X, Lei G, Tian X, Guo Y, Zhu J (2022) Multiobjective optimization of a five-phase bearingless permanent magnet motor considering winding area. IEEE/ASME Trans Mechatronics 27(5):2657–2666

    Google Scholar 

  131. Chen Z, Zhang X, Liu C, Zhang H, Luo G (2021) Research on current decoupling and harmonic suppression strategy of permanent magnet synchronous motor by proportional resonance adaptive disturbance rejection control. Proc. CSEE 42(24):9062–9072

    Google Scholar 

  132. Qu L, Qiao W, Qu L (2020) An enhanced linear active disturbance rejection rotor position sensorless control for permanent magnet synchronous motors. IEEE Trans Power Electron 35(6):6175–6184

    ADS  Google Scholar 

  133. Sun X, Feng L, Zhu Z, Lei G, Diao K, Guo Y, Zhu J (2022) Optimal design of terminal sliding mode controller for direct torque control of SRMs. IEEE Trans Transport Electrific 8(1):1445–1453

    Google Scholar 

  134. Shi S, Guo L, Chang Z, Zhao C, Chen P (2023) Current controller based on active disturbance rejection control with parameter identification for PMSM servo systems. IEEE Access 11:46882–46891

    Google Scholar 

  135. Diab AM, Yeoh SS, Bozhko S, Gerada C, Galea M (2022) Enhanced active disturbance rejection current controller for permanent magnet synchronous machines operated at low sampling time ratio. IEEE J Emerg Select Topics Indust Electronics 3(2):230–241

    Google Scholar 

  136. Jin N, Li G, Liu J, Ma T, Zhou K (2020) IPMSM control system based on ADRC-PBC strategy. Electric Mach Control 24(12):35–42

    Google Scholar 

  137. Jin Z, Sun X, Chen L, Yang Z (2022) Robust multi-objective optimization of a 3-pole active magnetic bearing based on combined curves with climbing algorithm. IEEE Trans Ind Electron 69(6):5491–5501

    Google Scholar 

  138. Gao J, Kuang J, Huang S, Huang Q, Xu Z, Chen Y, (2011) A novel position controller for PMSM servo system based on variable structure active disturbance rejection controller. In: 2011 International Conference on Electrical Machines and Systems, Beijing, China, 2011, pp. 1–5.

  139. Y. Sun and Y. Liu, (2019) An improved control method for voltage source converter-high voltage direct current system. In: 2019 IEEE 8th International Conference on Advanced Power System Automation and Protection (APAP), Xi'an, China, pp. 780–784.

  140. Liu C, Luo G, Duan X, Chen Z, Zhang Z, Qiu C (2020) Adaptive LADRC-based disturbance rejection method for electromechanical servo system. IEEE Trans Ind Appl 56(1):876–889

    Google Scholar 

  141. Su YX, Zheng CH, Duan BY (2005) Automatic disturbances rejection controller for precise motion control of permanent-magnet synchronous motors. IEEE Trans Ind Electron 52(3):814–823

    Google Scholar 

  142. Du B, Wu S, Han S, Cui S (2016) Application of linear active disturbance rejection controller for sensorless control of internal permanent-magnet synchronous motor. IEEE Trans Ind Electron 63(5):3019–3027

    ADS  Google Scholar 

  143. Diao K, Sun X, Lei G, Bramerdorfer G, Guo Y, Zhu J (2021) Robust design optimization of switched reluctance motor drive systems based on system-level sequential Taguchi method. IEEE Trans Energy Convers 36(4):3199–3207

    ADS  Google Scholar 

  144. M Abassi, A Khlaief, O Saadaoui, A Chaari, M Boussak, (2017) Performance analysis of PMSM DTC drives under inverter fault. In: 2017 International Conference on Advanced Systems and Electric Technologies (IC_ASET), Hammamet, Tunisia, pp. 244–249.

  145. N Bo-Wen, L Shao-Wu, Y Bao-Kang, D Feng, H Yi, M Ya-Jie, (2018) Direct torque control for PMSM using active disturbance rejection control method. In: 2018 Chinese Automation Congress (CAC), Xi'an, China, pp. 2798-2802

  146. Chen M, Gao H, Song H, (2011) Simulation study on a DTC system of PMSM. In: Proceedings of 2011 6th International Forum on Strategic Technology, Harbin, Heilongjiang, 1: 564–569.

  147. Yingpei L, Ran L, (2013) An Improved Method for Direct Torque Control System. In: 2013 Third International Conference on Intelligent System Design and Engineering Applications, Hong Kong, China, pp. 294–296.

  148. Sun X, Wu M, Yin C, Wang S, Tian X (2021) Multiple-iterations search sensorless control for linear motor in vehicle regenerative suspension. IEEE Trans Transport Electrific 7(3):1628–1637

    Google Scholar 

  149. Al-Nabi E, Wu B, Zargari NR, Sood V (2012) Input Power Factor Compensation For High-power CSC fed PMSM drive using d-axis stator current control. IEEE Trans Ind Electron 59(2):752–761

    Google Scholar 

  150. Kolano K (2023) New method of vector control in PMSM motors. IEEE Access 11:43882–43890

    Google Scholar 

  151. Attaianese C, D’Arpino M, Monaco MD, Noia LPD (2022) Modeling and detection of phase current sensor gain faults in PMSM drives. IEEE Access 10:80106–80118

    Google Scholar 

  152. Sun X, Wan B, Lei G, Tian X, Guo Y, Zhu J (2021) Multiobjective and multiphysics design optimization of a switched reluctance motor for electric vehicle applications. IEEE Trans Energy Convers 36(4):3294–3304

    ADS  Google Scholar 

  153. Tang Z, Akin B (2017) Suppression of dead-time distortion through revised repetitive controller in PMSM drives. IEEE Trans Energy Convers 32(3):918–930

    ADS  Google Scholar 

  154. Liu S, Li Q, Hong X, Zuo Y, Zou D (2023) Optimization of sideband electromagnetic vibration and comprehensive control performance of PMSMs based on improved vector control. J Power Electronics 23(2):252–263

    ADS  CAS  Google Scholar 

  155. Liu YP, Gao T, Li G (2014) Research on an improved method for permanent magnet synchronous motor. J Sens 2014:480–486

    Google Scholar 

  156. Liu Y, Wen J, Xu D, Huang Z, Zhou H (2020) The decoupled vector-control of PMSM based on nonlinear multi-input multi-output decoupling ADRC. Adv Mech Eng 12(12):1687814020984255

    Google Scholar 

  157. Wang S (2013) ADRC and feedforward hybrid control system of PMSM. MATH PROBLEMS ENG 2013:180179

    Google Scholar 

  158. Yang Z, Miao C, Sun X (2023) Model predictive current control for IPMSM drives with extended-state-observer-based sliding mode speed controller. IEEE Trans Energy Convers 38(2):1471–1480

    ADS  Google Scholar 

  159. Ziane H, Retif JM, Rekioua T (2008) Fixed-switching-frequency DTC control for PM synchronous machine with minimum torque ripples. Canadian J Electric Comput Eng 33(3/4):183–189

    Google Scholar 

  160. Inoue T, Inoue Y, Morimoto S, Sanada M (2016) Maximum torque per ampere control of a direct torque-controlled PMSM in a stator flux linkage synchronous frame. IEEE Trans Ind Appl 52(3):2360–2367

    Google Scholar 

  161. Feng L, Sun X, Guo D, Yao M, Diao K (2023). Advanced torque sharing function strategy with sliding mode control for switched reluctance motors. IEEE Trans Transportation Electrification.

  162. Mathapati S, Bocker J (2012) Analytical and offline approach to select optimal hysteresis bands of DTC for PMSM. IEEE Trans Indust Electronics 60(3):885–895

    Google Scholar 

  163. Wu Z, Li D, Liu Y, Chen Y (2023) Performance analysis of improved ADRCs for a class of high-order processes with verification on main steam pressure control. IEEE Trans Ind Electron 70(6):6180–6190

    Google Scholar 

  164. Xu W et al (2023) Improved position sensorless control for PMLSM via an active disturbance rejection controller and an adaptive full-order observer. IEEE Trans Ind Appl 59(2):1742–1753

    Google Scholar 

  165. Sun X, Hu C, Lei G, Guo Y, Zhu J (2020) State feedback control for a PM hub motor based on gray wolf optimization algorithm. IEEE Trans Power Electron 35(1):1136–1146

    ADS  Google Scholar 

  166. Zhang C, Chen Y (2016) Tracking control of ball screw drives using ADRC and equivalent-error-model-based feedforward control. IEEE Trans Ind Electron 63(12):7682–7692

    MathSciNet  Google Scholar 

  167. Zhang D, Yao X, Wu Q, Song Z (2017) ADRC based control for a class of input time delay systems. J Syst Eng Electron 28(6):1210–1220

    Google Scholar 

  168. Diao K, Sun X, Lei G, Guo Y, Zhu J (2021) Multimode optimization of switched reluctance machines in hybrid electric vehicles. IEEE Trans Energy Convers 36(3):2217–2226

    ADS  Google Scholar 

  169. Xue W, Madonski R, Lakomy K, Gao Z, Huang Y (2017) Add-on module of active disturbance rejection for set-point tracking of motion control systems. IEEE Trans Ind Appl 53(4):4028–4040

    Google Scholar 

  170. Zhang YL, Zhu M, Li D, Wang JM (2020) ADRC dynamic stabilization of an unstable heat equation. IEEE Trans Autom Control 65(10):4424–4429

    MathSciNet  Google Scholar 

  171. Zuo Y, Zhu X, Quan L, Zhang C, Du Y, Xiang Z (2018) Active disturbance rejection controller for speed control of electrical drives using phase-locking loop observer. IEEE Trans Indust Electronics 66(3):1748–1759

    Google Scholar 

  172. Yang Z, Lu C, Sun X, Ji J, Ding Q (2021) Study on active disturbance rejection control of a bearingless induction motor based on an improved particle swarm optimization-genetic algorithm. IEEE Trans Transport Electrific 7(2):694–705

    Google Scholar 

  173. Li M, Zhao J, Hu Y, Wang Z (2020) Active disturbance rejection position servo control of PMSLM based on reduced-order extended state observer. Chinese J Electric Eng 6(2):30–41

    Google Scholar 

  174. Yang Y, Tan J, Yue D, Xie X, Yue W (2021) Observer-based containment control for a class of nonlinear multiagent systems with uncertainties. IEEE Trans Syst Man Cyber: Syst 51(1):588–600

    Google Scholar 

  175. Zhang C, Zhang C, Li L, Liu H (2023) An enhanced nonlinear ADRC speed control method for electric propulsion system: modeling, analysis, and validation. IEEE Trans Power Electron 38(4):4520–4528

    ADS  Google Scholar 

  176. Zhu S et al (2022) Robust speed control of electrical drives with reduced ripple using adaptive switching high-order extended state observer. IEEE Trans Power Electron, Article 37(2):2009–2020

    ADS  Google Scholar 

  177. Yang Z, Jia J, Sun X, Xu T (2021) An enhanced linear ADRC strategy for a bearingless induction motor. IEEE Trans Transportation Electrification 8(1):1255–1266

    Google Scholar 

  178. Jing L, Liu W, Tang W, Qu R (2023). Design and optimization of coaxial magnetic gear with double-layer PMs and spoke structure for tidal power generation. IEEE/ASME Transactions on Mechatronics.

  179. Feng L, Sun X, Tian X, Diao K (2022) Direct torque control with variable flux for an SRM based on hybrid optimization algorithm. IEEE Trans Power Electron, Article 37(6):6688–6697

    ADS  Google Scholar 

  180. Li X, Ai W, Tian S (2016). ADRC for nonlinear time-variant systems with unknown orders. In: 2016 35th Chinese Control Conference (CCC) (pp. 9075-9080). IEEE.

  181. Deng F, Guan Y (2018). PMSM vector control based on improved ADRC. In: 2018 IEEE International Conference of Intelligent Robotic and Control Engineering (IRCE) (pp. 154-158). IEEE.

  182. Guang F, Yan-Fei L, Lipei H (2004) A new robust algorithm to improve the dynamic performance on the speed control of induction motor drive. IEEE Trans Power Electron 19(6):1614–1627

    ADS  Google Scholar 

  183. Yin Z, Du C, Liu J, Sun X, Zhong Y (2018) Research on autodisturbance-rejection control of induction motors based on an ant colony optimization algorithm. IEEE Trans Ind Electron 65(4):3077–3094

    Google Scholar 

  184. Li J, Ren HP, Zhong YR (2015) Robust speed control of induction motor drives using first-order auto-disturbance rejection controllers. IEEE Trans Ind Appl 51(1):712–720

    Google Scholar 

  185. Qiu C, Xie F, Wang Q, Liang K, Hong W, Jiang H, (2019) The Optimal "speed-torque" control of asynchronous motors in the field-weakening region based on ADRC and ELM. In: 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 2019, pp. 1–6.

  186. Sun K, Zhao Y, Shu Q (2010). Asynchronous motor based on Active-Disturbance Rejection Controller. In: Proceedings of the 29th Chinese Control Conferenc, IEEE.pp. 3339-3343

  187. Sun X, Shi Z, Lei G, Guo Y, Zhu J (2021) Multi-objective design optimization of an IPMSM based on multilevel strategy. IEEE Trans Ind Electron 68(1):139–148

    Google Scholar 

  188. Zhou X, Wang C, Ma Y (2020) Vector speed regulation of an asynchronous motor based on improved first-order linear active disturbance rejection technology. Energies 13(9):2168

    Google Scholar 

  189. Zhou X, Cui H, Ma Y, Gao Z (2017). The research on energy conservation controller for asynchronous motor based on ADRC. In: 2017 29th Chinese Control and Decision Conference (CCDC), IEEE, 4010-4014

  190. Zhong B, Ma LL (2021) Active disturbance rejection control and energy consumption of three-phase asynchronous motor based on dynamic system’s decoupling. SUSTAIN ENERGY TECHNOL ASSESS 47:101338

    Google Scholar 

  191. Gao SZ (2011) Research on the speed-sensorless vector control system of induction motor based on adrc, Dissertation/Thesis 2011.

  192. Sun X, Feng L, Diao K, Yang Z (2021) An improved direct instantaneous torque control based on adaptive terminal sliding mode for a segmented-rotor SRM. IEEE Trans Ind Electron 68(11):10569–10579

    Google Scholar 

  193. Das S, Subudhi B (2020) A two-degree-of-freedom internal model-based active disturbance rejection controller for a wind energy conversion system. IEEE J Emerg Select Topics Power Electronics 8(3):2664–2671

    Google Scholar 

  194. Pradhan PP, Subudhi B, Ghosh A (2022) A robust multiloop disturbance rejection controller for a doubly fed induction generator-based wind energy conversion system. IEEE J Emerg Select Topics Power Electronics 10(5):6266–6273

    Google Scholar 

  195. Xu Y, Zhao S (2019) Mitigation of subsynchronous resonance in series-compensated DFIG wind farm using active disturbance rejection control. IEEE Access 7:68812–68822

    Google Scholar 

  196. Sun X, Wu J, Lei G, Guo Y, Zhu J (2021) Torque ripple reduction of SRM drive using improved direct torque control with sliding mode controller and observer. IEEE Trans Ind Electron 68(10):9334–9345

    Google Scholar 

  197. Yu Y, Hu X (2019) Active disturbance rejection control strategy for grid-connected photovoltaic inverter based on virtual synchronous generator. IEEE Access 7:17328–17336

    Google Scholar 

  198. Zhou X, Liu M, Ma Y, Wen S (2020) Improved linear active disturbance rejection controller control considering bus voltage filtering in permanent magnet synchronous generator. IEEE Access 8:19982–19996

    Google Scholar 

  199. Cheng Y, Dai L, Li A, Yuan Y, Chen Z (2022) Active disturbance rejection generalized predictive control of a quadrotor UAV via quantitative feedback theory. IEEE Access 10:37912–37923

    Google Scholar 

  200. Li B, Gao S, Li C, Wan H (2021) Maritime buoyage inspection system based on an unmanned aerial vehicle and active disturbance rejection control. IEEE Access 9:22883–22893

    Google Scholar 

  201. Shan Z, Wang Y, Liu X, Wei C (2023) Fuzzy automatic disturbance rejection control of quadrotor UAV based on improved whale optimization algorithm. IEEE Access 11:69117–69130

    Google Scholar 

  202. Sun X, Shi Z, Cai Y, Lei G, Guo Y, Zhu J (2020) Driving-cycle oriented design optimization of a permanent magnet hub motor drive system for a four-wheel-drive electric vehicle. IEEE Trans Transport Electrific 6(3):1115–1125

    Google Scholar 

  203. Shen S, Xu J (2021) Trajectory tracking active disturbance rejection control of the unmanned helicopter and its parameters tuning. IEEE Access 9:56773–56785

    Google Scholar 

  204. Shen S, Xu J, Chen P, Xia Q (2023) An intelligence attitude controller based on active disturbance rejection control technology for an unmanned helicopter. IEEE Trans Veh Technol 72(3):2936–2946

    Google Scholar 

  205. Xu LX, Ma HJ, Guo D, Xie AH, Song DL (2020) Backstepping sliding-mode and cascade active disturbance rejection control for a quadrotor UAV. IEEE/ASME Trans Mechatronics 25(6):2743–2753

    Google Scholar 

  206. Yang H, Cheng L, Xia Y, Yuan Y (2018) Active disturbance rejection attitude control for a dual closed-loop quadrotor under gust wind. IEEE Trans Control Syst Technol 26(4):1400–1405

    Google Scholar 

  207. Sun X, Jin Z, Cai Y, Yang Z, Chen L (2020) Grey wolf optimization algorithm based state feedback control for a bearingless permanent magnet synchronous machine. IEEE Trans Power Electron 35(12):13631–13640

    ADS  Google Scholar 

  208. Zhou D, Geng Q, Li B (2015). ADRC and GA algorithm for fixed-wing UAV. In: 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, IEEE., 2: 248-251

  209. Chen S, Xue W, Huang Y, Liu P (2017). On comparison between smith predictor and predictor observer based adrcs for nonlinear uncertain systems with output delay. In: 2017 American Control Conference (ACC), IEEE, pp. 5083-5088

  210. Kia M, Mansouri P, Javdani A (2020). Modeling and simulation of a single gain tuning ADRC controller in Matlab/Simulink. In: 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), IEEE, pp. 154-159

  211. Liu Y et al. (2018). Smith-ADRC based z axis impact force control for high speed wire bonding machine. In: 2018 19th International Conference on Electronic Packaging Technology (ICEPT), IEEE, pp. 1003-1008

  212. Wang Y, Yang Y, Ding F, (2016) Improved ADRC control strategy in FPSO dynamic positioning control application. In: 2016 IEEE International Conference on Mechatronics and Automation, Harbin, China, pp. 789–793.

  213. Wu Z, Li D, He T, Wu H, Jia F, Sun L (2018). A comparison study of a high order system with different ADRC control strategies. In: 2018 37th Chinese Control Conference (CCC), IEEE, pp. 1-6

  214. Zhao C, Huang Y (2010) ADRC based integrated guidance and control scheme for the interception of maneuvering targets with desired LOS angle. In: Proceedings of the 29th Chinese Control Conference, Beijing, China, 6192–6196.

  215. Shi Z, Sun X, Cai Y, Yang Z (2020) Robust design optimization of a five-phase PM hub motor for fault-tolerant operation based on Taguchi method. IEEE Trans Energy Convers 35(4):2036–2044

    ADS  Google Scholar 

  216. Zhonghua S (2019). Design and simulation of naval gun servo controller based on ADRC. In: 2019 11th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), IEEE, pp. 345-349

  217. Pan H (2020) Research on a new active disturbance rejection control algorithm. Control Eng China 27(4):728–732

    Google Scholar 

  218. Chen L, Xu H, Sun X (2021) A novel strategy of control performance improvement for six-phase permanent magnet synchronous hub motor drives of EVs under new European driving cycle. IEEE Trans Veh Technol 70(6):5628–5637

    Google Scholar 

  219. Chen CF, Du ZJ, He L, Wang JQ, Wu DM, Dong W (2019) Active disturbance rejection with fast terminal sliding mode control for a lower limb exoskeleton in swing phase. IEEE Access 7:72343–72357

    Google Scholar 

  220. Cui W, Tan W, Li D, Wang Y, Wang S (2020) A relay feedback method for the tuning of linear active disturbance rejection controllers. IEEE Access 8:4542–4550

    Google Scholar 

  221. Sun X, Li T, Yao M, Lei G, Guo Y, Zhu J (2022) Improved finite-control-set model predictive control with virtual vectors for PMSHM drives. IEEE Trans Energy Convers 37(3):1885–1894

    Google Scholar 

  222. Du Y, Cao W, She J (2023) Analysis and design of active disturbance rejection control with an improved extended state observer for systems with measurement noise. IEEE Trans Ind Electron 70(1):855–865

    Google Scholar 

  223. Guo BZ, Jin FF (2013) Sliding mode and active disturbance rejection control to stabilization of one-dimensional anti-stable wave equations subject to disturbance in boundary input. IEEE Trans Autom Control 58(5):1269–1274

    MathSciNet  Google Scholar 

  224. Guo BZ, Jin FF (2015) Output feedback stabilization for one-dimensional wave equation subject to boundary disturbance. IEEE Trans Autom Control 60(3):824–830

    MathSciNet  Google Scholar 

  225. Guo BZ, Wu ZH, Zhou HC (2016) Active disturbance rejection control approach to output-feedback stabilization of a class of uncertain nonlinear systems subject to stochastic disturbance. IEEE Trans Autom Control 61(6):1613–1618

    MathSciNet  Google Scholar 

  226. Guo BZ, Zhou HC (2015) The active disturbance rejection control to stabilization for multi-dimensional wave equation with boundary control matched disturbance. IEEE Trans Autom Control 60(1):143–157

    MathSciNet  Google Scholar 

  227. He K, Dong C, Wang Q (2022) Active disturbance rejection control for uncertain nonlinear systems with sporadic measurements. IEEE/CAA Journal of Automatica Sinica 9(5):893–906

    Google Scholar 

  228. He T, Wu Z, Li D, Wang J (2020) A tuning method of active disturbance rejection control for a class of high-order processes. IEEE Trans Ind Electron 67(4):3191–3201

    ADS  Google Scholar 

  229. Sun X, Cai F, Yang Z, Tian X (2022) Finite position control of interior permanent magnet synchronous motors at low speed. IEEE Trans Power Electron 37(7):7729–7738

    ADS  Google Scholar 

  230. Kang C, Wang S, Ren W, Lu Y, Wang B (2019) Optimization design and application of active disturbance rejection controller based on intelligent algorithm. IEEE Access 7:59862–59870

    Google Scholar 

  231. Łakomy K et al (2022) Active disturbance rejection control design with suppression of sensor noise effects in application to DC–DC buck power converter. IEEE Trans Ind Electron 69(1):816–824

    Google Scholar 

  232. Liu G, Fang L, Liu Z, Chen Q, Zhang J (2022) Active disturbance rejection control of a magnetic screw motor for high tracking performance. IEEE Trans Power Electron 37(8):9641–9651

    ADS  Google Scholar 

  233. Pang X, Men X, Dong B, An T (2022) Decentralized robust active disturbance rejection control of modular robot manipulators: an experimental investigation with emotional pHRI. IEEE Access 10:38625–38634

    Google Scholar 

  234. Castañeda LA, Luviano-Juárez A, Chairez I (2015) Robust trajectory tracking of a delta robot through adaptive active disturbance rejection control. IEEE Trans Control Syst Technol 23(4):1387–1398

    Google Scholar 

  235. Hai X et al (2019) Mobile robot ADRC with an automatic parameter tuning mechanism via modified pigeon-inspired optimization. IEEE/ASME Trans Mechatronics 24(6):2616–2626

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Opening Foundation of Key Laboratory of Advanced Manufacture Technology for Automobile Parts, Ministry of Education [No. 2022 KLMT02].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, Y. & Sun, X. Overview of Active Disturbance Rejection Control for Permanent Magnet Synchronous Motors. J. Electr. Eng. Technol. 19, 1237–1255 (2024). https://doi.org/10.1007/s42835-023-01710-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42835-023-01710-w

Keywords

Navigation